
TUTORIAL

Introduction to Object-Oriented
Modeling and Simulation with

OpenModelica

Peter Fritzson

Copyright (c) by Peter Fritzson
Version 2006

Abstract

Object-Oriented modeling is a fast-growing area of modeling and simulation that provides a structured,
computer-supported way of doing mathematical and equation-based modeling. Modelica is today the most
promising modeling and simulation language in that it effectively unifies and generalizes previous object-
oriented modeling languages and provides a sound basis for the basic concepts.

The Modelica modeling language and technology is being warmly received by the world community in
modeling and simulation with major applications in virtual prototyping. It is bringing about a revolution in
this area, based on its ease of use, visual design of models with combination of lego-like predefined model
building blocks, its ability to define model libraries with reusable components, its support for modeling
and simulation of complex applications involving parts from several application domains, and many more
useful facilities. To draw an analogy, Modelica is currently in a similar phase as Java early on, before the
language became well known, but for virtual prototyping instead of Internet programming.

The tutorial presents an object-oriented component-based approach to computer supported
mathematical modeling and simulation through the powerful Modelica language and its associated
technology. Modelica can be viewed as an almost universal approach to high level computational
modeling and simulation, by being able to represent a range of application areas and providing general
notation as well as powerful abstractions and efficient implementations.

The tutorial gives an introduction to the Modelica language to people who are familiar with basic
programming concepts. It gives a basic introduction to the concepts of modeling and simulation, as well as
the basics of object-oriented component-based modeling for the novice, and an overview of modeling and
simulation in a number of application areas.

The tutorial has several goals:

• Being easily accessible for people who do not previously have a background in modeling,
simulation.

• Introducing the concepts of physical modeling, object-oriented modeling and component-based
modeling and simulation.

• Giving an introduction to the Modelica language.
• Demonstrating modeling examples from several application areas.
• Giving a possibility for hands-on exercises.

Presenter’s data

Peter Fritzson is a Professor and Director of the Programming Environment Laboratory (Pelab), at the
Department of Computer and Information Science, Linköping University, Sweden. He holds the position
of Director of Research and Development of MathCore Engineering AB. Peter Fritzson is chairman of the
Scandinavian Simulation Society, secretary of the European simulation organization, EuroSim; and vice
chairman of the Modelica Association, an organization he helped to establish. His main area of interest is
software engineering, especially design, programming and maintenance tools and environments.

1. Useful Web Links
The Modelica Association Web Page

http://www.modelica .org

Modelica publications

http://www.modelica.org/publications.shtml

Modelica related research and the OpenModelica open source project at Linköping University with
download of the OpenModelica system and link to download of MathModelica Lite.

http://www.ida.liu.se/~pelab/modelica/OpenModelica.html

The Proceedings of 5th International Modelica Conference, September 4-5, 2006, Vienna, Austria

http://www.modelica.org/events/Conference2006/

The Proceedings of 4th International Modelica Conference, March 7-8, 2005, Hamburg, Germany

http://www.modelica.org/events/Conference2005/

The Proceedings of 3rd International Modelica Conference, November 3-4, 2004, Linköping, Sweden

http://www.modelica.org/events/Conference2003/

The Proceedings of 2nd International Modelica Conference, March 18-19, 2002, "Deutsches Zentrum fur
Luft- und Raumfahrt" at Oberpfaffenhofen, Germany.

http://www.modelica.org/events/Conference2002/

The Proceedings of Modelica Workshop, October 23 - 24, 2000, Lund University, Lund, Sweden

http://www.modelica.org/events/workshop2000/

2. Contributors to the Modelica Language, version 2.2
Bernhard Bachmann , University of Applied Sciences, Bielefeld, Germany

John Batteh, Ford Motor Company, Dearborn, MI, U.S.A.

Dag Brück, Dynasim, Lund, Sweden

Francesco Casella, Politecnico di Milano, Milano, Italy

Christoph Clauß, Fraunhofer Institute for Integrated Circuits, Dresden, Germany

Jonas Eborn, Modelon AB, Lund, Sweden

Hilding Elmqvist, Dynasim, Lund, Sweden

Rüdiger Franke, ABB Corporate Research, Ladenburg, Germany

Peter Fritzson, Linköping University, Sweden

Anton Haumer, Technical Consulting & Electrical Engineering, St.Andrae-Woerdern, Austria

Christian Kral, arsenal research, Vienna, Austria

Sven Erik Mattsson, Dynasim, Lund, Sweden

Chuck Newman, Ford Motor Company, Dearborn, MI, U.S.A.

Hans Olsson, Dynasim, Lund, Sweden

Martin Otter, German Aerospace Center, Oberpfaffenhofen, Germany

Markus Plainer, Arsenal Research, Vienna, Austria

Adrian Pop, Linköping University, Sweden

Katrin Prölß, Technical University Hamburg-Harburg, Germany

André Schneider, Fraunhofer Institute for Integrated Circuits, Dresden, Germany

Christian Schweiger, German Aerospace Center, Oberpfaffenhofen, Germany

Michael Tiller, Ford Motor Company, Dearborn, MI, U.S.A.

Hubertus Tummescheit, Modelon AB, Lund, Sweden

Hans-Jürg Wiesmann, ABB Switzerland Ltd.,Corporate Research, Baden, Switzerland

Peter FritzsonPeter Fritzson
Peter BunusPeter Bunus

Linköping University, Dept. of Comp. & Inform. Science
SE 581-83, Linköping, Sweden
{petfr,petbu}@ida.liu.se

Principles of ObjectPrinciples of Object--OrientedOriented
Modeling and SimulationModeling and Simulation

with Modelicawith Modelica

pelab2 Copyright Copyright ©© Peter Fritzson

Course Based on Recent Book, 2004Course Based on Recent Book, 2004

Peter Fritzson
Principles of Object Oriented
Modeling and Simulation with
Modelica 2.1

Wiley-IEEE Press

940 pages

pelab3 Copyright Copyright ©© Peter Fritzson

Acknowledgements, Usage, CopyrightsAcknowledgements, Usage, Copyrights
• If you want to use the Powerpoint version of these slides

in your own course, send an email to:
peter.fritzson@ida.liu.se

• Thanks to Emma Larsdotter Nilsson for contributions to
the layout of these slides

• Most examples and figures in this tutorial are adapted
with permission from Peter Fritzson’s book ”Principles of
Object Oriented Modeling and Simulation with Modelica
2.1”, copyright Wiley-IEEE Press

• Some examples and figures reproduced with permission
from Modelica Association, Martin Otter, Hilding Elmqvist

• Modelica Association: www.modelica.org
• OpenModelica: www.ida.liu.se/projects/OpenModelica

pelab4 Copyright Copyright ©© Peter Fritzson

OutlineOutline

• Introduction to Modeling and Simulation
• Modelica - The next generation modeling and

Simulation Language
• Classes
• Components, Connectors and Connections
• Equations
• Discrete Events and Hybrid Systems
• Algorithm and Functions
• Modeling and Simulation Environments
• Demonstrations

pelab5 Copyright Copyright ©© Peter Fritzson

Why Modeling & Simulation ?Why Modeling & Simulation ?

• Increase understanding of complex systems
• Design and optimization
• Virtual prototyping
• Verification

Build more complex systems

pelab6 Copyright Copyright ©© Peter Fritzson

What is a system?What is a system?

• A system is an object or collection of
objects whose properties we want to study

• Natural and artificial systems
• Reasons to study: curiosity, to build it

Collector

Storage tank

PumpCold water

Hot water

Electricity

Heater

pelab7 Copyright Copyright ©© Peter Fritzson

Examples of Complex SystemsExamples of Complex Systems
• Robotics
• Automotive
• Aircrafts
• Satellites
• Biomechanics
• Power plants
• Hardware-in-the-loop,

real-time simulation

pelab8 Copyright Copyright ©© Peter Fritzson

ExperimentsExperiments

Problems
• Experiment might be too expensive
• Experiment might be too dangerous
• System needed for the experiment might not yet exist

An experiment is the process of extracting information
from a system by exercising its inputs

pelab9 Copyright Copyright ©© Peter Fritzson

Model conceptModel concept

Kinds of models:
• Mental model – statement like “a person is reliable”
• Verbal model – model expressed in words
• Physical model – a physical object that mimics the system
• Mathematical model – a description of a system where

the relationships are expressed in mathematical form – a
virtual prototype

• Physical modeling – also used for mathematical models
built/structured in the same way as physical models

A model of a system is anything an experiment can be
applied to in order to answer questions about that system

pelab10 Copyright Copyright ©© Peter Fritzson

SimulationSimulation

A simulation is an experiment performed on a model

Examples of simulations:
• Industrial process – such as steel or pulp

manufacturing, study the behaviour under different
operating conditions in order to improve the process

• Vehicle behaviour – e.g. of a car or an airplane, for
operator training

• Packet switched computer network – study behaviour
under different loads to improve performance

pelab11 Copyright Copyright ©© Peter Fritzson

Reasons for SimulationReasons for Simulation

• Suppression of second-order effects
• Experiments are too expensive, too dangerous, or

the system to be investigated does not yet exist
• The time scale is not compatible with experimenter

(Universe, million years, …)
• Variables may be inaccessible.
• Easy manipulation of models
• Suppression of disturbances

pelab12 Copyright Copyright ©© Peter Fritzson

Dangers of SimulationDangers of Simulation

Falling in love with a model
The Pygmalion effect (forgetting that model is not the real
world, e.g. introduction of foxes to hunt rabbits in Australia)

Forcing reality into the constraints of a model
The Procrustes effect (e.g. economic theories)

Forgetting the model’s level of accuracy
Simplifying assumptions

pelab13 Copyright Copyright ©© Peter Fritzson

Building Models Based on KnowledgeBuilding Models Based on Knowledge

System knowledge
• The collected general experience in relevant domains
• The system itself

Specific or generic knowledge
• E.g. software engineering knowledge

pelab14 Copyright Copyright ©© Peter Fritzson

Kinds of Mathematical ModelsKinds of Mathematical Models

• Dynamic vs. Static models

• Continuous-time vs. Discrete-time dynamic models

• Quantitative vs. Qualitative models

pelab15 Copyright Copyright ©© Peter Fritzson

Dynamic vs. Static ModelsDynamic vs. Static Models

A dynamic model includes time in the model
A static model can be defined without involving time

time

Resistor voltage – static system

Capacitor voltage - dynamic

Input current
pulse

pelab16 Copyright Copyright ©© Peter Fritzson

ContinuousContinuous--Time vs.Time vs.
DiscreteDiscrete--Time Dynamic ModelsTime Dynamic Models
Continuous-time models may evolve their variable values
continuously during a time period
Discrete-time variables change values a finite number of times
during a time period

time

Continuous

Discrete

pelab17 Copyright Copyright ©© Peter Fritzson

Quantitative vs. Qualitative ModelsQuantitative vs. Qualitative Models

Results in qualitative data
Variable values cannot be represented numerically

Mediocre = 1, Good = 2, Tasty = 3, Superb = 4

Quality of food in a restaurant according
to inspections at irregular points in time

time

Good

Tasty

Superb

Mediocre

pelab18 Copyright Copyright ©© Peter Fritzson

Using Modeling and SimulationUsing Modeling and Simulation
within the Product Designwithin the Product Design--VV

Specification

Design

Design
Refinement

Component verification

Subsystem level integration and
verification

Subsystem level integration test
calibration and verification

Product verification and
deployment

Maintenance

Realization

Detailed feature design and
implementation

Architectural design and
system functional design

Preliminary feature design

System
requirements

Level of Abstraction

Documentation, Version and Configuration Management

Verification

Integration

Calibration

Experience Feedback

pelab19 Copyright Copyright ©© Peter Fritzson

Principles of EquationPrinciples of Equation--Based ModelingBased Modeling

• Each icon represents a physical component
i.e. Resistor, mechanical Gear Box, Pump

• Composition lines represent the actual
physical connections i.e. electrical line,
mechanical connection, heat flow

• Variables at the interfaces describe
interaction with other component

• Physical behavior of a component is
described by equations

• Hierarchical decomposition of components

Connection

Component 1

Component 3

Component 2

pelab20 Copyright Copyright ©© Peter Fritzson

inertial
x

y

axis1

axis2

axis3

axis4

axis5

axis6
r3Drive1

1
r3Motor

r3ControlqdRef
1

S

qRef
1

S

k2

i

k1

i

qddRef cut joint

l

qd

tn

Jmotor=J

gear=i

spring=c

fr
ic

=R
v0

S
rel

joint=0

S

V
s

-

+
diff

-

+
pow er

emf

La=(250/(2*D*w
m

))
Ra=250

Rd2=100

C=0.004*D/w m

-

+
OpI

Rd1=100

Ri=10

Rp1=200

Rp
2=

50

Rd4=100

hall2

Rd
3=

10
0

g1

g2

g3

hall1

g4

g5

rw

qd q

rate2

b(s)

a(s)

rate3

340.8

S

rate1

b(s)

a(s)

tacho1

PT1

Kd

0.03

w Sum

-

sum

+1

+1

pSum

-

Kv

0.3

tacho2

b(s)

a(s)

q qd

iRefqRef

qdRef

Srel = n*transpose(n)+(identity(3)- n*transpose(n))*cos(q)-
skew(n)*sin(q);
wrela = n*qd;
zrela = n*qdd;
Sb = Sa*transpose(Srel);
r0b = r0a;
vb = Srel*va;
wb = Srel*(wa + wrela);
ab = Srel*aa;
zb = Srel*(za + zrela + cross(wa, wrela));

Application Example Application Example –– Industry RobotIndustry Robot

Courtesy of Martin Otter

pelab21 Copyright Copyright ©© Peter Fritzson

GTX Gas Turbine Power Cutoff MechanismGTX Gas Turbine Power Cutoff Mechanism

Hello

Courtesy of Siemens Industrial Turbomachinery AB

Developed
by MathCore
for Siemens

pelab22 Copyright Copyright ©© Peter Fritzson

Modelica Modelica ––
The Next GenerationThe Next Generation
Modeling LanguageModeling Language

pelab23 Copyright Copyright ©© Peter Fritzson

Stored KnowledgeStored Knowledge

Model knowledge is stored in books and human
minds which computers cannot access

“The change of motion is proportional
to the motive force impressed “
– Newton

pelab24 Copyright Copyright ©© Peter Fritzson

The Form The Form –– EquationsEquations
• Equations were used in the third millennium B.C.
• Equality sign was introduced by Robert Recorde in 1557

Newton still wrote text (Principia, vol. 1, 1686)
“The change of motion is proportional to the motive force impressed ”

CSSL (1967) introduced a special form of “equation”:
variable = expression
v = INTEG(F)/m

Programming languages usually do not allow equations!

pelab25 Copyright Copyright ©© Peter Fritzson

Declarative language
Equations and mathematical functions allow acausal modeling,
high level specification, increased correctness

Multi-domain modeling
Combine electrical, mechanical, thermodynamic, hydraulic,
biological, control, event, real-time, etc...

Everything is a class
Strongly typed object-oriented language with a general class
concept, Java & MATLAB-like syntax

Visual component programming
Hierarchical system architecture capabilities

Efficient, non-proprietary
Efficiency comparable to C; advanced equation compilation,
e.g. 300 000 equations, ~150 000 lines on standard PC

Modelica Modelica –– The Next Generation Modeling The Next Generation Modeling
LanguageLanguage

pelab26 Copyright Copyright ©© Peter Fritzson

High level language

MATLAB similarities

Non-Proprietary
• Open Language Standard
• Both Open-Source and Commercial implementations

Flexible and powerful external function facility
• LAPACK interface effort started

Modelica Modelica –– The Next Generation Modeling The Next Generation Modeling
LanguageLanguage

MATLAB-like array and scalar arithmetic, but strongly typed and
efficiency comparable to C.

MATLAB-style array operations; Functional style; iterators,
constructors, object orientation, equations, etc.

pelab27 Copyright Copyright ©© Peter Fritzson

Modelica Language PropertiesModelica Language Properties

• Declarative and Object-Oriented

• Equation-based; continuous and discrete equations

• Parallel process modeling of real-time applications,
according to synchronous data flow principle

• Functions with algorithms without global side-effects
(but local data updates allowed)

• Type system inspired by Abadi/Cardelli

• Everything is a class – Real, Integer, models,
functions, packages, parameterized classes....

pelab28 Copyright Copyright ©© Peter Fritzson

Object OrientedObject Oriented
Mathematical Modeling with ModelicaMathematical Modeling with Modelica
• The static declarative structure of a mathematical

model is emphasized

• OO is primarily used as a structuring concept

• OO is not viewed as dynamic object creation and
sending messages

• Dynamic model properties are expressed in a
declarative way through equations.

• Acausal classes supports better reuse of modeling
and design knowledge than traditional classes

pelab29 Copyright Copyright ©© Peter Fritzson

Brief Modelica HistoryBrief Modelica History

• First Modelica design group meeting in fall 1996
• International group of people with expert knowledge

in both language design and physical modeling
• Industry and academia

• Modelica Versions
• 1.0 released September 1997
• 2.0 released March 2002
• Latest version, 2.2 released March 2005

• Modelica Association established 2000
• Open, non-profit organization

pelab30 Copyright Copyright ©© Peter Fritzson

Modelica ConferencesModelica Conferences
• The 1st International Modelica conference October,

2000

• The 2nd International Modelica conference March 18-
19, 2002

• The 3rd International Modelica conference November
5-6, 2003 in Linköping, Sweden

• The 4th International Modelica conference March 6-7,
2005 in Hamburg, Germany

• The 5th International Modelica conference planned
September 4-5, 2006 in Vienna, Austria

pelab1 Copyright Copyright ©© Peter Fritzson

Modelica Classes and Modelica Classes and
InheritanceInheritance

pelab2 Copyright Copyright ©© Peter Fritzson

Simplest Model Simplest Model –– Hello World!Hello World!
A Modelica “Hello World” model

class HelloWorld "A simple equation"
Real x(start=1);

equation
der(x)= -x;

end HelloWorld;

Equation: x’ = - x
Initial condition: x(0) = 1

Simulation in OpenModelica environment

0.5 1 1.5 2

0.2

0.4

0.6

0.8

1

simulate(HelloWorld, stopTime = 2)
plot(x)

pelab3 Copyright Copyright ©© Peter Fritzson

Another ExampleAnother Example

Include algebraic equation
Algebraic equations contain
no derivatives

Simulation in OpenModelica environment

0.2 0.4 0.6 0.8 1

time

0.90

0.95

1.05

1.10

1.15

1.20

1.0

simulate(DAEexample, stopTime = 1)
plot(x)

class DAEexample
Real x(start=0.9);
Real y;

equation
der(y)+(1+0.5*sin(y))*der(x)

= sin(time);
x - y = exp(-0.9*x)*cos(y);

end DAEexample;

pelab4 Copyright Copyright ©© Peter Fritzson

-1 1 2

-2

-1

1

2

-2

Example class: Van Example class: Van derder PolPol OscillatorOscillator
class VanDerPol "Van der Pol oscillator model"
Real x(start = 1) "Descriptive string for x"; // x starts at 1
Real y(start = 1) "y coordinate"; // y starts at 1
parameter Real lambda = 0.3;

equation
der(x) = y; // This is the 1st diff equation //
der(y) = -x + lambda*(1 - x*x)*y; /* This is the 2nd diff equation */

end VanDerPol;

simulate(VanDerPol,stopTime = 25)

plotParametric(x,y)

pelab5 Copyright Copyright ©© Peter Fritzson

Small ExerciseSmall Exercise
• Locate the HelloWorld model in DrModelica using

OMNotebook!
• Simulate and plot the example. Do a slight change in

the model, re-simulate and re-plot.
class HelloWorld "A simple equation"

Real x(start=1);
equation

der(x)= -x;
end HelloWorld;

simulate(HelloWorld, stopTime = 2)
plot(x)

• Locate the VanDerPol model in DrModelica and try it!

pelab6 Copyright Copyright ©© Peter Fritzson

Variables and ConstantsVariables and Constants

Built-in primitive data types
Boolean true or false
Integer Integer value, e.g. 42 or –3
Real Floating point value, e.g. 2.4e-6
String String, e.g. “Hello world”
Enumeration Enumeration literal e.g. ShirtSize.Medium

pelab7 Copyright Copyright ©© Peter Fritzson

Variables and Constants contVariables and Constants cont’’

• Names indicate meaning of constant
• Easier to maintain code
• Parameters are constant during simulation
• Two types of constants in Modelica
• constant

• parameter

constant Real PI=3.141592653589793;
constant String redcolor = "red";
constant Integer one = 1;
parameter Real mass = 22.5;

pelab8 Copyright Copyright ©© Peter Fritzson

Comments in ModelicaComments in Modelica
1) Declaration comments, e.g. Real x "state variable";

2) Source code comments, disregarded by compiler
2a) C style, e.g. /* This is a C style comment */
2b) C++ style, e.g. // Comment to the end of the line…

class VanDerPol "Van der Pol oscillator model"
Real x(start = 1) "Descriptive string for x”; // x starts at 1
Real y(start = 1) "y coordinate”; // y starts at 1
parameter Real lambda = 0.3;

equation
der(x) = y; // This is the 1st diff equation //
der(y) = -x + lambda*(1 - x*x)*y; /* This is the 2nd diff equation */

end VanDerPol;

pelab9 Copyright Copyright ©© Peter Fritzson

A Simple Rocket ModelA Simple Rocket Model

()abs

thrust mass gravityacceleration
mass

mass massLossRate thrust
altitude velocity
velocity acceleration

− ⋅=

′ = − ⋅
′ =
′ =

class Rocket "rocket class"
parameter String name;
Real mass(start=1038.358);
Real altitude(start= 59404);
Real velocity(start= -2003);
Real acceleration;
Real thrust; // Thrust force on rocket
Real gravity; // Gravity forcefield
parameter Real massLossRate=0.000277;

equation
(thrust-mass*gravity)/mass = acceleration;
der(mass) = -massLossRate * abs(thrust);
der(altitude) = velocity;
der(velocity) = acceleration;

end Rocket;

new model
declaration
comment

parameters (changeable
before the simulation)

name + default value

differentiation with
regards to time

mathematical
equation (acausal)

floating point
type

start value

thrustapollo13

mg

Rocket

pelab10 Copyright Copyright ©© Peter Fritzson

Celestial Body ClassCelestial Body Class

class CelestialBody
constant Real g = 6.672e-11;
parameter Real radius;
parameter String name;
parameter Real mass;

end CelestialBody;

An instance of the class can be
declared by prefixing the type
name to a variable name

...
CelestialBody moon;
...

A class declaration creates a type name in Modelica

The declaration states that moon is a variable
containing an object of type CelestialBody

pelab11 Copyright Copyright ©© Peter Fritzson

Moon LandingMoon Landing

class MoonLanding
parameter Real force1 = 36350;
parameter Real force2 = 1308;

protected
parameter Real thrustEndTime = 210;
parameter Real thrustDecreaseTime = 43.2;

public
Rocket apollo(name="apollo13");
CelestialBody moon(name="moon",mass=7.382e22,radius=1.738e6);

equation
apollo.thrust = if (time < thrustDecreaseTime) then force1

else if (time < thrustEndTime) then force2
else 0;

apollo.gravity=moon.g*moon.mass/(apollo.altitude+moon.radius)^2;
end MoonLanding;

()2..
...

radiusmoonaltitudeapollo
massmoongmoongravityapollo

+
⋅=

only access
inside the class

access by dot
notation outside
the class

altitude
CelestialBody

thrust
apollo13

mg

Rocket

pelab12 Copyright Copyright ©© Peter Fritzson

Simulation of Moon LandingSimulation of Moon Landing
simulate(MoonLanding, stopTime=230)
plot(apollo.altitude, xrange={0,208})
plot(apollo.velocity, xrange={0,208})

50 100 150 200

5000

10000

15000

20000

25000

30000
50 100 150 200

-400

-300

-200

-100

It starts at an altitude of 59404
(not shown in the diagram) at
time zero, gradually reducing it
until touchdown at the lunar
surface when the altitude is zero

The rocket initially has a high
negative velocity when approaching
the lunar surface. This is reduced to
zero at touchdown, giving a smooth
landing

pelab13 Copyright Copyright ©© Peter Fritzson

Restricted Class KeywordsRestricted Class Keywords

• The class keyword can be replaced by other keywords, e.g.: model,
record, block, connector, function, ...

• Classes declared with such keywords have restrictions
• Restrictions apply to the contents of restricted classes

• Example: A model is a class that cannot be used as a connector class
• Example: A record is a class that only contains data, with no equations
• Example: A block is a class with fixed input-output causality

model CelestialBody
constant Real g = 6.672e-11;
parameter Real radius;
parameter String name;
parameter Real mass;

end CelestialBody;

pelab14 Copyright Copyright ©© Peter Fritzson

Modelica FunctionsModelica Functions

• Modelica Functions can be viewed as a special
kind of restricted class with some extensions

• A function can be called with arguments, and is
instantiated dynamically when called

• More on functions and algorithms later in
Lecture 4

function sum
input Real arg1;
input Real arg2;
output Real result;

algorithm
result := arg1+arg2;

end sum;

pelab15 Copyright Copyright ©© Peter Fritzson

InheritanceInheritance

record ColorData
parameter Real red = 0.2;
parameter Real blue = 0.6;
Real green;

end ColorData;

class Color
extends ColorData;

equation
red + blue + green = 1;

end Color;

Data and behavior: field declarations, equations, and
certain other contents are copied into the subclass

keyword
denoting
inheritance

restricted kind
of class without
equations

parent class to Color

child class or
subclass

class ExpandedColor
parameter Real red=0.2;
parameter Real blue=0.6;
Real green;

equation
red + blue + green = 1;

end ExpandedColor;

pelab16 Copyright Copyright ©© Peter Fritzson

Inheriting definitionsInheriting definitions

Inheriting
multiple different
definitions of the
same item is an
error

Inheriting multiple
identical
definitions results
in only one
definition

record ColorData
parameter Real red = 0.2;
parameter Real blue = 0.6;
Real green;

end ColorData;

class ErrorColor
extends ColorData;
parameter Real blue = 0.6;
parameter Real red = 0.3;

equation
red + blue + green = 1;

end ErrorColor;

Legal!
Identical to the
inherited field blue

Illegal!
Same name, but
different value

pelab17 Copyright Copyright ©© Peter Fritzson

Inheritance of EquationsInheritance of Equations
class Color
parameter Real red=0.2;
parameter Real blue=0.6;
Real green;

equation
red + blue + green = 1;

end Color;

Color is identical to Color2
Same equation twice leaves
one copy when inheriting

Color3 is overdetermined
Different equations means
two equations!

class Color3 // Error!
extends Color;

equation
red + blue + green = 1.0;
// also inherited: red + blue + green = 1;

end Color3;

class Color2 // OK!
extends Color;

equation
red + blue + green = 1;

end Color2;

pelab18 Copyright Copyright ©© Peter Fritzson

Multiple InheritanceMultiple Inheritance
Multiple Inheritance is fine – inheriting both geometry and color

class Point
Real x;
Real y,z;

end Point;

class Color
parameter Real red=0.2;
parameter Real blue=0.6;
Real green;

equation
red + blue + green = 1;

end Color;
multiple inheritance

class ColoredPointWithoutInheritance
Real x;
Real y, z;
parameter Real red = 0.2;
parameter Real blue = 0.6;
Real green;

equation
red + blue + green = 1;

end ColoredPointWithoutInheritance;

Equivalent to

class ColoredPoint
extends Point;
extends Color;

end ColoredPoint;

pelab19 Copyright Copyright ©© Peter Fritzson

Multiple Inheritance contMultiple Inheritance cont’’
Only one copy of multiply inherited class Point is kept

class Point
Real x;
Real y;

end Point;

Diamond Inheritance
class VerticalLine
extends Point;
Real vlength;

end VerticalLine;

class HorizontalLine
extends Point;
Real hlength;

end HorizontalLine;

class Rectangle
extends VerticalLine;
extends HorizontalLine;

end Rectangle;

pelab20 Copyright Copyright ©© Peter Fritzson

Simple Class Definition Simple Class Definition ––
Shorthand Case of Inheritance Shorthand Case of Inheritance

• Example:
class SameColor = Color;

class SameColor
extends Color;

end SameColor;

Equivalent to:

• Often used for
introducing new
names of types:

type Resistor = Real;

connector MyPin = Pin;inheritance

pelab21 Copyright Copyright ©© Peter Fritzson

Inheritance Through ModificationInheritance Through Modification

• Modification is a concise way of combining
inheritance with declaration of classes or
instances

• A modifier modifies a declaration equation in the
inherited class

• Example: The class Real is inherited, modified
with a different start value equation, and
instantiated as an altitude variable:

...
Real altitude(start= 59404);

...

pelab22 Copyright Copyright ©© Peter Fritzson

The Moon LandingThe Moon Landing
Example Using InheritanceExample Using Inheritance

model Body "generic body"
Real mass;
String name;

end Body;

model CelestialBody
extends Body;
constant Real g = 6.672e-11;
parameter Real radius;

end CelestialBody;

model Rocket "generic rocket class"
extends Body;
parameter Real massLossRate=0.000277;
Real altitude(start= 59404);
Real velocity(start= -2003);
Real acceleration;
Real thrust;
Real gravity;

equation
thrust-mass*gravity= mass*acceleration;
der(mass)= -massLossRate*abs(thrust);
der(altitude)= velocity;
der(velocity)= acceleration;

end Rocket;

altitude CelestialBody

thrustapollo13

mg

Rocket

pelab23 Copyright Copyright ©© Peter Fritzson

The Moon LandingThe Moon Landing
Example using Inheritance contExample using Inheritance cont’’

model MoonLanding
parameter Real force1 = 36350;
parameter Real force2 = 1308;
parameter Real thrustEndTime = 210;
parameter Real thrustDecreaseTime = 43.2;
Rocket apollo(name="apollo13", mass(start=1038.358));
CelestialBody moon(mass=7.382e22,radius=1.738e6,name="moon");
equation
apollo.thrust = if (time<thrustDecreaseTime) then force1

else if (time<thrustEndTime) then force2
else 0;

apollo.gravity =moon.g*moon.mass/(apollo.altitude+moon.radius)^2;
end Landing;

inherited
parameters

pelab24 Copyright Copyright ©© Peter Fritzson

Inheritance of Protected ElementsInheritance of Protected Elements

class ColoredPointWithoutInheritance
Real x;
Real y,z;
protected Real red;
protected Real blue;
protected Real green;

equation
red + blue + green = 1;

end ColoredPointWithoutInheritance;

If an extends-clause is preceded by the protected keyword,
all inherited elements from the superclass become protected
elements of the subclass

The inherited fields from Point keep
their protection status since that
extends-clause is preceded by
public

A protected element cannot be
accessed via dot notation!

class ColoredPoint
protected
extends Color;
public
extends Point;

end ColoredPoint;

class Color
Real red;
Real blue;
Real green;

equation
red + blue + green = 1;

end Color;

class Point
Real x;
Real y,z;

end Point;

Equivalent to

pelab25 Copyright Copyright ©© Peter Fritzson

Advanced TopicAdvanced Topic

• Class parameterization

pelab26 Copyright Copyright ©© Peter Fritzson

Generic Classes with Type ParametersGeneric Classes with Type Parameters

class C2
BlueClass obj1(p1=5);
YellowClass obj2;
BlueClass obj3;
RedClass obj4;

equation
end C2;

Formal class parameters are
replaceable variable or type
declarations within the class (usually)
marked with the prefix replaceable

Actual arguments to classes are
modifiers, which when containing
whole variable declarations or
types are preceded by the prefix
redeclare

class C2 =
C(redeclare class ColoredClass = BlueClass);

class C
replaceable class ColoredClass = GreenClass;
ColoredClass obj1(p1=5);
replaceable YellowClass obj2;
ColoredClass obj3;
RedClass obj4;

equation
end C;

obj3

Colored-
Class
object

obj1

Colored-
Class
object

ColoredClass

Green-
Class

obj4

A red
object

obj2

A yellow
object

Equivalent to

pelab27 Copyright Copyright ©© Peter Fritzson

class ElectricalCircuit
Resistor R1(R=100);
Resistor R2(R=200);
Resistor R3(R=300);
Inductor L1;
SineVoltage AC;
Groung G;

equation
connect(R1.n,R2.n);
connect(R1.n,L1.n);
connect(R1.n,R3.n);
connect(R1.p,AC.p);
.....

end ElectricalCircuit;

Class Parameterization when Class Parameters Class Parameterization when Class Parameters
are Componentsare Components

R1

2R2 L1 R3AC

G

class GenericElectricalCircuit
replaceable Resistor R1(R=100);
replaceable Resistor R2(R=200);
replaceable Resistor R3(R=300);
Inductor L1;
SineVoltage AC;
Groung G;

equation
connect(R1.n,R2.n);
connect(R1.n,L1.n);
connect(R1.n,R3.n);
connect(R1.p,AC.p);
.....

end GenericElectricalCircuit;

The class ElectricalCircuit has been
converted into a parameterized generic
class GenericElectricalCircuit with
three formal class parameters R1, R2, R3,
marked by the keyword replaceable

Class
parameterization

pelab28 Copyright Copyright ©© Peter Fritzson

class TemperatureElectricalCircuit
parameter Real Temp=20;
extends GenericElectricalCircuit(
redeclare TempResistor R1(RT=0.1, Temp=Temp),
redeclare TempResistor R3(R=300));

end TemperatureElectricalCircuit

Class Parameterization when Class Parameters Class Parameterization when Class Parameters
are Components are Components -- contcont’’

R1

2R2 L1 R3AC

G

A more specialized class TemperatureElectricalCircuit is
created by changing the types of R1, R3, to TempResistor

class ExpandedTemperatureElectricalCircuit
parameter Real Temp;
TempResistor R1(R=200, RT=0.1, Temp=Temp),
replaceable Resistor R2;
TempResistor R3(R=300);

equation
....

end ExpandedTemperatureElectricalCircuit

equivalent to

We add a temperature variable Temp for
the temperature of the resistor circuit
and modifiers for R1 and R3 which are
now TempResistors.

class TemperatureElectricalCircuit =
GenericElectricalCircuit (redeclare TempResistor R1

redeclare TempResistor R3);

pelab1 Copyright Copyright ©© Peter Fritzson

Components, Connectors Components, Connectors
and Connectionsand Connections

pelab2 Copyright Copyright ©© Peter Fritzson

Software Component ModelSoftware Component Model

A component class should be defined independently of the
environment, very essential for reusability

A component may internally consist of other components, i.e.
hierarchical modeling

Complex systems usually consist of large numbers of
connected components

Component

Interface

ConnectionComponent

Connector
Acausal coupling

Causal coupling

pelab3 Copyright Copyright ©© Peter Fritzson

Connectors and Connector ClassesConnectors and Connector Classes

Connectors are instances of connector classes

v +

i

pin

s

f

flange

connector Pin
Voltage v;
flow Current i;

end Pin;

Pin pin;

connector class

keyword flow
indicates that currents
of connected pins
sum to zero.

electrical connector

an instance pin
of class Pin

connector Flange
Position s;
flow Force f;

end Flange;

Flange flange;

connector class

mechanical connector

an instance flange
of class Flange

pelab4 Copyright Copyright ©© Peter Fritzson

The The flowflow prefixprefix

Two kinds of variables in connectors:
• Non-flow variables potential or energy level
• Flow variables represent some kind of flow

Coupling
• Equality coupling, for non-flow variables
• Sum-to-zero coupling, for flow variables

The value of a flow variable is positive when the current
or the flow is into the component

v

+ i

pin
positive flow direction:

pelab5 Copyright Copyright ©© Peter Fritzson

Translational Position Force Linear momentum
Mechanical.
Translational

Physical ConnectorPhysical Connector
Classes Based on Energy FlowClasses Based on Energy Flow

Domain
Type

Potential Flow Carrier Modelica
Library

Electrical Voltage Current Charge
Electrical.

Analog

Rotational Angle Torque Angular
momentum

Mechanical.
Rotational

Magnetic Magnetic
potential

Magnetic
flux rate Magnetic flux

Hydraulic Pressure Volume flow Volume HyLibLight

Heat Temperature Heat flow Heat HeatFlow1D

Chemical Chemical
potential Particle flow Particles Under

construction

Pneumatic Pressure Mass flow Air
PneuLibLight

pelab6 Copyright Copyright ©© Peter Fritzson

connectconnect--equationsequations

pin1 pin2

+ +

i i

v v

connect(connector1,connector2)

Connections between connectors are realized as equations in Modelica

The two arguments of a connect-equation must be references to
connectors, either to be declared directly within the same class or be
members of one of the declared variables in that class

pin1.v = pin2.v;
pin1.i + pin2.i =0;

Pin pin1,pin2;
//A connect equation
//in Modelica:
connect(pin1,pin2);

Corresponds to

pelab7 Copyright Copyright ©© Peter Fritzson

Connection EquationsConnection Equations

1 2 3 nv v v v= = =…

pin1.v = pin2.v;
pin1.i + pin2.i =0;

Pin pin1,pin2;
//A connect equation
//in Modelica
connect(pin1,pin2);

Corresponds to

Each primitive connection set of nonflow variables is
used to generate equations of the form:

Each primitive connection set of flow variables is used to generate
sum-to-zero equations of the form:

1 2 () 0k ni i i i+ + − + =… …

connect(pin1,pin2); connect(pin1,pin3); ... connect(pin1,pinN);

Multiple connections are possible:

pelab8 Copyright Copyright ©© Peter Fritzson

Acausal, Causal, and Acausal, Causal, and CompositeComposite
ConnectionsConnections

• Acausal connections
• Causal connections, also called signal connections
• Composite connections, also called structured connections,

composed of basic or composite connections

connector OutPort
output Real signal;

end OutPort

connector class
fixed causality

Two basic and one composite kind of connection in Modelica

pelab9 Copyright Copyright ©© Peter Fritzson

Common Component StructureCommon Component Structure

p

p.i

p.v

n.i

n.v
n

i

ii + -TwoPin

electrical connector class

partial model TwoPin
Voltage v
Current i
Pin p;
Pin n;

equation
v = p.v - n.v;
0 = p.i + n.i;
i = p.i;

end TwoPin;
// TwoPin is same as OnePort in
// Modelica.Electrical.Analog.Interfaces

positive pin
negative pin

partial class
(cannot be
instantiated)

The base class TwoPin has
two connectors p and n for
positive and negative pins
respectively

connector Pin
Voltage v;
flow Current i;

end Pin;

pelab10 Copyright Copyright ©© Peter Fritzson

Electrical ComponentsElectrical Components
model Resistor ”Ideal electrical resistor”
extends TwoPin;
parameter Real R;

equation
R*i = v;

end Resistor;

model Inductor ”Ideal electrical inductor”
extends TwoPin;
parameter Real L ”Inductance”;

equation
L*der(i) = v;

end Inductor;

p.i n.i

p.v n.v
v

+

p.i n.i

p.v n.v
v

+

p.i n.i

p.v n.v
v

+

model Capacitor ”Ideal electrical capacitor”
extends TwoPin;
parameter Real C ;

equation
i=C*der(v);

end Inductor;

pelab11 Copyright Copyright ©© Peter Fritzson

Electrical Components contElectrical Components cont’’

model Source
extends TwoPin;
parameter Real A,w;

equation
v = A*sin(w*time);

end Resistor;

p.i n.i

p.v n.v

v(t)

+

p.ip.v
model Ground

Pin p;
equation

p.v = 0;
end Ground;

pelab12 Copyright Copyright ©© Peter Fritzson

Resistor CircuitResistor Circuit

R2 R1

R3

n p p n

p ni3

i2i1

v1 v2

v3

R1.p.v = R2.p.v;
R1.p.v = R3.p.v;
R1.p.i + R2.p.i + R3.p.i = 0;

model ResistorCircuit
Resistor R1(R=100);
Resistor R2(R=200);
Resistor R3(R=300);

equation
connect(R1.p, R2.p);
connect(R1.p, R3.p);

end ResistorCircuit;

Corresponds to

pelab13 Copyright Copyright ©© Peter Fritzson

An Oscillating Mass Connected to a SpringAn Oscillating Mass Connected to a Spring

L

srel mass1

srel0

s0

spring1

fixed1

s

a

b

-mg

model Oscillator
Mass mass1(L=1, s(start=-0.5));
Spring spring1(srel0=2, c=10000);
Fixed fixed1(s0=1.0);

equation
connect(spring1.flange_b, fixed1.flange_b);
connect(mass1.flange_b, spring1.flange_a);

end Oscillator;

0.1 0.2 0.3 0.4 0.5
t

-2.5

-1.5

-1

-0.5

pelab14 Copyright Copyright ©© Peter Fritzson

Graphical ModelingGraphical Modeling
Using Drag and Drop CompositionUsing Drag and Drop Composition

Courtesy
MathCore
Engineering AB

pelab15 Copyright Copyright ©© Peter Fritzson

Completed DCMotor using Graphical CompositionCompleted DCMotor using Graphical Composition

Courtesy MathCore
Engineering AB

pelab16 Copyright Copyright ©© Peter Fritzson

ExerciseExercise
• Locate the Oscillator model in DrModelica using

OMNotebook!
• Simulate and plot the example. Do a slight change in the

model e.g. different elasticity c, re-simulate and re-plot.

• Draw the Oscillator model using
the graphic connection editor e.g.
using the library Modelica.
Mechanical.Translational

• Including components SlidingMass,
Force, Blocks.Sources.Constant

• Simulate and plot!

mass1

spring1

fixed1

a

b

pelab17 Copyright Copyright ©© Peter Fritzson

Signal Based Connector ClassesSignal Based Connector Classes

fixed causality

connector InPort "Connector with input signals of type Real"
parameter Integer n=1 "Dimension of signal vector";
input Real signal[n] "Real input signals";

end InPort;

connector OutPort "Connector with output signals of type Real"
parameter Integer n=1 "Dimension of signal vector";
output Real signal[n] "Real output signals";

end OutPort;
fixed causality

partial block MISO
"Multiple Input Single Output continuous control block"
parameter Integer nin=1 "Number of inputs";
InPort inPort(n=nin) "Connector of Real input signals";
OutPort outPort(n=1) "Connector of Real output signal";

protected
Real u[:] = inPort.signal "Input signals";
Real y = outPort.signal[1] "Output signal";

end MISO; // From Modelica.Blocks.Interfaces

multiple input
single output
block

inPort outPort

pelab18 Copyright Copyright ©© Peter Fritzson

Connecting ComponentsConnecting Components
from Multiple Domainsfrom Multiple Domains

model Generator
Modelica.Mechanics.Rotational.Accelerate ac;
Modelica.Mechanics.Rotational.Inertia iner;
Modelica.Electrical.Analog.Basic.EMF emf(k=-1);
Modelica.Electrical.Analog.Basic.Inductor ind(L=0.1);
Modelica.Electrical.Analog.Basic.Resistor R1,R2;
Modelica.Electrical.Analog.Basic.Ground G;
Modelica.Electrical.Analog.Sensors.VoltageSensor vsens;
Modelica.Blocks.Sources.Exponentials ex(riseTime={2},riseTimeConst={1});

equation
connect(ac.flange_b, iner.flange_a); connect(iner.flange_b, emf.flange_b);
connect(emf.p, ind.p); connect(ind.n, R1.p); connect(emf.n, G.p);
connect(emf.n, R2.n); connect(R1.n, R2.p); connect(R2.p, vsens.n);
connect(R2.n, vsens.p); connect(ex.outPort, ac.inPort);

end Generator;

R1

R2

ind

emf

G

ex ac iner vsen

Electrical
domain

Mechanical
domain

Block
domain

1

2

• Block domain

• Mechanical domain

• Electrical domain

pelab19 Copyright Copyright ©© Peter Fritzson

A DC motor can be thought of as an electrical circuit
which also contains an electromechanical component.

model DCMotor
Resistor R(R=100);
Inductor L(L=100);
VsourceDC DC(f=10);
Ground G;
EMF emf(k=10,J=10, b=2);
Inertia load;

equation
connect(DC.p,R.n);
connect(R.p,L.n);
connect(L.p, emf.n);
connect(emf.p, DC.n);
connect(DC.n,G.p);
connect(emf.flange,load.flange);

end DCMotor;

Simple Modelica Simple Modelica DCMotorDCMotor ModelModel
MultiMulti--Domain (ElectroDomain (Electro--Mechanical)Mechanical)

load

emf
DC

G

R L

pelab20 Copyright Copyright ©© Peter Fritzson

ExerciseExercise
• Draw the DCMotor model using the graphic connection

editor using models from the following Modelica
libraries:
Mechanics.Rotational,
Electrical.Analog.Basic,
Electrical.Analog.Sources

J

emf
u

G

R L • Simulate it for 15s and plot the
variables for the outgoing
rotational speed on the inertia
axis and the voltage on the
voltage source (denoted u in the
figure) in the same plot.

pelab21 Copyright Copyright ©© Peter Fritzson

Hierarchically Structured ComponentsHierarchically Structured Components

partial model PartialDCMotor
InPort inPort; // Outside signal connector
RotFlange_b rotFlange_b; // Outside rotational flange connector
Inductor inductor1;
Resistor resistor1;
Ground ground1;
EMF emf1;
SignalVoltage signalVoltage1;

equation
connect(inPort,signalVoltage1.inPort);
connect(signalVoltage1.n, resistor1.p);
connect(resistor1.n, inductor1.p);
connect(signalVoltage1.p, ground1.p);
connect(ground1.p, emf1.n);
connect(inductor1.n, emf1.p);
connect(emf1.rotFlange_b, rotFlange_b);

end PartialDCMotor;

signalVoltage1

ground1

resistor1 inductor1

PartialDCMotor

emf1
rotFlange_b

n

nn

n

p

p

p

p

p

inPortinPort
rotFlange_b

An inside connector is a connector belonging to an internal component of a
structured component class.

An outside connector is a connector that is part of the external interface of
a structured component class, is declared directly within that class

pelab22 Copyright Copyright ©© Peter Fritzson

HierarchicallyHierarchically
Structured Components contStructured Components cont’’

inertia1

partialDCMotor1

step1

model DCMotorCircuit2
Step step1;
PartialDCMotor partialDCMotor1;
Inertia inertia1;

equation
connect(step1.outPort, partialDCMotor1.inPort);
connect(partialDCMotor1.rotFlange_b, inertia1.rotFlange_a);

end DCMotorCircuit2;

pelab23 Copyright Copyright ©© Peter Fritzson

Connection RestrictionsConnection Restrictions
• Two acausal connectors can be connected to each other
• An input connector can be connected to an output connector

or vice versa
• An input or output connector can be connected to an acausal

connector, i.e. a connector without input/output prefixes

• An outside input connector behaves approximately like an
output connector internally

• An outside output connector behaves approximately like an
input connector internally

input output
C1

input output
C4

input output
C3

input output
C2

input output
C1

input output
C4

input output
C3

input output
C2input

M1 output

pelab24 Copyright Copyright ©© Peter Fritzson

Connector Restrictions contConnector Restrictions cont’’

input output
C1

input output
C4

input output
C3

input output
C2

class CInst
C C1, C2, C3, C4; // Instances of C

equation
connect(C1.outPort, C2.inPort);
connect(C2.outPort, C3.inPort);
connect(C3.outPort, C4.inPort);

end CInst;

connector RealInput
input Real signal;

end RealInput;

connector RealOutput
output Real signal;

end RealOutput;

class C
RealInput u; // input connector
RealOutput y; // output connector

end C;

A circuit consisting of four
connected components
C1, C2, C3, and C4
which are instances of the
class C

pelab25 Copyright Copyright ©© Peter Fritzson

Connector Restrictions contConnector Restrictions cont’’

input output
C1

input output
C4

input output
C3

input output
C2input

M1 output

class M "Structured class M"
RealInput u; // Outside input connector
RealOutput y; // Outside output connector
C C2;
C C3;

end M;

class MInst
M M1; // Instance of M

equation
connect(C1.y, M1.u); // Normal connection of outPort to inPort
connect(M1.u, C2.u); // Outside inPort connected to inside inPort
connect(C2.y, C3.u); // Inside outPort connected to inside inPort
connect(C3.y, M1.y); // Inside outPort connected to outside outPort
connect(M1.y, C4.u); // Normal connection of outPort to inPort

end MInst;

A circuit in which the middle
components C2 and C3 are placed
inside a structured component M1 to
which two outside connectors M1.u
and M1.y have been attached.

pelab26 Copyright Copyright ©© Peter Fritzson

Parameterization and Extension of InterfacesParameterization and Extension of Interfaces

Tank

inlet

outlet

model Tank
parameter Real Area=1;
replaceable connector TankStream = Stream;
TankStream inlet, outlet; // The connectors
Real level;

equation
// Mass balance
Area*der(level) = inlet.volumeFlowRate +

outlet.volumeFlowRate;
outlet.pressure = inlet.pressure;

end Tank;
connector Stream // Connector class
Real pressure;
flow Real volumeFlowRate;

end Stream

connector Stream
Real pressure;
flow Real volumeFlowRate;

end Stream;

Parameterization
of interfaces

External interfaces to
component classes are
defined primarily through the
use of connectors.

The Tank model has an
external interface in terms of
the connectors inlet and
outlet

pelab27 Copyright Copyright ©© Peter Fritzson

Parameterization and Extension of Interfaces Parameterization and Extension of Interfaces ––
contcont’’

Tank

inlet

outlet

We would like to extend the Tank model to include
temperature-dependent effects, analogous to how
we extended a resistor to a temperature-dependent
resistor

model HeatTank
extends Tank(redeclare connector TankStream = HeatStream);
Real temp;

equation
// Energy balance for temperature effects
Area*level*der(temp) = inlet.volumeFlowRate*inlet.temp +

outlet.volumeFlowRate*outlet.temp;
outlet.temp = temp; // Perfect mixing assumed.

end HeatTank;

connector HeatStream
extends Stream;
Real temp;

end HeatStream;

pelab28 Copyright Copyright ©© Peter Fritzson

CardinalityCardinality--dependent Connection Equationsdependent Connection Equations
R1

2R2 L1 R3AC

G

R1

2R2 L1 R3AC

G

R1

2R2 L1 R3AC

G

In certain cases there is a need to let the behavior of a model be
dependent on the number of connections to certain connectors of
the model. This can be achieved by using a built-in function
cardinality() that returns the number of connections that
have been made to a connector. (if-equations, see Lecture 4)

model CardinalityResistor
extends TwoPin;
parameter Real R(unit="Ohm") "Resistance";

equation
// Handle cases if pins are not connected
if cardinality(p) == 0 and cardinality(n) == 0
then p.v = 0; n.v = 0;

elseif cardinality(p) == 0 then
p.i = 0;

elseif cardinality(n) == 0 then
n.i = 0;

end if
// Resistor equation
v = R*i;

end CardinalityResistor;

pelab29 Copyright Copyright ©© Peter Fritzson

Arrays of ConnectorsArrays of Connectors

InertialSystem1 BoxBody1 BoxBody2Spherical1 Spherical2 SphericalN BoxBodyN

Part built up with a for-equation (see Lecture 4)

model ArrayOfLinks
constant Integer n=10 "Number of segments (>0)";
parameter Real[3,n] r={fill(1,n),zeros(n),zeros(n)};
ModelicaAdditions.MultiBody.Parts.InertialSystem InertialSystem1;
ModelicaAdditions.MultiBody.Parts.BoxBody[n]

boxBody(r = r, Width=fill(0.4,n));
ModelicaAdditions.MultiBody.Joints.Spherical spherical[n];

equation
connect(InertialSystem1.frame_b, spherical[1].frame_a);
connect(spherical[1].frame_b, boxBody[1].frame_a);
for i in 1:n-1 loop

connect(boxBody[i].frame_b, spherical[i+1].frame_a);
connect(spherical[i+1].frame_b, boxBody[i+1].frame_a);

end for;
end ArrayOfLinks;

The model
uses a for-
equation to
connect the
different
segments of
the links

pelab1 Copyright Copyright ©© Peter Fritzson

EquationsEquations

Equations, Algorithms, and FunctionsEquations, Algorithms, and Functions

pelab2 Copyright Copyright ©© Peter Fritzson

Usage of EquationsUsage of Equations

In Modelica equations are used for many tasks
• The main usage of equations is to represent relations in

mathematical models.

• Assignment statements in conventional languages are
usually represented as equations in Modelica

• Attribute assignments are represented as equations

• Connections between objects generate equations

pelab3 Copyright Copyright ©© Peter Fritzson

Equation CategoriesEquation Categories

Equations in Modelica can informally be classified
into three different categories
• Normal equations (e.g., expr1 = expr2) occurring in

equation sections, including connect equations and other
equation types of special syntactic form

• Declaration equations, (e.g., Real x = 2.0) which are part of
variable, parameter, or constant declarations

• Modifier equations, (e.g. x(unit="V"))which are commonly
used to modify attributes of classes.

pelab4 Copyright Copyright ©© Peter Fritzson

Constraining Rules for EquationsConstraining Rules for Equations

Single Assignment Rule
The total number of “equations” is identical to the total number of
“unknown” variables to be solved for

Synchronous Data Flow Principle
• All variables keep their actual values until these values are explicitly

changed
• At every point in time, during “continuous integration” and at event

instants, the active equations express relations between variables which
have to be fulfilled concurrently
Equations are not active if the corresponding if-branch or when-equation
in which the equation is present is not active because the corresponding
branch condition currently evaluates to false

• Computation and communication at an event instant does not take time

pelab5 Copyright Copyright ©© Peter Fritzson

Declaration EquationsDeclaration Equations

constant Integer one = 1;
parameter Real mass = 22.5;

It is also possible to specify a declaration
equation for a normal non-constant variable:

Real speed = 72.4;

model MoonLanding
parameter Real force1 = 36350;
parameter Real force2 = 1308;
parameter Real thrustEndTime = 210;
parameter Real thrustDecreaseTime = 43.2;
Rocket apollo(name="apollo13", mass(start=1038.358));
CelestialBody moon(mass=7.382e22,radius=1.738e6,name="moon");

equation
apollo.thrust = if (time<thrustDecreaseTime) then force1

else if (time<thrustEndTime) then force2
else 0;

apollo.gravity=moon.g*moon.mass/(apollo.altitude+moon.radius)^2;
end Landing;

declaration
equations

Declaration equations:

pelab6 Copyright Copyright ©© Peter Fritzson

Modifier EquationsModifier Equations
Modifier equations occur for example in a variable declaration when there
is a need to modify the default value of an attribute of the variable
A common usage is modifier equations for the start attribute of variables
Real speed(start=72.4);

Modifier equations also occur in type definitions:
type Voltage = Real(unit="V", min=-220.0, max=220.0);

model MoonLanding
parameter Real force1 = 36350;
parameter Real force2 = 1308;
parameter Real thrustEndTime = 210;
parameter Real thrustDecreaseTime = 43.2;
Rocket apollo(name="apollo13", mass(start=1038.358));
CelestialBody moon(mass=7.382e22,radius=1.738e6,name="moon");

equation
apollo.thrust = if (time<thrustDecreaseTime) then force1

else if (time<thrustEndTime) then force2
else 0;

apollo.gravity=moon.g*moon.mass/(apollo.altitude+moon.radius)^2;
end Landing;

modifier
equations

pelab7 Copyright Copyright ©© Peter Fritzson

Kinds of Normal Equations in Equation Kinds of Normal Equations in Equation
SectionsSections

• equality equations
• connect equations
• assert and terminate
• reinit model MoonLanding

parameter Real force1 = 36350;
parameter Real force2 = 1308;
parameter Real thrustEndTime = 210;
parameter Real thrustDecreaseTime = 43.2;
Rocket apollo(name="apollo13", mass(start=1038.358));
CelestialBody moon(mass=7.382e22,radius=1.738e6,name="moon");

equation
if (time<thrustDecreaseTime) then
apollo.thrust = force1;

elseif (time<thrustEndTime) then
apollo.thrust = force2;

else
apollo.thrust = 0;

end if;
apollo.gravity=moon.g*moon.mass/(apollo.altitude+moon.radius)^2;

end Landing;

conditional
if-equation

equality
equation

• repetitive equation structures with for-equations
• conditional equations with if-equations
• conditional equations with when-equations

Kinds of equations that can be present in equation sections:

pelab8 Copyright Copyright ©© Peter Fritzson

Equality EquationsEquality Equations

expr1 = expr2:
(out1, out2, out3,...) = function_name(in_expr1, in_expr2, ...);

class EqualityEquations
Real x,y,z;

equation
(x, y, z) = f(1.0, 2.0); // Correct!
(x+1, 3.0, z/y) = f(1.0, 2.0); // Illegal!

// Not a list of variables
// on the left-hand side

end EqualityEquations;

simple equality
equation

pelab9 Copyright Copyright ©© Peter Fritzson

Consider the following simple example with a for-equation:

Repetitive EquationsRepetitive Equations

for <iteration-variable> in <iteration-set-expression> loop
<equation1>
<equation2>
...

end for;

The syntactic form of a for-equation is as follows:

class FiveEquations
Real[5] x;

equation
for i in 1:5 loop
x[i] = i+1;

end for;
end FiveEquations;

class FiveEquationsUnrolled
Real[5] x;

equation
x[1] = 2;
x[2] = 3;
x[3] = 4;
x[4] = 5;
x[5] = 6;

end FiveEquationsUnrolled;

Both classes have
equivalent behavior!

In the class on the right the for-equation
has been unrolled into five simple equations

pelab10 Copyright Copyright ©© Peter Fritzson

connectconnect--equationsequations
In Modelica connect-equations are used to establish
connections between components via connectors

connect(connector1,connector2)

Repetitive connect-equations
class RegComponent
Component components[n];

equation
for i in 1:n-1 loop
connect(components[i].outlet,components[i+1].inlet);

end for;
end RegComponent;

pelab11 Copyright Copyright ©© Peter Fritzson

Conditional Equations: Conditional Equations: ifif--equationsequations
if <condition> then

<equations>
elseif <condition> then

<equations>
else

<equations>
end if;

if-equations for which the conditions have higher
variability than constant or parameter must include an
else-part

Each then-, elseif-, and else-branch must have the
same number of equations

model MoonLanding
parameter Real force1 = 36350;
...
Rocket apollo(name="apollo13", mass(start=1038.358));
CelestialBody moon(mass=7.382e22,radius=1.738e6,name="moon");

equation
if (time<thrustDecreaseTime) then
apollo.thrust = force1;

elseif (time<thrustEndTime) then
apollo.thrust = force2;

else
apollo.thrust = 0;

end if;
apollo.gravity=moon.g*moon.mass/(apollo.altitude+moon.radius)^2;

end Landing;

pelab12 Copyright Copyright ©© Peter Fritzson

Conditional Equations:Conditional Equations: whenwhen--equationsequations

Events are ordered in time and form an event history:

time
event 1 event 2 event 3

• An event is a point in time that is instantaneous, i.e., has zero duration
• An event condition switches from false to true in order for the event to

take place

when <conditions> then
<equations>

end when;

<equations> in when-equations are instantaneous equations that are
active at events when <conditions> become true

when x > 2 then
y1 = sin(x);
y3 = 2*x + y1+y2;

end when;

pelab13 Copyright Copyright ©© Peter Fritzson

Conditional Equations:Conditional Equations: whenwhen--equations cont'equations cont'
when <conditions> then

<equations>
end when;

when-equations are used to express
instantaneous equations that are only
valid (become active) at events, e.g. at
discontinuities or when certain conditions
become true

when x > 2 then
y1 = sin(x);
y3 = 2*x + y1+y2;

end when;

when {x > 2, sample(0,2), x < 5} then
y1 = sin(x);
y3 = 2*x + y1+y2;

end when;

when initial() then
... // Equations to be activated at the beginning of a simulation

end when;
...
when terminal() then
... // Equations to be activated at the end of a simulation

end when;

pelab14 Copyright Copyright ©© Peter Fritzson

Restrictions on Restrictions on whenwhen--equationsequations
Form restriction

model WhenNotValid
Real x, y;

equation
x + y = 5;
when sample(0,2) then
2*x + y = 7;
// Error: not valid Modelica

end when;
end WhenNotValid;

model WhenValidResult
Real x,y;

equation
x + y = 5; // Equation to be used to compute x.
when sample(0,2) then
y = 7 - 2*x; // Correct, y is a result variable from the when!

end when;
end WhenValidResult;

Modelica restricts the allowed equations
within a when-equation to: variable =
expression, if-equations, for-equations,...
In the WhenNotValid model when the
equations within the when-equation are
not active it is not clear which variable,
either x or y, that is a “result” from the
when-equation to keep constant outside
the when-equation.

A corrected version appears in the class WhenValidResult below

pelab15 Copyright Copyright ©© Peter Fritzson

Restriction on nested when-equations

Restrictions on Restrictions on whenwhen--equations contequations cont’’

model ErrorNestedWhen
Real x,y1,y2;

equation
when x > 2 then
when y1 > 3 then // Error!
y2 = sin(x); // when-equations

end when; // should not be nested
end when;

end ErrorNestedWhen;

when-equations cannot be nested!

pelab16 Copyright Copyright ©© Peter Fritzson

Restrictions on Restrictions on whenwhen--equations contequations cont’’

A conflict between the equations will occur if both
conditions would become true at the same time instant

model DoubleWhenConflict
Boolean close; // Error: close defined by two equations!

equation
...
when condition1 then
close = true; // First equation
end when;
...
when condition2 then
close = false; //Second equation

end when;
end DoubleWhenConflict

Single assignment rule: same variable may not be
defined in several when-equations.

pelab17 Copyright Copyright ©© Peter Fritzson

Restrictions on Restrictions on whenwhen--equations contequations cont’’

model DoubleWhenConflictResolved
Boolean close;

equation
...
when condition1 then
close = true; // First equation has higher priority!

elsewhen condition2 then
close = false; //Second equation

end when;
end DoubleWhenConflictResolved

Solution to assignment conflict between equations in
independent when-equations:
• Use elsewhen to give higher priority to the first when-equation

pelab18 Copyright Copyright ©© Peter Fritzson

Restrictions on Restrictions on whenwhen--equations contequations cont’’

model VectorWhen
Boolean close;

equation
...
when {condition1,condition2} then
close = true;

end when;
end DoubleWhenConflict

The equations within a when-equation are activated when
any of the elements of the vector expression becomes true

Vector expressions

pelab19 Copyright Copyright ©© Peter Fritzson

assertassert--equationsequations
assert(assert-expression, message-string)

assert is a predefined function for giving error messages
taking a Boolean condition and a string as an argument

The intention behind assert is to provide a convenient
means for specifying checks on model validity within a model

class AssertTest
parameter Real lowlimit = -5;
parameter Real highlimit = 5;
Real x;

equation
assert(x >= lowlimit and x <= highlimit,

"Variable x out of limit");
end AssertTest;

pelab20 Copyright Copyright ©© Peter Fritzson

terminateterminate--equationsequations

The terminate-equation successfully terminates the
current simulation, i.e. no error condition is indicated

model MoonLanding
parameter Real force1 = 36350;
parameter Real force2 = 1308;
parameter Real thrustEndTime = 210;
parameter Real thrustDecreaseTime = 43.2;
Rocket apollo(name="apollo13", mass(start=1038.358));
CelestialBody moon(mass=7.382e22,radius=1.738e6,name="moon");

equation
apollo.thrust = if (time<thrustDecreaseTime) then force1

else if (time<thrustEndTime) then force2
else 0;

apollo.gravity = moon.g * moon.mass /(apollo.height + moon.radius)^2;
when apollo.height < 0 then // termination condition
terminate("The moon lander touches the ground of the moon");

end when;
end MoonLanding;

pelab21 Copyright Copyright ©© Peter Fritzson

Algorithms and FunctionsAlgorithms and Functions

pelab22 Copyright Copyright ©© Peter Fritzson

Algorithm SectionsAlgorithm Sections

algorithm
...
<statements>
...

<some keyword>

Algorithm sections can be embedded
among equation sections

equation
x = y*2;
z = w;

algorithm
x1 := z+x;
x2 := y-5;
x1 := x2+y;

equation
u = x1+x2;
...

Whereas equations are very well suited for physical modeling,
there are situations where computations are more
conveniently expressed as algorithms, i.e., sequences of
instructions, also called statements

pelab23 Copyright Copyright ©© Peter Fritzson

Iteration Using forIteration Using for--statementsstatements
in Algorithm Sectionsin Algorithm Sections

class SumZ
parameter Integer n = 5;
Real[n] z(start = {10,20,30,40,50});
Real sum;

algorithm
sum := 0;
for i in 1:n loop // 1:5 is {1,2,3,4,5}
sum := sum + z[i];

end for;
end SumZ;

for k in 1:10+2 loop // k takes the values 1,2,3,...,12
for i in {1,3,6,7} loop // i takes the values 1, 3, 6, 7
for r in 1.0 : 1.5 : 5.5 loop // r takes the values 1.0, 2.5, 4.0, 5.5

for <iteration-variable> in <iteration-set-expression> loop
<statement1>
<statement2>
...

end for

The general structure of a for-
statement with a single iterator

A simple for-loop
summing the five
elements of the vector z,
within the class SumZ

Examples of for-loop headers with different range expressions

pelab24 Copyright Copyright ©© Peter Fritzson

class SumSeries
parameter Real eps = 1.E-6;
Integer i;
Real sum;
Real delta;

algorithm
i := 1;
delta := exp(-0.01*i);
while delta>=eps loop
sum := sum + delta;
i := i+1;
delta := exp(-0.01*i);

end while;
end SumSeries;

Iterations Using whileIterations Using while--statements in statements in
Algorithm SectionsAlgorithm Sections
while <conditions> loop

<statements>
end while;

The general structure of a
while-loop with a single iterator.

The example class SumSeries
shows the while-loop construct
used for summing a series of
exponential terms until the loop
condition is violated , i.e., the
terms become smaller than eps.

pelab25 Copyright Copyright ©© Peter Fritzson

ifif--statementsstatements

class SumVector
Real sum;
parameter Real v[5] = {100,200,-300,400,500};
parameter Integer n = size(v,1);

algorithm
sum := 0;
for i in 1:n loop
if v[i]>0 then
sum := sum + v[i];

elseif v[i] > -1 then
sum := sum + v[i] -1;

else
sum := sum - v[i];

end if;
end for;

end SumVector;

if <condition> then
<statements>

elseif <condition> then
<statements>

else
<statementss>

end if

The general structure of if-statements.
The elseif-part is optional and can occur zero or
more times whereas the optional else-part can
occur at most once

The if-statements
used in the class
SumVector perform
a combined
summation and
computation on a
vector v.

pelab26 Copyright Copyright ©© Peter Fritzson

whenwhen--statementsstatements
when-statements are used to express
actions (statements) that are only
executed at events, e.g. at discontinuities
or when certain conditions become true

when x > 2 then
y1 := sin(x);
y3 := 2*x + y1 + y2;

end when;

when {x > 2, sample(0,2), x < 5} then
y1 := sin(x);
y3 := 2*x + y1 + y2;

end when;

There are situations where several
assignment statements within the
same when-statement is convenient

algorithm
when x > 2 then
y1 := sin(x);

end when;
equation
y2 = sin(y1);

algorithm
when x > 2 then
y3 := 2*x + y1 + y2;

end when;

when <conditions> then
<statements>

elsewhen <conditions> then
<statements>

end when;

Algorithm and equation sections can
be interleaved.

pelab27 Copyright Copyright ©© Peter Fritzson

Function DeclarationFunction Declaration

The structure of a typical function declaration is as follows:
function <functionname>
input TypeI1 in1;
input TypeI2 in2;
input TypeI3 in3;
...
output TypeO1 out1;
output TypeO2 out2;
...

protected
<local variables>
...

algorithm
...
<statements>
...

end <functionname>;

All internal parts of a function
are optional, the following is
also a legal function:

function <functionname>
end <functionname>;

Modelica functions are declarative
mathematical functions:

• Always return the same result(s) given
the same input argument values

pelab28 Copyright Copyright ©© Peter Fritzson

function PolynomialEvaluator
input Real A[:]; // array, size defined

// at function call time
input Real x := 1.0;// default value 1.0 for x
output Real sum;

protected
Real xpower; // local variable xpower

algorithm
sum := 0;
xpower := 1;
for i in 1:size(A,1) loop
sum := sum + A[i]*xpower;
xpower := xpower*x;

end for;
end PolynomialEvaluator;

Function CallFunction Call
Two basic forms of arguments in Modelica function calls:

• Positional association of actual arguments to formal parameters
• Named association of actual arguments to formal parameters

Example function called on next page:

The function
PolynomialEvaluator
computes the value of a
polynomial given two
arguments:
a coefficient vector A and
a value of x.

pelab29 Copyright Copyright ©© Peter Fritzson

Positional and Named Argument Positional and Named Argument
Association Association

...
algorithm
...
p:= polynomialEvaluator({1,2,3,4},21)

Using positional association, in the call below the actual argument
{1,2,3,4} becomes the value of the coefficient vector A, and 21 becomes
the value of the formal parameter x.

The same call to the function polynomialEvaluator can instead be
made using named association of actual parameters to formal
parameters.

...
algorithm
...
p:= polynomialEvaluator(A={1,2,3,4},x=21)

pelab30 Copyright Copyright ©© Peter Fritzson

Functions with Multiple ResultsFunctions with Multiple Results
function PointOnCircle"Computes cartesian coordinates of point"
input Real angle "angle in radians";
input Real radius;
output Real x; // 1:st result formal parameter
output Real y; // 2:nd result formal parameter

algorithm
x := radius * cos(phi);
y := radius * sin(phi);

end PointOnCircle;

(out1,out2,out3,...) = function_name(in1, in2, in3, in4, ...); // Equation
(out1,out2,out3,...) := function_name(in1, in2, in3, in4, ...); // Statement

(px,py) = PointOnCircle(1.2, 2); // Equation form

(px,py) := PointOnCircle(1.2, 2); // Statement form

Any kind of variable of compatible type is allowed in the parenthesized list
on the left hand side, e.g. even array elements:

(arr[1],arr[2]) := PointOnCircle(1.2, 2);

Example calls:

pelab31 Copyright Copyright ©© Peter Fritzson

External FunctionsExternal Functions

function polynomialMultiply
input Real a[:], b[:];
output Real c[:] := zeros(size(a,1)+size(b, 1) - 1);

external
end polynomialMultiply;

If no language is specified, the implementation language for the external
function is assumed to be C. The external function polynomialMultiply
can also be specified, e.g. via a mapping to a FORTRAN 77 function:

It is possible to call functions defined outside the Modelica
language, implemented in C or FORTRAN 77

The body of an
external function is
marked with the
keyword
external

function polynomialMultiply
input Real a[:], b[:];
output Real c[:] := zeros(size(a,1)+size(b, 1) - 1);

external ”FORTRAN 77”
end polynomialMultiply;

pelab1 Copyright Copyright ©© Peter Fritzson

Discrete Events and Hybrid Discrete Events and Hybrid
SystemsSystems

Picture: Courtesy Hilding Elmqvist

pelab2 Copyright Copyright ©© Peter Fritzson

EventsEvents

Events are ordered in time and form an event history

time
event 1 event 2 event 3

• A point in time that is instantaneous, i.e., has zero duration
• An event condition that switches from false to true in order for the event

to take place
• A set of variables that are associated with the event, i.e. are referenced

or explicitly changed by equations associated with the event
• Some behavior associated with the event, expressed as conditional

equations that become active or are deactivated at the event.
Instantaneous equations is a special case of conditional equations that
are only active at events.

pelab3 Copyright Copyright ©© Peter Fritzson

initialinitial and and terminalterminal eventsevents
Initialization actions are triggered by initial()

Actions at the end of a simulation are triggered by terminal()

time

terminal()

false

true

event at end

time

initial()

false

true

event at start

pelab4 Copyright Copyright ©© Peter Fritzson

Terminating a SimulationTerminating a Simulation

model terminationModel
Real y;

equation
y = time;
when y >5 then
terminate("The time has elapsed 5s");

end when;
end terminationMode;

There terminate() function is useful when a wanted result is
achieved and it is no longer useful to continue the simulation. The
example below illustrates the use:

simulate(terminationModel, startTime = 0, stopTime = 10)

Simulation ends before
reaching time 10terminate

pelab5 Copyright Copyright ©© Peter Fritzson

Generating Repeated EventsGenerating Repeated Events

The call sample(t0,d)
returns true and triggers
events at times t0+i*d,
where i=0,1, …

class SamplingClock
parameter Modelica.SIunits.Time first,interval;
Boolean clock;

equation
clock = sample(first,interval);
when clock then
...
end when;

end SamplingClock;

time

sample(t0,d)

false

true

t0 t0+d t0+2d t0+3d t0+4d

pelab6 Copyright Copyright ©© Peter Fritzson

Expressing Event Behavior in ModelicaExpressing Event Behavior in Modelica

model Diode "Ideal diode"
extends TwoPin;
Real s;
Boolean off;

equation
off = s < 0;
if off then
v=s

else
v=0;

end if;
i = if off then 0 else s;

end Diode;

equation
when x > y.start then
...

if <condition> then
<equations>

elseif <condition> then
<equations>

else
<equations>

end if;

when <conditions> then
<equations>

end when;

when-equations become active at events

if-equations, if-statements, and if-expressions express different behavior in
different operating regions

pelab7 Copyright Copyright ©© Peter Fritzson

model WhenConflictX // Erroneous model: two equations define x
discrete Real x;
equation
when time>=2 then // When A: Increase x by 1.5 at time=2
x = pre(x)+1.5;
end when;
when time>=1 then // When B: Increase x by 1 at time=1
x = pre(x)+1;
end when;

end WhenConflictX;

Event PriorityEvent Priority
Erroneous multiple definitions, single assignment rule violated

Using event priority
to avoid erroneous
multiple definitions

model WhenPriorityX
discrete Real x;

equation
when time>=2 then // Higher priority
x = pre(x)+1.5;

elsewhen time>=1 then // Lower priority
x = pre(x)+1;

end when;
end WhenPriorityX;

pelab8 Copyright Copyright ©© Peter Fritzson

Obtaining Predecessor ValuesObtaining Predecessor Values
of a Variable Using of a Variable Using pre()pre()

At an event, pre(y) gives the previous value of y immediately
before the event, except for event iteration of multiple events at
the same point in time when the value is from the previous
iteration

• The variable y has one of the basic types Boolean, Integer, Real,
String, or enumeration, a subtype of those, or an array type of one
of those basic types or subtypes

• The variable y is a discrete-time variable
• The pre operator can not be used within a function

time

y

event

y

pre(y)

pelab9 Copyright Copyright ©© Peter Fritzson

Detecting Changes of BooleanDetecting Changes of Boolean
Variables Using Variables Using edge()edge()andand change()change()

The expression edge(b)
is true at events when b
switches from false to true

Detecting changes of boolean variables using edge()

Detecting changes of discrete-time variables using change()

The expression change(v)
is true at instants when v
changes value

time

event

b

edge(b)

event

true

true

false

false

time

event

v

change(v)

event

true

4.1

false

3.2

4.5

true

pelab10 Copyright Copyright ©© Peter Fritzson

Creating TimeCreating Time--Delayed ExpressionsDelayed Expressions

Creating time-delayed expressions using delay()

In the expression delay(v,d) v is delayed by a delay time d

time

t1

v

t2

4.1
3.2

4.5

t1+d

delay(v,d)

t2+d

4.1
3.2

4.5

start+d

pelab11 Copyright Copyright ©© Peter Fritzson

A Sampler ModelA Sampler Model

model Sampler
parameter Real sample_interval = 0.1;
Real x(start=5);
Real y;

equation
der(x) = -x;
when sample(0, sample_interval) then
y = x;

end when;
end Sampler;

simulate(Sampler, startTime = 0, stopTime = 10)

plot({x,y})

2 4 6 8 10
t

1

2

3

4

5

pelab12 Copyright Copyright ©© Peter Fritzson

Discontinuous Changes to Variables at Discontinuous Changes to Variables at
Events via WhenEvents via When--Equations/StatementsEquations/Statements
The value of a discrete-time variable can be changed by placing the variable
on the left-hand side in an equation within a when-equation, or on the left-
hand side of an assignment statement in a when-statement

model BouncingBall "the bouncing ball model"
parameter Real g=9.18; //gravitational acc.
parameter Real c=0.90; //elasticity constant
Real x(start=0),y(start=10);

equation
der(x) = y;
der(y)=-g;
when x<0 then
reinit(y, -c*y);

end when;

end BouncingBall;

The value of a continuous-time state variable can be instantaneously
changed by a reinit-equation within a when-equation

t

pelab13 Copyright Copyright ©© Peter Fritzson

A Mode Switching Model ExampleA Mode Switching Model Example

emf

ground

elastoBacklash

inertia1 inertia2
signalVoltage

step

resistor inductor
Motor side Load side

Elastic transmission with slack

phi_dev
- b/2 b/2

tau

A finite state automaton
SimpleElastoBacklash
model

DC motor transmission with elastic backlash

Backward Slack Forward

phi_dev < -b/2

tau < 0 tau > 0

phi_dev <= b/2

tau = 0

phi_dev > b/2phi_dev >= -b/2

pelab14 Copyright Copyright ©© Peter Fritzson

A Mode Switching Model Example contA Mode Switching Model Example cont’’
partial model SimpleElastoBacklash

Boolean backward, slack, forward; // Mode variables
parameter Real b "Size of backlash region";
parameter Real c = 1.e5 "Spring constant (c>0), N.m/rad";
Flange_a flange_a "(left) driving flange - connector";
Flange_b flange_b "(right) driven flange - connector";
parameter Real phi_rel0 = 0 "Angle when spring exerts no torque";
Real phi_rel "Relative rotation angle betw. flanges";
Real phi_dev "Angle deviation from zero-torque pos";
Real tau "Torque between flanges";

equation
phi_rel = flange_b.phi - flange_a.phi;
phi_dev = phi_rel - phi_rel0;
backward = phi_rel < -b/2; // Backward angle gives torque tau<0
forward = phi_rel > b/2; // Forward angle gives torque tau>0
slack = not (backward or forward); // Slack angle gives no torque
tau = if forward then // Forward angle gives

c*(phi_dev – b/2) // positive driving torque
else (if backward then // Backward angle gives

c*(phi_dev + b/2) // negative braking torque
else // Slack gives
0); // zero torque

end SimpleElastoBacklash

pelab15 Copyright Copyright ©© Peter Fritzson

A Mode Switching Model Example contA Mode Switching Model Example cont’’

Relative rotational speed between
the flanges of the Elastobacklash
transmission

5 10 15 20 25 t

-0.5

-0.25

0.25

0.5

0.75

1

t

5 10 15 20 25

-1.2

-1

-0.8

-0.6

-0.4

-0.2

We define a model with less mass in
inertia2(J=1), no damping d=0,
and weaker string constant c=1e-5,
to show even more dramatic
backlash phenomena

The figure depicts the rotational
speeds for the two flanges of the
transmission with elastic backlash

elastoBacklash.w_rel

inertia1.w

inertia2.w

pelab16 Copyright Copyright ©© Peter Fritzson

Water Tank System with PI ControllerWater Tank System with PI Controller

TankPI

piContinuous

tank
tActuator tSensor

qIn qOut

cOut cIn

source

model TankPI
LiquidSource source(flowLevel=0.02);
Tank tank(area=1);
PIcontinuousController piContinuous(ref=0.25);

equation
connect(source.qOut, tank.qIn);
connect(tank.tActuator, piContinuous.cOut);
connect(tank.tSensor, piContinuous.cIn);

end TankPI;

model Tank
ReadSignal tOut; // Connector, reading tank level
ActSignal tInp; // Connector, actuator controlling input flow
parameter Real flowVout = 0.01; // [m3/s]
parameter Real area = 0.5; // [m2]
parameter Real flowGain = 10; // [m2/s]
Real h(start=0); // tank level [m]
Real qIn; // flow through input valve[m3/s]
Real qOut; // flow through output valve[m3/s]

equation
der(h)=(qIn-qOut)/area; // mass balance equation
qOut=if time>100 then flowVout else 0;
qIn = flowGain*tInp.act;
tOut.val = h;

end Tank;

level

maxLevel

pump tank

levelSensor

out in

pelab17 Copyright Copyright ©© Peter Fritzson

Water Tank System with PI Controller Water Tank System with PI Controller –– contcont’’

partial model BaseController
parameter Real Ts(unit = "s") = 0.1 "Time period between discrete samples";
parameter Real K = 2 "Gain";
parameter Real T(unit = "s") = 10 "Time constant";
ReadSignal cIn "Input sensor level, connector";
ActSignal cOut "Control to actuator, connector";
parameter Real ref "Reference level";
Real error "Deviation from reference level";
Real outCtr "Output control signal";

equation
error = ref - cIn.val;
cOut.act = outCtr;

end BaseController;

model PIdiscreteController
extends BaseController(K = 2, T = 10);
discrete Real x;

equation
when sample(0, Ts) then

x = pre(x) + error * Ts / T;
outCtr = K * (x+error);

end when;
end PIdiscreteController;

model PIDcontinuousController
extends BaseController(K = 2, T = 10);
Real x;
Real y;

equation
der(x) = error/T;
y = T*der(error);
outCtr = K*(error + x + y);

end PIDcontinuousController;

pelab18 Copyright Copyright ©© Peter Fritzson

Concurrency and Resource SharingConcurrency and Resource Sharing

model DiningTable
parameter Integer n = 5 "Number of philosophers and forks";
parameter Real sigma = 5 " Standard deviation for the random function";
// Give each philosopher a different random start seed
// Comment out the initializer to make them all hungry simultaneously.
Philosopher phil[n](startSeed=[1:n,1:n,1:n], sigma=fill(sigma,n));
Mutex mutex(n=n);
Fork fork[n];

equation
for i in 1:n loop
connect(phil[i].mutexPort, mutex.port[i]);
connect(phil[i].right, fork[i].left);
connect(fork[i].right, phil[mod(i, n) + 1].left);

end for;
end DiningTable;

mutex

Thinking

Thinking

Thinking

Thinking

Thinking

Eating

Eating

Eating

Eating

Eating

Dining Philosophers ExampleDining Philosophers Example

pelab1 Copyright Copyright ©© Peter Fritzson

PackagesPackages

pelab2 Copyright Copyright ©© Peter Fritzson

Packages for Avoiding Name Collisions Packages for Avoiding Name Collisions

• Modelica provide a safe and systematic way of avoiding
name collisions through the package concept

• A package is simply a container or name space for
names of classes, functions, constants and other
allowed definitions

pelab3 Copyright Copyright ©© Peter Fritzson

Packages as Abstract Data Type: Packages as Abstract Data Type:
Data and Operations in the Same PlaceData and Operations in the Same Place

encapsulated package ComplexNumber

record Complex
Real re;
Real im;

end Complex;

function add
input Complex x,y;
output Complex z;

algorithm
z.re := x.re + y.re;
z.im := x.im + y.im

end add;

function multiply
input Complex x,y;
output Complex z;

algorithm
z.re := x.re*y.re – x.im*y.im;
z.im := x.re*y.im + x.im*y.re;

end multiply;
……………………………………………………….

end ComplexMumbers

Keywords
denoting a
package

encapsulated
makes
package
dependencies
(i.e., imports)
explicit

Declarations of
substract,
divide,
realPart,
imaginaryPart,
etc are not shown
here

class ComplexUser
ComplexNumbers.Complex a(re=1.0, im=2.0);
ComplexNumbers.Complex b(re=1.0, im=2.0);
ComplexNumbers.Complex z,w;

equation
z = ComplexNumbers.multiply(a,b);
w = ComplexNumbers.add(a,b);

end ComplexUser

Usage of the
ComplexNumber
package

The type Complex and the
operations multiply and add
are referenced by prefixing
them with the package name
ComplexNumber

pelab4 Copyright Copyright ©© Peter Fritzson

Accessing Definitions in PackagesAccessing Definitions in Packages
• Access reference by prefixing the package name to definition names

• Shorter access names (e.g. Complex, multiply) can be used if
definitions are first imported from a package (see next page).

class ComplexUser
ComplexNumbers.Complex a(re=1.0, im=2.0);
ComplexNumbers.Complex b(re=1.0, im=2.0);
ComplexNumbers.Complex z,w;

equation
z = ComplexNumbers.multiply(a,b);
w = ComplexNumbers.add(a,b);

end ComplexUser

pelab5 Copyright Copyright ©© Peter Fritzson

Importing Definitions from PackagesImporting Definitions from Packages

The four forms of import are exemplified below assuming
that we want to access the addition operation (add) of the
package Modelica.Math.ComplexNumbers

import Modelica.Math.ComplexNumbers; //Access as ComplexNumbers.add
import Modelica.Math.ComplexNumbers.add; //Access as add
import Modelica.Math.ComplexNumbers.* //Access as add
import Co = Modelica.Math.ComplexNumbers //Access as Co.add

import <packagename>
import <packagename> . <definitionname>
import <packagename> . *
import <shortpackagename> = <packagename>

• Qualified import
• Single definition import
• Unqualified import
• Renaming import

pelab6 Copyright Copyright ©© Peter Fritzson

Qualified ImportQualified Import
import <packagename>Qualified import

The qualified import statement
import <packagename>;
imports all definitions in a package, which subsequently can be
referred to by (usually shorter) names
simplepackagename . definitionname, where the simple
package name is the packagename without its prefix.

encapsulated package ComplexUser1
import Modelica.Math.ComplexNumbers;
class User
ComplexNumbers.Complex a(x=1.0, y=2.0);
ComplexNumbers.Complex b(x=1.0, y=2.0);
ComplexNumbers.Complex z,w;

equation
z = ComplexNumbers.multiply(a,b);
w = ComplexNumbers.add(a,b);

end User;
end ComplexUser1;

This is the most common
form of import that
eliminates the risk for
name collisions when
importing from several
packages

pelab7 Copyright Copyright ©© Peter Fritzson

Single Definition ImportSingle Definition Import
import <packagename> . <definitionname>Single definition import

The single definition import of the form
import <packagename>.<definitionname>;
allows us to import a single specific definition (a constant or class but
not a subpackage) from a package and use that definition referred to
by its definitionname without the package prefix
encapsulated package ComplexUser2

import ComplexNumbers.Complex;
import ComplexNumbers.multiply;
import ComplexNumbers.add;

class User
Complex a(x=1.0, y=2.0);
Complex b(x=1.0, y=2.0);
Complex z,w;

equation
z = multiply(a,b);
w = add(a,b);

end User;
end ComplexUser2;

There is no risk for name
collision as long as we
do not try to import two
definitions with the same
short name

pelab8 Copyright Copyright ©© Peter Fritzson

Unqualified ImportUnqualified Import
import <packagename> . *Unqualified import

The unqualified import statement of the form
import packagename.*;
imports all definitions from the package using their short names without
qualification prefixes.
Danger: Can give rise to name collisions if imported package is changed.

class ComplexUser3
import ComplexNumbers.*;
Complex a(x=1.0, y=2.0);
Complex b(x=1.0, y=2.0);
Complex z,w;

equation
z = multiply(a,b);
w = add(a,b);

end ComplexUser3;

This example also shows
direct import into a class
instead of into an enclosing
package

pelab9 Copyright Copyright ©© Peter Fritzson

Renaming ImportRenaming Import
import <shortpackagename> = <packagename>Renaming import

The renaming import statement of the form:
import <shortpackagename> = <packagename>;
imports a package and renames it locally to shortpackagename.
One can refer to imported definitions using shortpackagename as
a presumably shorter package prefix.

class ComplexUser4
import Co = ComplexNumbers;
Co.Complex a(x=1.0, y=2.0);
Co.Complex b(x=1.0, y=2.0);
Co.Complex z,w;

equation
z = Co.multiply(a,b);
w = Co.add(a,b);

end ComplexUser4;

This is as safe as qualified
import but gives more
concise code

pelab10 Copyright Copyright ©© Peter Fritzson

Package and Library StructuringPackage and Library Structuring
A well-designed package structure is one of the most
important aspects that influences the complexity,
understandability, and maintainability of large software
systems. There are many factors to consider when
designing a package, e.g.:

• The name of the package.

• Structuring of the package into subpackages.

• Reusability and encapsulation of the package.

• Dependencies on other packages.

pelab11 Copyright Copyright ©© Peter Fritzson

Subpackages and Hierarchical Libraries Subpackages and Hierarchical Libraries

encapsulated package Modelica // Modelica
encapsulated package Mechanics // Modelica.Mechanics

encapsulated package Rotational // Modelica.Mechanics.Rotational
model Inertia // Modelica.Mechanics.Rotational.Inertia
...

end Inertia;
model Torque // Modelica.Mechanics.Rotational.Torque
...

end Torque;
...

end Rotational;
...

end Mechanics;
...
end Modelica;

The main use for Modelica packages and subpackages is to structure
hierarchical model libraries, of which the standard Modelica library is a
good example.

pelab12 Copyright Copyright ©© Peter Fritzson

Ecapsulated Packages and ClassesEcapsulated Packages and Classes
An encapsulated package or class prevents direct reference to public
definitions outside itself, but as usual allows access to public subpackages
and classes inside itself.

• Dependencies on other packages become explicit
– more readable and understandable models!

encapsulated model TorqueUserExample1
import Modelica.Mechanics.Rotational; // Import package Rotational
Rotational.Torque t2; // Use Torque, OK!
Modelica.Mechanics.Rotational.Inertia w2;

//Error! No direct reference to the top-level Modelica package
... // to outside an encapsulated class

end TorqueUserExample1;

• Used packages from outside must be imported.

pelab13 Copyright Copyright ©© Peter Fritzson

withinwithin Declaration for Package PlacementDeclaration for Package Placement
Use short names without dots when declaring the package or class in
question, e.g. on a separate file or storage unit. Use within to specify
within which package it is to be placed.

within Modelica.Mechanics;
encapsulated package Rotational // Modelica.Mechanics.Rotational

encapsulated package Interfaces
import ...;
connector Flange_a;

...
end Flange_a;
...

end Interfaces;
model Inertia

...
end Inertia;
...

end Rotational;

The within
declaration
states the prefix
needed to form
the fully
qualified name

The subpackage Rotational declared
within Modelica.Mechanics has the fully
qualified name
Modelica.Mechanics.Rotational,
by concatenating the packageprefix with the
short name of the package.

pelab14 Copyright Copyright ©© Peter Fritzson

Mapping a Package Hierachy into a Directory Mapping a Package Hierachy into a Directory
HirarchyHirarchy

A Modelica package hierarchy can be mapped into a
corresponding directory hierarchy in the file system

Interfaces

Modelica

Mechanics

Continuous
Examples

Rotational

Blocks

...

Example1

C:\library
\Modelica

package.mo
\Blocks

package.mo
Continuous.mo
Interfaces.mo
\Examples
package.mo
Example1.mo

\Mechanics
package.mo
Rotational.mo
...

pelab15 Copyright Copyright ©© Peter Fritzson

Mapping a Package Hierachy into a Directory Mapping a Package Hierachy into a Directory
HirarchyHirarchy

C:\library
\Modelica

package.mo
\Blocks

package.mo
Continuous.mo
Interfaces.mo
\Examples
package.mo
Example1.mo

\Mechanics
package.mo
Rotational.mo
...

within Modelica.Blocks;
encapsulated package Examples

"Examples for Modelica.Blocks";
import ...;

end Examples;
within Modelica.Blocks.Examples;
model Example1

"Usage example 1 for Modelica.Blocks";
...

end Example1;

within;
encapsulated package Modelica

"Modelica root package";
end Modelica;

It contains an empty Modelica package declaration since all
subpackages under Modelica are represented as subdirectories of
their own. The empty within statement can be left out if desired

within Modelica.Mechanics;
encapsulated package Rotational

encapsulated package Interfaces
import ...;
connector Flange_a;

...
end Flange_a;
...

end Interfaces;
model Inertia

...
end Inertia;
...

end Rotational;

The subpackage
Rotational stored as the
file Rotational.mo. Note
that Rotational contains
the subpackage
Interfaces, which also
is stored in the same file
since we chose not to
represent Rotational as
a directory

pelab1 Peter Fritzson

Modelica LibrariesModelica Libraries

pelab2 Peter Fritzson

Modelica Standard LibraryModelica Standard Library

Modelica Standard Library (called Modelica) is a
standardized predefined package developed by Modelica
Association

It can be used freely for both commercial and noncommercial
purposes under the conditions of The Modelica License.

Modelica libraries are available online including documentation
and source code from
http://www.modelica.org/library/library.html.

pelab3 Peter Fritzson

Modelica Standard Library contModelica Standard Library cont’’

• Blocks Library for basic input/output control blocks
• Constants Mathematical constants and constants of nature
• Electrical Library for electrical models
• Icons Icon definitions
• Math Mathematical functions
• Mechanics Library for mechanical systems
• Media Media Media models for liquids and gases
• SIunits Type definitions based on SI units according to ISO 31-1992
• Stategraph Hierarchical state machines (analogous to Statecharts)
• Thermal Components for thermal systems
• Utility Utilities Utility functions especially for scripting

Modelica Standard Library contains components from various
application areas, with the following sublibraries:

pelab4 Peter Fritzson

Modelica.BlocksModelica.Blocks

This library contains input/output blocks to build up block
diagrams.

 Library
Continuous

 Library

Interfaces

 Library

NonLinear

 Library

Math

 Library
Sources

Example:

 Library

Discrete

pelab5 Peter Fritzson

Modelica.ConstantsModelica.Constants

A package with often needed constants from mathematics,
machine dependent constants, and constants of nature.

Examples:
constant Real pi=2*Modelica.Math.asin(1.0);

constant Real small=1.e-60 "Smallest number such that small and –small
are representable on the machine";

constant Real G(final unit="m3/(kg.s2)") = 6.673e-11 "Newtonian constant
of gravitation";

constant Real h(final unit="J.s") = 6.62606876e-34 "Planck constant";

constant Modelica.SIunits.CelsiusTemperature T_zero=-273.15 "Absolute
zero temperature”;

pelab6 Peter Fritzson

Modelica.ElectricalModelica.Electrical

Electrical components for building analog, digital, and
multiphase circuits

Library

Analog

Library

MultiPhase

Library

Digital

V1

V2

I1

R1

R2

R3

R4

C1

C4

C5

C2

C3

Gnd1

Gnd9

Gnd3

Gnd2

Gnd6

Gnd7 Gnd8 Gnd5

Gnd4

Transistor1 Transistor2

Examples:

Library

Machines

pelab7 Peter Fritzson

Modelica.IconsModelica.Icons

Package with icons that can be reused in other libraries

Info

Info

Library
Library1

 Library

Library2

Example

Example

TranslationalSensor RotationalSensor GearIcon

MotorIcon

Examples:

pelab8 Peter Fritzson

Modelica.MathModelica.Math

Package containing basic mathematical functions:
sin(u) sine

cos(u) cosine

tan(u) tangent (u shall not be: …,-π/2, π/2, 3π/2,…)

asin(u) inverse sine (-1 ≤ u ≤ 1)

acos(u) inverse cosine (-1 ≤ u ≤ 1)

atan(u) inverse tangent

atan2(u1, u2) four quadrant inverse tangent

sinh(u) hyperbolic sine

cosh(u) hyperbolic cosine

tanh(u) hyperbolic tangent

exp(u) exponential, base e

log(u) natural (base e) logarithm (u > 0)

log10(u) base 10 logarithm (u > 0)

pelab9 Peter Fritzson

Modelica.MechanicsModelica.Mechanics

Package containing components for mechanical systems

Subpackages:
• Rotational 1-dimensional rotational mechanical components
• Translational 1-dimensional translational mechanical components
• MultiBody 3-dimensional mechanical components

pelab10 Peter Fritzson

Modelica.SIunitsModelica.SIunits

This package contains predefined types based on the
international standard of units:

• ISO 31-1992 “General principles concerning quantities, units and symbols”
• ISO 1000-1992 “SI units and recommendations for the use of their

multiples and of certain other units”.

A subpackage called NonSIunits is available containing non
SI units such as Pressure_bar, Angle_deg, etc

pelab11 Peter Fritzson

Modelica.ThermalModelica.Thermal

Subpackage FluidHeatFlow with components for heat flow
modeling.

Example:

Sub package HeatTransfer with components to model 1-
dimensional heat transfer with lumped elements

pelab12 Peter Fritzson

ModelicaAdditionsModelicaAdditions Library (OLD)Library (OLD)

ModelicaAdditions library contains additional Modelica
libraries from DLR. This has been largely replaced by the new
release of the Modelica 2.1 libraries.

• Blocks Input/output block sublibrary
• HeatFlow1D 1-dimensional heat flow (replaced by Modelica.Thermal)
• Multibody Modelica library to model 3D mechanical systems
• PetriNets Library to model Petri nets and state transition diagrams
• Tables Components to interpolate linearly in tables

Sublibraries:

pelab13 Peter Fritzson

ModelicaAdditions.MultibodyModelicaAdditions.Multibody (OLD)(OLD)

This is a Modelica library to model 3D Mechanical systems
including visualization

• Easier to use
• Automatic handling of kinematic loops.
• Built-in animation properties for all components

New version has been released (march 2004) that is called
Modelica.Mechanics.MultiBody in the standard library

Improvements:

pelab14 Peter Fritzson

MultiBody (MBS) MultiBody (MBS) -- Example Kinematic LoopExample Kinematic Loop

Old library
(cutjoint needed)

New library
(no cutjoint needed)

pelab15 Peter Fritzson

MultiBody (MBS) MultiBody (MBS) -- Example AnimationsExample Animations

pelab16 Peter Fritzson

ModelicaAdditions.PetriNetsModelicaAdditions.PetriNets

This package contains components to model Petri nets

Transition

Place

Used for modeling of computer hardware, software, assembly
lines, etc

pelab17 Peter Fritzson

Power System Stability Power System Stability -- ObjectStabObjectStab

The ObjectStab package is a Modelica Library for Power
Systems Voltage and Transient stability simulations

pelab18 Peter Fritzson

ThermoThermo--hydraulics Library hydraulics Library -- ThermoFluidThermoFluid

ThermoFluid is a Modelica base library for thermo-hydraulic
models
• Includes models that describe the basic physics of flows of fluid and

heat, medium property models for water, gases and some
refrigerants, and also simple components for system modeling.

• Handles static and dynamic momentum balances

• Robust against backwards and
zero flow

• The discretization method is
a first-order, finite volume
method (staggered grid).

pelab19 Peter Fritzson

Vehicle Dynamics Library Vehicle Dynamics Library -- VehicleDynamicsVehicleDynamics

This library is used to model vehicle chassis

pelab20 Peter Fritzson

Some Other Free LibrariesSome Other Free Libraries
• ExtendedPetriNets Petri nets and state transition diagrams

(extended version)
• QSSFluidFlow Quasi Steady-Sate Fluid Flows

• SystemDynamics System Dynamics Formalism

• Atplus Building Simulation and Building Control
(includes Fuzzy Control library)

• ThermoPower Thermal power plants

• WasteWater Library for biological wastewater
treatment plants

• SPICELib Support modeling and analysis
capabilities of the circuit simulator
PSPICE

Read more about the libraries at www.modelica.org/library/library.html

pelab21 Peter Fritzson

Hydraulics Library Hydraulics Library HyLibHyLib

• Licensed Modelica package developed
by Peter Beater

• More than 90 models for

• Pumps

• Motors and cylinders

• Restrictions and valves

• Hydraulic lines

• Lumped volumes and sensors

• Models can be connected in an
arbitrary way, e.g. in series or in parallel.

•HyLibLight is a free subset of
HyLib

• More info: www.hylib.com

Pumps

Valves

Cylinders

pelab22 Peter Fritzson

HyLibHyLib -- ExampleExample

Hydraulic drive system with closed circuit

pelab23 Peter Fritzson

Pneumatics Library Pneumatics Library PneuLibPneuLib

•Licensed Modelica package
developed by Peter Beater

•More than 80 models for

• Cylinders

• Motors

• Valves and nozzles

• Lumped volumes

• Lines and sensors

• Models can be connected in an arbitrary
way, e.g. in series or in parallel.

•PneuLibLight is a free subset of
HyLib.

• More info: www.pneulib.com

Directional valves

Flow control valves

Cylinders

pelab24 Peter Fritzson

PneuLibPneuLib -- ExampleExample

Pneumatic circuit with multi-position cylinder, booster and
different valves

pelab25 Peter Fritzson

PowertrainPowertrain Library Library -- PowertrainPowertrain

• Licensed Modelica package
developed by DLR

• Speed and torque dependent
friction

• Bus concept

• Control units

• Animation

pelab26 Peter Fritzson

Some ModelicaSome Modelica ApplicationsApplications

pelab27 Peter Fritzson

Example Fighter Aircraft LibraryExample Fighter Aircraft Library

Custom made library, Aircraft*, for fighter aircraft
applications

*Property of FOI (The Swedish
Defence Institute)

• Six degrees of freedom (6 DOF)
• Dynamic calculation of center of

gravity (CoG)
• Use of Aerodynamic tables or

mechanical rudders

pelab28 Peter Fritzson

Aircraft with ControllerAircraft with Controller

• Simple PID
• Controls alpha and height

pelab29 Peter Fritzson

Example Aircraft AnimationExample Aircraft Animation

Animation of fighter aircraft with controller

pelab30 Peter Fritzson

ExampleExample Gas Gas TurbineTurbine

Fuel

Exhaust gasCompressed air

Air
Compressor Turbine

Combustion
chamber

Power output

Exhaust

42 MW gas turbine (GTX 100) from Siemens Industrial
Turbomachinery AB, Finspång, Sweden

pelab31 Peter Fritzson

Example Gas TurbineExample Gas Turbine

pelab32 Peter Fritzson

Example Gas Turbine Example Gas Turbine –– Load RejectionLoad Rejection

Switch pilot
to main fuel

Load rejection

Generator

Rotational speed (rpm) of the compressor shaft

pelab33 Peter Fritzson

Example Gas Turbine Example Gas Turbine –– Load RejectionLoad Rejection

Percentage of fuel valve opening
(red = pilot, blue = main)

Generated power to the simulated
electrical grid

pelab1 Peter Fritzson

Modeling and Simulation Modeling and Simulation
EnvironmentsEnvironments

pelab2 Peter Fritzson

The Translation ProcessThe Translation Process

Modelica Model

Flat model

Sorted equations

C Code

Executable

Optimized sorted
equations

Modelica
Model

Modelica
Graphical Editor

Modelica
Source code

Translator

Analyzer

Optimizer

Code generator

C Compiler

Simulation

Modelica
Textual Editor

pelab3 Peter Fritzson

Commercial Environments Commercial Environments ––
DymolaDymola from Dynasimfrom Dynasim

Equation editor

Model diagrams

3D Animations

Courtesy of Dynasim AB, Sweden

pelab4 Peter Fritzson

Simulation Center

MathModelica Graphic editor

Commercial Environments Commercial Environments ––
MathModelica System DesignerMathModelica System Designer from MathCorefrom MathCore

Courtesy of Mathcore Engineering AB

pelab5 Peter Fritzson

OpenModelicaOpenModelica EnvironmentEnvironment
The goal of the OpenModelica project is to:
• Create a complete Modelica modeling, compilation and simulation

environment.
• Provide free software distributed in binary and source code form.
• Provide a modeling and simulation environment for research and

industrial purposes.
• Develop a formal semantics of Modelica

Features of currently available implementation:
• Command shell environment allows to enter and evaluate Modelica

declarations, expressions, assignments, and function calls.
• Modelica functions are implemented, including array support.
• Modelica equations are implemented, but with certain limitations.
• Packages, inheritance, modifiers, etc. are implemented.
• etc.

http://www.ida.liu.se/~pelab/modelica/OpenModelica.html

pelab6 Peter Fritzson

OpenModelicaOpenModelica Environment ArchitectureEnvironment Architecture

http://www.ida.liu.se/projects/OpenModelica

Modelica
Compiler

Interactive
session handler

Execution

Graphical Model
Editor/Browser

Textual
Model Editor

Modelica
Debugger

Emacs
Editor/Browser

DrModelica
OMNoteBook
Model Editor

Eclipse Plugin
Editor/Browser

pelab7 Peter Fritzson

OMNotebook Electronic Book with Modelica OMNotebook Electronic Book with Modelica
Exercises and OMShell Interactive ShellExercises and OMShell Interactive Shell

>>simulate(BouncingBall, stopTime=3.0);
>>plot({h,flying});

pelab8 Peter Fritzson

Examples of ApplicationsExamples of Applications

(usually using commercial tools)(usually using commercial tools)

pelab9 Peter Fritzson

Example Example -- ModelingModeling of a Wheel Loader Lifterof a Wheel Loader Lifter

pelab10 Peter Fritzson

Simulation of a Wheel Loader LifterSimulation of a Wheel Loader Lifter

pelab11 Peter Fritzson

Modelica Simulation of AirCraft DynamicsModelica Simulation of AirCraft Dynamics

Developed by MathCore Developed by MathCore
for the Swedish Defense for the Swedish Defense
Research Institute (FOI)Research Institute (FOI)

pelab12 Peter Fritzson

Modelica AirCraft Component LibraryModelica AirCraft Component Library
Model Structure Model Structure –– Using a Modelica AirCraft Component Using a Modelica AirCraft Component
Library developed by MathCore Library developed by MathCore
for the Swedish Defense for the Swedish Defense
Research Institute (FOI)Research Institute (FOI)

Courtesy of Swedish Defense Research Institute (FOI)Swedish Defense Research Institute (FOI)

pelab13 Peter Fritzson

PathWaysPathWays in a Biochemical Systemin a Biochemical System

pelab14 Peter Fritzson

Examples of Modelica ResearchExamples of Modelica Research

• PDEs in Modelica
• Debugging
• Parallelization
• Language Design for Meta Programming
• Variant Handling
• Biochemical modeling

pelab15 Peter Fritzson

Extending Modelica with PDEsExtending Modelica with PDEs
for 2D, 3D flow problemsfor 2D, 3D flow problems

class PDEModel
HeatNeumann h_iso;
Dirichlet h_heated(g=50);
HeatRobin h_glass(h_heat=30000);
HeatTransfer ht;
Rectangle2D dom;

equation
dom.eq = ht;
dom.left.bc = h_glass;
dom.top.bc = h_iso;
dom.right.bc = h_iso;
dom.bottom.bc = h_heated;

end PDEModel;

Insulated boundary:

Poorly insulated boundary:

20inf =T

Conducting boundary:

60=u

pelab16 Peter Fritzson

Automatic Generation of Parallel Code Automatic Generation of Parallel Code
from Modelica Equationfrom Modelica Equation--Based ModelsBased Models

1
2

3
2

2
1

4
1

5
2

6
2

7
1

8
1

5 0

0 0 0

0 010

Clustered Task Graph

1 2 4 8 16
Proc

0.5

1

1.5

2

2.5

3
Speedup

Thermofluid Pipe Application

pelab17 Peter Fritzson

Equation Debugger General AchitectureEquation Debugger General Achitecture

......................................
model Resistor

extends TwoPin;
parameter Real R;

equation
R*i=v;

end Resistor;
......................................

R1.v==-R1.n.v+R1.p.v
0==R1.n.i+R1.p.i
R1.i==R1.p.i
R1.i*R1.R==R1.v
C.v==-C.n.v+C.p.v
0==C.n.i+C.p.i
C.i==C.pi

Modelica source
code specification

Graphical Model
Specification

Model
Flattening

Flattened set of
equations

Intermediate
code annotating

<R1.v==-R1.n.v+R1.p.v, ”eq1”, ” ”, 2, ”TwoPin, 1, no>
.............
<AC.p.v==R1.p.v, ”eq11”, ” ”, 2, ”Circuit”, 1, yes>
.............

Annotated flattened
equations

Error correcting strategies
based on annotations analysis

and user-interaction

Corresponding
bipartite graph
representation

Bipartite graph
generation

D&M
Decomposition

Static Debugging

(Structural Analysis)

Over-constrained
subsystem

Under-constrained
subsystem

Decomosing into
irreductible parts

Dynamic Numerical
Debugging

pelab18 Peter Fritzson

ConclusionsConclusions

Modelica has a good chance to become the next
generation computational modeling language

Two complete commercial Modelica implementations
currently available (MathModelica, Dymola),
and an open source implementation (OpenModelica)
under development

pelab19 Peter Fritzson

www.ida.liu.se/projects/OpenModelica
Download OpenModelica and drModelica, book chapter

www.mathcore.com
MathModelica Tool

www.mathcore.com/drModelica
Book web page, Download book chapter

www.modelica.org
Modelica Association

ContactContact

petfr@ida.liu.se
OpenModelica@ida.liu.se

pelab1 Copyright Copyright ©© Peter Fritzson

Biological ModelsBiological Models
Population DynamicsPopulation Dynamics

PredatorPredator--PreyPrey

pelab2 Copyright Copyright ©© Peter Fritzson

Some WellSome Well--known Population Dynamics known Population Dynamics
ApplicationsApplications

• Population Dynamics of Single Population

• Predator-Prey Models (e.g. Foxes and Rabbits)

pelab3 Copyright Copyright ©© Peter Fritzson

Population Dynamics of Single PopulationPopulation Dynamics of Single Population
• P – population size = number of individuals in a population
• – population change rate, change per time unit
• g – growth factor of population (e.g. % births per year)
• d – death factor of population (e.g. % deaths per year)

deathrategrowthrateP −=

Pddeathrate
Pggrowthrate

⋅=
⋅=

PdgP ⋅−=)(

P

Exponentially increasing
population if (g-d)>0

Exponentially decreasing
population if (g-d)<0

pelab4 Copyright Copyright ©© Peter Fritzson

Population Dynamics ModelPopulation Dynamics Model

class PopulationGrowth
parameter Real g = 0.04 "Growth factor of population";
parameter Real d = 0.0005 "Death factor of population";
Real P(start=10) "Population size, initially 10";

equation
der(P) = (g-d)*P;

end PopulationGrowth;

• g – growth rate of population
• d – death rate of population
• P – population size

deathrategrowthrateP −=

pelab5 Copyright Copyright ©© Peter Fritzson

Simulation of Simulation of PopulationGrowthPopulationGrowth

simulate(PopulationGrowth, stopTime=100)
plot(P)

20 40 60 80 100
t

100

200

300

400

500

P

Exponentially increasing
population if (g-d)>0

pelab6 Copyright Copyright ©© Peter Fritzson

Population Growth Exercise!!Population Growth Exercise!!

simulate(PopulationGrowth, stopTime=100)
plot(P)

Exponentially decreasing
population if (g-d)<0

• Locate the PopulationGrowth model in DrModelica
• Change the initial population size and growth and

death factors to get an exponentially decreasing
population

class PopulationGrowth
parameter Real g = 0.04 "Growth factor of population";
parameter Real d = 0.0005 "Death factor of population";
Real P(start=10) "Population size, initially 10";

equation
der(P) = (g-d)*P;

end PopulationGrowth;

pelab7 Copyright Copyright ©© Peter Fritzson

Population Dynamics with both Predators Population Dynamics with both Predators
and Prey Populationsand Prey Populations

• Predator-Prey models

pelab8 Copyright Copyright ©© Peter Fritzson

PredatorPredator--Prey (Foxes and Rabbits) ModelPrey (Foxes and Rabbits) Model
• R = rabbits = size of rabbit population
• F = foxes = size of fox population
• = der(rabbits) = change rate of rabbit population
• = der(foxes) = change rate of fox population
• gr = g_r = growth factor of rabbits
• df = d_f = death factor of foxes
• drf = d_rf = death factor of rabbits due to foxes
• gfr = g_rf = growth factor of foxes due to rabbits and foxes

RFdRgR rfr ⋅⋅−⋅= FdFRdgF frffr ⋅−⋅⋅⋅=
der(rabbits) = g_r*rabbits - d_rf*rabbits*foxes;
der(foxes) = g_fr*d_rf*rabbits*foxes - d_f*foxes;

F
R

pelab9 Copyright Copyright ©© Peter Fritzson

PredatorPredator--Prey (Foxes and Rabbits) ModelPrey (Foxes and Rabbits) Model

class LotkaVolterra
parameter Real g_r =0.04 "Natural growth rate for rabbits";
parameter Real d_rf=0.0005 "Death rate of rabbits due to foxes";
parameter Real d_f =0.09 "Natural deathrate for foxes";
parameter Real g_fr=0.1 "Efficency in growing foxes from rabbits";
Real rabbits(start=700) "Rabbits,(R) with start population 700";
Real foxes(start=10) "Foxes,(F) with start population 10";

equation
der(rabbits) = g_r*rabbits - d_rf*rabbits*foxes;
der(foxes) = g_fr*d_rf*rabbits*foxes - d_f*foxes;

end LotkaVolterra;

pelab10 Copyright Copyright ©© Peter Fritzson

Simulation of PredatorSimulation of Predator--Prey (Prey (LotkaVolterraLotkaVolterra))

simulate(LotkaVolterra, stopTime=3000)
plot({rabbits, foxes}, xrange={0,1000})

200 400 600 800 1000 t

1000

2000

3000

4000

5000

foxes

rabbits

pelab11 Copyright Copyright ©© Peter Fritzson

Exercise of PredatorExercise of Predator--PreyPrey

simulate(LotkaVolterra, stopTime=3000)
plot({rabbits, foxes}, xrange={0,1000})

• Locate the LotkaVolterra model in DrModelica
• Change the death and growth rates for foxes and

rabbits, simulate, and observe the effects

class LotkaVolterra
parameter Real g_r =0.04 "Natural growth rate for rabbits";
parameter Real d_rf=0.0005 "Death rate of rabbits due to foxes";
parameter Real d_f =0.09 "Natural deathrate for foxes";
parameter Real g_fr=0.1 "Efficency in growing foxes from rabbits";
Real rabbits(start=700) "Rabbits,(R) with start population 700";
Real foxes(start=10) "Foxes,(F) with start population 10";

equation
der(rabbits) = g_r*rabbits - d_rf*rabbits*foxes;
der(foxes) = g_fr*d_rf*rabbits*foxes - d_f*foxes;

end LotkaVolterra;

pelab1 Copyright Copyright ©© Peter Fritzson

Model DesignModel Design

pelab2 Copyright Copyright ©© Peter Fritzson

Modeling ApproachesModeling Approaches

• Traditional state space approach

• Traditional signal-style block-oriented approach

• Object-oriented approach based on finished
library component models

• Object-oriented flat model approach

• Object-oriented approach with design of library
model components

pelab3 Copyright Copyright ©© Peter Fritzson

Modeling Approach 1Modeling Approach 1

Traditional state space approach

pelab4 Copyright Copyright ©© Peter Fritzson

Traditional State Space ApproachTraditional State Space Approach

• Basic structuring in terms of subsystems and
variables

• Stating equations and formulas

• Converting the model to state space form:

))(),(()(
))(),(()(

tutxgty
tutxftx

=
=

pelab5 Copyright Copyright ©© Peter Fritzson

Difficulties in State Space ApproachDifficulties in State Space Approach

• The system decomposition does not
correspond to the "natural" physical system
structure

• Breaking down into subsystems is difficult if
the connections are not of input/output type.

• Two connected state-space subsystems do
not usually give a state-space system
automatically.

pelab6 Copyright Copyright ©© Peter Fritzson

Modeling Approach 2Modeling Approach 2

Traditional signal-style block-oriented approach

pelab7 Copyright Copyright ©© Peter Fritzson

Physical Modeling Style (e.g Modelica) vs Physical Modeling Style (e.g Modelica) vs
signal flow Blocksignal flow Block--Oriented Style (e.g. Simulink)Oriented Style (e.g. Simulink)

R1=10

C=0.01 L=0.1

R2=100

G

AC=220

p
n

p

pp

p

p

n

n

nn

-1
 1

sum3

+1
 -1

sum1

+1
+1

sum2

1
s

l2

1
s

l1sinln

1/R1

Res1

1/C

Cap

1/L

Ind

R2

Res2

Modelica:
Physical model – easy to
understand

Block-oriented:
Signal-flow model – hard to
understand for physical systems

pelab8 Copyright Copyright ©© Peter Fritzson

Traditional Block Diagram ModelingTraditional Block Diagram Modeling

∫
+

-
Integrator Adder Multiplier Function Branch Point

x

y f(x,y)

• Special case of model components:
the causality of each interface variable
has been fixed to either input or output

Typical Block diagram model components:

Simulink is a common block diagram tool

pelab9 Copyright Copyright ©© Peter Fritzson

Physical Modeling Style (e.g Modelica) vs Physical Modeling Style (e.g Modelica) vs
signal flow Blocksignal flow Block--Oriented Style (e.g. Simulink)Oriented Style (e.g. Simulink)

R1=10

C=0.01 L=0.1

R2=100

G

AC=220

p
n

p

pp

p

p

n

n

nn

-1
 1

sum3

+1
 -1

sum1

+1
+1

sum2

1
s

l2

1
s

l1sinln

1/R1

Res1

1/C

Cap

1/L

Ind

R2

Res2

Modelica:
Physical model – easy to
understand

Block-oriented:
Signal-flow model – hard to
understand for physical systems

pelab10 Copyright Copyright ©© Peter Fritzson

Example Block Diagram ModelsExample Block Diagram Models

K

∫ +
-

-2/1 kk

L/1

∫

∫ ∫

∫ ∫

R

Electric

Control

Rotational
Mechanics

+
-

+
-IT/1

+
-

+
-

+
-

i

e

loadτ

2

2
221/1

k
kJJ −

1k

2k

3k
3/1 J

2ω

3ω

2θ

3θ

pelab11 Copyright Copyright ©© Peter Fritzson

Properties of Block Diagram ModelingProperties of Block Diagram Modeling

• - The system decomposition topology does not
correspond to the "natural" physical system structure

• - Hard work of manual conversion of equations into
signal-flow representation

• - Physical models become hard to understand in signal
representation

• - Small model changes (e.g. compute positions from
force instead of force from positions) requires redesign of
whole model

• + Block diagram modeling works well for control systems
since they are signal-oriented rather than "physical"

pelab12 Copyright Copyright ©© Peter Fritzson

ObjectObject--Oriented Modeling VariantsOriented Modeling Variants

• Approach 3: Object-oriented approach based on
finished library component models

• Approach 4: Object-oriented flat model approach

• Approach 5: Object-oriented approach with
design of library model components

pelab13 Copyright Copyright ©© Peter Fritzson

ObjectObject--Oriented ComponentOriented Component--Based Based
Approaches in GeneralApproaches in General

• Define the system briefly
• What kind of system is it?
• What does it do?

• Decompose the system into its most important
components
• Define communication, i.e., determine interactions
• Define interfaces, i.e., determine the external ports/connectors
• Recursively decompose model components of “high complexity”

• Formulate new model classes when needed
• Declare new model classes.
• Declare possible base classes for increased reuse and maintainability

pelab14 Copyright Copyright ©© Peter Fritzson

TopTop--Down versus BottomDown versus Bottom--up Modelingup Modeling

• Top Down: Start designing the overall view.
Determine what components are needed.

• Bottom-Up: Start designing the components
and try to fit them together later.

pelab15 Copyright Copyright ©© Peter Fritzson

Approach 3: TopApproach 3: Top--Down ObjectDown Object--oriented oriented
approach using library model componentsapproach using library model components

• Decompose into subsystems
• Sketch communication
• Design subsystems models by connecting

library component models
• Simulate!

pelab16 Copyright Copyright ©© Peter Fritzson

Decompose into Subsystems and Sketch Decompose into Subsystems and Sketch
Communication Communication –– DCDC--Motor Servo ExampleMotor Servo Example

The DC-Motor servo subsystems and their connections

Controller

Electrical
Circuit

Rotational
Mechanics

pelab17 Copyright Copyright ©© Peter Fritzson

Modeling the Controller SubsystemModeling the Controller Subsystem

Modeling the controller

Controller

Electrical
Circuit

Rotational
Mechanics

- PI

feedback1

PI1 step1

pelab18 Copyright Copyright ©© Peter Fritzson

Modeling the Electrical SubsystemModeling the Electrical Subsystem

Modeling the electric circuit

Controller

Electrical
Circuit

Rotational
Mechanics

resistor1 inductor1

signalVoltage1 EMF1

ground1

pelab19 Copyright Copyright ©© Peter Fritzson

Modeling the Mechanical SubsystemModeling the Mechanical Subsystem

Modeling the mechanical subsystem including the speed sensor.

inertia1 inertia2 inertia3 idealGear1 spring1

speedSensor1

Controller
Electrical

Circuit
Rotational
Mechanics

pelab20 Copyright Copyright ©© Peter Fritzson

ObjectObject--Oriented Modeling from ScratchOriented Modeling from Scratch

• Approach 4: Object-oriented flat model approach

• Approach 5: Object-oriented approach with
design of library model components

pelab21 Copyright Copyright ©© Peter Fritzson

Example: OO Modeling of a Tank SystemExample: OO Modeling of a Tank System

level h
maxLevel

valve

levelSensor

out in

controller

 tank

 source

• The system is naturally
decomposed into components

pelab22 Copyright Copyright ©© Peter Fritzson

ObjectObject--Oriented ModelingOriented Modeling

Approach 4: Object-oriented flat model design

pelab23 Copyright Copyright ©© Peter Fritzson

Tank System Model FlatTank Tank System Model FlatTank –– No Graphical No Graphical
StructureStructure

• No component
structure

• Just flat set of
equations

• Straight-
forward but
less flexible,
no graphical
structure

model FlatTank
// Tank related variables and parameters
parameter Real flowLevel(unit="m3/s")=0.02;
parameter Real area(unit="m2") =1;
parameter Real flowGain(unit="m2/s") =0.05;
Real h(start=0,unit="m") "Tank level";
Real qInflow(unit="m3/s") "Flow through input valve";
Real qOutflow(unit="m3/s") "Flow through output valve";
// Controller related variables and parameters
parameter Real K=2 "Gain";
parameter Real T(unit="s")= 10 "Time constant";
parameter Real minV=0, maxV=10; // Limits for flow output
Real ref = 0.25 "Reference level for control";
Real error "Deviation from reference level";
Real outCtr "Control signal without limiter";
Real x; "State variable for controller";

equation
assert(minV>=0,"minV must be greater or equal to zero");//
der(h) = (qInflow-qOutflow)/area; // Mass balance equation
qInflow = if time>150 then 3*flowLevel else flowLevel;
qOutflow = LimitValue(minV,maxV,-flowGain*outCtr);
error = ref-h;
der(x) = error/T;
outCtr = K*(error+x);

end FlatTank;

pelab24 Copyright Copyright ©© Peter Fritzson

Simulation of Simulation of FlatTankFlatTank SystemSystem
• Flow increase to flowLevel at time 0
• Flow increase to 3*flowLevel at time 150

50 100 150 200 250
time

0.1

0.2

0.3

0.4

simulate(FlatTank, stopTime=250)

plot(h, stopTime=250)

pelab25 Copyright Copyright ©© Peter Fritzson

ObjectObject--Oriented ModelingOriented Modeling

• Approach 5:
Object-oriented approach with design of
library model components

pelab26 Copyright Copyright ©© Peter Fritzson

Object Oriented ComponentObject Oriented Component--Based ApproachBased Approach
Tank System with Three ComponentsTank System with Three Components

TankPI

piContinuous

tank
tActuatortSensor

qIn qOut

cOutcIn

source

model TankPI
LiquidSource source(flowLevel=0.02);
PIcontinuousController piContinuous(ref=0.25);
Tank tank(area=1);

equation
connect(source.qOut, tank.qIn);
connect(tank.tActuator, piContinuous.cOut);
connect(tank.tSensor, piContinuous.cIn);

end TankPI;

• Liquid source
• Continuous PI

controller
• Tank

pelab27 Copyright Copyright ©© Peter Fritzson

Tank modelTank model
• The central equation regulating the behavior of the tank is the mass balance

equation (input flow, output flow), assuming constant pressure

model Tank
ReadSignal tSensor "Connector, sensor reading tank level (m)";
ActSignal tActuator "Connector, actuator controlling input flow";
LiquidFlow qIn "Connector, flow (m3/s) through input valve";
LiquidFlow qOut "Connector, flow (m3/s) through output valve";
parameter Real area(unit="m2") = 0.5;
parameter Real flowGain(unit="m2/s") = 0.05;
parameter Real minV=0, maxV=10; // Limits for output valve flow
Real h(start=0.0, unit="m") "Tank level";

equation
assert(minV>=0,"minV – minimum Valve level must be >= 0 ");//
der(h) = (qIn.lflow-qOut.lflow)/area; // Mass balance

equation
qOut.lflow = LimitValue(minV,maxV,-flowGain*tActuator.act);
tSensor.val = h;

end Tank;

pelab28 Copyright Copyright ©© Peter Fritzson

Connector Classes and Liquid Source Model Connector Classes and Liquid Source Model
for Tank Systemfor Tank System
connector ReadSignal "Reading fluid level"

Real val(unit="m");
end ReadSignal;

connector ActSignal "Signal to actuator
for setting valve position"
Real act;

end ActSignal;

connector LiquidFlow "Liquid flow at inlets or outlets"
Real lflow(unit="m3/s");

end LiquidFlow;

model LiquidSource
LiquidFlow qOut;
parameter flowLevel = 0.02;

equation
qOut.lflow = if time>150 then 3*flowLevel else flowLevel;

end LiquidSource;

TankPI

piContinuous

tank
tActuator tSensor

qIn qOut

cOut cIn

source

pelab29 Copyright Copyright ©© Peter Fritzson

model PIcontinuousController
extends BaseController(K=2,T=10);
Real x "State variable of continuous PI controller";

equation
der(x) = error/T;
outCtr = K*(error+x);

end PIcontinuousController;

Continuous PI Controller for Tank SystemContinuous PI Controller for Tank System

)(* xerrorKoutCtr
T

error
dt
dx

+=

=• error = (reference level –
actual tank level)

• T is a time constant
• x is controller state

variable
• K is a gain factor)(* dt

T
errorerrorKoutCtr ∫+=

base class for controllers – to be defined

Integrating equations gives
Proportional & Integrative (PI)

error – to be defined in controller base class

pelab30 Copyright Copyright ©© Peter Fritzson

The Base Controller The Base Controller –– A Partial ModelA Partial Model

partial model BaseController
parameter Real Ts(unit="s")=0.1

"Ts - Time period between discrete samples – discrete sampled";
parameter Real K=2 "Gain";
parameter Real T=10(unit="s") "Time constant - continuous";
ReadSignal cIn "Input sensor level, connector";
ActSignal cOut "Control to actuator, connector";
parameter Real ref "Reference level";
Real error "Deviation from reference level";
Real outCtr "Output control signal";

equation
error = ref-cIn.val;
cOut.act = outCtr;

end BaseController;

error = difference betwen reference level and
actual tank level from cIn connector

TankPI

piContinuous

tank
tActuator tSensor

qIn qOut

cOut cIn

source

pelab31 Copyright Copyright ©© Peter Fritzson

Simulate ComponentSimulate Component--Based Tank SystemBased Tank System
• As expected (same equations), TankPI gives the

same result as the flat model FlatTank

50 100 150 200 250
time

0.1

0.2

0.3

0.4

simulate(TankPI, stopTime=250)

plot(h, stopTime=250)

pelab32 Copyright Copyright ©© Peter Fritzson

Flexibility of ComponentFlexibility of Component--Based ModelsBased Models

• Exchange of components possible in a
component-based model

• Example:
Exchange the PI controller component for a PID
controller component

pelab33 Copyright Copyright ©© Peter Fritzson

Tank System with Continuous PID Controller Tank System with Continuous PID Controller
Instead of Continuous PI ControllerInstead of Continuous PI Controller

model TankPID
LiquidSource source(flowLevel=0.02);
PIDcontinuousController pidContinuous(ref=0.25);
Tank tank(area=1);

equation
connect(source.qOut, tank.qIn);
connect(tank.tActuator, pidContinuous.cOut);
connect(tank.tSensor, pidContinuous.cIn);

end TankPID;

• Liquid source
• Continuous PID

controller
• Tank

TankPID

pidContinuous

tank
tActuator tSensor

qIn qOut

cOutcIn

source

pelab34 Copyright Copyright ©© Peter Fritzson

Continuous PID ControllerContinuous PID Controller

model PIDcontinuousController
extends BaseController(K=2,T=10);
Real x; // State variable of continuous PID controller
Real y; // State variable of continuous PID controller

equation
der(x) = error/T;
y = T*der(error);
outCtr = K*(error + x + y);

end PIDcontinuousController;

base class for controllers – to be defined

Integrating equations gives Proportional
& Integrative & Derivative(PID)

)(* yxerrorKoutCtr
dt

errordTy

T
error

dt
dx

++=

=

=

)(*
dt

errordTdt
T

errorerrorKoutCtr ++= ∫

• error = (reference level –
actual tank level)

• T is a time constant
• x, y are controller state

variables
• K is a gain factor

pelab35 Copyright Copyright ©© Peter Fritzson

Simulate Simulate TankPIDTankPID and and TankPITankPI SystemsSystems
• TankPID with the PID controller gives a

slightly different result compared to the
TankPI model with the PI controller
simulate(compareControllers, stopTime=250)

plot({tankPI.h,tankPID.h})

50 100 150 200 250 time

0.1

0.2

0.3

0.4

tankPI.h

tankPID.h

pelab36 Copyright Copyright ©© Peter Fritzson

Two Tanks Connected TogetherTwo Tanks Connected Together

TanksConnectedPI

piContinuous

tank1
tActuatortSensor

qIn qOut

cOutcIn
piContinuous

tank2
tActuatortSensor

qIn qOut

cOutcIn

source

• Flexibility of component-based models allows connecting models together

model TanksConnectedPI
LiquidSource source(flowLevel=0.02);
Tank tank1(area=1), tank2(area=1.3);;
PIcontinuousController piContinuous1(ref=0.25), piContinuous2(ref=0.4);

equation
connect(source.qOut,tank1.qIn);
connect(tank1.tActuator,piContinuous1.cOut);
connect(tank1.tSensor,piContinuous1.cIn);
connect(tank1.qOut,tank2.qIn);
connect(tank2.tActuator,piContinuous2.cOut);
connect(tank2.tSensor,piContinuous2.cIn);

end TanksConnectedPI;

pelab37 Copyright Copyright ©© Peter Fritzson

Simulating Two Connected Tank SystemsSimulating Two Connected Tank Systems
• Fluid level in tank2 increases after tank1 as it should
• Note: tank1 has reference level 0.25, and tank2 ref level 0.4
simulate(TanksConnectedPI, stopTime=400)

plot({tank1.h,tank2.h})

100 200 300 400
time

0.2

0.4

0.6

0.8
tank2.h

tank1.h

pelab38 Copyright Copyright ©© Peter Fritzson

Exchange: Either PI Continous or PI Discrete Exchange: Either PI Continous or PI Discrete
ControllerController

partial model BaseController
parameter Real Ts(unit = "s") = 0.1 "Time period between discrete samples";
parameter Real K = 2 "Gain";
parameter Real T(unit = "s") = 10 "Time constant";
ReadSignal cIn "Input sensor level, connector";
ActSignal cOut "Control to actuator, connector";
parameter Real ref "Reference level";
Real error "Deviation from reference level";
Real outCtr "Output control signal";

equation
error = ref - cIn.val;
cOut.act = outCtr;

end BaseController;

model PIdiscreteController
extends BaseController(K = 2, T = 10);
discrete Real x;

equation
when sample(0, Ts) then

x = pre(x) + error * Ts / T;
outCtr = K * (x+error);

end when;
end PIdiscreteController;

model PIDcontinuousController
extends BaseController(K = 2, T = 10);
Real x;
Real y;

equation
der(x) = error/T;
y = T*der(error);
outCtr = K*(error + x + y);

end PIDcontinuousController;

pelab39 Copyright Copyright ©© Peter Fritzson

ExercisesExercises

• Replace the PIcontinuous controller by the
PIdiscrete controller and simulate. (see also the
book, page 461)

• Create a tank system of 3 connected tanks and
simulate.

pelab40 Copyright Copyright ©© Peter Fritzson

Principles for Designing Interfaces Principles for Designing Interfaces –– i.e., i.e.,
Connector ClassesConnector Classes

• Should be easy and natural to connect components
• For interfaces to models of physical components it must be physically

possible to connect those components

• Component interfaces to facilitate reuse of existing
model components in class libraries

• Identify kind of interaction
• If there is interaction between two physical components involving energy

flow, a combination of one potential and one flow variable in the appropriate
domain should be used for the connector class

• If information or signals are exchanged between components, input/output
signal variables should be used in the connector class

• Use composite connector classes if several
variables are needed

pelab41 Copyright Copyright ©© Peter Fritzson

Simplification of ModelsSimplification of Models

• When need to simplify models?
• When parts of the model are too complex
• Too time-consuming simulations
• Numerical instabilities
• Difficulties in interpreting results due to too many low-level model details

• Simplification approaches
• Neglect small effects that are not important for the phenomena to be

modeled
• Aggregate state variables into fewer variables
• Approximate subsystems with very slow dynamics with constants
• Approximate subsystems with very fast dynamics with static

relationships, i.e. not involving time derivatives of those rapidly changing
state variables

Exercises Using OpenModelica and MathModelica Lite
Version 2006-09-17

Peter Fritzson
PELAB – Programming Environment Laboratory

SE-581 83 Linköping, Sweden

1 Simple Textual Modelica Modeling Exercises

1.1 Try DrModelica with VanDerPol

Locate the VanDerPol model in DrModelica (link from Section 2.1), run it, change it slightly, and re-run it.

1.2 HelloWorld

Simulate and plot the following example with one differential equation and one initial condition. Do a slight
change in the model, re-simulate and re-plot.
model HelloWorld "A simple equation"
 Real x(start=1);
equation
 der(x)= -x;
end HelloWorld;

1.3 BouncingBall

Locate the BouncingBall model in one of the hybrid modeling sections of DrModelica (e.g. Section 2.9), run it,
change it slightly, and re-run it.

1.4 A Simple Equation System

Make a Modelica model that solves the following equation system with initial conditions:

1.5 Functions and Algorithm Sections

a) Write a function, sum, which calculates the sum of Real numbers, for a vector of arbitrary size.

b) Write a function, average, which calculates the average of Real numbers, in a vector of arbitrary size. The
function average should make use of a function call to sum.

2 Graphical Design using MathModelica Lite

2.1 Simple DC-Motor

Make a simple DC-motor using the Modelica standard library that has the following structure:

Save the model from the graphic editor, load it and simulate it (using OMShell or OMNotebook) for 15s and plot
the variables for the outgoing rotational speed on the inertia axis and the voltage on the voltage source (denoted u
in the figure) in the same plot.

Hint: if you have difficulty finding the names of the variables to plot, you can flatten the model by calling instan-
tiateModel, which exposes all variable names.

2.2 DC-Motor with Spring and Inertia

Add a torsional spring to the outgoing shaft and another inertia element. Simulate again and see the results. Adjust
some parameters to make a rather stiff spring.

2.3 DC-Motor with Controller (Extra)

Add a PI controller to the system and try to control the rotational speed of the outgoing shaft. Verify the result
using a step signal for input. Tune the PI controller by changing its parameters in MathModelica Lite.

