TUTORIAL

Introduction to Object-Oriented
Modeling and Simulation with
OpenModelica

Peter Fritzson

Copyright (c) by Peter Fritzson
Version 2006

Abstract

Object-Oriented modeling is a fast-growing area of modeling and simulation that provides a structured,
computer-supported way of doing mathematical and equation-based modeling. Modelica is today the most
promising modeling and simulation language in that it effectively unifies and generalizes previous object-
oriented modeling languages and provides a sound basis for the basic concepts.

The Modelica modeling language and technology is being warmly received by the world community in
modeling and simulation with major applicationsin virtual prototyping. It is bringing about a revolution in
this area, based on its ease of use, visual design of models with combination of lego-like predefined model
building blocks, its ability to define model libraries with reusable components, its support for modeling
and simulation of complex applications involving parts from several application domains, and many more
useful facilities. To draw an analogy, Modelicais currently in a similar phase as Java early on, before the
language became well known, but for virtual prototyping instead of Internet programming.

The tutorial presents an object-oriented component-based approach to computer supported
mathematical modeling and simulation through the powerful Modelica language and its associated
technology. Modelica can be viewed as an almost universal approach to high level computationa
modeling and simulation, by being able to represent a range of application areas and providing general
notation as well as powerful abstractions and efficient implementations.

The tutoria gives an introduction to the Modelica language to people who are familiar with basic
programming concepts. It gives a basic introduction to the concepts of modeling and simulation, as well as
the basics of object-oriented component-based modeling for the novice, and an overview of modeling and
simulation in a number of application areas.

Thetutorial has severa goals.

e Being easily accessible for people who do not previously have a background in modeling,
simulation.

e Introducing the concepts of physical modeling, object-oriented modeling and component-based
modeling and simulation.

e Giving an introduction to the Modelica language.

e Demonstrating modeling examples from several application areas.

e Giving apossibility for hands-on exercises.

Presenter’'s data

Peter Fritzson is a Professor and Director of the Programming Environment Laboratory (Pelab), at the
Department of Computer and Information Science, Linkdping University, Sweden. He holds the position
of Director of Research and Development of MathCore Engineering AB. Peter Fritzson is chairman of the
Scandinavian Simulation Society, secretary of the European simulation organization, EuroSim; and vice
chairman of the Modelica Association, an organization he helped to establish. His main area of interest is
software engineering, especially design, programming and maintenance tools and environments.

1.Useful Web Links
The Modelica Association Web Page

http://www.modelica.org

Modelica publications

http://www.modelica.org/publications.shtml

Modelica related research and the OpenModelica open source project at Linkdping University with
download of the OpenModelica system and link to download of MathModelicaLite.

http://www.ida.liu.se/~pel ab/modelica/ OpeniM odelica.html
The Proceedings of 5th International Modelica Conference, September 4-5, 2006, Vienna, Austria

http://www.modelica.org/events/Conference2006/

The Proceedings of 4th International Modelica Conference, March 7-8, 2005, Hamburg, Germany
http://www.modelica.org/events/Conference2005/
The Proceedings of 3rd International Modelica Conference, November 3-4, 2004, Linkdping, Sweden

http://www.modelica.org/events/Conference2003/

The Proceedings of 2nd International Modelica Conference, March 18-19, 2002, "Deutsches Zentrum fur
Luft- und Raumfahrt" at Oberpfaffenhofen, Germany.

http://www.modelica.org/events/Conference2002/
The Proceedings of Modelica Workshop, October 23 - 24, 2000, Lund University, Lund, Sweden
http://www.modelica.org/events/workshop2000/

2. Contributors to the Modelica Language, version 2.2
Bernhard Bachmann , University of Applied Sciences, Bielefeld, Germany

John Batteh, Ford Motor Company, Dearborn, MI, U.S.A.

Dag Brick, Dynasim, Lund, Sweden

Francesco Casella, Politecnico di Milano, Milano, Italy

Christoph ClauR, Fraunhofer Institute for Integrated Circuits, Dresden, Germany
Jonas Eborn, Modelon AB, Lund, Sweden

Hilding EImqvist, Dynasim, Lund, Sweden

Rudiger Franke, ABB Corporate Research, Ladenburg, Germany

Peter Fritzson, Linkoping University, Sweden

Anton Haumer, Technical Consulting & Electrical Engineering, St.Andrae-Woerdern, Austria
Christian Kral, arsenal research, Vienna, Austria

Sven Erik Mattsson, Dynasim, Lund, Sweden

Chuck Newman, Ford Motor Company, Dearborn, M1, U.S.A.

Hans Olsson, Dynasim, Lund, Sweden

Martin Otter, German Aerospace Center, Oberpfaffenhofen, Germany

Markus Plainer, Arsenal Research, Vienna, Austria

Adrian Pop, Link6ping University, Sweden

Katrin Prolf3, Technical University Hamburg-Harburg, Germany

André Schneider, Fraunhofer Institute for Integrated Circuits, Dresden, Germany
Christian Schweiger, German Aerospace Center, Oberpfaffenhofen, Germany

Michad Tiller, Ford Motor Company, Dearborn, MI, U.S.A.

Hubertus Tummescheit, Modelon AB, Lund, Sweden

Hans-Jirg Wiesmann, ABB Switzerland Ltd.,Corporate Research, Baden, Switzerland

Principles of Object-Oriented
Modeling and Simulation
with Modelica

Peter Fritzson
Peter Bunus

Linkdping University, Dept. of Comp. & Inform. Science
SE 581-83, Linkdping, Sweden
{petfr,petbu}@ida.liu.se

pelabmmm

0

Moo’ELicA

Course Based on Recent Book, 2004

Peter Fritzson

Principles of Object Oriented
Modeling and Simulation with
SIMULATION

wit MODELICA 2.1 Wiley-IEEE Press

PRINCIPLES OF

OBJECT-ORIENTED

940 pages

Pl [1]
2 Copyright © Peter Fritzson MooELca pelab---

Acknowledgements, Usage, Copyrights

 If you want to use the Powerpoint version of these slides
in your own course, send an email to:
peter.fritzson@ida.liu.se

* Thanks to Emma Larsdotter Nilsson for contributions to
the layout of these slides

* Most examples and figures in this tutorial are adapted
with permission from Peter Fritzson’s book "Principles of
Object Oriented Modeling and Simulation with Modelica
2.1, copyright Wiley-IEEE Press

* Some examples and figures reproduced with permission
from Modelica Association, Martin Otter, Hilding EImqvist

* Modelica Association: www.modelica.org
* OpenModelica: www.ida.liu.se/projects/OpenModelica

0 [1]
Copyright © Peter Fritzson MooELlca p6|ablll

Qutline

* Introduction to Modeling and Simulation

* Modelica - The next generation modeling and
Simulation Language

» Classes

» Components, Connectors and Connections
* Equations

» Discrete Events and Hybrid Systems
 Algorithm and Functions

* Modeling and Simulation Environments

» Demonstrations

0 [1]
Copyright © Peter Fritzson MooELlca p6|ablll

Why Modeling & Simulation ?

* Increase understanding of complex systems
» Design and optimization

* Virtual prototyping

» Verification

//\ Build more complex systems

0 [1]
5 Copyright © Peter Fritzson MooELlca pelab---

What is a system?

» A system is an object or collection of
objects whose properties we want to study

* Natural and artificial systems
» Reasons to study: curiosity, to build it .

Collector

N

Storage tank

Hot water

Cold water

0 [1]
6 Copyright © Peter Fritzson MooELlca pelab---

Examples of Complex Systems

* Robotics

« Automotive

e Aircrafts

» Satellites

» Biomechanics
» Power plants

e Hardware-in-the-loop,
real-time simulation
- o .1‘,_’;‘! = ':

il

[1}
7 Copyright © Peter Fritzson mooELTca pelablll

Experiments

An experiment is the process of extracting information
from a system by exercising its inputs

Problems
» Experiment might be too expensive
» Experiment might be too dangerous
» System needed for the experiment might not yet exist

[1}
8 Copyright © Peter Fritzson mooELTca pelablll

Model concept

A model of a system is anything an experiment can be
applied to in order to answer questions about that system

Kinds of models:
* Mental model — statement like “a person is reliable”
» Verbal model — model expressed in words
* Physical model — a physical object that mimics the system

« Mathematical model — a description of a system where
the relationships are expressed in mathematical form — a
virtual prototype

* Physical modeling — also used for mathematical models
built/structured in the same way as physical models

Vsl [1]
9 Copyright © Peter Fritzson MopELlca p6|ablll

Simulation

A simulation is an experiment performed on a model

Examples of simulations:

* Industrial process — such as steel or pulp
manufacturing, study the behaviour under different
operating conditions in order to improve the process

* Vehicle behaviour — e.g. of a car or an airplane, for
operator training

» Packet switched computer network — study behaviour
under different loads to improve performance

Vsl [1]
10 Copyright © Peter Fritzson MopELlca p6|ablll

Reasons for Simulation

» Suppression of second-order effects

» Experiments are too expensive, too dangerous, or
the system to be investigated does not yet exist

» The time scale is not compatible with experimenter
(Universe, million years, ...)

» Variables may be inaccessible.
» Easy manipulation of models
e Suppression of disturbances

Vsl [1]
11 Copyright © Peter Fritzson MooELlca p6|ablll

Dangers of Simulation

Falling in love with a model
The Pygmalion effect (forgetting that model is not the real
world, e.g. introduction of foxes to hunt rabbits in Australia)

Forcing reality into the constraints of a model
The Procrustes effect (e.g. economic theories)

Forgetting the model’s level of accuracy
Simplifying assumptions

Vsl [1]
12 Copyright © Peter Fritzson MooELlca p6|ablll

Building Models Based on Knowledge

System knowledge
» The collected general experience in relevant domains
* The system itself

Specific or generic knowledge
» E.g. software engineering knowledge

Vsl [1]
13 Copyright © Peter Fritzson MooELlca pelab---

Kinds of Mathematical Models

* Dynamic vs. Static models
» Continuous-time vs. Discrete-time dynamic models

e Quantitative vs. Qualitative models

Vsl [1]
14 Copyright © Peter Fritzson MooELlca pelab---

Dynamic vs. Static Models

A dynamic model includes time in the model
A static model can be defined without involving time

Resistor voltage — static system
R |
Input current
pulse))
Capacitor voltage - dynamic
RiY I
time
0 [1]
15 Copyright © Peter Fritzson MooELca pelab---

Continuous-Time vs.
Discrete-Time Dynamic Models

Continuous-time models may evolve their variable values
continuously during a time period

Discrete-time variables change values a finite number of times
during a time period

/-\/\/ Continuous

Discrete

time

Vsl [1]
16 Copyright © Peter Fritzson MooELca pelab---

Quantitative vs. Qualitative Models

Results in qualitative data
Variable values cannot be represented numerically

Mediocre = 1, Good = 2, Tasty = 3, Superb = 4

Superb—

Tasty —
Good — I ‘ IJ
Mediocre—
— time

Quality of food in a restaurant according
to inspections at irregular points in time

Vsl [1]
17 Copyright © Peter Fritzson MooELca pelab---

Using Modeling and Simulation

within the Product Design-V

Level of Abstraction

Experience Feedback

System

Maintenance
requirements
PN

Product verification and
deployment

Calibration

Preliminary feature design
:Lj;{\

N
Architectural design and
system functional design

Subsystem level integration test
calibration and verification

Subsystem level integration and
verification
Detailed feature design and

implementation Component verification

Realization

Documentation, Version and Configuration Management

Vsl [1]
18 Copyright © Peter Fritzson MooELca pelab---

Principles of Equation-Based Modeling

» Each icon represents a physical component
i.e. Resistor, mechanical Gear Box, Pump

» Composition lines represent the actual
physical connections i.e. electrical line,
mechanical connection, heat flow

Component 2

Connection

* Variables at the interfaces describe
interaction with other component

 Physical behavior of a component is
described by equations

« Hierarchical decomposition of components

Vsl [1]
19 Copyright © Peter Fritzson MooELca pelab---

Application Example — Industry Robot

Courtesy of Martin Otter

Vsl [1]
20 Copyright © Peter Fritzson MooELca pelab---

GTX Gas Turbine Power Cutoff Mechanism

parameter_settings cortroler
T s e
Pel P pel
droon dro *
Lc P LC
ful ot 1y
o0 B0 Pt p3 i7
Gria
ri

YT
varisbleDampdRertiaZ . P Geant o Inertis
e ~_:.,_E"i =
ST ohitch oo =
effect e
1

Courtesy of Siemens Industrial Turbomachinery AB

Developed
by MathCore
for Siemens

0 [1]
21 Copyright © Peter Fritzson ‘M moo'ELiea pelablll

Modelica —
The Next Generation
Modeling Language

Vsl [1]
22 Copyright © Peter Fritzson MooELca pelab---

Stored Knowledge

Model knowledge is stored in books and human
minds which computers cannot access

........ comuntonsngnes 417

“The change of motion is proportional

to the motive force impressed
— Newton

Lex. 1L

Mﬂtmmm s proportionalem effe vi motrici mpregle, év Jeri fc.
cwndwnn lineam reStam qua vis ille imprimism.

Vsl [1]
23 Copyright © Peter Fritzson MooELlca pelab---

The Form — Equations

» Equations were used in the third millennium B.C.
» Equality sign was introduced by Robert Recorde in 1557

% 4'%“’”%““' H ?"- ?m" G "_".-‘»‘«'7 'I,?,
Newton still wrote text (Principia, vol. 1, 1686)

“The change of motion is proportional to the motive force impressed ”

CSSL (1967) introduced a special form of “equation”:
variable = expression
v = INTEG(F)/m

Programming languages usually do not allow equations!

Vsl [1]
24 Copyright © Peter Fritzson MooELlca pelab---

Modelica — The Next Generation Modeling
Language

Declarative language
Equations and mathematical functions allow acausal modeling,
high level specification, increased correctness
Multi-domain modeling
Combine electrical, mechanical, thermodynamic, hydraulic,
biological, control, event, real-time, etc...
Everything is a class
Strongly typed object-oriented language with a general class
concept, Java & MATLAB-like syntax
Visual component programming
Hierarchical system architecture capabilities
Efficient, non-proprietary
Efficiency comparable to C; advanced equation compilation,
e.g. 300 000 equations, ~150 000 lines on standard PC

Vsl [1]
25 Copyright © Peter Fritzson MooELlca p6|ablll

Modelica — The Next Generation Modeling
Language

High level language

MATLAB-style array operations; Functional style; iterators,
constructors, object orientation, equations, etc.

MATLAB similarities

MATLAB-like array and scalar arithmetic, but strongly typed and
efficiency comparable to C.

Non-Proprietary
» Open Language Standard
« Both Open-Source and Commercial implementations

Flexible and powerful external function facility
* LAPACK interface effort started

Vsl [1]
26 Copyright © Peter Fritzson MooELlca p6|ablll

Modelica Language Properties

Declarative and Object-Oriented
Equation-based; continuous and discrete equations

Parallel process modeling of real-time applications,
according to synchronous data flow principle

Functions with algorithms without global side-effects
(but local data updates allowed)

Type system inspired by Abadi/Cardelli

Everything is a class — Real, Integer, models,
functions, packages, parameterized classes....

27

0 [1]
Copyright © Peter Fritzson MopELlca p6|ablll

Object Oriented
Mathematical Modeling with Modelica

* The static declarative structure of a mathematical

model is emphasized
OO is primarily used as a structuring concept

OO is not viewed as dynamic object creation and
sending messages

Dynamic model properties are expressed in a
declarative way through equations.

Acausal classes supports better reuse of modeling
and design knowledge than traditional classes

28

0 [1]
Copyright © Peter Fritzson MopELlca p6|ablll

Brief Modelica History

First Modelica design group meeting in fall 1996

* International group of people with expert knowledge
in both language design and physical modeling

* Industry and academia

Modelica Versions

* 1.0 released September 1997

» 2.0 released March 2002

» Latest version, 2.2 released March 2005

Modelica Association established 2000
» Open, non-profit organization

29

0 [1]
Copyright © Peter Fritzson MooELlca p6|ablll

Modelica Conferences

The 1st International Modelica conference October,
2000

The 2nd International Modelica conference March 18-
19, 2002

The 3 International Modelica conference November
5-6, 2003 in Linkdping, Sweden

The 4 International Modelica conference March 6-7,
2005 in Hamburg, Germany

The 5% International Modelica conference planned
September 4-5, 2006 in Vienna, Austria

30

0 [1]
Copyright © Peter Fritzson MooELlca p6|ablll

Modelica Classes and
Inheritance

0 [1]
1 Copyright © Peter Fritzson MooELca pelab---

Simplest Model — Hello World!

A Modelica “Hello World” model

Equation: x’ = - x
Initial condition: x(0) = 1

class HelloWorld "A simple equation"
Real x(start=1);
equation
der (x)= -X;
end HelloWorld;

Simulation in OpenModelica environment

]

simulate (HelloWorld, stopTime = 2)
plot (x)

1

0.8

0.6

0.4

0.2

Pl [1]
2 Copyright © Peter Fritzson MooELca pelab---

Another Example

Include algebraic equation

Algebraic equations contain
no derivatives

class DAEexample
Real x(start=0.9);

Real y;
equation
der (y) +(1+40.5*sin (y)) *der (x)
= sin(time) ;
X -y = exp(-0.9%x)*cos(y) ;

end DAEexample;

Simulation in OpenModelica environment

1.20

1.15

plot (x)

1.10

1.05

1.0 time

0.95

0.90

simulate (DAEexample,

stopTime = 1)

3

Copyright © Peter Fritzson

nuné??in [)elal)‘1:;

Example class: Van der Pol Oscillator

class VanDerPol
Real x(start
Real y(start
parameter Real
equation
der (x) = y;
der (y) = -x + lambda* (1 - x*x)*y;
end VanDerPol;

1) "y coordinate";
lambda = 0.3;

"Van der Pol oscillator model™"
1) "Descriptive string for x";

// x starts at 1
// y starts at 1

// This is the 1lst diff equation //
/* This is the 2nd diff equation */

simulate (VanDerPol, stopTime = 25)

plotParametric (x,y)

Copyright © Peter Fritzson

nuné??in [)elal)‘1:;

Small Exercise

» Locate the Helloworld model in DrModelica using
OMNotebook!

» Simulate and plot the example. Do a slight change in
the model, re-simulate and re-plot.

class HelloWorld "A simple equation"
Real x(start=1);
equation
der (x)= -Xx;
end HelloWorld;

simulate (HelloWorld, stopTime = 2)
plot (x)

» Locate the VanDerPol model in DrModelica and try it!

0 [1]
5 Copyright © Peter Fritzson MooELca pelab---

Variables and Constants

Built-in primitive data types

Boolean true or false

Integer Integer value, e.g. 42 or -3
Real Floating point value, e.g. 2.4e-6
String String, e.g. “Hello world”

Enumeration Enumeration literal e.g. ShirtSize.Medium

0 [1]
6 Copyright © Peter Fritzson MooELca pelab---

Variables and Constants cont’

* Names indicate meaning of constant
» Easier to maintain code
» Parameters are constant during simulation

» Two types of constants in Modelica
e constant

e parameter

constant Real PI=3.141592653589793;
constant String redcolor = "red";
constant Integer one = 1;

parameter Real mass = 22.5;

Vel [1}
Copyright © Peter Fritzson mooELTca pelablll

Comments in Modelica

1) Declaration comments, e.g. Real x "state variable";

class VanDerPol "Van der Pol oscillator model"

Real x(start = 1) "Descriptive string for x”; // x starts at 1
Real y(start = 1) "y coordinate”; // y starts at 1
parameter Real lambda = 0.3;
equation
der (x) vi // This is the 1lst diff equation //

der (y) -x + lambda* (1 - x*x)*y; /* This is the 2nd diff equation */
end VanDerPol;

2) Source code comments, disregarded by compiler
2a) C style, e.g. /* This is a C style comment */
2b) C++ style, e.q. // Comment to the end of the line..

8

Vel [1}
Copyright © Peter Fritzson mooELTca pelablll

A Simple Rocket Model

thrust — mass- gravity
mass

mass’ = —massLossRate- abs(thrust)

altitude’ = velocity

velocity’ = acceleration

acceleration =

new model < declaration
comment
parameters (changeable <—— !
before the simulation) Real mass (start=1038.358);
Real altitude (sﬁtﬁaﬁrﬁtﬁ:ﬁ 75797470747) ;
floating point €<—————————Real |velocity (skart= 2003)- start value

type Real acceleration;
Real thrust; // Thrust force on rocket

name + default value

: mathematical

equation (acausal)

der (mass) = -massLossRate * abs (thrust);
der (altitude) = velocity;
differentiation with €<————+—der{velocity) = acceleration;

regards to time end Rocket;

Pl [1]
9 Copyright © Peter Fritzson MooELca pelab---

Celestial Body Class

A class declaration creates a type name in Modelica

class CelestialBody

constant Real g = 6.672e-11;
parameter Real radius;
parameter String name;
parameter Real mass;

end CelestialBody;

An instance of the class can be
declared by prefixing the type
name to a variable name

CelestialBody moon;

The declaration states that moon is a variable
containing an object of type CelestialBody

Pl [1]
10 Copyright © Peter Fritzson MooELca pelab---

Moon Landing

Rocket
Tthrust) MOON.g - MOON.MASS
T I apollo.gravity = : —
N \l/mg (apollo.altitude-+ moon.radius)

altitude

only access <—————protected

parameter Real (force:

class MoonLanding
parameter Real
2

inside the class parameter Real |[thrustEndTime - 210;

access by dot <————public]

notation outside Rocket
the class CelestialBody
equation

else if

else 0;
apollo.gravity=moon.g*moon.mass/ (apollo.altitude+moon.radius)*2;
end MoonLanding;

parameter Real [thrustDecreaseTime = 43.2;

ollof(name="apollol3") ;

IEEIIIII

nfname="moon" ,mass=7.382e22,radius=1.738e6) ;

apollo.thrust = if (time < thrustDecreaseTime) then forcel
(time < thrustEndTime) then force2

11 Copyright © Peter Fritzson

wogfurc pelab-'-'-

Simulation of Moon Landing

30000

25000

20000

15000

10000

5000

50 100 150 200

It starts at an altitude of 59404
(not shown in the diagram) at
time zero, gradually reducing it
until touchdown at the lunar
surface when the altitude is zero

simulate (MoonLanding,
plot (apollo.altitude, xrange={0,208})
plot (apollo.velocity, xrange={0,208})

stopTime=230)

-100

-200

-300

-400

The rocket initially has a high
negative velocity when approaching
the lunar surface. This is reduced to
zero at touchdown, giving a smooth
landing

12 Copyright © Peter Fritzson

wogfurc pelab-'-'-

Restricted Class Keywords

» The class keyword can be replaced by other keywords, e.g.: model,
record, block, connector, function, ...

» Classes declared with such keywords have restrictions
» Restrictions apply to the contents of restricted classes

» Example: A model is a class that cannot be used as a connector class
» Example: A record is a class that only contains data, with no equations
« Example: A block is a class with fixed input-output causality

model CelestialBody
constant Real g = 6.672e-11;
parameter Real radius;

parameter String name;
parameter Real mass;
end CelestialBody;

Vsl [1]
13 Copyright © Peter Fritzson MooELlca pelab---

Modelica Functions

* Modelica Functions can be viewed as a special
kind of restricted class with some extensions

* A function can be called with arguments, and is
instantiated dynamically when called

* More on functions and algorithms later in
Lecture 4

function sum
input Real argl;
input Real arg2;
output Real result;

algorithm
result := argl+arg2l;
end sum;

Vsl [1]
14 Copyright © Peter Fritzson MooELlca pelab---

Inheritance

parent class to Color %

restricted kind <—
of class without
equations

3paramatsr Real blue =
{Real

child class or
subclass

é

keyword <—|extends| ColorData;
denoting
inheritance

ired ® blne & g9r=en

end Color;

class ExpandedColor
{paramatsr Real red-0.2:
parameter Real blue=0.6;
Real green;
equation

I R
ired + blue + green

end ExpandedColor;

Data and behavior: field declarations, equations, and
certain other contents are copied into the subclass

15 Copyright © Peter Fritzson

wogfurc pelab-'-'-

Inheriting definitions

record ColorData

Real
end ColorData;

green;

class ErrorColor
extends ColorData;
I>parameter Real blue = 0.6
'>parameter Real red =
equation
red + blue + green = 1;
end ErrorColor;

Legal!
Identical to the
inherited field blue

Illegal!

Same name, but
different value

Inheriting multiple
identical
definitions results
in only one
definition

Inheriting
multiple different
definitions of the
same item is an
error

16 Copyright © Peter Fritzson

wogfurc pelab-'-'-

Inheritance of Equations

class Color
parameter Real red=0.2;
parameter Real blue=0.6;
Real green;

equation

end Color;

Color is identical to Color2
class Color2 // OK!

extends Color; Same equation twice leaves
— equation one copy when inheriting

T

end Color2;

class Color3 // Error!
extends Color;
equation

Color3 is overdetermined

Different equations means
two equations!

// also inherited: red + blue + green = 1;
end Color3;

Vsl [1]
17 Copyright © Peter Fritzson MooELca pelab---

Multiple Inheritance

Multiple Inheritance is fine — inheriting both geometry and color

class Point
Real x;
Real vy, z;

end Point;

class Color
parameter Real red=0.2;
parameter Real blue=0.6;
Real green;

equation
red + blue + green = 1;

end Color;

class ColoredPoin

multiple inheritance

class ColoredPointWithoutInheritance
Real x;
Real y, z;
parameter Real red = 0.2;
parameter Real blue = 0.6;
Real green;

equation
red + blue + green = 1;

end ColoredPointWithoutInheritance;

Equivalent to

Pl [1]
18 Copyright © Peter Fritzson MooELca pelab---

Multiple Inheritance cont’

Only one copy of multiply inherited class Point is kept

class Point
Real Xx;
Real y;

end Point;

class VerticalLine
extends Point;
Real vlength;

end VerticalLine;

class HorizontalLine
extends Point;
Real hlength;

end HorizontalLine;

Diamond Inheritance

class Rectangle
extends VerticalLine;
extends HorizontalLine;

end Rectangle;

Pl [1]
19 Copyright © Peter Fritzson MooELca pelab---

Simple Class Definition —
Shorthand Case of Inheritance

» Example: » Often used for
introducing new
names of types:

’class SameColor = Color; I

EqUIvalent to: ’type Resistor = Real; I

class SameColor

inheritance <—— extends Color; ’connector MyPin = Pin; I
end SameColor;

Pl [1]
20 Copyright © Peter Fritzson MooELca pelab---

Inheritance Through Modification

» Modification is a concise way of combining
inheritance with declaration of classes or
instances

» A modifier modifies a declaration equation in the
inherited class

» Example: The class Real is inherited, modified
with a different start value equation, and
instantiated as an altitude variable:

'ﬁéal altitude (start= 59404);
21 Copyright © Peter Fritzson o Cires pelab-'-'-

The Moon Landing
Example Using Inheritance

Rocket
Tthrust

\l/mg model Rocket "generic rocket class"

parameter Real massLossRate=0.000277;
Real altitude(start= 59404);
Real velocity(start= -2003);
Real acceleration;
Real thrust;
Real gravity;

equation
thrust-mass*gravity= mass*acceleration;
der (mass)= -massLossRate*abs (thrust) ;
der (altitude)= velocity;

CelestialBody

model Body "generic body"
Real mass;
String name;

end Body;

der (velocity)= acceleration;
model CelestialBody o lretocity)

constant Real g = 6.672e-11;
parameter Real radius;
end CelestialBody;

22

Vel [1}
Copyright © Peter Fritzson mooELTca pelablll

The Moon Landing

Example using Inheritance cont’

v

inherited
parameters

—

model MoonLanding

else 0;

end Landing;

parameter Real forcel = 36350;

parameter Real force2 = 1308;

parameter Real thrustEndTime = |210;
parameter Real thrustDecreaseTime

Rocket apollo (n

CelestialBody moon(@%@g 777777777
equation

apollo.thrust = if (time<thrustDecreaseTime)

else if (time<thrustEndTime)

apollo.gravity =moon.g*moon.mass/ (apollo.altitude+moon.radius)*2;

then forcel
then force2

23 Copyright © Peter Fritzson

nuﬁTﬂ.[nﬂabiﬂﬂ

Inheritance of Protected Elements

If an extends-clause is preceded by the protected keyword,
all inherited elements from the superclass become protected

elements of the subclass

l

red + blue + green =
end Color;

1;

The inherited fields from Point keep

their protection status since that
extends-clause is preceded by
public

A protected element cannot be
accessed via dot notation!

class Point class ColoredPoint
it

Real x; lprotected;

class Color Real v.z; r_§§E$§§S Color;
Real red; end Poin£~' public
Real blue; ! extends Point;
Real green; end ColoredPoint;

equation

Equivalent to

class ColoredPointWithoutInheritance
Real x;

Real red;
Real blue;
Real green;

equation
red + blue + green = 1;
end ColoredPointWithoutInheritance;

24 Copyright © Peter Fritzson

nuﬁTﬂ.[nﬂabiﬂﬂ

Advanced Topic

» Class parameterization

Pl [1]
25 Copyright © Peter Fritzson MooELca pelab---

Generic Classes with Type Parameters

class C
Formal class parameters are —replaceable! class ColoredClass = GreenClass;
replaceable variable or type ColoredClass objl(pl=5) ;
declarations within the class (usually) aplacas bia) X
marked with the prefix replaceable (EFREBEERA ! i
ColoredClass obj3;
RedClass obj4;
equation
Actual arguments to classes are end C:
modifiers, which when containing !

whole variable declarations or
types are preceded by the prefix

class C2|=

redeclare C(E—:g_g__a_n_a_q_l_._ég_:__e_ﬁ; class ColoredClass = BlueClass) ;
Colored- Colored- i
Class Class EC]UIVaIent to
object 70object v
class C2
obj1 obj3
J Creen- : BlueClass objl(pl=5);
Class p
ColoredClass A red BlueClass obj3;
; RedClass obj4;
object -
equation
end C2;

obj4

Pl [1]
26 Copyright © Peter Fritzson MooELca pelab---

Class Parameterization when Class Parameters
are Components

R1
1
The class ElectricalCircuit has been
t converted into a parameterized generic
| nericEl ricalCircuit with
AC R2 1 R3 fh?:: E)ermeal cTasse;;ran?:tefs RCJ.L,1 th, R3,
I marked by the keyword replaceable
G [
— - - - Class X X X X
class ElectricalCircuit K . class GenericElectricalCircuit
Resistor R1(R-100); parameterization | rz piaceabiel Resistor R1(R=100);
Resistor R2(R=200) ; [||:||:\'> | replaceable Resistor R2(R=200);
Resistor R3(R=300); i replaceable Resistor R3(R=300);
Inductor L1; Inductor L1;
SineVoltage AC; SineVoltage AC;
Groung G; Groung G;
equation equation
connect (R1.n,R2.n) ; connect (R1.n,R2.n) ;
connect (R1.n,Ll.n); connect (R1.n,Ll.n);
connect (R1.n,R3.n) ; connect (R1.n,R3.n) ;
connect (R1.p,AC.p) ; connect (R1.p,AC.p) ;
end ElectricalCircuit; end GenericElectricalCircuit;
s | .|
27 Copyright © Peter Fritzson Mo um iy pelab.. ..

Class Parameterization when Class Parameters
are Components - cont’

y& A more specialized class TemperatureElectricalCircuit is
— —:is created by changing the types of R1, R3, t0 TempResistor
AC i R2 L1 R3
class TemperatureElectricalCircuit =
G GenericElectricalCircuit {{redeclaz‘e; TempResistor R1
— \redeclare TempResistor R3);
class TemperatureElectricalCircuit We add a temperature variable Temp for
parameter Real Temp=20; the temperature of the resistor circuit
. . . . and modifiers for R1 and R3 which are
extends GenericElectricalCircuit (n :
T . OW TempResistors.
i redeclare | TempResistor R1(RT=0.1, Temp=Temp),
i
iredeclare TempResistor R3(R=300)):
end TemperatureElectricalCircuit class ExpandedTemperatureElectricalCircuit
parameter Real Temp;
{TempResistor R1(R=200, RT=0.1, Temp=Temp),
replaceable Resistor R2;
‘TempResistor 'R3 (R=300) ;
equivalent to equation
end ExpandedTemperatureElectricalCircuit
Pl [1]
28 Copyright © Peter Fritzson MooELca pelab---

Components, Connectors
and Connections

0 [1]
1 Copyright © Peter Fritzson MooELca pelab---

Software Component Model

Interface

Acausal coupling

Connector

Component Connection Component

Causal coupling

A component class should be defined independently of the
environment, very essential for reusability

A component may internally consist of other components, i.e.
hierarchical modeling

Complex systems usually consist of large numbers of
connected components

0 [1]
2 Copyright © Peter Fritzson MooELca pelab---

Connectors and Connector Classes

Connectors are instances of connector classes

electrical connector ﬁ

romsssssmses 1

1
connector class <—— connector | Pin!

Voltage v; Y + .
keyword flow <———— flow Current i; —|j in i
indicates that currents end Pin; —_— 1 p :
of connected pins i |
sum to zero.

an instance pin
of class Pin

mechanical connector %
77777777777777777777
connector class < connector] Elange:
Position s;
flow Force £;

end Flange;

an instance flange <—Flange flange;

,,,,,,,,,,,,,,,,,,

of class Flange

3

Vel [1}
Copyright © Peter Fritzson mooELTca pelablll

The £low prefix

Two kinds of variables in connectors:
« Non-flow variables potential or energy level
* Flow variables represent some kind of flow

Coupling
» Equality coupling, for non-f1ow variables
* Sum-to-zero coupling, for £1ow variables

The value of a £1ow variable is positive when the current
or the flow is into the component

positive flow direction:

4

Vel [1}
Copyright © Peter Fritzson mooELTca pelablll

Physical Connector
Classes Based on Energy Flow

Domain Potential Flow Carrier Modelica
Type Library
. Electrical.
Electrical Voltage Current Charge Analog
Jati | . r L Mechanical .
Translational Position orce inear momentum e
; Angular Mechanical.
Rotational Angle Torque momentum Rotational
. Magnetic Magnetic .
Magnetic potential e Magnetic flux
Hydraulic Pressure Volume flow Volume HyLibLight
Heat Temperature Heat flow Heat HeatFlowlD
Chemical Chempm Particle flow Particles Under
potential construction
. B Liblight
Pneumatic Pressure Mass flow Air B

5

Copyright © Peter Fritzson

M nm A pelab-.-.-

connect-equations

Connections between connectors are realized as equations in Modelica

connect (connectorl, connector2)

The two arguments of a connect-equation must be references to
connectors, either to be declared directly within the same class or be
members of one of the declared variables in that class

Pin pinl,pin2;
//A connect equat
//in Modelica:

ion

Corresponds to

- pinl.v =

pin2.v;

“| pinl.i + pin2.i =0;

6

Copyright © Peter Fritzson

M nm A pelab-.-.-

Connection Equations

Pin pinl,pin2;
//A connect equation

s coanest
//in Modelica Corresponds to

pinl.v = pin2.v;
pinl.i + pin2.i =0;

Multiple connections are possible:

connect (pinl,pin2); connect (pinl,pin3); ... connect(pinl,pinN) ;

Each primitive connection set of nonflow variables is
used to generate equations of the form:

V, =V, =V, =...V,

n

Each primitive connection set of flow variables is used to generate
sum-to-zero equations of the form:

i+ (=)+, =0

0 [1]
7 Copyright © Peter Fritzson MooELca pelab---

Acausal, Causal, and Composite
Connections

Two basic and one composite kind of connection in Modelica
» Acausal connections
» Causal connections, also called signal connections

» Composite connections, also called structured connections,
composed of basic or composite connections

connector class <————
fixed causality <————

end OutPort

0 [1]
8 Copyright © Peter Fritzson MooELca pelab---

Common Component Structure

The base class TwoPin has
two connectors p and n for
positive and negative pins
respectively

partial class <——
(cannot be

instantiated)

positive pin <———
negative pin <————

flow Current
end Pin;

vV = p.v - n.v;
0 =p.1i+ n.i;
i =p.i;

end TwoPin;

// TwoPin is same as OnePort in
// Modelica.Electrical.Analog.Interfaces

electrical connector class

9 Copyright © Peter Fritzson

nopo'ELica

pelab-'-'-

Electrical Components

model Resistor ”Ideal electrical resistor”
extends TwoPin;
parameter Real R;

equation
R*i

Vi

end Resistor;

inductor”

model Inductor ”Ideal electrical
extends TwoPin;
parameter Real L ”Inductance”;
equation
L*der (i)
end Inductor;

v

model Capacitor ”“Ideal electrical capacitor”
extends TwoPin;
parameter Real C ;

equation
i=Cx*der (v) ;

end Inductor;

10 Copyright © Peter Fritzson

M um A pelab-.-.-

Electrical Components cont’

model Source

extends TwoPin;

parameter Real A,w;
equation

v = A*gin(w*time) ;
end Resistor;

model Ground
Pin p;

equation
p.v = 0;

end Ground;

Vsl [1]
11 Copyright © Peter Fritzson MooELca pelab---

Resistor Circuit

model ResistorCircuit
Resistor R1(R=100) ;
Resistor R2(R=200) ;
Resistor R3(R=300);
equation
iconnecE (Rl .p, R2 1]
\connect (R1.p, R3.p);

end ResistorCircuit;

R2.p.v;
R3.p.v;
R2.p.i + R3.p.1 = 0;

Corresponds to _| X1-P-V
7

z

"'{j .
L

+ 0o

12

0 [1]
Copyright © Peter Fritzson MooELca pelab---

An Oscillating Mass Connected to a Spring

srel0

springl

fixedl model Oscillator
© Mass massl (L=1, s(start=-0.5));
H] Spring springl(srel0=2, c¢=10000) ;
0 Fixed fixedl(s0=1.0);
| > equation

connect (springl.flange_ b, fixedl.flange_ b);
connect (massl.flange_b,
end Oscillator;

springl.flange a);

|
AR

13 Copyright © Peter Fritzson

wogfurc pelab-'-'-

Graphical Modeling

Using Drag and Drop Composition

E MathModelica - [DCMotor.ysd:Model]
I@ Fle Edit View Insert Format Tools Shape MathModelica Window Help

=loix|
=]

D-E@-Ha | gRY | imB|rs-A-O- /- & | wm -

I ormal

Drag & drop master(s) into the drawing.

- T arial - 1zpt v nIg|A-£va|E
[Modelica.Electrical énalog. Basic || [1, 1. B bt B bt B b B I‘l
all| =
<+ - T
Ground Resl%»r Conductor ==
L e L =
Capacitor Inductor Transfor. =
/o= T |7
Gyratar BuF WO E
WEE cow CCE =
— Courtesy
B =7z MathCore
Modelica Electrical Analog S ourc | = - Engineering AB
A Modelica Mechanics Rotational || | 4] 4] }‘}||JL| I r

A

14 Copyright © Peter Fritzson

.EM MO um A pelabl.l.l

Completed DCMotor using Graphical Compaosition

M Fle £t View Irest Took Shape Window Help
imE o e NOOO AR o »

Courtesy MathCore
Engineering AB

Vsl [1]
15 Copyright © Peter Fritzson M nopo'ELica pelab---

Exercise

* Locate the Oscillator model in DrModelica using
OMNotebook!

» Simulate and plot the example. Do a slight change in the
model e.qg. different elasticity c, re-simulate and re-plot.

fixedl
* Draw the Oscillator model using

the graphic connection editor e.g.

using the library Modelica. b
Mechanical.Translational 2 spring1
* Including components s1idingMass, a0

Force, Blocks.Sources.Constant massl

* Simulate and plot! n

16 Copyright © Peter Fritzson

nuﬁTﬂ.[xﬂabiﬂﬂ

Signal Based Connector Classes

connector InPort "Connector with input signals of type Real"
parameter Integer n=1 "Dimension of signal vector";

fixed causality <—f—iinputReal signal[n] "Real input signals";

end InPort;

connector OutPort "Connector with output signals of type Real"
parameter Integer n=1 "Dimension of signal vector";

fixed causality <— ——output' Real signal[n] "Real output signals";

end OutPort;

multiple input <—partial block MISO
single output "Multiple Input Single Output continuous control block"
block parameter Integer nin=1 "Number of inputs";
InPort inPort (n=nin) "Connector of Real input signals";
OutPort outPort (n=1) "Connector of Real output signal";
protected
Real ul:] = inPort.signal "Input signals";
Real y = outPort.signal[1] "Output signal";
end MISO; // From Modelica.Blocks.Interfaces

Vsl [1]
17 Copyright © Peter Fritzson nopo'ELica pe|ab- u

Connecting Components
from Multiple Domains

* Block domain

* Mechanical domain

* Electrical domain

Electrical 2
G domain

model Generator
Modelica.Mechanics.Rotational.Accelerate ac;
Modelica.Mechanics.Rotational.Inertia iner;
Modelica.Electrical.Analog.Basic.EMF emf (k=-1);
Modelica.Electrical.Analog.Basic.Inductor ind(L=0.1);
Modelica.Electrical.Analog.Basic.Resistor R1,R2;
Modelica.Electrical.Analog.Basic.Ground G;
Modelica.Electrical.Analog.Sensors.VoltageSensor vsens;
Modelica.Blocks.Sources.Exponentials ex(riseTime={2},riseTimeConst={1});

equation
connect (ac.flange b, iner.flange_a); connect (iner.flange_b, emf.flange b);
connect (emf.p, ind.p); connect(ind.n, R1.p); connect(emf.n, G.p);
connect (emf.n, R2.n); connect(Rl.n, R2.p); connect(R2.p, vsens.n);
connect (R2.n, vsens.p); connect(ex.outPort, ac.inPort);

end Generator;

Pl [1
18 Copyright © Peter Fritzson MooELca pelab---

Simple Modelica DCMotor Model
Multi-Domain (Electro-Mechanical)

A DC motor can be thought of as an electrical circuit
which also contains an electromechanical component.

model DCMotor

equation

end DCMotor;

Resistor R(R=100) ;

Inductor L(L=100);

VsourceDC DC(f=10) ;
Ground G;

EMF emf (k=10,J=10,

Inertia load;

b=2) ;

connect (DC.p,R.n) ;

connect (R.p,L.n) ;

connect (L.p, emf.n);

connect (emf.p, DC.n);

connect (DC.n,G.p) ;

connect (emf . flange, load. flange) ;

19

Copyright © Peter Fritzson

wo o€ irea pelab-'-'-

Exercise

» Draw the bCMotor model using the graphic connection
editor using models from the following Modelica

libraries:
Mechanics.Rotational,

Electrical.Analog.Basic,
Electrical.Analog.Sources

Simulate it for 15s and plot the
variables for the outgoing
rotational speed on the inertia
axis and the voltage on the
voltage source (denoted u in the
figure) in the same plot.

20

Copyright © Peter Fritzson

wo o€ irea pelab-'-'-

Hierarchically Structured Components

An inside connector is a connector belonging to an internal component of a
structured component class.

An outside connector is a connector that is part of the external interface of
a structured component class, is declared directly within that class

partial model PartialDCMotor

connect

connect

connect (emfl.rotFlange b, rotFlange_b);
end PartialDCMotor;

InPort inPort; // Outside signal connector
RotFlange_ b rotFlange_b; // Outside rotational flange connector
Inductor inductorl;
Resistor resistorl; PartialDCMotor
Ground groundl;
EMF emfl;
w A
SignalvVoltage signalVoltagel; i resistorl % inductor
equation

. . . » {otFlange_b
connect (inPort, signalvVoltagel.inPort) ; inPort signalVoltage1 emfl D e b
connect (signalVoltagel.n, resistorl.p); rotFlange.
connect (resistorl.n, inductorl.p) ;
connect (signalVoltagel.p, groundl.p);

(

(

groundl.p, emfl.n); n{gmuﬂl
inductorl.n, emfl.p); —

Pl [1]
21 Copyright © Peter Fritzson MooELca pelab---

Hierarchically
Structured Components cont’

partialDCMotorl }é:§n
=7

inertial

model DCMotorCircuit2

Step stepl;

PartialDCMotor partialDCMotorl;

Inertia inertial;
equation

connect (stepl.outPort, partialDCMotorl.inPort) ;
connect (partialDCMotorl.rotFlange b, inertial.rotFlange_a) ;

end DCMotorCircuit2;

Pl [1]
22 Copyright © Peter Fritzson MooELca pelab---

Connection Restrictions

* Two acausal connectors can be connected to each other

« An :_i_nput connector can be connected to an output connector
or vice versa

* An input or output connector can be connected to an acausal
connector, i.e. a connector without input/output prefixes

* An outside input connector behaves approximately like an
output connector internally

* An outside output connector behaves approximately like an
input connector internally

Pinput Cg'utput > D> input Cgutput Hinput Cgutput > Dinput Cgulput >

M1

input output
> input C%utput > Hinput cgutput Hinput Cg’utput F D input Céutput >

Pl [1]
23 Copyright © Peter Fritzson MooELca pelab---

Connector Restrictions cont’

output Real signal;
end RealOutput;

class CInst
c C1, C2, C3, C4; // Instances of C

equation
connect (Cl.outPort, C2.inPort) ;
connect (C2.outPort, C3.inPort) ;
connect (C3.outPort, C4.inPort) ;

end CInst;

P>input C%utput >

A circuit consisting of four
connected components
c1, c2, €3, and C4
which are instances of the
class ¢

D>input C%utput Hinput Csoutput > D>input Cgutput >

Pl [1]
24 Copyright © Peter Fritzson MooELca pelab---

Connector Restrictions cont’

class M "Structured class M" A circuit in which the middle
RealInput u; // Outside input connector components C2 and C3 are placed
inside a structured component M1 to
which two outside connectors M1.u
and M1.y have been attached.

ML Instadec R L
equation

connect (Cl.y, Ml.u); // Normal connection of outPort to inPort
connect (M1.u, C2.u); // Outside inPort connected to inside inPort
connect (C2.y, C3.u); // Inside outPort connected to inside inPort
connect (C3.y, Ml.y); // Inside outPort connected to outside outPort
connect (M1.y, C4.u); // Normal connection of outPort to inPort

end MInst;

M1

input output
D>input C%utput > ﬁinput c%utput Hinput C%utput *} Dinput Céutput >

Pl [1]
25 Copyright © Peter Fritzson MooELca pelab---

Parameterization and Extension of Interfaces

External interfaces to
component classes are
defined primarily through the

connector Stream

Real pressure;

flow Real volumeFlowRate;
end Stream;

I

— use of connectors.
Tank
model Tank
parameter Real Area=1;
1 ﬁhrf:ejg_]:_g_é;ei@]:;j connector TankStream = Stream;
I'|'Iout|et TankStream inlet, outlet; // The connectors
| Real level;
Parameterization equation
of interfaces // Mass balance
Area*der (level) = inlet.volumeFlowRate +

outlet.volumeFlowRate;
outlet.pressure = inlet.pressure;

The Tank model has an end Tank;
H H connector Stream // Connector class
external interface in terms of Roal pressuze;

the connectors inlet and flow Real volumeFlowRate;
outlet end Stream

Pl [1]
26 Copyright © Peter Fritzson MooELca pelab---

Parameterization and Extension of Interfaces —

cont’

We would like to extend the Tank model to include
temperature-dependent effects, analogous to how
we extended a resistor to a temperature-dependent

— resistor

outlet.temp = temp;
end HeatTank;

model HeatTank
extends Tank (redeclare connector TankStream = HeatStream) ;
Real temp;

equation
// Energy balance for temperature effects
Area*level*der (temp) =

inlet.volumeFlowRate*inlet.temp +
outlet.volumeFlowRate*outlet.temp;
// Perfect mixing assumed.

Real temp;

connector HeatStream
extends Stream;

end HeatStream,

27 Copyright © Peter Fritzson

wogfurc pelab-'-'-

Cardinality-dependent Connection Equations

R1

In certain cases there is a need to let the behavior of a model be

— dependent on the number of connections to certain connectors of
the model. This can be achieved by using a built-in function
AC R2 L1 R3 cardinality () that returns the number of connections that
= have been made to a connector. (if-equations, see Lecture 4)
G
— model CardinalityResistor
—RL extends TwoPin;
parameter Real R(unit="Ohm") "Resistance";
equation
AC R2| L1 R3 // Handle cases if pins are not connected
f cardinaiieyip) — 0 and cardinalityin] == 0
...
= ~
R1
|
f
AC R2 L1 R3 // Resistor equation
v = R*i;
G end CardinalityResistor;
| |

28 Copyright © Peter Fritzson

wogfurc pelab-'n

Arrays of Connectors

Part built up with a for-equation (see Lecture 4)

.=>—:—-=if=>—=@=o—-=if=> """ {0=>—l=if=>

InertialSystem1 Sphericall BoxBodyl Spherical2 BoxBody2 SphericalN BoxBodyN

model ArrayOfLinks
constant Integer n=10 "Number of segments (>0)";

The model parameter Real[3,n] r={fill(1,n),zeros(n),zeros(n)};
uses ?for' ModelicaAdditions.MultiBody.Parts.InertialSystem InertialSysteml;
equation to ModelicaAdditions.MultiBody.Parts.BoxBody [n]

connect the
different

segments of
the links

boxBody (r = r, Width=£fil11(0.4,n));
ModelicaAdditions.MultiBody.Joints.Spherical spherical([n];
equation
connect (InertialSysteml.frame_b, spherical[l].frame_a);
connect (spherical [1] .frame b, boxBody[1l].frame a);
e e .
connect (howBody[i] Evane b, sphernical [i41] frame o)

| connect [spherical[i+1] .frame b, boxbody[i+l1] .frame a) ;

|

end

Pl [1]
29 Copyright © Peter Fritzson MooELca pelab---

Equations, Algorithms, and Functions

Equations

0 [1]
1 Copyright © Peter Fritzson MooELlca pelab---

Usage of Equations

In Modelica equations are used for many tasks

The main usage of equations is to represent relations in
mathematical models.

Assignment statements in conventional languages are
usually represented as equations in Modelica

Attribute assignments are represented as equations

Connections between objects generate equations

0 [1]
2 Copyright © Peter Fritzson MooELlca pelab---

Equation Categories

Equations in Modelica can informally be classified

into three different categories

* Normal equations (e.g., exprl = expr2) occurring in
equation sections, including connect equations and other
equation types of special syntactic form

» Declaration equations, (e.g., Real x = 2.0) which are part of
variable, parameter, or constant declarations

* Modifier equations, (e.g. x(unit="V"))which are commonly
used to modify attributes of classes.

0 [1]
3 Copyright © Peter Fritzson MooELlca p6|ablll

Constraining Rules for Equations

Single Assignment Rule

The total number of “equations” is identical to the total number of
“unknown” variables to be solved for

Synchronous Data Flow Principle

< All variables keep their actual values until these values are explicitly
changed

« At every point in time, during “continuous integration” and at event
instants, the active equations express relations between variables which
have to be fulfilled concurrently
Equations are not active if the corresponding i f£-branch or when-equation
in which the equation is present is not active because the corresponding
branch condition currently evaluates to false

« Computation and communication at an event instant does not take time

0 [1]
4 Copyright © Peter Fritzson MooELlca p6|ablll

Declaration Equations

Declaration equations: It is also possible to specify a declaration
equation for a normal non-constant variable:
constant Integer one = 1;

parameter Real mass = 22.5; Real speed = 72.4; .

model MoonlLanding
i
i _ -
declaration <——! parameter flcircez _di?oe,-
equations | parameter Throstbndiime = 210
__]
apollo(name="apollol3", mass(start=1038.358));
CelestialBody moon(mass=7.382e22,radius=1.738e6,name="moon") ;
equation
apollo.thrust = if (time<thrustDecreaseTime) then forcel
else if (time<thrustEndTime) then force2
else 0;
apollo.gravity=moon.g*moon.mass/ (apollo.altitude+moon.radius)”*2;
end Landing;
0 [1]
5 Copyright © Peter Fritzson MooELcA p6|ab...

Modifier Equations

Modifier equations occur for example in a variable declaration when there
is a need to modify the default value of an attribute of the variable
A common usage is modifier equations for the start attribute of variables

Real speed(start=72.4);
Modifier equations also occur in type definitions:
min=-220.0, max=220.0) ;

type Voltage = Real (unit="V",

model MoonLanding
parameter Real forcel = 36350;
parameter Real force2 = 1308;
parameter Real thrustEndTime = 210;
parameter Real thrustDecreaseTime = 43.2;

modifier &———
equations | tEEEELCAMLRIN DNl Tt Do R e nh 00 LR e e
equation
apollo.thrust = if (time<thrustDecreaseTime) then forcel
else if (time<thrustEndTime) then force2

else 0;
apollo.gravity=moon.g*moon.mass/ (apollo.altitude+moon.radius)*2;
end Landing;

6

0 [1]
Copyright © Peter Fritzson MooELca pelab---

Kinds of Normal Equations in Equation
Sections

Kinds of equations that can be present in equation sections:
* equality equations « repetitive equation structures with for-equations
* connect equations « conditional equations with i f-equations

* assert and terminate + conditional equations with when-equations
e reinit

model MoonLanding
parameter Real forcel = 36350;
parameter Real force2 = 1308;
parameter Real thrustEndTime = 210;
parameter Real thrustDecreaseTime = 43.2;

Rocket apollo(name="apollol3", mass(start=1038.358));
CelestialBody moon(mass=7.382e22,radius=1.738e6,name="moon") ;
equation
conditional <—
if-equation apollo thriiet & foicel s

elseif (time<thrustEndTime) then
aoollo theiet forcez ;

equality
equation end Landing;

0 [1]
7 Copyright © Peter Fritzson MooELca pelab---

Equality Equations

exprl = expr2:

(outl, out2, out3,...) = function_name (in_exprl, in_expr2,

class EqualityEquations
Real x,y,z;

BLNEELIE[pp-m—— = . e

// Correct!
equation

i // Illegal!
// Not a list of variables
// on the left-hand side

end EqualityEquations;

Pl [1]
8 Copyright © Peter Fritzson MooELca pelab---

Repetitive Equations

The syntactic form of a for-equation is as follows:

for <iteration-variable> in <iteration-set-expression> loop
<egquation1>
<equation2>

end for;

Consider the following simple example with a for -equation:

class FiveEquations class FiveEquationsUnrolled
Real[5] x; Real[5] x;
equation Both classes have equation
‘for i in 1:5 loop || equivalent behavior! x[1] = 2;
Lox[i] = i41, w > x[2] = 3;
iend for; 1 x[3] = 4;
end FiveEquations; x[4] = 5;
x[5] = 6;

end FiveEquationsUnrolled;

In the class on the right the for-equation
has been unrolled into five simple equations

Pl [1]
9 Copyright © Peter Fritzson MooELca pelab---

connect-equations

In Modelica connect-equations are used to establish
connections between components via connectors

connect (connectorl, connector2) I

Repetitive connect-equations

class RegComponent
Component components [n] ;
equation
for i in 1:n-1 loop

end RegComponent ;

Pl [1]
10 Copyright © Peter Fritzson MooELca pelab---

Conditional Equations: if-equations

it <condition> then if-equations for which the conditions have higher
<equations> variability than constant or parameter must include an
elseif <condition> then else-part
<equations>
else .
<equations> Each then-, elseif-, and else-branch must have the
end if same number of equations

model MoonLanding
parameter Real forcel = 36350;

Rocket apollo (name="apollol3", mass(start=1038.358));
CelestialBody moon(mass=7.382e22,radius=1.738e6,name="moon") ;
equation

(time<thrustDecreaselime] then
dpollo thrudt = Foreel ;

ielseif (time<thrustEndTime) then
epollo thrust ¢ forced;

apollo.thrust u:

apollo.gravity=moon.g*moon.mass/ (apollo.altitude+moon.radius)*2;
end Landing;

Vsl [1]
11 Copyright © Peter Fritzson MooELca pelab---

Conditional Equations: when-equations

when x > 2 then

vyl = sin(x);

Y3 = 2*X + yl+y2;
end when;

when <conditions> then

<equations>
end when;

<equations> in when-equations are instantaneous equations that are
active at events when <conditions> become true

Events are ordered in time and form an event history:

event 1 event 2 event 3

* An eventis a point in time that is instantaneous, i.e., has zero duration

* An event condition switches from false to true in order for the event to
take place

Pl [1]
12 Copyright © Peter Fritzson MooELca pelab---

Conditional Equations: when-equations cont'

wz:gu:iggzuns>then when-equations are used to express

end when: instantaneous equations that are only
valid (become active) at events, e.g. at
discontinuities or when certain conditions

become true

when {x > 2, sample(0,2), x < 5} then

when x > 2 then

vl sin(x) ; vl = sin(x);
v3 2*x + yl+y2; V3 = 2*x + yl+4y2;
end when; end when;

when initial () then
// Equations to be activated at the beginning of a simulation
end when;

when terminal () then
// Equations to be activated at the end of a simulation
end when;

Vsl [1]
13 Copyright © Peter Fritzson MooELca pelab---

Restrictions on when-equations

Form restriction Modelica restricts the allowed equations
YR — within a'whe.n-equa'qon to: varlablg =
Real x, y; expression, if-equations, for-equations,...
equation .
X +y =5 In the WhenNotVvalid model when the
when sample (0,2) then equations within the when-equation are
i
¥ EBrror: not valid Modelica || NOtactive itis not clear which variable,
end when; either x or y, that is a “result” from the
Lond e . When-equation to keep constant outside

the when-equation.

A corrected version appears in the class WhenvalidResult below

model WhenValidResult
Real x,y;
equation
X +y =5; // Equation to be used to compute x.

end WhenValidResult;

Vsl [1]
14 Copyright © Peter Fritzson MooELca pelab---

Restrictions on when-equations cont’

Restriction on nested when-equations

model ErrorNestedWhen
Real x,y1l,y2;
equation
when x > 2 then

! y2 sin(®); | // when-equations
{end when; | // should not be nested
end when;

end ErrorNestedWhen;

when-equations cannot be nested!

Vsl [1]
15 Copyright © Peter Fritzson MooELca pelab---

Restrictions on when-equations cont’

Single assignment rule: same variable may not be
defined in several when-equations.

A conflict between the equations will occur if both
conditions would become true at the same time instant

model DoubleWhenConflict

Boolean ciose) // Error: close defined by two equations!

equation

when conditionl then

{elgde = Eeie} // First equation

end when;
end DoubleWhenConflict

Vsl [1]
16 Copyright © Peter Fritzson MooELca pelab---

Restrictions on when-equations cont’

Solution to assignment conflict between equations in
independent when-equations:

* Use elsewhen to give higher priority to the first when-equation

model DoubleWhenConflictResolved

equation

when conditionl then
// First equation has higher priority!

end DoubleWhenConflictResolved

Vsl [1]
17 Copyright © Peter Fritzson MooELca pelab---

Restrictions on when-equations cont’

Vector expressions
The equations within a when-equation are activated when
any of the elements of the vector expression becomes true

model VectorWhen
Boolean close;
equation

end DoubleWhenConflict

Vsl [1]
18 Copyright © Peter Fritzson MooELca pelab---

assert-equations

assert(assert-expression, message-string)

assert is a predefined function for giving error messages
taking a Boolean condition and a string as an argument

The intention behind assert is to provide a convenient
means for specifying checks on model validity within a model

class AssertTest
parameter Real lowlimit = -5;
parameter Real highlimit =
Real x;

equation
lagsert(x >- lowlimit and x <= highlimit,i
i IVariehle » our of [imitl] ¢ !

end AssertTest;

Vsl [1]
19 Copyright © Peter Fritzson MooELca pelab---

terminate-equations

The terminate-equation successfully terminates the
current simulation, i.e. no error condition is indicated

model MoonLanding
parameter Real forcel 36350;
parameter Real force2 = 1308;
parameter Real thrustEndTime = 210;
parameter Real thrustDecreaseTime = 43.2;

Rocket apollo (name="apollol3", mass(start=1038.358));
CelestialBody moon (mass=7.382e22,radius=1.738e6,name="moon") ;
equation

apollo.thrust = if (time<thrustDecreaseTime) then forcel

else if (time<thrustEndTime) then force2

else 0;
apollo.gravity = moon.g * moon.mass /(apollo.height + moon.radius)”2;
when apollo.height < 0 then // termination condition

end when;
end MoonLanding;

Vsl [1]
20 Copyright © Peter Fritzson MooELca pelab---

Algorithms and Functions

21 Copyright © Peter Fritzson

wo o€ irea pelab-'-'-

Algorithm Sections

Whereas equations are very well suited for physical modeling,
there are situations where computations are more

conveniently expressed as algorithms, i.e., sequences of
instructions, also called statements

algorithm

<statements>

<some keyword>

equation
X = y*2;
Algorithm sections can be embedded | .15oz:emm
H H x1l := z+X;
among equation sections o
x1 = X2+4Yy;
equation
u = x1+x2;

22 Copyright © Peter Fritzson

wo o€ irea pelab-'-'-

Iteration Using for-statements
in Algorithm Sections

for <iteration-variable> in <iteration-set-expression> loop
<statementl>

The general structure of a for-
<statement2> statement with a single iterator

end for

class SumZ

parameter Integer n = 5; A Simple for-loop

Real[n] =z (start = {10,20,30,40,50}); K X

Real sum; summing the five
algorithm elements of the vector z,

sum _:= 0; , i

Efor idn 1:1n loop ... - . within the class Sumz

{ sum . sum & 2011, E

iend for;]

Examples of for-loop headers with different range expressions

for k in 1:10+2 loop // k takes the values 1,2,3,...,12
for i in {1,3,6,7} loop // i takes the values 1, 3, 6, 7
for r in 1.0 : 1.5 : 5.5 loop // r takes the values 1.0, 2.5, 4.0, 5.5

Vsl [1]
23 Copyright © Peter Fritzson MooELca pelab---

Iterations Using while-statements in
Algorithm Sections

G e The general structure of a
while-loop with a single iterator.

<statements>
end while;

class SumSeries The example class SumSeries
parameter Real eps = 1.E-6; K
Integer i; shows the while-loop construct
Real sum; used for summing a series of
Real delta; . .

algorithm exponential terms until the loop
i:=1; condition is violated , i.e., the

------- teseieeanereraatinans terms become smaller than eps.

. sam . g delt g
.

\ delts . ep(0.0 7]
iend while;

end SumSeries;

Vsl [1]
24 Copyright © Peter Fritzson MooELca pelab---

if-statements

if <condition> then
<statements>
elseif <condition> then

<statements>
else

<statementss>
end if

The if-statements
used in the class
SumVector perform
a combined
summation and
computation on a
vector v.

The general structure of if-statements.

The elseif-partis optional and can occur zero or
more times whereas the optional else-part can
occur at most once

class SumVector
Real sum;
parameter Real v[5]
parameter Integer n
algorithm

{100,200,-300,400,500};
size(v,1);

for | in 1:1 loop
if v[il 0 then
-
elgeif v[i] = | then
sum :- sum + v[i] -1;
else
Bum - sam - vl
end if;
iend for;

end SumVector;

25 Copyright © Peter Fritzson

wogfurc pelab-'-'-

when-statements

when <conditions> then
<statements>

elsewhen <conditions> then
<statements>
end when;

There are situations where several
assignment statements within the y3
same when-statement is convenient

when-statements are used to express
actions (statements) that are only
executed at events, e.g. at discontinuities
or when certain conditions become true

when x > 2 then
vl := sin(x);
2*x + yl + y2;

end when;

algorithm when {x > 2, sample(0,2), x < 5} then
when x > 2 then vl := sin(x);
yl := sin(x); Y3 = 2*X + yl + y2;
end when; end when;
equation
y2 = sin(yl);
algorithm Algorithm and equation sections can
when x > 2 then .
V3 iz 2%x + yl + y2; be interleaved.
end when;

26 Copyright © Peter Fritzson

wogfurc pelab-'-'-

Function Declaration

The structure of a typical function declaration is as follows:

function <functionname>

input Typel% in;: All internal parts of a function
input Typel2 in2; . . f
input Typel3 in3: are optional, the following is

also a legal function:
function <functionname>
end <functionname>;

Modelica functions are declarative
<statements> mathematical functions:

output TypeO1 outl;
output TypeO2 out2;

protected
<local variables>

aiéurithm

end <functionname>; « Always return the same result(s) given
the same input argument values

Vsl [1]
27 Copyright © Peter Fritzson MooELca pelab---

Function Call

Two basic forms of arguments in Modelica function calls:
« Positional association of actual arguments to formal parameters
* Named association of actual arguments to formal parameters

Example function called on next page:

function PolynomialEvaluator
// array, size defined
// at function call time

output Real sum; The function
protected PolynomialEvaluator
Real Xpower ; // local variable xpower computes the value of a
algorithm . .
cum = 0; polynomial given two
xpower := 1; arguments:
for i in 1l:size(A,1) loop a coefficient vector A and
sum := sum + A[i] *xpower; avalue Of x.
Xpower := Xpower*x;
end for;

end PolynomialEvaluator;

Vsl [1]
28 Copyright © Peter Fritzson MooELca pelab---

Positional and Named Argument
Association

Using positional association, in the call below the actual argument
{1,2,3,4} becomes the value of the coefficient vector &, and 21 becomes
the value of the formal parameter x.

algorithm

p:= polynomialEvaluator({1,2,3,4},21)

The same call to the function polynomialEvaluator can instead be
made using named association of actual parameters to formal
parameters.

algorithm

p:= polynomialEvaluator (A={1,2,3,4},x=21)

Vsl [1]
29 Copyright © Peter Fritzson MooELca pelab---

Functions with Multiple Results

function PointOnCircle"Computes cartesian coordinates of point"
input Real angle '"angle in radians";
input Real radius;
output Real x; // 1l:st result formal parameter
output Real y; // 2:nd result formal parameter
algorithm
x := radius * cos(phi)
y := radius * sin(phi)
end PointOnCircle;

Example calls:

(outl,out2,out3,...) = function name(inl, in2, in3, in4, ...); // Equation
(outl,out2,out3,...) := function name(inl, in2, in3, in4, ...); // Statement
(px,py) = PointOnCircle(1.2, 2); // Equation form
(px,py) := PointOnCircle(1.2, 2); // Statement form

Any kind of variable of compatible type is allowed in the parenthesized list
on the left hand side, e.g. even array elements:

(arr[1l],arr[2]) := PointOnCircle(1.2, 2);

Vsl [1]
30 Copyright © Peter Fritzson MooELca pelab---

External Functions

It is possible to call functions defined outside the Modelica
language, implemented in C or FORTRAN 77

The body of an

function polynomialMultiply

input Real al:], bl:]; external function is
__output Real c[:] := zeros(size(a,l)+size(b, 1) - 1); .
SREREET marked with the
end polynomialMultiply; keyWOfd
external

If no language is specified, the implementation language for the external
function is assumed to be C. The external function polynomialMultiply

can also be specified, e.g. via a mapping to a FORTRAN 77 function:

function polynomialMultiply
input Real al:], bl[:];

output Real c([:] := zeros(size(a,l)+size(b, - 1);
1

external [/FORERAN v
end polynomialMultiply;

Vsl [1]
31 Copyright © Peter Fritzson MooELca pelab---

Discrete Events and Hybrid
Systems

Picture: Courtesy Hilding Eimquist

0 [1]
1 Copyright © Peter Fritzson MooELca pelab---

Events

Events are ordered in time and form an event history

| I I

event 1 event 2 event 3

time

* A pointin time that is instantaneous, i.e., has zero duration

* An event condition that switches from false to true in order for the event
to take place

» A set of variables that are associated with the event, i.e. are referenced
or explicitly changed by equations associated with the event

« Some behavior associated with the event, expressed as conditional
equations that become active or are deactivated at the event.
Instantaneous equations is a special case of conditional equations that
are only active at events.

0 [1]
2 Copyright © Peter Fritzson MooELca pelab---

initial and terminal events

Initialization actions are triggered by initial ()

initial()

true

false

time

event at start

Actions at the end of a simulation are triggered by terminal ()

terminal ()

true

false

time

event at end

Pl [1]
3 Copyright © Peter Fritzson MooELca pelab---

Terminating a Simulation

There terminate () function is useful when a wanted result is

achieved and it is no longer useful to continue the simulation. The
example below illustrates the use:

model terminationModel
Real vy;
equation

Simulation ends before

terminate| [wHER y U8 fRER T reaching time 10

| terminate ("The time has elapsed 587 ¢
{ end when;

end terminationMode;

simulate(terminationModel, startTime = 0, |stopTime - 103! I

0 [1]
4 Copyright © Peter Fritzson MooELca pelab---

Generating Repeated Events

The call sample (t0,d)
returns true and triggers
events at times t0+1*d,

where i=0,1, ... fase | | | |

sample (t0,d)

10 t0+d to+2d t0+3d

class SamplingClock
parameter Modelica.SIunits.Time first,interval;
Boolean clock;

equation
clock = @amplelfirst,interval);

........

when clock then

end when;
end SamplingClock;

0 [1]
5 Copyright © Peter Fritzson MooELca pelab---

Expressing Event Behavior in Modelica

if-equations, if-statements, and if-expressions express different behavior in
different operating regions

if <condition> then model Diode "Ideal diode"
<equations> extends TwoPin;
elseif <condition> then Real s;
<equations> Boolean off;
else equation
<equations> off = 5 < 0;
end if; if off then
V=8
else
v=0;
end if;
i = if off then 0 else s;
end Diode;

when-equations become active at events

when <conditions> then equation
<equations> when x > y.start then
end when;

Pl [1]
6 Copyright © Peter Fritzson MooELca pelab---

Event Priority

Erroneous multiple definitions, single assignment rule violated

model WhenConflictX // Erroneous model: two equations define x
discrete Real x;
LSquation

// When A: Increase x by 1.5 at time=2

// When B: Increase x by 1 at time=1

X = pre(x)+1;
end when;
end WhenConflictX;

model WhenPriorityX
discrete Real x;

Using event priority equation
to avoid erroneous
multiple definitions e e/ mower priority

iwhen time>=2 then // Higher priority

end WhenPriorityX;

0 [1]
7 Copyright © Peter Fritzson MooELca pelab---

Obtaining Predecessor Values
of a Variable Using pre ()

At an event, pre (y) gives the previous value of y immediately
before the event, except for event iteration of multiple events at
the same point in time when the value is from the previous

iteration
pre(y) 44
v

| time

e The variable y has one of the basic types Boolean, Integer, Real,
String, or enumeration, a subtype of those, or an array type of one
of those basic types or subtypes

e The variable y is a discrete-time variable

» The pre operator can not be used within a function

0 [1]
8 Copyright © Peter Fritzson MooELca pelab---

Detecting Changes of Boolean
Variables Using edge () and change ()

Detecting changes of boolean variables using edge ()

The expression edge (b)
is true at events when b
switches from false to true

%41 .
| A The expression change (v)
L e is true at instants when v
true I truel
fime changes value

f o f

event event

wogfurc pelab-'-'-

9 Copyright © Peter Fritzson

Creating Time-Delayed Expressions

Creating time-delayed expressions using delay ()

v

3.2
= delay (v,d)
45 a
. S

 E—S
3.2 |

time

f 11 1

start+d t1 tl+d 2 t2+d

In the expression delay (v, d) v is delayed by a delay time d

Vsl [1]
10 Copyright © Peter Fritzson MooELca pelab---

A Sampler Model

model Sampler
parameter Real sample_interval = 0.1;
Real x(start=5);
Real y;
equation
der (x) = -x;
Yy = X;
end when;
end Sampler;

simulate (Sampler, startTime = 0, stopTime = 10)

plot ({x,v})

Vsl [1]
11 Copyright © Peter Fritzson MooELca pelab---

Discontinuous Changes to Variables at
Events via When-Equations/Statements

The value of a discrete-time variable can be changed by placing the variable
on the left-hand side in an equation within a when-equation, or on the left-
hand side of an assignment statement in a when-statement

The value of a continuous-time state variable can be instantaneously
changed by a reinit-equation within a when-equation

model BouncingBall "the bouncing ball model" ‘
parameter Real g=9.18; //gravitational acc.)
parameter Real ¢=0.90; //elasticity constant
Real x(start=0),y(start=10); Voo
equation a
der (x) = vy; b e
der (y)=-g;
when x<0 then
> reinit(y, -c*y);
end when;

end BouncingBall;
.|

Vsl [1]
12 Copyright © Peter Fritzson MooELca pelab---

A Mode Switching Model Example

Elastic transmission with slack DC motor transmission with elastic backlash

tau Motor side Load side
resistor inductor

inertial inertia2

elastoBacklash

phi_dev < -b/2 phi_dev <= b/2
A finite state automaton

SimpleElastoBacklash
model
phi_dev >= -b/2 phi_dev > b/2
)) 0 [1]
13 Copyright © Peter Fritzson MHODELICA pelab---

A Mode Switching Model Example cont’

partial model SimpleElastoBacklash
Boolean backward, slack, forward; // Mode variables
parameter Real b "Size of backlash region";
parameter Real ¢ = 1l.e5 "Spring constant (c>0), N.m/rad";
Flange_a flange_a "(left) driving flange - connector";
Flange_b flange_ b "(right) driven flange - connector";
parameter Real phi rel0 = 0 "Angle when spring exerts no torque";
Real phi_rel "Relative rotation angle betw. flanges";
Real phi_dev "Angle deviation from zero-torque pos";
Real tau "Torque between flanges";

equation
phi_rel = flange b.phi - flange_ a.phi;
phi_dev = phi_rel - phi_rel0;
backward = phi_rel < -b/2; // Backward angle gives torque tau<O
forward = phi_rel > b/2; // Forward angle gives torque taus>0
slack = not (backward or forward) ; // Slack angle gives no torque
tau = if forward then // Forward angle gives

c* (phi_dev - b/2) // positive driving torque
else (if backward then // Backward angle gives
c* (phi_dev + b/2) // negative braking torque
else // Slack gives
0); // zero torgque
end SimpleElastoBacklash

Vsl [1
14 Copyright © Peter Fritzson MooELca pelab---

A Mode Switching Model Example cont’

. 715 /
Ul

-0.25

-0.

elastoBacklash.w_rel

Relative rotational speed between

the flanges of the
transmission

15

5

Ty

o

5 10 15
-0.2 “//////inertia14w
-0.4
-0.6

inertia2.w
0.8

20 25

Elastobacklash

We define a model with less mass in
- inertia2 (J=1), no damping d=0,

and weaker string constant c=1e-5,
to show even more dramatic
backlash phenomena

The figure depicts the rotational
speeds for the two flanges of the

transmission with elastic backlash

15

Copyright © Peter Fritzson

nuﬁfﬁ.[nﬂabiﬂﬂ

Water Tank System with Pl Controller

TankPI

source[] Ll (] L] gout
tank
(] [

tSensor tActuator

i ini
—CIK piConti uou'scOut

model TankPI

equation
connect (source.qgOut, tank.qgIn);

end TankPI;

LiquidSource source (flowLevel=0.02) ;
Tank tank (area=1) ;
PIcontinuousController piContinuous (ref=0.25) ;

connect (tank.tActuator, piContinuous.cOut) ;
connect (tank.tSensor, piContinuous.cIn) ;

maxLevel levelSensor model Tank
evel out n ReadSignal tOut; // Connector, reading tank level
tank a ActSignal tInp; // Connector, actuator controlling input flow
pump parameter Real flowVout = 0.01; // [m3/s]

parameter Real area = 0.5; // [m2]
parameter Real flowGain = 10; // [m2/s]
Real h(start=0); // tank level [m]
Real gIn; // flow through input valve[m3/s
Real gOut; // flow through output valve[m3/s

equation
der (h) = (gIn-gOut) /area; // mass balance equation
qOut=if time>100 then flowVout else 0;
gIn = flowGain*tInp.act;
tOut.val = h;

end Tank;

16 Copyright © Peter Fritzson Mo um A pelab.....

Water Tank System with PI Controller — cont’

partial model BaseController

parameter Real Ts(unit = "s") = 0.1
parameter Real K = 2

parameter Real T(unit = "s") = 10
ReadSignal cIn

ActSignal cOut

parameter Real ref
Real error

"Time period between discrete samples";
"Gain";

"Time constant";

"Input sensor level, connector";
"Control to actuator, connector";
"Reference level";

"Deviation from reference level";

Real outCtr

equation
error = ref - cIn.val;
cOut.act = outCtr;

end BaseController;

"Output control signal";

-aiscrete Real x;
equation
when sample (0
= error/T; x = pre(x)
outCtr = K
end when;
end PIdiscreteController;

equation
der (x)
y = T*der (error) ;
outCtr = K* (error + x + y);

end PIDcontinuousController;

, Ts) then
+ error * Ts / T;
* (x+error) ;

17 Copyright © Peter Fritzson MooELca pelab---

Concurrency and Resource Sharing

N

Dining Philosophers Example OO\

model DiningTable
parameter Integer n = 5 "Number of philosophers and forks";
parameter Real sigma = 5 " Standard deviation for the random function";
// Give each philosopher a different random start seed
// Comment out the initializer to make them all hungry simultaneously.
Philosopher phil[n] (startSeed=[1:n,1:n,1:n], sigma=£fill(sigma,n));

Mutex mutex (n=n) ;
Fork fork[n];
equation YWY L 5
for i in 1:n loop nm?ng
connect (phil [i] .mutexPort, mutex.port[i]); AP AL B
connect (phil [i] .right, fork[i].left); Eating
connect (fork[i] .right, phil[mod(i, n) + 1].left); JWJ1J41JALIILJ1FILHIJ“‘JAL Thinking
end for; Eating
end DiningTable; SULTT U UUT L ey
Eating

Pl [1
18 Copyright © Peter Fritzson MooELca pelab---

Packages

0 [1]
1 Copyright © Peter Fritzson MooELca pelab---

Packages for Avoiding Name Collisions

* Modelica provide a safe and systematic way of avoiding
name collisions through the package concept

* A package is simply a container or name space for
names of classes, functions, constants and other
allowed definitions

0 [1]
2 Copyright © Peter Fritzson MooELca pelab---

Packages as Abstract Data Type:
Data and Operations in the Same Place

Keywords
denoting a
package

e

encapsulated
makes
package
dependencies
(i.e., imports)
explicit

Declarations of
substract
divide
realPart, \
imaginaryPart,

etc are not shown

record Complex
Real re;
Real im;

Usage of the
ComplexNumber
package

end Complex;

function add

input Complex x,y;

output Complex z; | rFiELESR
algorithm

zZ.re := X.re + y.re;

z.im := x.im + y.im
end add;

class ComplexUser
phiadaliiyiydet
t

a(re=1.0, im=2.0);
b(re=1.0, im=2.0);

function multiply
input Complex x,y;
output Complex z;
algorithm
z.re := X.re*y.re - X.im*y.im;
z.im := x.re*y.im + x.im*y.re;
end multiply;

end ComplexMumbers

here

The type Complex and the
operations multiply and add
are referenced by prefixing
them with the package name
ComplexNumber

3 Copyright © Peter Fritzson

nuﬁTﬁ.[xﬂabJﬂﬂ

Accessing Definitions in Packages

class
E
'

ComplexUser

ComplexNumbers.Complex b(re=1.0, im=2.0);
ComplexNumbers.Complex z,w;
equation
z - Conplexiiunbers mult]
w = ComplexNumbers.add(a,b) ;

end ComplexUser

» Access reference by prefixing the package name to definition names

* Shorter access names (e.g. Complex, multiply) can be used if
definitions are first imported from a package (see next page).

4 Copyright © Peter Fritzson

nuﬁTﬁ.[xﬂabJﬂﬂ

Importing Definitions from Packages

« Qualified import <——+ import <packagenames>

« Single definition import &<——— import <packagename> . <definitionnames>

* Unqualified import <—— import <packagename> . *

* Renaming import <——— import <shortpackagename> = <packagenames

The four forms of import are exemplified below assuming
that we want to access the addition operation (add) of the
package Modelica.Math.ComplexNumbers

import Modelica.Math.ComplexNumbers; //Access ComplexNumbers.add
import Modelica.Math.ComplexNumbers.add; //Access add

import Modelica.Math.ComplexNumbers.* //Access add
import Co = Modelica.Math.ComplexNumbers //Access Co.add

5

Vel [1}
Copyright © Peter Fritzson mooELTca pelablll

Qualified Import

Qualified import é—%»import <packagename> I

The qualified import statement

import <packagenames;

imports all definitions in a package, which subsequently can be
referred to by (usually shorter) names

simplepackagename . definitionname, Where the simple
package name is the packagename without its prefix.

encapsulated package ComplexUserl
{import HodsLica. Atk ConpLexNubEra) This is the most common
class User .,
ComplexNumbers.Complex a(x=1.0, y=2.0); fOI’m Of 1mport that
ComplexNumbers.Complex b(x=1.0, y=2.0); o H
ComplexNumbers.Complex z,w; e“rnlnates_ the rISk for
equation name collisions when
z = ComplexNumbers.multiply(a,b) ; H H
v - D rEaRbaE A (a, b ; importing from several
end User; packages
end ComplexUserl;

Vel [1}
Copyright © Peter Fritzson mooELTca pelablll

Single Definition Import

Single definition import %—J»import <packagenames> . <definitionname>l

The single definition import of the form

import <packagenames>.<definitionnames;

allows us to import a single specific definition (a constant or class but
not a subpackage) from a package and use that definition referred to
by its definitionname without the package prefix

encapsulated package ComplexUser2
CREpRE TR R
import ComplexNumbers.multiply;
import ComplexNumbers.add; H H
clase User Thgre; is no risk for name
Complex al(x=1.0, y=2.0); collision as long as we
Complex Db(x=1.0, y=2.0); .
Complex z,ws do not try to import two
equation definitions with the same
z = multiply(a,b);
w = B, b) ; short name
end U-s_éf;
end ComplexUser2;

0 [1]
7 Copyright © Peter Fritzson MooELca pelab---

Unqualified Import

Unqualified import é—{ import <packagename> . * |

The unqualified import statement of the form

import packagename. *;

imports all definitions from the package using their short names without
qualification prefixes.

Danger: Can give rise to name collisions if imported package is changed.

oo e gt g This example also shows

Complex b(x=1.0, y=2.0); direct import into a class

Complex z,w; instead of into an enclosing
equation

zZ = r_m__l_ltiply(a,b); package

w = Eadd':(a,b);
end ComplexUser3;

0 [1]
8 Copyright © Peter Fritzson MooELca pelab---

Renaming Import

Renaming import <————

import <shortpackagename> = <packagenamex> I

The renaming import statement of the form;

import <shortpackagename> = <packagenames;

imports a package and renames it locally to shortpackagename.
One can refer to imported definitions using shortpackagename as
a presumably shorter package prefix.

class ComplexUser4

“Co.Complex alx-1.0, y-2.0); This is as safe as qualified
Co.Complex b(x=1.0, y=2.0); import but gives more
Co.Complex z,w; .

equation concise code

z = Co.multiply(a,b);

end ComplexUser4;

9

0 [1]
Copyright © Peter Fritzson MooELlca pelab---

Package and Library Structuring

A well-designed package structure is one of the most
important aspects that influences the complexity,
understandability, and maintainability of large software
systems. There are many factors to consider when
designing a package, e.g.:

» The name of the package.

« Structuring of the package into subpackages.

Reusability and encapsulation of the package.

» Dependencies on other packages.

10

0 [1]
Copyright © Peter Fritzson MooELlca pelab---

Subpackages and Hierarchical Libraries

The main use for Modelica packages and subpackages is to structure
hierarchical model libraries, of which the standard Modelica library is a
good example.

encapsulated package Modelica // Modelica
encapsulated package Mechanics // Modelica.Mechanics
encapsulated package Rotational // Modelica.Mechanics.Rotational
model Inertia // Modelica.Mechanics.Rotational.Inertia

end Inertia;
model Torque // Modelica.Mechanics.Rotational.Torque

end Torque;
end Rotational;

end Mechanics;

end Modelica;

Vsl [1]
11 Copyright © Peter Fritzson MooELca pelab---

Ecapsulated Packages and Classes

An encapsulated package or class prevents direct reference to public
definitions outside itself, but as usual allows access to public subpackages
and classes inside itself.

» Dependencies on other packages become explicit
— more readable and understandable models!

« Used packages from outside must be imported.

import Modelica.Mechanics.Rotational; // Import package Rotational
Rotational.Torque t2; // Use Torque, OK!
Modelica.Mechanics.Rotational.Inertia w2;
//Error! No direct reference to the top-level Modelica package
// to outside an encapsulated class
end TorqueUserExamplel;

Vsl [1]
12 Copyright © Peter Fritzson MooELca pelab---

within Declaration for Package Placement

The within «—
declaration

st

needed to form

th

qualified name

Use short names without dots when declaring the package or class in
guestion, e.g. on a separate file or storage unit. Use within to specify
within which package it is to be placed.

ates the prefix

e fully

end Flange_a;

end Interfaces;
model Inertia

end Inertia;

end Rotational;

encapsulated package Interfaces
import ...;
connector Flange_a;

The subpackage Rotational declared
within Modelica.Mechanics has the fully
qualified name
Modelica.Mechanics.Rotational,

~ I hy concatenating the packageprefix with the

short name of the package.

13 Copyright © Peter Fritzson

wo o€ irea pelab-'-'-

Mapping a Package Hierachy into a Directory

Hirarchy

A Modelica package hierarchy can be mapped into a
corresponding directory hierarchy in the file system

C:\library
\Modelica
package.mo
\Blocks
package.mo
Continuous.mo
Interfaces.mo
\Examples
package.mo
Examplel.mo
\Mechanics
package.mo
Rotational.mo

Modelica

Rotational

Examples

Continuous Interfaces

Examplel

14

Copyright © Peter Fritzson

wo o€ irea pelab-'-'-

Mapping a Package Hierachy into a Directory
Hirarchy

within;

encapsulated package Modelica
"Modelica root package";

end Modelica;

It contains an empty Modelica package declaration since all
subpackages under Modelica are represented as subdirectories of
their own. The empty within statement can be left out if desired

within Modelica.Blocks;
. encapsulated package Examples
C:\library . N "Examples for Modelica.Blocks";
\MOd?}iLC_a_ - import ...; . R
TDEERERE] within Modelica.Blocks.Examples;
\Blocks end Examples; model Examplel
package.mo "Usage example 1 for Modelica.Blocks";
Continuous.mo I—’ o
Interfaces.mo end Examplel;
\Examples within Modelica.Mechanics;
encapsulated package Rotational
encapsulated package Interfaces The subpackage
\P',Iéchani-c-s import ...; Rotational stored as the
connector Flange_a; file Rotational.mo. Note
package .mo o that Rotational contains
E end Flange_a; the subpackage
I - Interfaces, which also
end Interfaces; is stored in the same file
model Inertia since we chose not to
- represent Rotational as
end Inertia; a directory
end Rotational;
15 Copyright © Peter Fritzson MO um A pelab-. .l

Modelica Libraries

1

Peter Fritzson

wogfurc pe|abl.l.l

Modelica Standard Library

Modelica Standard Library (called Modelica)is a
standardized predefined package developed by Modelica

Association

It can be used freely for both commercial and noncommercial
purposes under the conditions of The Modelica License.

Modelica libraries are available online including documentation

and source code from
http://www.modelica.org/library/library.html.

2

Peter Fritzson

wogfurc pe|abl.l.l

Modelica Standard Library cont’

Modelica Standard Library contains components from various
application areas, with the following sublibraries:

» Blocks Library for basic input/output control blocks
» Constants Mathematical constants and constants of nature
» Electrical Library for electrical models
* lcons Icon definitions
* Math Mathematical functions
* Mechanics Library for mechanical systems
* Media Media Media models for liquids and gases
e Slunits Type definitions based on Sl units according to 1ISO 31-1992
« Stategraph Hierarchical state machines (analogous to Statecharts)
e Thermal Components for thermal systems
» Utility Utilities Utility functions especially for scripting
3 Peter Fritzson Mo um A p9|abl.l.l
Modelica.Blocks

This library contains input/output blocks to build up block

diagrams.
Library Library Library Library Library Library
Continuous Sources Math Interfaces NonLinear Discrete
Example:
feedhackl
A B
| [/ —w
c D

step1

Pi

limiter!

stateSpacel

4

Peter Fritzson

wogfurc pe|abl.l.l

Modelica.Constants

A package with often needed constants from mathematics,
machine dependent constants, and constants of nature.

Examples:

constant

constant

constant

constant

constant

Real pi=2*Modelica.Math.asin(1.0);

Real small=1.e-60 "Smallest number such that small and -small
are representable on the machine";

Real G(final unit="m3/(kg.s2)") = 6.673e-11 "Newtonian constant
of gravitation";

Real h(final unit="J.s") = 6.62606876e-34 "Planck constant";

Modelica.SIunits.CelsiusTemperature T zero=-273.15 "Absolute

zero temperature”;

Vel [1}
5 Peter Fritzson HopELca pelab---

Modelica.Electrical

Electrical components for building analog, digital, and
multiphase circuits

I Library| Library Library|

Analog Digital Machines MultiPhase

Examples:

Vel [1}
6 Peter Fritzson HopELca pelab---

Modelica.Icons

Package with icons that can be reused in other libraries

Examples:
Info @
Info Libraryl Library2

& wh 2

Example

Example

3

RotationalSensor TranslationalSensor Gearlcon Motorlcon
. Vsl [1]
7 Peter Fritzson mooELca pelab---

Modelica.Math

Package containing basic mathematical functions:

sin(u) sine
cos(u) cosine
tan(u) tangent (u shall not be: ...,-n/2, ©/2, 3w/2,...)
asin(u) inverse sine (K1 <u<1)
acos(u) inverse cosine (-1<u<1)
atan(u) inverse tangent
atan2(ul, u2) four quadrant inverse tangent
sinh(u) hyperbolic sine
cosh(u) hyperbolic cosine
tanh(u) hyperbolic tangent
exp(u) exponential, base e
log(u) natural (base e) logarithm (u > 0)
log10(u) base 10 logarithm (u > 0)
8 Peter Fritzson wo o€ irea pelabl.l.l

Modelica.Mechanics

Package containing components for mechanical systems

Subpackages:
¢ Rotational 1-dimensional rotational mechanical components
e Translational 1-dimensional translational mechanical components
¢ MultiBody 3-dimensional mechanical components

T
n\-»” S

N
..... .
[1]

9 Peter Fritzson nﬂnmn pelab---

Modelica.SIunits

This package contains predefined types based on the
international standard of units:

¢ ISO 31-1992 “General principles concerning quantities, units and symbols”

¢ [SO 1000-1992 “Sl units and recommendations for the use of their
multiples and of certain other units”.

A subpackage called NonSTIunits is available containing non
Sl units such as Pressure bar, Angle deg, etc

Vel [1}
10 Peter Fritzson mooELica pelab---

Modelica.Thermal

Subpackage FluidHeatFlow with components for heat flow
modeling.
Sub package HeatTransfer with components to model 1-
dimensional heat transfer with lumped elements
Example: - =
i
.
11 Peter Fritzson nﬂnmn pelab-.-.-

ModelicaAdditions Library (OLD)

ModelicaAdditions library contains additional Modelica
libraries from DLR. This has been largely replaced by the new
release of the Modelica 2.1 libraries.

Sublibraries:

Blocks Input/output block sublibrary

HeatFlowl1D 1-dimensional heat flow (replaced by Modelica.Thermal)
Multibody = Modelica library to model 3D mechanical systems

PetriNets Library to model Petri nets and state transition diagrams
Tables Components to interpolate linearly in tables

12

Vel [1}
Peter Fritzson HooELica pelab---

ModelicaAdditions.Multibody (OLD)

This is a Modelica library to model 3D Mechanical systems
including visualization

New version has been released (march 2004) that is called
Modelica.Mechanics.MultiBody in the standard library

Improvements:
» Easierto use

» Automatic handling of kinematic loops.
 Built-in animation properties for all components

wogfurc pelab-'-'-

13 Peter Fritzson

MultiBody (MBS) - Example Kinematic Loop

Old library New library
(cutjoint needed) (no cutjoint needed)

o £

j1={1,0,0}

b0

=

r={1,00} 2=11 0.0}

inertial

wogfurc pelab-'-'-

14 Peter Fritzson

MultiBody (MBS) - Example Animations

[1}
15 Peter Fritzson MooELca pelablll

ModelicaAdditions.PetriNets

This package contains components to model Petri nets

Used for modeling of computer hardware, software, assembly
lines, etc o) :

[1}
16 Peter Fritzson MooELca pelablll

Power System Stability - ObjectStab

The ObjectStab package is a Modelica Library for Power
Systems Voltage and Transient stability simulations
A

o
¥

Vel [1}
17 Peter Fritzson mooELica p6|ablll

Thermo-hydraulics Library - ThermoFluid

ThermoFluid is a Modelica base library for thermo-hydraulic
models

¢ Includes models that describe the basic physics of flows of fluid and
heat, medium property models for water, gases and some
refrigerants, and also simple components for system modeling.

¢ Handles static and dynamic momentum balances

¢ Robust against backwards and *
zero flow

¢ The discretization method is

a first-order, finite volume = v
methOd (Staggered g”d) Si(?’ <>-_-‘ TempZ. ’ imp\el _.‘S\m%.’].»’_ .FI%S

Flui

PipeDS1

Vel [1}
18 Peter Fritzson mooELica p6|ablll

Vehicle Dynamics Library - VehicleDynamics

This library is used to model vehicle chassis

flange_2 rearheeD flange_4

CmT—1

1

e |

- %
I

TrailingArm

P

- |

flange_SUV

Vel [1}
19 Peter Fritzson HopELca pelab---

Some Other Free Libraries

e ExtendedPetriNets Petri nets and state transition diagrams
(extended version)

e QSSFluidFlow Quasi Steady-Sate Fluid Flows

e SystemDynamics System Dynamics Formalism

e Atplus Building Simulation and Building Control
(includes Fuzzy Control library)

e ThermoPower Thermal power plants

e WasteWater Library for biological wastewater
treatment plants

e SPICELib Support modeling and analysis
capabilities of the circuit simulator
PSPICE

Read more about the libraries at www.modelica.org/library/library.html

Vel [1}
20 Peter Fritzson HopELca pelab---

Hydraulics Library HyLib

* Licensed Modelica package developed P e e
by Peter Beater
+ More than 90 models for z E' r : Pumps
: ijps ConP WarP Conbict

» Motors and cylinders

* Restrictions and valves EE:} :En

* Hydraulic lines Cndet D2 Cylinders
 Lumped volumes and sensors rEﬂ ?
» Models can be connected in an Erantess - Gharbert
arbitrary way, e.g. in seriesor in parallel. I e
eHyLibLight isafree subset of Crockiehe CreckvabeToo Melsfiae \/glves
HyLib = r%; -
» More info: www.hylib.com e G e
21 Peter Fritzson Mo nm A pelab-.-.-

HyLib - Example

Hydraulic drive system with closed circuit

Ir}_,._\ |
I'-. lllr "
fragHz: |..;I-Ir.-I @ b=
4 {18
9 g
b L @
_.'\R’-‘nl'\
e 4 3 L
. -, e _
. . 0
L l] '] [is]
Ll ry -
@] g
] F = E‘D
|T— Q -

Vel [1}
22 Peter Fritzson HopELca pelab---

Pneumatics Library PneuLib

eLicensed Modelica package ok

developed by Peter Beater e T _— i

*More than 80 models for £l q = e
« Cylinders ot ot
* Motors ' B e

* Valves and nozzles
DoublefctingCylin.. DoublefctingCyin.. DoublefctingCylin F| ow COﬂtrOl vaI ves

* Lumped volumes

* Lines and sensors

. E_el\uws Rotarpdctuator Wanehotor
» Models can be connected in an arbitrary
way, e.g. inseriesor in paralel. E E ﬂm;
.

ePneul.ibli ght is afree subset of Two_2 Wayalve.. Two_2 Wawalve.. Thies 2 Wapvah Cyl inders

Il 2 4 4 2
HyLib. - s L 5

1% 1 3 5 3

» More info: www.pneulib.com

Thiee_2_wayWaly.. Fou_2_waptalve Five_2 Wapalve

Vel [1}
23 Peter Fritzson mooELica pelab---

PneuLib - Example

Pneumatic circuit with multi-position cylinder, booster and
different valves

Rou1 Fou2
—. —
1 [0} c3
1 62 63 Mass m
— — — — =/
— - JE—— — -

"2 Boo T2.1 & E‘ kS
B 7 N E 2
ARV (= Ty
1 B o . 1

Lpax 4

777
Fized2

SoftStartValvel 1 3 L

iy
Reservort 4 = 5 Booser1 53
O] =1 [

Vel [1}
24 Peter Fritzson mooELica pelab---

Powertrain Library - Powertrain

etehCantrol
LT
W
=]

« Licensed Modelica package
developed by DLR

« Speed and torque dependent
friction

» Bus concept
* Control units s

e Animation

Driver

Pl [1]
25 Peter Fritzson Moo ELica pelab...

Some Modelica Applications

Pl [1]
26 Peter Fritzson HooELlca pelab...

Example Fighter Aircraft Library

Custom made library, Aircraft*, for fighter aircraft

applications e=0100)
» Six degrees of freedom (6 DOF) L seiidyraice
» Dynamic calculation of center of
gravity (CoG)
+ Use of Aerodynamic tables or e Y:)
mechanical rudders ' ['_ 4 [
T
i | >
body

- C& r|L!{£UU}
*Property of FOI (The Swedish . P 9| J

Defence Institute)

earth toEngine engine

Pl [1]
27 Peter Fritzson MooELca pelab---

Aircraft with Controller

] i—, iff! I =
i S s \-:,*—?’—‘fs e :
L:,H ’ = -
« Simple PID I e %—-‘—
« Controls alpha and height =~ %27
Y 1—{3 X «—o?lg
i_ s |
- Z

Pl [1]
28 Peter Fritzson MooELca pelab---

Example Aircraft Animation

Animation of fighter aircraft with controller

- Stp=03, rﬂ.o,s?x;)":u;n [ulh\-;l Trajeciony s i‘l-w TrarxX 004

[1}
29 Peter Fritzson MooELca pelablll

Example Gas Turbine

42 MW gas turbine (GTX 100) from Siemens Industrial
Turbomachinery AB, Finspang, Sweden

Fuel
Combustion Exhaust gas
chamber
K Exhaust
Compressor Turbine

[1}
30 Peter Fritzson MooELca pelablll

Example Gas Turbine

witia_compressor
P

JSoh

? |
\1 F Y — i'F
B #
L e &
Bk
31 Peter Fritzson MO um A pelab-.-.-

Example Gas Turbine — Load Rejection

Rotational speed (rpm) of the compressor shaft

CompressorAdibdapT.mm

7000
Load rejection
6900+
wn| | GENETAION | [g iteh pilot
] to main fuel
6700+
BEO0
B500+
6400 T T T T T T T T T T T T T T T T T T
1} 40 g0 120 160 200 240 230 320 360

Vel [1}
32 Peter Fritzson HopELca pelab---

Example Gas Turbine — Load Rejection

Percentage of fuel valve opening Generated power to the simulated
(red = pilot, blue = main) electrical grid

Pl [1]
33 Peter Fritzson Moo ELica pelab...

Modeling and Simulation
Environments

1

Pl [1]
Peter Fritzson nopo'ELica pelab---

The Translation Process

Modelica
Graphical Editor Modelica

Modelica
Model Source code

=== Modelica Model

Flat model

Sorted equations

Optimized sorted
equations

C Code

Executable

2

Pl [1]
Peter Fritzson nopo'ELica pelab---

Dymola from Dynasim

Commercial Environments —

=18 0B E Mo ololAT =

3D Animations

Model diagrams

Courtesy of Dynasim AB, Sweden

Equation editor

3 Peter Fritzson

M nm A pelab-.-.-

Commercial Environments —

MathModelica System Designer from MathCore

MathModelica Graphic editor

Courtesy of Mathcore Engineering AB

Simulation Center

4 Peter Fritzson

[acnEore IO pelab-'-'-

OpenModelica Environment

The goal of the OpenModelica project is to:

Create a complete Modelica modeling, compilation and simulation
environment.

Provide free software distributed in binary and source code form.

Provide a modeling and simulation environment for research and
industrial purposes.

Develop a formal semantics of Modelica

Features of currently available implementation:

Command shell environment allows to enter and evaluate Modelica
declarations, expressions, assignments, and function calls.

Modelica functions are implemented, including array support.
Modelica equations are implemented, but with certain limitations.
Packages, inheritance, modifiers, etc. are implemented.

http://www.ida.liu.se/~pelab/modelica/OpenModelica.html

Peter Fritzson

wogfurc pe|abl.l.l

OpenModelica Environment Architecture

Eclipse Plugin Graphical Model
Editor/Browser '\ Editor/Browser
Interactive I
Emacs | ____—" session handler T |
. — extual
Editor/Browser / Model Editor
DrModelica / \
OMNoteBook Execution | Modelica
Model Editor Compiler
Modelica
Debugger

http://www.ida.liu.se/projects/OpenModelica

6

Peter Fritzson

wogfurc pe|abl.l.l

OMNotebook Electronic Book with Modelica
Exercises and OMShell Interactive Shell

B8 Pema bet i ey

First Basic Class

1 HelloWorld

>>simulate(BouncingBall, stopTime=3.0);

>>plot({h,flying});
4 tmoreter JRIT=TES
o ot Specisl
Flot by Openiedalica
19
Tying
0s
o
2 Simulation of HelloWorld s
_llnlllu-ll Mellewarld, stantTime=d, Uuojhu-l i 7] n4
|done]
" F\A,-w__
ot ¥ ns
ploel = i
(1] s 10 15 0 25 an
Pt oy
1af q
oot
|
aat !
|
i =)
; '.II: u". II-: "'. :Ir :I' :\IJ :.-. I".-
=
. 0 [1]
7 Peter Fritzson mopELica pelab---

Examples of Applications

(usually using commercial tools)

) Vel [1]
8 Peter Fritzson MooELca pelab---

Example - Modeling of a Wheel Loader Lifter

Pl [1]
9 Peter Fritzson MooELca pelab---

Simulation of a Wheel Loader Lifter

210 x) | I =l0ix

Pl [1]
10 Peter Fritzson MooELca pelab---

Modelica Simulation of AirCraft Dynamics

B Step-83 Time-0.830000 follow=1 trajectory=2lsw-f+a+x-X-0-r-C- ™ =1E3

Developed by MathCore
for the Swedish Defense
Research Institute (FOI)

[1}
11 Peter Fritzson M M u_nm A pelablll

Modelica AirCraft Component Library

Model Structure — Using a Modelica AirCraft Component
Library developed by MathCore EE}__
for the Swedish Defense :], : 1

Research Institute (FOI) w
l:-m '”“’ ’7"7

N
f

3

Courtesy of Swedish Defense Research Institute (FOI)

HE
12 Peter Fritzson M nor@irea pelabn-

PathWays in a Biochemical System

13

Peter Fritzson

wogfurc pelab-'-'-

Examples of Modelica Research

PDEs in Modelica
Debugging
Parallelization

Language Design for Meta Programming

Variant Handling
Biochemical modeling

14

Peter Fritzson

wogfurc pelab-'-'-

Extending Modelica with PDEs
for 2D, 3D flow problems

class PDEModel
HeatNeumann h_iso;
Dirichlet h heated(g=50);
HeatRobin h glass(h_heat=30000) ;
HeatTransfer ht;
Rectangle2D dom;

equation
dom.eq = ht;
dom.left.bc = h_glass;
dom.top.bc = h_iso;
dom.right.bc = h_iso;
dom.bottom.bc = h_heated;

end PDEModel; u=60

Poorly insulated boundary:

T+=20

Conducting boundary|

Vel [1}
15 Peter Fritzson HopELca pelab---

Automatic Generation of Parallel Code
from Modelica Equation-Based Models

Speedup
3 -

Proc

Clustered Task Graph Thermofluid Pipe Application

Vel [1}
16 Peter Fritzson HopELca pelab---

Equation Debugger General Achitecture

Modelica source Graphical Model

Model
@] :ﬁi Flatiening

Annotated flattened
equations

<RLv==-RLN.V+RLp.v,"eql",” ", 2,"TwoPin, 1, no>

<AC.p.v==RLp.v,"eqll’,” ", 2, "Circuit’, 1, yes>

(s o 3\
2,8 2
FE-2 31

P

23
1
e —

i
istor; i==Cpi
__
Bipartitegraph
Corresponding
bipartitegraph
representation

Over-constrained
subsystem

Static Debugging
(Structural Analysis)

Dynamic Numerical

L e e ——__ * ________ Debugging
[C——————"

Decomosing into |
irreductibleparts | I
|
|
' |
|

Vel [1}
17 Peter Fritzson mooELica pelab---

Conclusions

Modelica has a good chance to become the next
generation computational modeling language

Two complete commercial Modelica implementations
currently available (MathModelica, Dymola),

and an open source implementation (OpenModelica)
under development

Vel [1}
18 Peter Fritzson mooELica pelab---

Contact

www.ida.liu.se/projects/OpenModelica
Download OpenModelica and drModelica, book chapter

www.mathcore.com
MathModelica Tool

www.mathcore.com/drModelica
Book web page, Download book chapter

www.modelica.org
Modelica Association

petfr@ida.liu.se
OpenModelica@ida.liu.se

Vel [1}
19 Peter Fritzson HopELca pelab---

Biological Models
Population Dynamics
Predator-Prey

0 [1]
1 Copyright © Peter Fritzson MooELca pelab---

Some Well-known Population Dynamics
Applications

» Population Dynamics of Single Population

» Predator-Prey Models (e.g. Foxes and Rabbits)

0 [1]
2 Copyright © Peter Fritzson MooELca pelab---

Population Dynamics of Single Population

* P — population size = number of individuals in a population
« P — population change rate, change per time unit

g — growth factor of population (e.g. % births per year)

d — death factor of population (e.g. % deaths per year)

growthrate=g- P
Exponentially increasing
deathrate=d - P population if (g-d)>0

P= growthrate— deathrate Exponentially decreasing

population if (g-d)<0
P=(g-d)-P

0 [1]
3 Copyright © Peter Fritzson MooELlca pelab---

Population Dynamics Model

* g — growth rate of population
» d — death rate of population
* P — population size

P = growthrate— deathrate

class PopulationGrowth
parameter Real g = 0.04 "Growth factor of population";
parameter Real d = 0.0005 "Death factor of population";
Real P(start=10) "Population size, initially 10";
equation
der (P) = (g-d)*P;
end PopulationGrowth;

0 [1]
4 Copyright © Peter Fritzson MooELlca pelab---

Simulation of PopulationGrowth

plot (P)

simulate (PopulationGrowth, stopTime:lOO)I

—P

. . . 500
Exponentially increasing

population if (g-d)>0 400

300

200

100

=t
20 40 60 80 100

0 [1]
5 Copyright © Peter Fritzson MooELca pelab---

Population Growth Exercise!!

» Locate the PopulationGrowth model in DrModelica

» Change the initial population size and growth and
death factors to get an exponentially decreasing
population

simulate (PopulationGrowth, stopTime=100) Exponentially decreasing
lot (P . .
plot (P) population if (g-d)<0

class PopulationGrowth
parameter Real g = 0.04 "Growth factor of population";
parameter Real d = 0.0005 "Death factor of population";
Real P(start=10) "Population size, initially 10";
equation
der (P) = (g-d)*P;
end PopulationGrowth;

Pl [1]
6 Copyright © Peter Fritzson MooELca pelab---

Population Dynamics with both Predators
and Prey Populations

* Predator-Prey models

7

0 [1]
Copyright © Peter Fritzson MooELlca p6|ablll

Predator-Prey (Foxes and Rabbits) Model

* R =rabbits = size of rabbit population

« F =foxes = size of fox population

« R=der(rabbits) = change rate of rabbit population

.« F= der(foxes) = change rate of fox population

* g, = g_r = growth factor of rabbits

» d; = d_f = death factor of foxes

» d; = d_rf = death factor of rabbits due to foxes

* 0; = g_rf = growth factor of foxes due to rabbits and foxes

R=g,-R-d,; -F-R F=g, -d; RF-d;-F

g r*rabbits - d rf*rabbits*foxes;
g fr*d rf*rabbits*foxes - d f*foxes;

der (rabbits)
der (foxes)

0 [1]
Copyright © Peter Fritzson MooELlca p6|ablll

Predator-Prey (Foxes and Rabbits) Model

class LotkaVolterra

parameter Real g r =0.04 "Natural growth rate for rabbits";

parameter Real d rf=0.0005 "Death rate of rabbits due to foxes";

parameter Real d_f =0.09 "Natural deathrate for foxes";

parameter Real g fr=0.1 "Efficency in growing foxes from rabbits";

Real rabbits (start=700) "Rabbits, (R) with start population 700";

Real foxes (start=10) "Foxes, (F) with start population 10";
equation

der (rabbits) = g r*rabbits - d rf*rabbits*foxes;

der (foxes) = g_fr*d rf*rabbits*foxes - d_f*foxes;

end LotkaVolterra;

Pl [1]
9 Copyright © Peter Fritzson MooELca pelab---

Simulation of Predator-Prey (LotkaVolterra)

simulate (LotkaVolterra, stopTime=3000)
plot ({rabbits, foxes}, xrange={0,1000})

— rabbits

— foxes

5000

4000

3000

2000

1000

t
200 400 600 800 1000

Pl [1]
10 Copyright © Peter Fritzson MooELca pelab---

Exercise of Predator-Prey

* Locate the LotkaVolterra model in DrModelica

» Change the death and growth rates for foxes and
rabbits, simulate, and observe the effects

simulate (LotkaVolterra, stopTime=3000)

plot ({rabbits, foxes}, xrange={0,1000})

class LotkaVolterra
parameter Real g r =0.04 "Natural growth rate for rabbits";
parameter Real d_rf=0.0005 "Death rate of rabbits due to foxes";
parameter Real d_f =0.09 "Natural deathrate for foxes";
parameter Real g_fr=0.1 "Efficency in growing foxes from rabbits";
Real rabbits (start=700) "Rabbits, (R) with start population 700";
Real foxes (start=10) "Foxes, (F) with start population 10";
equation
der (rabbits) = g _r*rabbits - d_rf*rabbits*foxes;
der (foxes) = g fr*d rf*rabbits*foxes - d_f*foxes;
end LotkaVolterra;

Vsl [1]
11 Copyright © Peter Fritzson MooELca pelab---

Model Design

0 [1]
1 Copyright © Peter Fritzson MooELlca p6|ablll

Modeling Approaches

» Traditional state space approach
» Traditional signal-style block-oriented approach

» Object-oriented approach based on finished
library component models

» Object-oriented flat model approach

» Object-oriented approach with design of library
model components

0 [1]
2 Copyright © Peter Fritzson MooELlca p6|ablll

Modeling Approach 1

Traditional state space approach

3

0 [1]
Copyright © Peter Fritzson MooELlca pelab---

Traditional State Space Approach

Basic structuring in terms of subsystems and
variables

Stating equations and formulas

Converting the model to state space form:

x(t) = T (x(1), u(t))
y(t) = g(x(t),u(t))

4

0 [1]
Copyright © Peter Fritzson MooELlca pelab---

Difficulties in State Space Approach

» The system decomposition does not
correspond to the "natural" physical system
structure

» Breaking down into subsystems is difficult if
the connections are not of input/output type.

» Two connected state-space subsystems do
not usually give a state-space system
automatically.

0 [1]
5 Copyright © Peter Fritzson MooELlca p6|ablll

Modeling Approach 2

Traditional signal-style block-oriented approach

0 [1]
6 Copyright © Peter Fritzson MooELlca p6|ablll

Physical Modeling Style (e.g Modelica) vs
signal flow Block-Oriented Style (e.g. Simulink)

Modelica: Block-oriented:
Physical model — easy to Signal-flow model — hard to
understand understand for physical systems
P P
R1=10 R2=100
P n n
AC=220
a P p
C=0.01 L=0.1
[
— G
)) 0 [1]
7 Copyright © Peter Fritzson MHODELICA pelab---

Traditional Block Diagram Modeling

» Special case of model components:
the causality of each interface variable
has been fixed to either input or output

Typical Block diagram model components:

X
e) i

NE
Integrator Adder Multiplier Function Branch Point

Simulink is a common block diagram tool

0 [1]
8 Copyright © Peter Fritzson MooELlca pelab---

Physical Modeling Style (e.g Modelica) vs
signal flow Block-Oriented Style (e.g. Simulink)

Block-oriented:
Signal-flow model — hard to
understand for physical systems

Modelica:
Physical model — easy to
understand
P
R1=10 R2=100
P n
AC=220
P
C=0.01 L=0.1
[
G

9 Copyright © Peter Fritzson

wo o€ irea pelab-'-'-

Example Block Diagram Models

Rotational
Mechanics

10 Copyright © Peter Fritzson

wo o€ irea pelab-'-'-

Properties of Block Diagram Modeling

- The system decomposition topology does not
correspond to the "natural” physical system structure

- Hard work of manual conversion of equations into
signal-flow representation

- Physical models become hard to understand in signal
representation

- Small model changes (e.g. compute positions from
force instead of force from positions) requires redesign of
whole model

+ Block diagram modeling works well for control systems
since they are signal-oriented rather than "physical”

11

0 [1]
Copyright © Peter Fritzson MooELlca p6|ablll

Object-Oriented Modeling Variants

» Approach 3: Object-oriented approach based on

finished library component models

» Approach 4: Object-oriented flat model approach
» Approach 5: Object-oriented approach with

design of library model components

12

0 [1]
Copyright © Peter Fritzson MooELlca p6|ablll

Object-Oriented Component-Based
Approaches in General

» Define the system briefly
e What kind of system is it?
* What does it do?

» Decompose the system into its most important

components
» Define communication, i.e., determine interactions
« Define interfaces, i.e., determine the external ports/connectors
* Recursively decompose model components of “high complexity”

 Formulate new model classes when needed

« Declare new model classes.
» Declare possible base classes for increased reuse and maintainability

Vsl [1]
13 Copyright © Peter Fritzson MooELlca p6|ablll

Top-Down versus Bottom-up Modeling

» Top Down: Start designing the overall view.
Determine what components are needed.

» Bottom-Up: Start designing the components
and try to fit them together later.

Vsl [1]
14 Copyright © Peter Fritzson MooELlca p6|ablll

Approach 3: Top-Down Object-oriented
approach using library model components

Decompose into subsystems
Sketch communication

Design subsystems models by connecting
library component models

Simulate!

Vsl [1]
15 Copyright © Peter Fritzson MooELlca p6|ablll

Decompose into Subsystems and Sketch
Communication — DC-Motor Servo Example

Electricd Rotational
Controller Circuit Mechanics

The DC-Motor servo subsystemsand their connections

Vsl [1]
16 Copyright © Peter Fritzson MooELlca p6|ablll

Modeling the Controller Subsystem

AN ' =~ Electrical Rotational
Eontroller Ciresiit _ Mechanics
\\ ~ = ~ -
AY ~ So
\ r\ ‘\\ S~
\ \\ ~ ~<
AY N -~ ~o N
\\ A s S hEY
\
“ feedbackl
\\
\ ““"*i?%’___> [=]]
‘\

Modeling the controller

17

0 [1]
Copyright © Peter Fritzson MooELca pelab---

Modeling the Electrical Subsystem

’ .
/ Electrical “|+ . Rotational
Controller K Circuit M echanics
h S
) 1 Ay ~ ~
K 1 AN S
n ,- AN ~ N
/ ; N S

resistorl inductorl

EMF1

signalVoltagel

j_— groundl

Modeling the electric circuit

18

Copyright © Peter Fritzson

wo o€ irea pelab-'-'-

__Elestrizd ™" Rotational /
Circuit Mechani cs;
!

Modeling the Mechanical Subsystem

[}

Controller _[=
————— _—"’ ' !
_______ e Lo
-7 -~ L]
————— Prae L'
=]
1
1
L%i ,l
[— !
idealGearl inertia2 springl inertia3 !
h
1
speedSensorl !
U
U

inertial

Modeling the mechanical subsystem including the speed sensor.
wogfurc pe|abl.l.l

19 Copyright © Peter Fritzson

Object-Oriented Modeling from Scratch

» Approach 4: Object-oriented flat model approach

» Approach 5: Object-oriented approach with
design of library model components

wogfurc pe|abl.l.l

20 Copyright © Peter Fritzson

Example: OO Modeling of a Tank System

source
|:: levelSensor

maxLevel

out

in

[]

level h tank

valve
~

x

* The system is naturally
decomposed into components

controller

]

21 Copyright © Peter Fritzson

wogfurc pe|abl.l.l

Object-Oriented Modeling

Approach 4: Object-oriented flat model design

22 Copyright © Peter Fritzson

wogfurc pe|abl.l.l

Tank System Model FlatTank — No Graphical

Structure

model FlatTank
// Tank related variables and parameters

+ No component

structure parameter Real flowLevel (unit="m3/s")=0.02;
parameter Real area(unit="m2") =1;
parameter Real flowGain(unit="m2/s") =0.05;
« Just flat set of Real h(start=0,unit="m") "Tank level";
equations Real gInflow(unit="m3/s") "Flow through input valve";
Real gOutflow (unit="m3/s") "Flow through output valve";
// Controller related variables and parameters
° Straight_ parameter Real K=2 "Gain";
parameter Real T (unit="g")= 10 "Time constant";
fOfWard bUt parameter Real minV=0, maxV=10; // Limits for flow output
|ESS erX|bIe, Real ref = 0.25 "Reference level for control";
no graphical Real error "Deviation from reference level";
structure Real outCtr "Control signal without limiter";
Real x; "State variable for controller";
equation
assert (minV>=0, "minV must be greater or equal to zero");//
der (h) = (gInflow-gOutflow)/area; // Mass balance equation
gInflow = if time>150 then 3*flowLevel else flowLevel;
qoutflow = LimitValue (minV,maxV, -flowGain*outCtr) ;
error = ref-h;
der (x) = error/T;

outCtr = K* (error+x) ;
end FlatTank;

23 Copyright © Peter Fritzson

wogfurc pelab-'-'-

Simulation of FlatTank System

* Flow increase to flowLevel at time O
* Flow increase to 3*flowLevel at time 150

simulate (FlatTank, stopTime=250)

plot(h, stopTime=250)

24 Copyright © Peter Fritzson

wogfurc pelab-'-'-

Object-Oriented Modeling

o Approach 5:

Object-oriented approach with design of
library model components

Vsl [1]
25 Copyright © Peter Fritzson MooELca pelab---

Object Oriented Component-Based Approach
Tank System with Three Components

 Liquid source TankP

. | Out
« Continuous PI source[| qnq -

co n'[I’O”er tSensor tActuator

. o

PIcontinuousController p1Cont1nuous (ref=0.25)
Tank tank (area=1)

equation
connect (source.qgOut, tank.gIn);
connect (tank.tActuator, piContinuous.cOut)
connect (tank.tSensor, plContlnuous cIn) ;

end TankPI;

model TankPI
LiquidSource source (flowLevel=0.02)
[1]

26 Copyright © Peter Fritzson Moo E LA pelab HEE

Tank model

* The central equation regulating the behavior of the tank is the mass balance
equation (input flow, output flow), assuming constant pressure

model Tank
ReadSignal tSensor "Connector, sensor reading tank level (m)";
ActSignal tActuator "Connector, actuator controlling input flow";
LigquidFlow gIn "Connector, flow (m3/s) through input valve";
LigquidFlow gOut "Connector, flow (m3/s) through output valve" j
parameter Real area (unit="m2") = 0.5;
parameter Real flowGain (unit="m2/s") = 0.05;
parameter Real minV=0, maxV=10; // Limits for output valve flow
Real h(start=0.0, unit="m") "Tank level";
equation
assert (minV>=0, "minV - minimum Valve level must be >= 0 ");//
der (h) = (gIn.lflow-gOut.lflow) /area; // Mass balance
equation
gOut.lflow = LimitValue (minV,maxV,-flowGain*tActuator.act) ;
tSensor.val = h;
end Tank;

Pl [1]
27 Copyright © Peter Fritzson MooELca pelab---

Connector Classes and Liquid Source Model
for Tank System

connector ReadSignal "Reading fluid level"
Real val (unit="m") ;
end ReadSignal;

TankPI

connector ActSignal "Signal to actuator
for setting valve position"
Real act;

end ActSignal;

connector LiquidFlow "Liquid flow at inlets or outlets"
Real 1lflow(unit="m3/s");
end LiquidFlow;

model LiquidSource

LigquidFlow gOut;

parameter flowLevel = 0.02;
equation

qgOut.lflow = if time>150 then 3*flowLevel else flowLevel;
end LiquidSource;

Pl [1]
28 Copyright © Peter Fritzson MooELca pelab---

Continuous PI Controller for Tank System

« error = (reference level — dx _ error
actual tank level) dt T
. . — *
. Tis atime constant outCtr = K (error + x)
> Xis controller state Integrating equations gives
variable Proportional & Integrative (Pl)
i i error
* Kis again factor outCtr = K* (error +.[T dt)
> base class for controllers —to be defined
model PIcontinuousContro r
extends BaseController (K=2,T=10) ;
Real x "State variable of continuous PI controller";
equation ____——> error—to bedefined in controller base class
der (x) = error/T;
outCtr = K* (error+x) ;
end PIcontinuousController;
29)) Vecs [1]
Copyright © Peter Fritzson mooELTca pelablll

The Base Controller — A Partial Model

partial model BaseController

parameter Real Ts(unit="s")=0.1
"Ts - Time period between discrete samples - discrete sampled";

parameter Real K=2 "Gain";
parameter Real T=10 (unit="s") "Time constant - continuous";
ReadSignal cIn "Input sensor level, connector";
ActSignal cOut "Control to actuator, connector";
parameter Real ref "Reference level";
Real error "Deviation from reference level";
Real outCtr "Output control signal";

equation
error = ref-cIn.val;
cOut.act = outCtr; TankP|

nd BaseController;

T |
tSensor tActuator

error =difference betwen reference level and [piContinuousL]
actual tank level from cIn connector cin cOut

Vsl [1]
30 Copyright © Peter Fritzson MooELca pelab---

Simulate Component-Based Tank System

* As expected (same equations), TankPI gives the
same result as the flat model FlatTank

simulate (TankPI, stopTime=250)

plot(h, stopTime=250)

L L L L
50 100 150 200 250

Vsl [1]
31 Copyright © Peter Fritzson MooELca pelab---

Flexibility of Component-Based Models

» Exchange of components possible in a
component-based model

* Example:
Exchange the PI controller component for a PID
controller component

Vsl [1]
32 Copyright © Peter Fritzson MooELca pelab---

Tank System with Continuous PID Controller
Instead of Continuous Pl Controller

 Liquid source

« Continuous PID [sourcel q'"“o“‘

controller
* Tank

TankPID

tSensor tActuator
lm [1 pidContinuous[} ~out
model TankPID
LiquidSource source (flowLevel=0.02) ;
PIDcontinuousController pidContinuous (ref=0.25)
Tank tank (area=1) ;

equation
connect (source.qgOut, tank.gIn);
connect (tank.tActuator, pidContinuous.cOut) ;
connect (tank.tSensor, pidContinuous.cIn);
end TankPID;

33 Copyright © Peter Fritzson

wo o€ irea pelab-'-'-

Continuous PID Controller

dx error

» error = (reference level — T T
actual tank level) -7 derror

Tt

* Tis atime constant

outCtr = K* (error + x+)

* X,y are controller state Integrating equations gives Proportional

variables

« Kis a gain factor outCtr = K * (error + [20t +T

& Integrative & Derivative(PID)
error derror

)

> base class for controllers —to be defined

model PIDcontinuousContro T
extends BaseController (K=2,T=10) ;
Real x; // State variable of continuous PID controller
Real vy; // State variable of continuous PID controller

equation
der (x) = error/T;
y = T*der (error) ;
outCtr = K*(error + x + y);

end PIDcontinuousController;

34 Copyright © Peter Fritzson

wo o€ irea pelab-'-'-

Simulate TankPID and TankPI Systems

» TankPID with the PID controller gives a
slightly different result compared to the
TankPI model with the PI controller

simulate (compareControllers, stopTime=250) I

plot ({tankPI.h, tankPID.h})

~
~ , vV meeeee tankPI.h
o.al A [Ya tankPID.h
72 i
! \ h \
/ \ 1 \
[/ \ I \
0.3 \ ! \
\ \
\ —— A —_———
\ LT TS \, -
"N\ N\
0.2 -
0.1
time
50 100 150 200 250

35 Copyright © Peter Fritzson

wogfurc pekabiﬂﬂ

Two Tanks Connected Together

Flexibility of component-based models allows connecting models together

TanksConnectedPI
qin qOut qin qOut
source[] [] L] [] L]
- tankl tank2
[] [] —L1 []
tSensor’ tActuator| [tSensor tActuator

iContini i Contini
4C|r: COUt 4(:"7 COUt

model TanksConnectedPI
LiquidSource source (flowLevel=0.02) ;

Tank tankl (area=1), tank2(area=1.3);;
PIcontinuousController piContinuousl (ref=0.25), piContinuous2 (ref=0.4);
equation

connect (source.qout, tankl.qgIn) ;

connect (tankl.tActuator,piContinuousl.cOut) ;

connect (tankl.tSensor,piContinuousl.cIn) ;

connect (tankl.gOut, tank2.qIn) ;

connect (tank2.tActuator, piContinuous2.cOut) ;

connect (tank2.tSensor,piContinuous2.cIn) ;
end TanksConnectedPI;

36 Copyright © Peter Fritzson

wogfurc pekabiﬂﬂ

Simulating Two Connected Tank Systems

* Fluid level in tank2 increases after tankl as it should
* Note: tankl has reference level 0.25, and tank?2 ref level 0.4

simulate (TanksConnectedPI, stopTime=400)

plot ({tankl.h, tank2.h})

tankl.h

tank2.h

time

Pl [1]
37 Copyright © Peter Fritzson MooELca pelab---

Exchange: Either Pl Continous or PI Discrete
Controller

partial model BaseController

parameter Real Ts(unit = "s") = 0.1 "Time period between discrete samples";
parameter Real K = 2 "Gain";
parameter Real T (unit = "s") = 10 "Time constant";

ReadSignal cIn "Input sensor level, connector";
ActSignal cOut "Control to actuator, connector";
parameter Real ref "Reference level";
Real error
Real outCtr

equation
error = ref - cIn.val;

"Deviation from reference level";
"Output control signal";

cOut.act = outCtr;
end BaseController;

model PIDcontinuousController . model PIdiscreteController

discrete Real x;
equation

equation when sample (0, Ts) then
der (x) = error/T; x = pre(x) + error * Ts / T;
y = T*der (error) ; outCtr = K * (x+error) ;

outCtr = K* (error + x + y);

end when;
end PIDcontinuousController;

end PIdiscreteController;

Pl [1]
38 Copyright © Peter Fritzson MooELca pelab---

Exercises

* Replace the Plcontinuous controller by the
Pldiscrete controller and simulate. (see also the
book, page 461)

» Create a tank system of 3 connected tanks and
simulate.

Vsl [1]
39 Copyright © Peter Fritzson MooELlca p6|ablll

Principles for Designing Interfaces —i.e.,
Connector Classes

Should be easy and natural to connect components

« For interfaces to models of physical components it must be physically
possible to connect those components

Component interfaces to facilitate reuse of existing
model components in class libraries

Identify kind of interaction

« If there is interaction between two physical components involving energy
flow, a combination of one potential and one flow variable in the appropriate
domain should be used for the connector class

« If information or signals are exchanged between components, input/output
signal variables should be used in the connector class

Use composite connector classes if several
variables are needed

Vsl [1]
40 Copyright © Peter Fritzson MooELlca p6|ablll

Simplification of Models

* When need to simplify models?

* When parts of the model are too complex

* Too time-consuming simulations

* Numerical instabilities

« Difficulties in interpreting results due to too many low-level model details

« Simplification approaches
» Neglect small effects that are not important for the phenomena to be
modeled
« Aggregate state variables into fewer variables
« Approximate subsystems with very slow dynamics with constants

« Approximate subsystems with very fast dynamics with static
relationships, i.e. not involving time derivatives of those rapidly changing
state variables

Vsl [1]
41 Copyright © Peter Fritzson MooELlca p6|ablll

Exercises Using OpenModelica and MathModelica Lite

Version 2006-09-17

Peter Fritzson
PELAB — Programming Environment L aboratory
SE-581 83 Linkdping, Sweden

1 Simple Textual Modelica M odeling Exer cises

1.1 Try DrModeicawith VanDerPol
Locate the VanDerPol model in DrModelica (link from Section 2.1), run it, change it dightly, and re-run it.

1.2 HeloWorld

Simulate and plot the following example with one differential equation and oneinitial condition. Do aslight
change in the model, re-simulate and re-plot.

model HelloWorld "A simple equation"
Real x(start=1);

equation
der (x)= -Xx;

end HelloWorld;

1.3 BouncingBall

Locate the BouncingBall model in one of the hybrid modeling sections of DrModelica (e.g. Section 2.9), run it,
changeit dightly, and re-run it.

1.4 A Simple Equation System

Make aModelica model that solves the following equation system with initial conditions:

K =Z2+xX+y-3=X
o= Sey_Tarx+y
x(0y = 2
¥roy = 3

1.5 Functionsand Algorithm Sections

a) Write afunction, sum, which calculates the sum of Real numbers, for a vector of arbitrary size.

b) Write a function, average, which calculates the average of Real numbers, in a vector of arbitrary size. The
function average should make use of afunction call to sum.

2 Graphical Design using MathModelica Lite

2.1 SimpleDC-Motor
Make a simple DC-motor using the Modelica standard library that has the following structure:

R L

emf =

]
=

Save the model from the graphic editor, load it and simulate it (using OM Shell or OMNotebook) for 15s and plot
the variables for the outgoing rotational speed on the inertia axis and the voltage on the voltage source (denoted u
in the figure) in the same plot.

Hint: if you have difficulty finding the names of the variables to plot, you can flatten the model by calling instan-
tiateModel, which exposes al variable names.

2.2 DC-Motor with Spring and Inertia

Add atorsional spring to the outgoing shaft and another inertia element. Simulate again and see the results. Adjust
some parameters to make arather stiff spring.

—..I |-|3 - s

Resistar I nductar

Canstantvolaged
E MF1 Inertia Spring1 Inertiaz

1

Groundi

2.3 DC-Motor with Controller (Extra)

Add a Pl controller to the system and try to control the rotational speed of the outgoing shaft. Verify the result
using a step signal for input. Tune the PI controller by changing its parametersin MathModelica Lite.

[

——

Stepi

F
Feed

ack

Fl1

Resitor

Bignalfaltage

Inductord

Groundq

Inartial Springl Inattia? SpeedSenzar

