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Preface

The work on MetaModelica has its roots in our early work on executable specification languages for
defining the semantics of programming languages and generating efficient compilers from such
specifications. This started during the late 1980s with Peter Fritzson’s and his students’ work on attribute
grammars and denotational semantics based tools. During the beginning of the 1990s the focus was
changed into support for executable language specifications in the popular Natural Semantics/Structured
Operational Semantics, 1995 resulting in the RML tool as the PhD thesis work by Mikael Pettersson.
This tool and formalism was first used for the specification of several smaller languages: both
imperative, functional, and object-oriented. During 1997/98 the first formal specification of a subset of
Modelica was developed, which influenced the early Modelica specification. This specification grew
over time, and eventually developed into the OpenModelica open source effort.

At the same time, we and others made the observation that since user-driven requirements on the
application usage of models grow over time, and the scope of modeling domains increase, the demands
on the Modelica modeling language and corresponding tools increase. This has caused the Modelica
language and model compilers to become increasingly large and complex.

One approach to manage this increasing complexity used by several functional languages is to define
a number of language features in libraries rather than in the compiler itself.

Why not apply this idea to the Modelica language? However, the language modeling features needed,
e.g. found in RML and similar languages, were missing in standard Modelica. Therefore, during 2004 -
2005 we designed and implemented a language extension to Modelica called MetaModelica 1.0. This
first implementation included the development of a MetaModelica 1.0 compiler frontend, but still used
the RML core compiler and code generator. This implementation had the advantage of rather quickly
making the MetaModelica 1.0 language available for use. Moreover, extensive work on the modeling
environment (Eclipse plug-in, debugger) was needed to make it effective for large-scale use by the
developers.

The MetaModelica 1.0 language described in this report has been in extensive use during 2005-2011,
primarily for development of the OpenModelica compiler. This has been successful, and has resulted in
an efficient and portable OpenModelica implementation. However, the MetaModelica 1.0 language has
the drawback of not supporting many features in the standard Modelica language.

The next version of MetaModelica, called MetaModelica 2.0 is described in a separate report. This
language is easier to use for a person who knows Modelica since it supports the standard Modelica 3
language features, most of the MetaModelica 1.0 features, as well as additional modeling features for
expressiveness and conciseness. It is implemented as part of the OpenModelica compiler itself and is not
dependent on the old RML compiler kernel. MetaModelica 2.0 is becoming operational during spring
2011.

Linkdping, Sweden, February 2011

Peter Fritzson and Adrian Pop
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Chapter 1

Extensible Tools, Language Modeling, and Tool
Generation

In this chapter we briefly discuss the concept of extensibility of modeling, analysis, and simulation tools,
and how this can be realized by extending the modeling language to also specify language properties and
symbolic transformations.

1.1 Language Modeling for Extensible Tool Functionality

Traditionally, a model compiler performs the task of translating a model into executable code, which
then is executed during simulation of the model. Thus, the symbolic translation step is followed by an
execution step, a simulation, which often involves large-scale numeric computations.

However, as requirements on the usage of models grow, and the scope of modeling domains increase,
the demands on the modeling language and corresponding tools increase. This causes the model
compiler to become large and complex.

Moreover, the modeling community needs not only tools for simulation but also languages and tools
to create, query, manipulate, and compose equation-based models. Additional examples are optimization
of models, parallelization of models, checking and configuration of models.

If all this functionality is added to the model compiler, it tends to become large and complex.

An alternative idea is to add features to the modeling language such that for example a model
package can contain model analysis and translation features that therefore are not required in the model
compiler. An example is a PDE discretization scheme that could be expressed in the modeling language
itself as part of a PDE package instead of being added internally to the model compiler.

In this text we will primarily describe language constructs and examples of their usage in specifying
languages and tools for different processing tasks.

1.2  Generation of Language Processing Tools from Specifications

The implementation of language processing tools such as compilers and interpreters for non-trivial
programming languages is a complex and error prone process, if done by hand. Therefore, formalisms
and generator tools have been developed that allow automatic generation of compilers and interpreters
from formal specifications. This offers two major advantages:

e High-level descriptions of language properties, rather than detailed programming of the
translation process.

e High degree of correctness of generated implementations.

The high level specifications are typically more concise and easier to read than a detailed
implementation in some traditional low-level programming language. The declarative and modular
specification of language properties rather than detailed operational description of the translation
process, makes it much easier to verify the logical consistency of language constructs and to detect
omissions and errors. This is virtually impossible for a traditional implementation, which often requires
time consuming debugging and testing to obtain a compiler of acceptable quality. By using automatic
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compiler generation tools, correct compilers can be produced in a much shorter time than otherwise
possible. This, however, requires the availability of generator tools of high quality, that can produce
compiler components with a performance comparable to hand-written ones.

1.3 Using MetaModelica for Modeling of Programming Languages

The Modelica specification and modeling language was originally developed as an object-oriented
declarative equation-based specification formalism for mathematical modeling of complex systems, in
particular physical systems.

However, it turns out that with some minor extensions, the Modelica language is well suited for
another modeling task, namely modeling of the semantics, i.e., the meaning, of programming language
constructs. Since modeling of programming languages is often known as meta-modeling, we use the
name MetaModelica for this slightly extended Modelica. The semantics of a language construct can
usually be modeled in terms of combinations of more primitive builtin constructs. One example of
primitive builtin operations are the integer arithmetic operators. These primitives are combined using
inference and pattern-matching mechanisms in the specification language.

Well-known language specification formalisms such as Natural Semantics (Despeyroux 1984;
Despeyroux 1988; Pettersson 1995; Fritzson 1996; Fritzson and Kégedal 1998) and Structured
Operational Semantics (Plotking 1981; Mosses 2004) are also declarative equation-based formalisms.
These fit well into the style of the MetaModelica specification language, which explains why Modelica
with some minor extensions is well-suited as a language specification formalism. However, only an
extended subset of Modelica called MetaModelica is needed for language specification since many parts
of the language designed for physical system modeling are not used at all, or very little, for the language
specification task.

This text introduces the use of MetaModelica for programming language specification, in a style
reminiscent of Natural or Structured Operational Semantics, but using Modelica’s properties for
enhanced readability and structure.

Another great benefit of using and extending Modelica in this direction is that the language becomes
suitable for meta-programming and meta-modeling. This means that Modelica can be used for
transformation of models and programs, including transforming and combining Modelica models into
other Modelica models.

However, the main emphasis in the rest of this text is on the topic of generating compilers and
interpreters from specifications in MetaModelica.

1.4  Compiler Generation

The process of compiler generation is the automatic production of a compiler from formal specifications
of source language, target language, and various intermediate formalisms and transformations. This is
depicted in Figure 1-1, which also shows some examples of compiler generation tools and formalisms
for the different phases of a typical compiler. Classical tools such as scanner generators (e.g. Lex) and
parser generators (e.g. Yacc) were first developed in the 1970:s. Many similar generation tools for
producing scanners and parsers exist.

However, the semantic analysis and intermediate code generation phase is still often hand-coded,
although attribute grammar based tools have been available for practical usage for quite some time. Even
though attribute grammars are easy to use for certain aspects of language specifications, they are less
convenient when used for many other language aspects. Specifications tend to become long and involve
many details and dependencies on external functions, rather than clearly expressing high level
properties. Denotational Semantics is a formalism that provides more abstraction power, but is
considered hard to use by most practitioners, and has problems with modularity of specifications and
efficiency of produced implementations. We will not further discuss the matter of different specification
formalisms, and refer the reader to other literature, e.g. (Louden 2003) and (Pierce2002).



Chapter 1  Extensible Tools, Language Modeling, and Tool Generation 15

Semantic aspects of language translation include tasks such as type checking/type inference, symbol
table handling, and generation of intermediate code. If automatic generation of translator modules for
semantic tasks should become as common as generation of parsers from BNF grammars, we need a
specification formalism that is both easy to use and that provides a high degree of abstraction power for
expressing language translation and analysis tasks. The MetaModelica formalism fulfils these
requirements, and have therefore chosen this formalism for semantics specification in this text.

Formalism Generator Compiler Program
tool phase representation
| e Text
Regular Lex =
expressions —* Scanner
l \\\\\\\\\\ Token sequence
BNF
grammar i. Parser
| ““““““ Abstract syntax
Semantics mme Semantics
in Modelica ————* Type checking
Int. form gen
. Intermediate form
Optimizer -
specification Op—. Optimizer
(or mmc)
. Intermediate form
Instruction sct G _t
description (BEG) Mgséllllmc code

Figure 1-1. Generation of implementations of compiler phases from different formalisms. MetaModelica
is used to specify the semantics module, which is generated using the mmc tool (MetaModelica Compiler).

The second necessary requirement for widespread practical use of automatic generation of semantics
parts of language implementations is that the generated result need to be roughly as efficient as hand-
written implementations., a generator tool, mmc (MetaModelica Compiler), that produces highly efficient
implementations in C—roughly of the same efficiency as hand-written ones, and a debugger for
debugging specifications. MetaModelica also enables modularity of specification through a module
system with packages, and interfaceability to other tools since the generated modules in C can be readily
combined with other frontend or backend modules.

The later phases of a compiler, such as optimization of the intermediate code and generation of
machine code are also often hand-coded, although code generator generators such as BEG (Landwehr,
Jansohn, Goos 1982; Emmelmann, Schroer, Landwehr 1989), IBURG (Fraser and Hansen 1995), and
their use (Andersson and Fritzson 1996) have been developed during the late 1980s and early 1990:s. A
product version of BEG is available in the CoSy compiler generation toolbox (ACE 2011) which also
includes global register allocation and instruction scheduling. A university version is described in (Alt
1997).

The optimization phase of compilers is generally hand coded, although some prototypes of optimizer
generators have appeared. For example, an optimizer generator tool called Optimix (Assmann 2000) has
influenced the tools in the CoSy (ACE 2011) compiler generation system.

MetaModelica can also be used for these other phases of compilers, such as optimization of
intermediate code and final code generation. Intermediate code optimization works rather well since this
is usually a combination of analysis and transformation that can take advantage of patterns, tree
transformation expressions, and other features of the MetaModelica language.



16 Fritzson, Pop Meta-Programming and Language Modeling with MetaModelica 1.0

Regarding final machine code generation modules of most compilers — these are probably best
produced by specialized tools such as BEG, which use specific algorithms such as dynamic
programming for “optimal” instruction selection, and graph coloring for register allocation. However, in
this book we only present a few very simple examples of final code generation, and essentially no
examples of advanced code optimization.

1.5 Interpreter Generation

The case of generating an interpreter from formal specifications can be regarded as a simplified special
case of compiler generation. Although some systems interpret text directly (e.g. command interpreters
such as the Unix C shell), most systems first perform lexical and syntactic analysis to convert the
program into some intermediate form, which is much more efficient to interpret than the textual
representation. Type checking and other checking is usually done at run-time, either because this is
required by the language definition (as for many interpreted languages such as LISP, Postscript,
Smalltalk, etc.), or to minimize the delay until execution is started.

The semantic specification of a programming language intended as input for the generation of an
interpreter if usually slightly different in style compared to a specification intended for compiler
generation. Ideally, they would be exactly the same, and there exist techniques such as partial evaluation
(Jones, Gomard, Sestoft, 1993; Wikipedia 2011), that sometimes can produce compilers also from
specifications of interpreters.

Formalism  Generator Interpreter Program
fool phase representation
J ------------ Text
R
cgular Lex
expressions — Scanner
____________ Token sequence
BNF Yacc
grammar — Parscr
J ____________ Abstract syntax
S ics mmc Interpreter /
inModelica —
Evaluator
(Interpretive
semantics)

Figure 1-2. Generation of a typical interpreter. The program text is converted into an abstract syntax
representation, which is then evaluated by an interpreter generated by the MetaModelica Compiler (mmc)
system. Alternatively, some other intermediate representation such as postfix code can be produced, which
is subsequently interpreted.

In practice, an interpretive style specification often expresses the meaning of a language construct by
invoking a combination of well-defined primitives in the specification language. A compilation oriented
specification, however, usually defines the meaning of language constructs by specifying a translation to
an equivalent combination of well-defined constructs in some target language. In this text we will show
examples of both interpretive and translation-oriented specifications.
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Chapter 2

Expression Evaluators and Interpreters in
MetaModelica

We will introduce the topic of language specification in MetaModelica through a number of example
languages.

The reader who would first prefer a general overview of some language properties of the
MetaModelica subset for language specification may want to read Chapter 5 before continuing with
these examples. On the other hand, the reader who has no previous experience with formal semantic
specification and is more interested in “hands-on” use of MetaModelica for language implementation is
recommended to continue directly with the current chapter and later take a quick glance at those
chapters.

First we present a very small expression language called Expl.

2.1 The Exp1 Expression Language

A very simple expression evaluator (interpreter) is our first example. This calculator evaluates constant
expressions such as:

12 + 5*3

or
-5 * (10 - 4)

The evaluator accepts text of a constant expression, which is converted to a sequence of tokens by the
lexical analyzer (e.g. generated by Lex or Flex) and further to an abstract syntax tree by the parser (e.g.
generated by Yacc or Bison). Finally the expression is evaluated by the interpreter (generated by the
MetaModelica compiler), which in the above case would return the value 27. This corresponds to the
general structure of a typical interpreter as depicted in Figure 1-2.

211 Concrete Syntax

The concrete syntax of the small expression language is shown below expressed as BNF rules in Yacc
style, and lexical syntax of the allowed tokens as regular expressions in Lex style. All token names are in
upper-case and start with T to be easily distinguishable from nonterminals which are in lower-case.

/* Yacc BNF Syntax of the expression language Expl */

expression : term
| expression weak operator term

term : u_element
| term strong operator u element

u_element : element
| unary operator element
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element : T INTCONST
| T LPAREN expression T RPAREN

weak operator : T _ADD | T_SUB
strong operator : T MUL | T DIV
unary operator : T SUB

/* Lex style lexical syntax of tokens in the expression language Expl */

dj—gj—t (UO" I "lll | ll2ll | ll3ll | ll4ll | ll5" | ll6" | "7" | "8" ‘ "9")
digits {digit}+

{digits} return T INTCONST;

nyn return T_ADD;

n_w return T SUB;

"an return T MUL;

m/m return T_DIV;

" return T LPAREN;
mn return T RPAREN;

Lex also allows a more compact notation for a set of alternative characters which form a range of
characters, as in the shorter but equivalent specification of digit below:

digit [0-9]

21.2  Abstract Syntax of Exp1 with Union Types

The role of abstract syntax is to convey the structure of constructs of the specified language. It abstracts
away (removes) some details present in the concrete syntax, and defines an unambiguous tree
representation of the programming language constructs. There are usually several design choices for an
abstract syntax of a given language. First we will show a simple version of the abstract syntax of the
Expl language using the MetaModelica abstract syntax definition facilities.

21.3  The uniontype Construct

To be able to declare the type of abstract syntax trees we introduce the uniontype construct into
Modelica:

e A union type specifies a union of one or more record types.
e Its record types and constructors are automatically imported into the surrounding scope.
e Union types can be recursive — they can reference themselves.

A common usage is to specify the types of abstract syntax trees. In this particular case the following
holds for the Exp union type:

e The Exp type is a union type of six record types
e Its record constructors are INTConst, ADDop, SUBop, MULop, DIVop, and NEGop.

The Exp union type is declared below. Its constructors are used to build nodes of the abstract syntax
trees for the Exp language.

/* Abstract syntax of the language Expl as defined using MetaModelica */

uniontype Exp
record INTconst Integer int; end INTconst;
record ADDop Exp expl; Exp exp2; end ADDop;
record SUBop Exp expl; Exp exp2; end SUBop;
record MULop Exp expl; Exp exp2; end MULop;
record DIVop Exp expl; Exp exp2; end DIVop;
record NEGop Exp exp; end NEGop;

end Exp;
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Using the Exp abstract syntax definition, the abstract syntax tree representation of the simple expression
12+5*13 will be as shown in Figure 2-1. The Integer data type is predefined in MetaModelica. Other
predefined MetaModelica data types are Real, Boolean, and String as well as the parametric type
constructors array, list, tuple, and Option.

ADDop
INTconst MULop
12
INTconst INTconst
I I
5 13

Figure 2-1. Abstract syntax tree of 12+5%13 in the language Expl1.

The uniontype declaration defines a union type Exp and constructors (in the figure: ADDop, MULop,
INTconst) for each node type in the abstract syntax tree, as well as the types of the child nodes.

214 Semantics of Exp1

The semantics of the operations in the small expression language Expl follows below, expressed as an
interpretive language specification in MetaModelica in a style reminiscent of Natural and/or Operational
Semantics. Such specifications typically consists of a number of functions, each of which contains a
match-expression with one or more cases. In this simple example there is only one function, here called
eval, since we specify an expression evaluator.

21.41 Match-Expressions in MetaModelica

The following extension to Modelica is essential for specifying semantics of language constructs
represented as abstract syntax trees:

e Match-expressions with pattern-matching cases, local declarations, and local equations.

A match-expression is closely related to pattern matching in functional languages, but is also related to
switch statements in C or Java. It has two important advantages over traditional switch statements:

e A match-expression can appear in any of the three Modelica contexts: expressions, statements, or
in equations.

e The selection in the case branches is based on pattern matching, which reduces to equality testing
in simple cases, but is much more powerful in the general case.

e There are two variants of match-expressions using either the match or the mathcontinue
keywords. The match keyword means that after a successful matching against a pattern in one of
the case-branches no more patterns will be matched. The matchcontinue keyword means that
even if there is a successful match followed by a failed computation in the same case-branch, the
matching will continue with the subsequent case-branches.

A very simple example of a match-expression is the following code fragment, which returns a number
corresponding to a given input string. The pattern matching is very simple — just compare the string
value of s with one of the constant pattern strings "one", "two" or "three", and if none of these
matches return 0 since the wildcard pattern _ (underscore) matches anything.
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String s;
Integer x;
algorithm

X @

matchcontinue s

case "one" then 1;
case "two" then 2;
case "three" then 3;
case then 0;

end matchcontinue;

Alternatively, using match instead of matchcontinue:

String s;
Integer x;
algorithm
X =
match s

case "one" then 1;
case "two" then 2;
case "three" then 3;
else 0;

end match;

Match-expressions have the following properties (see Section 5.16.1.2 for a more precise description):

matchcontinue. The value computed by the expression after the matchcontinue keyword is
matched against each of the patterns after the case keywords in order; if one matching fails or if
the matching succeeds but the computation in some part of the rest of the case fails, the next case
(i.e., matching continued) is tried until there are no more case-branches in which case (if present)
the else-branch is executed.

match. The value computed by the expression after the match keyword is matched against each
of the patterns after the case keywords in order; if one matching fails the next is tried until there
are no more case-branches in which case (if present) the else-branch is executed. If a matching
against a pattern succeeds but the rest of the computation in that case-branch fails, then the
whole match-expression immediately fails.

Only algebraic equations are allowed as local equations, no differential equations.

Only locally declared variables (local unknowns) declared by local declarations within the
match-expression are solved for. Only such local variables may appear as pattern variables.
Equations are solved in the order they are declared (this restriction may be removed in the
future).

If an equation or an expression in a case-branch of a match-expression fails, all local variables
become unbound, and matching continues with the next branch.

In the following we will primarily use match-expressions with mathcontinue in the specifications.

21.4.2 Evaluation of the Exp1 Language

The first version of the specification of the calculator for the Exp1 language is using a rather verbose
style, since we are presenting it in detail, including its explicit dependence on the pre-defined builtin
semantic primitives such as integer arithmetic operations such as intAdd, intSub, intMul, etc. In the
following we will show more concise versions of the specification, using the usual arithmetic operators
which are just shorter syntax for the builtin arithmetic primitives.
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function eval
input Exp inExp;
output Integer outlInteger;
algorithm
outInteger := matchcontinue inExp
local Integer vl1,v2,v3;
Exp el,e2;
case INTconst (vl) then vl; /* evaluation of an integer node */
/* is the integer value itself */

/* Evaluation of an addition node ADDop is v3, if v3 is the result of
* adding the evaluated results of its children el and e2
* Subtraction, multiplication, division operators have similar specs.
*/
case ADDop (el,e2) equation
vl = eval(el); v2 = eval(e2); v3

intAdd(vl,v2); then v3;

case SUBop(el,e2) equation
vl = eval(el); vv2 = eval(e2); v3 = intSub(vl,v2); then v3;

case MULop (el,e2) equation
vl = eval(el); v2 = eval(e2); Vv3

intMul (v1,v2); then v3;

case DIVop(el,e2) equation
vl = eval(el); vv2 = eval(e2); v3 = intDiv(vl,v2); then v3;

case NEGop (el) equation
vl = eval(el); v2 = intNeg(vl); then v2;
end matchcontinue;

end eval;

In the eval function, which contains six cases, the first case has no constraint equations: it immediately
returns a value.

case INTconst (vl) then vl; /* eval of an integer nodef */

This case states that the evaluation of an integer node containing an integer valued constant ival will
return the integer constant itself. The operational interpretation of the case is to match the argument to
eval against the special case pattern INTconst (v1) for an integer constant expression tree. If there is a
match, the pattern variable v1 will be bound to the corresponding part of the tree. Then the local
equations will be checked (there are actually no local equations in this case) to see if they are fulfilled.
Finally, if the local equations are fulfilled, the integer constant value bound to ival will be returned as
the result.

We now turn to the second case of eval, which is specifying the evaluation of addition nodes labeled
ADDop:

case ADDop(el,e2) equation
vl = eval(el); v2 = eval(e2); v3 = inAdd(vl,v2); then v3;

For this case to apply, the pattern ADDop (el, e2) must match the actual argument to eval, which in
this case is an abstract syntax tree of the expression to be evaluated. If there is a match, the variables e1
and e2 will be bound the two child nodes of the ADDop node, respectively. Then the local equations of
the case will be checked, in the order left to right. The first local equation states that the result of
eval (el) will be bound to v1 if successful, the second states that the result of eval (e2) will be bound
to v2 if successful.

If the first two local equations are successfully solved, then the third local equation v3 =
intAdd (vl,v2) will be checked. This local equation refers to a pre-defined MetaModelica function
called intadd for addition of integer values. For a full set of pre-defined functions, including all
common operations on integers and real numbers, see Appendix B. This third local equation means that
the result of adding integer values bound to v1 and v2 will be bound to v3. Finally, if all local equations
are successful, v3 will be returned as the result of the whole case.
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The cases specifying the semantics of subtraction (SUBop), multiplication (MULop) and integer
division (DIvop) have exactly the same structure, apart from the fact that they map to different
predefined MetaModelica operators such as intSub (-), intMul (*), and intDiv (/).

The last case of the function eval specifies the semantics of a unary operator, unary integer
negation, (example expression: -13):

case NEGop (el) equation

vl = eval(el); v2 = intNeg(vl); then v2;

Here the expression tree NEGop (e) with constructor NEGop has only one subtree denoted by e. There
are two local equations: the expression e should succeed in evaluating to some value v1, and the integer
negation of v1 will be bound to v2. Then the result of NEGop (e) will be the value v2.

It is possible to express the specification of the eval evaluator more concisely by using arithmetic
operators such as +, -, *, etc., which is just different syntax for the builtin operations intAdd, intSub,
intMul, etc.:

function eval

input Exp inExp;

output Integer outlInteger;
algorithm

outInteger :=

matchcontinue inExp
local Integer vl1,v2;

Exp el,e2;

case INTconst(vl) then vl;
case ADDop (el,e2) equation

vl = eval(el; v2 = eval(e2; then vl1+v2;
case SUBop(el,e2) equation

vl = eval(el); v2 = eval(e2); then v1-v2;
case MULop (el,e2) equation

vl = eval(el); v2 = eval(e2); then vl1*v2;
case DIVop(el,e2) equation

vl = eval(el); v2 = eval (e2); then vl1/v2;
case NEGop (el) equation

vl = eval (el); then -vi1;

end matchcontinue;

end eval;

2143 Using Named Pattern Matching for Exp1

So far we have used positional matching of values such as inExp to patterns such as Addop (el,e2).
The MetaModelica language also allows using named pattern matching, using the record field names of
the corresponding record declaration to specify the pattern arguments. Thus, the pattern Addop (el, e2)
would appear as ADDop (expl=el, exp2=e2) using named pattern matching. One advantage with
named pattern matching is that only the parts of the pattern arguments that participate in the matching
need to be specified. The wildcard arguments need not be specified.

Below we have changed all cases in the previous eval function example to use named pattern
matching:
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function eval
input Exp inExp;
output Integer outlInteger;
algorithm
outInteger := matchcontinue inExp
local Integer vl1,v2;
Exp el,e2;
case INTconst(vl) then vl;
case ADDop (expl=el, exp2=e2)
equation
vl = eval(el; v2 = eval(e2; then vl1+v2;
case SUBop (expl=el, exp2=e2)

equation
vl = eval (el); v2 = eval(e2); then v1-v2;
case MULop (expl=el, exp2=e2)
equation
vl = eval(el); v2 = eval(e2); then vl1*v2;
case DIVop (expl=el, exp2=e2)
equation
vl = eval (el); v2 = eval (e2); then v1/v2;
case NEGop (exp=el)
equation
vl = eval (el); then -vl1;
end matchcontinue;
end eval;

2.2 Exp2 — Using Parameterized Abstract Syntax

An alternative, more parameterized style of abstract syntax is to collect similar operators in groups: all
binary operators in one group, unary operators in one group, etc. The operator will then become a child
of a BINARY node rather than being represented as the node type itself. This is actually more
complicated than the previous abstract syntax for our simple language Exp1 but simplifies the semantic
description of languages with many operators.

The Exp2 expression language is the same textual language as Expl, but the specification uses the
parameterized abstract syntax style which has consequences for the structure of both the abstract syntax
and the semantic cases of the language specification.

We will continue to use the “simple” abstract representation in several language definitions, but
switch to the parameterized abstract syntax for certain more complicated languages.

221 Parameterized Abstract Syntax of Exp1

Below is a parameterized abstract syntax for the previously introduced language Expl, using the two
nodes BINARY and UNARY for grouping. The Exp2 abstract syntax shown in the next section has the
same structure, but with node constructors renamed to shorter names :

uniontype Exp
record INTconst Integer int; end INTconst;

record BINARY Exp expl; BinOp binOp; Exp exp2; end BINARY;
record UNARY UnOp unOp; Exp exp; end UNARY;
end Exp;

uniontype BinOp
record ADDop end ADDop;
record SUBop end SUBop;
record MULop end MULop;
record DIVop end DIVop;
end BinOp;

uniontype UnOp
record NEGop end NEGop;
end BinOp;
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BINARY

INTconst ADDop BINARY
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Figure 2-2. A parameterized abstract syntax tree of 12+5*13 in the language Expl. Compare to the
abstract syntax tree in Figure 2-1.

222 Parameterized Abstract Syntax of Exp2

Here follows the abstract syntax of the Exp2 language. The two node constructors BINARY and UNARY
have been introduced to represent any binary or unary operator, respectively. Constructor names have
been shortened to INT, ADD, SUB, MUL, DIV and NEG.
uniontype Exp
record INT Integer int; end INT;
record BINARY Exp expl; BinOp binOp; Exp exp2; end BINARY;

record UNARY UnOp unOp; Exp exp; end UNARY;
end Exp;

uniontype BinOp
record ADD end ADD;
record SUB end SUB;
record MUL end MUL;
record DIV end DIV;
end BinOp;

uniontype UnOp
record NEG end NEG;
end BinOp;

2.2.3 Semantics of Exp2

As in the previous specification of Expl, we specify the interpretive semantics of Exp2 via a series of
cases expressed as case-branches in match-expressions comprising the bodies of the evaluation
functions. However, first we need to introduce the notion of tuples in Modelica, since this is used in two
of the evaluation functions.

2231 Tuples in MetaModelica

Tuples are like records, but without field names. They can be used directly, without previous declaration
of a corresponding tuple type.

The syntax of a tuple is a comma-separated list of values or variables, e.g. (..., ..., ...). The following
is a tuple of a real value and a string value, using the tuple data constructor:

(3.14, "this is a string")
Tuples already exist in a limited way in previous versions of Modelica since functions with multiple
results are called using a tuple for receiving results, e.g.:

(a,b,c) := foo(x, 2, 3, 5);
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2.23.2 The Exp2 Evaluator

Below follows the semantic cases for the expression language Exp2, embedded in the functions eval,
applyBinop, and applyUnop. As already mentioned, constructor names have been shortened
compared to the specification of Expl. Two cases have been introduced for the constructors BINARY and
UNARY, which capture the common characteristics of all binary and unary operators, respectively. In
addition to eval, two new functions applyBinop and applyUnop have been introduced, which
describe the special properties of each binary and unary operator, respectively.
First we show the function header of the eval function, including the beginning of the match-
expression:
function eval
input Exp inExp;
output Integer outlInteger;
algorithm
outInteger:=
matchcontinue inExp
local
Integer ival,vl,v2,v3; Exp el,e2,e;
BinOp binop; UnOp unop;

Evaluation of an INT node gives the integer constant value itself:

case INT (ival) then ival;

Evaluation of a binary operator node BINARY gives v3, if v3 is the result of successfully applying the
binary operator to v1 and v2, which are the evaluated results of its children e1 and e2:

case BINARY (el,binop,e2) equation

vl = eval (el);

v2 = eval (e2);

v3 = applyBinop (binop, vl1, v2);
then v3;

Evaluation of a unary operator node UNARY gives v2, if its child e can be successfully evaluated to a
value v1, and the unary operator can be successfully applied to value v1, giving the result value v2.

case UNARY (unop,e) equation
vl = eval(e);
v2 = applyUnop (unop, vl1);
then v2;
end matchcontinue;
end eval;

The Exp2 eval function can be made much more concise if we eliminate some intermediate variables
and corresponding equations:

function eval
input Exp inExp;
output Integer outlInteger;
algorithm
outInteger:=
matchcontinue inExp
local
Integer ival; Exp el,e2,e;
BinOp binop; UnOp unop;
case INT (ival) then ival;
case BINARY (el,binop,e2) then applyBinop (binop, eval(el), eval(e2));
case UNARY (unop,e) then applyUnop (unop, eval(e));
end matchcontinue;
end eval;

Next to be presented is the function applyBinop which accepts a binary operator and two integer
values.
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function applyBinop
input BinOp op;
input Integer argl;
input Integer arg2;
output Integer outlInteger;
algorithm
outInteger:= matchcontinue (op,argl,arg?)
local Integer vl1,v2;

case (ADD(),vl,v2) then vl1+v2;
case (SUB(),vl,v2) then v1-v2;
case (MUL(),vl,v2) then v1*v2;
case (DIV(),vl,v2) then vl1/v2;

end matchcontinue;
end applyBinop;

If the passed binary operator successfully can be applied to the integer argument values an integer result
will be returned. Note that we construct a tuple of three input values (op,argl,arg2) in the match-
expression which is matched against corresponding patterns in the case branches.

Note: The reader might wonder why we do not directly reference the function input arguments argl
and arg2 in the case, instead of doing a pattern matching to v1 and v2? The reason is a limitation in the
current version of the MetaModelica subset compiler which prevents you from accessing function input
arguments except in match-expression headers. See also Section 5.14.2.

Finally we present the function applyUnop which accepts a unary operator and an integer value. If
the operator successfully can be applied to this value an integer result will be returned.

function applyUnop

input UnOp op;

input Integer argl;

output Integer outlInteger;

algorithm
outInteger:= matchcontinue (op,argl)
local Integer v;
case (NEG(),v) then -v;
end matchcontinue;
end applyUnop;

For the small language Exp2 the semantic description has become more complicated since we now need
three functions, eval, applyBinop and applyUnop, instead of just eval. In the following, we will use
the simple abstract syntax style for small specifications. The parameterized abstract syntax style will
only be used for larger specifications where it actually helps in structuring and simplifying the
specification.

2.3 Recursion and Failure in MetaModelica

Before continuing the series of language specifications expressed in MetaModelica, it is will be useful to
say a few words about the MetaModelica language itself. A more in-depth treatment of these topics can
be found in Chapter 6.

2.31 Short Introduction to Declarative Programming in MetaModelica

We have already stated that MetaModelica can be used as a declarative specification language for
writing programming language specifications. Since Modelica is declarative, it can also be viewed as a
functional programming language. A MetaModelica function containing match-expressions maps inputs
to outputs, just as an ordinary function, but also has two additional properties:

e Functions containing match-expressions can succeed or fail.
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e Local backtracking between cases can occur in match-expressions. This means that if a case fails
because one of its equations or function call fail () or has a run-time failure (e.g. division by
zero, index out of bounds, etc.), the next case is tried.

The fac example below shows a function calculating factorials. This is an example of using
MetaModelica not for language specification, but to state a small declarative (i.e., functional) program:
function fac
input Integer inValue;
output Integer outValue;
algorithm
outValue:= matchcontinue invalue
local Integer n;
case 0 then 1;
case n then if n>0 then n*fac(n-1) else fail();
end matchcontinue;
end fac;

The first three lines specifies the name (fac) and type signature of the function. In this example an
integer factorial function is computed, which means that both the input parameter and the result are of
type Integer.

Next comes the two cases, which make up the body of the match-expression in function. The first
case in the above example can be interpreted as follows:

e If the function is called to compute the factorial of the value O (i.e. matching the “pattern”
fac (0)), then the result is the value 1.

This corresponds to the base case of a recursive function calculating factorials.

The first case will be invoked if the argument matches the pattern fac (0) of the case. If this is not
the case, the next case will be tried, if this case does not match, the next one will be tried, and so on. If
no case matches the argument(s), the call to the function will fail.

The second case of the fac function handles the general case of a factorial function computation
when the input value n is greater than zero, i.e., n>0. It can be interpreted as follows:

e If the factorial is computed on a value n, i.e., fac (n), and n>0, then compute n*fac (n-1)
which is returned as the result of the case.

23141 Handling Failure

If the fac function is used to compute the factorial of a negative value an important property of
MetaModelica is demonstrated, since the fac function will in this case fail.

A factorial call with a negative argument does not match the first case, since all negative values
differs from zero. The second case matches, but fails, since the condition n>0 is not fulfilled for negative
values of n.

Thus the function will fail, meaning that it will not return an ordinary value to the calling function.
After a fail has occurred in a case or in some function called from that case, backtracking takes place,
and the next case in the current match-expression is tried instead.

Functions with built-in failure handling can be useful, as in the following example:

function facFailsafe

input Integer inValue;
input Integer outValue;

algorithm
outValue := matchcontinue inValue
local Integer n,result; String str result;
case n
equation
str result = intString(fac(n));
print ("Res: "); print(str result); print("\n");
then 0; N
case n

equation
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failure (result = fac(n));
print ("Cannot apply factorial relation to negative n."); print ("\n");
then 1;

end matchcontinue;
end facFailsafe;

The function facFailsafe has two cases corresponding to the two cases of correct and incorrect
arguments. Since the patterns are overlapping and we need to continue trying the next case. We use the
failure(...) primitive to check for failure of the first equation in the second case.

The first case handles the case where the fac function computes the value and returns successfully.
In this case the value is converted to a string and printed using the built-in MetaModelica print
function.

The second case is tried if the first case fails, for example if the function facFailsafe is called with
a negative argument, e.g. fac (-1).

In the second case a new operator, failure(...), is introduced in the expression
failure(result = fac(n)) which succeeds if the call fac (n) fails. Then an error message is
printed by the second case.

It is important to note that fail is quite different from returning the logical value false. A function
returning false would still succeed since it returns a value. The builtin operator not operates on the
logical values true and false, and is quite different from the failure operator. See also Section
6.1.1.

24 The Assignments Language — Introducing Environments

The Assignments language extends our simple evaluator with variables. For example, the assignment:
a := 5 + 3*10

will store the value of the evaluated expression (here 35) into the variable a. The value of this variable
can later be looked up and used for computing other expressions:

b := 100 + a
d :=10 * b

giving the values 135 and 1350 for b and d, respectively. Expressions may also contain embedded
assignments as in the example below:

e := 50 4+ (d := a + 100)

241 Environments

To handle variables, we need a mechanism for associating values with identifiers. This mapping from
identifiers to values is called an environment, and can be represented as a set of pairs (identifier,value).
A function called lookup is introduced for looking up the associated value for a given identifier. An
association of some value or other structure to an identifier is called a binding. An identifier is bound to
a value within some environment.

There are several possible choices of data structures for representing environments. The simplest
representation, often used in formal specifications, is to use a linked list of (identifier,value) pairs. This
has the advantage of simplicity, but gives long lookup times due to linear search if there are many
identifiers in the list. Other, more complicated, choices are binary trees or hash tables. Such
representations are commonly used to provide fast lookup in product quality compilers or interpreters.
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Figure 2-3. An environment represented as a linked list, containing name-value pairs for a, b and d.

Here we will regard the environment as an abstract data structure only accessed through access functions
such as lookup, to avoid exposing specific low level implementation details. This gives us freedom to
change the underlying implementation without changing the language specification. Unfortunately,
many published formal language specifications have exposed such details and made themselves
dependent on a linked list implementation. In the following we will initially use a linked list
implementation of the environment abstract data type, which could be changed in the future when
generating production quality translators.

In this simple Assignments language, an integer value is stored in the environment for each variable.
Compilers need other kinds of values such as descriptors, containing various information for example
location, type, length, etc., associated to each name. Compilers also use more complicated structures,
called symbol tables, to store information associated with names. An environment can be regarded as a
simplified abstract view of the symbol table.

242 Concrete Syntax of the Assignments Language

The concrete syntax of the Assignments language follows below. A couple of new cases have been
added compared to the Exp language: one case for the assignment statement, two cases for the sequence
of assignments, one case for allowing assignments as subexpressions, and finally the program production
has been extended to first take a sequence of assignments, then a separating semicolon, and lastly an
ending expression.

/* Yacc BNF grammar of the expression language called Assignments */

program : assignments T SEMIC expression

assignments :  assignment
| assignments assignment

assignment : ident T ASSIGN expression

expression : term
| expression weak operator term

term : u_element
| term strong operator wu element

u_element : element
| unary operator element

element : T INTCONST
| T LPAREN expression T RPAREN
\ T LPAREN assignment T RPAREN

weak operator : T ADD | T SUB
strong operator : T MUL | T DIV
unary operator : T SUB
The lexical specification for the Assignments language contains three more tokens, ":=", ident, and

"; ", compared to the Expl language. It is a more complete lexical specification, making extensive use
of regular expressions.
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White space represents one or more blanks, tabs or new lines, and is ignored, i.e., no token is
returned. A letter is a letter a-z or A-Z or underscore. An identifier (ident) is a letter followed by zero or
more letters or digits. A digit is a character within the range 0-9. Digits is one or more of digit. An
integer constant (intcon) is the same as digits. The function lex ident returns the token T IDENT
and converts the scanned name to an atom representation stored in the global variable yylval.voidp
which is used by the parser to obtain the identifier. The function lex icon returns the token
T INTCONST and stores the integer constant converted into binary form in the same yyval.voidp.

/* Lex style lexical syntax of tokens in the language Assignments */

whitespace [ \t\n]+

letter [a-zA-Z ]

ident {letter} ({letter} | {digit})*
digit [0-9]

digits {digit}+

oo
5%

{whitespace} ;

{ident} return lex ident(); /* T _IDENT */
{digits} return lex icon(); /* T INTCONST */
"o=" return T ASSIGN; - -

"4 return T ADD;

"= return T SUB;

ten return T MUL;

m/m return T DIV;

" return T LPAREN;
" return T RPAREN;
"y return T SEMIC;

24.3 Abstract Syntax of the Assignments Language

We introduce a few additional node types compared to the Expl language: the ASSIGN constructor
representing assignment and the ITDENT constructor for identifiers.
uniontype Exp
record INT Integer integer; end INT;
record IDENT Ident ident; end IDENT;
record BINARY Exp expl; BinOp binOp; Exp exp2; end BINARY;
record UNARY UnOp unOp; Exp exp; end UNARY;

record ASSIGN Ident ident; Exp exp; end ASSIGN;
end Exp;

Now we have also added a new abstract syntax type Program that represents an entire program as a list
of assignments followed by an expression:
uniontype Program

record PROGRAM ExpLst expLst; Exp exp; end PROGRAM;
end Program;

type ExpLst = list<Exp>;

The first list of expressions contains the initial list of assignments made before the ending expression
will be evaluated.

The new type Ident is exactly the same as the builtin Modelica type String. The Modelica type
declaration just introduces new names for existing types. The type Value is the same as Integer and
represents integer values.

type Ident = String;
type Value = Integer;

The environment type Env is represented as a list of pairs (tuples) of (identifier,value) representing
bindings of type VarBnd of identifiers to values. The MetaModelica syntax for tuples is: (iteml, item?2,
... itemN) of which a pair is a special case with two items. The MetaModelica 1ist type constructor
denotes a list type.
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type VarBnd
type Env

tuple<Ident,Value>;
list<VarBnd>;

Below follows all abstract syntax declarations needed for the specification of the Assignments language.
/* Complete abstract syntax for the Assignments language */

uniontype Exp
record INT Integer integer; end INT;
record IDENT Ident ident; end IDENT;
record BINARY Exp expl; BinOp binOp; Exp exp2; end BINARY;
record UNARY UnOp unOp; Exp exp; end UNARY;
record ASSIGN Ident ident; Exp exp; end ASSIGN;
end Exp;

uniontype BinOp
record ADD end ADD;
record SUB end SUB;
record MUL end MUL;
record DIV end DIV;
end BinOp;

uniontype UnOp
record NEG end NEG;
end BinOp;

uniontype Program
record PROGRAM ExpLst expLst; Exp exp; end PROGRAM;
end Program;

type ExpLst = list<Exp>;

type Ident = String;

/* Values stored in environments */
type Value = Integer;

/* Bindings and environments */

type VarBnd = tuple<Ident,Value>;
type Env = list<VarBnd>;

244 Semantics of the Assignments Language

As previously mentioned, the Assignments language introduces the treatment of variables and the
assignment statement to the former Exp2 language. Adding variables means that we need to remember
their values between one expression and the next. This is handled by an environment (also known as
evaluation context), which in our case is represented as list of variable-value pairs.

A semantic case will evaluate each descendent expression in one environment, modify the
environment if necessary, and then pass the value of the expression and the new environment to the next
evaluation.

2441 Semantics of Lookup in Environments

To check whether an identifier is already present in an environment, and if so, return its value, we
introduce the function lookup, see also Section 2.5.4.8. If there is no value associated with the
identifier, 1ookup will fail.

function lookup
input Env inEnv;
input Ident inIdent;
output Value outlInteger;
algorithm
outInteger:= matchcontinue (inEnv,inIdent)
local Ident id2,id; Value value; Env rest;
case ( (id2,value) :: rest, id)
then if id ==& i1id2 then value else lookup (rest, id);
end matchcontinue;
end lookup;
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This version of lookup performs a linear search of an environment represented as a list of pairs
(identifier,value).

The case works as follows: Either identifier id is found (id==s&id?2) in the first pair of the list, and
value is returned, or it is not found in the first pair of the list, and lookup will recursively search the
rest of the list. If found, value is returned, otherwise the function will fail since there is no match.

In more detail, the pattern (id2,value) :: rest is matched against the environment argument
inEnv. The : : is the cons operator for adding a new element at the front of a list; and rest is a pattern
variable the becomes bound to the rest of the list. If there is a match, id2 will become bound to the
identifier of that pair, and value will be bound to its associated value. If the condition id ==& id2 is
fulfilled, then value will be returned as the result of 1ookup, otherwise a recursive call to lookup is
performed.

For example, the environment (env) depicted in Figure 2-3 shown is below:

{(a,35), (b,135), (d,1350)}

The list is the result of several cons operations:
(a,35) :: (b,135) :: (d,1350) :: {}

An example lookup call:

lookup (env, a)

will match the pattern

lookup ((id2,value) :: rest, id)

of the first case, and thereby bind id2 to a, value to 35, id to a, and rest to { (b, 135), (d,1350) }
Since the condition id==&1d2 is fulfilled, the value 35 will be returned.

Below we also show a slightly more complicated variant of 1ookup, which does the same job, but is
interesting from a semantic point of view. It has two cases corresponding to the two cases. Since the
patterns are overlapping and we need to continue trying the next case if the first case fails. We use the
failure(...) primitive to check for failure of the first equation in the second case.

function lookup
input Env inEnv;
input Ident inIdent;
output Value outValue;
algorithm
outValue:=
matchcontinue (inEnv, inIdent)
local Ident id2,id; Value value; Env rest;
/* Identifier id is found in the first pair of the list, and value
* is returned. */
case ( (id2,value):: ,id)
equation
equality(id = id2);
then value;
/* Identifier id is not found in the first pair of the list, and lookup will
* recursively search the rest of the list. If found, value is returned. */
case ( (id2, )::rest, id)
equation
failure (equality (id = 1d2)); value = lookup(rest, id);
then value;
end matchcontinue;
end lookup;

The first case, also shown below, deals with the case when the identifier is present in the leftmost (most
recent) pair in the environment.

case ( (id2,value) :: ,1d)

equation equality(id = id2); then value;

It will try to match the (id2,value) ::  pattern against the environment argument. The underscore
is a “wildcard” pattern that matches anything. If there is a match, id2 will become bound to the identifier
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of that pair, and value will be bound to its associated value. If the local equation id = id2 is fulfilled,
then value will be returned as the result of 1ookup, otherwise the next case will be applied.

The second case of Lookup deals with the case when the identifier might be present in the rest of the
list (i.e., not in the leftmost pair). The pattern (id2, ) :: rest binds id2 to the identifier in the
leftmost pair, and rest to the rest of the list.

For a call such as lookup (env, b), id2 will be bound to a, rest to { (b,135), (d,1350) }, and
idto b.

The first local equation of the second case below states that id is not in the leftmost pair ( (a, 35) in
the above example call), whereas the second local equation retrieves the value from the rest of the
environment if it succeeds.

case ( (id2, ):: rest, id)
equation
failure (equality(id = id2)); value = lookup(rest, id);

then value;

2442 Updating and Extending Environments at Lookup

In the Assignments language we have the following two cases for the occurrence of an identifier (i.e., a
variable) in an expression:

e If the variable is not yet in the environment, initialize it to zero and return its zero value and the
new environment containing the added variable.

e Ifthe variable is already in the environment, return its value together with the environment.

This is expressed by the function 1cokupextend below:

function lookupextend
input Env inEnv;
input Ident inIdent;
output Env outEnv;
output Value outValue;
algorithm
(outEnv, outValue) :=
matchcontinue (inEnv,inIdent)
local Env env; Ident id; Value value;
case (env, id)

equation
fajilure (value = lookup (env, id));
then ( (id,0) :: env), 0);
case (env, id)
equation
value = lookup (env, id);

then (env, value);

end matchcontinue;
end lookupextend;

For example, the following call on the above example environment env:

lookupextend (env, x)

will return the following environment together with the value 0:

{(x,0), (a,35), (b,135), (d4,1350)}

For the sake of completeness, we also show a version of lookupextend with two cases corresponding
to the above two cases concerning the occurrence of an identifier. Both cases are using the same pattern
(env, id). Here we need to continue matching with the next cases if the current case fails — a kind of
exception handling for fail exceptions. A match-expression would immediately return with a fail if the
current case fails.

function lookupextend

input Env inEnv;
input Ident inIdent;
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output Env outEnv;

output Value outValue;
algorithm

(outEnv, outValue) :=

matchcontinue (inEnv, inIdent)

local Env env; Ident id; Value value;
case (env, id)
equation
failure (value = lookup (env, id));
then ( (id,0) :: env), 0);
case (env,id)
equation
value = lookup (env, id);

then (env, value);
end matchcontinue;
end lookupextend;

For the evaluation of an assignment (node ASSIGN) we need to store the variable and its value in an
updated environment, expressed by the following two cases:

e If the variable on the left hand side of the assignment is not yet in the environment, associate it
with the value obtained from evaluating the expression on the right hand side, store this in the
environment, and return the new value and the updated environment.

e If the variable on the left hand side is already in the environment, replace the current variable
value with the value from the right hand side, and return the new value and the updated
environment.

We actually cheat a bit in the function update below. Both 1ookupextend and update add a new pair
(id,value) at the front of the environment represented as a list, even if the variable is already present.
Since lookup will always search the environment association list from beginning to end, it will always
return the most recent value, which gives the same semantics in terms of computational behavior but
consumes more storage than a solution which would locate the existing pair and replace the value. The
function update is as follows:
function update
input Env inEnv;
input Ident inIdent;
input Value inValue3;
output Env outEnv;
algorithm
outEnv:=
matchcontinue (inEnv,inIdent,inValue3)
local Env env; Ident id; Integer value;
case (env,id,value) then (id,value) :: env;
end matchcontinue;
end update;

For example, the following call to update the variable x in the above example environment env:
update (env, x, 999)

will give the following environment list:
{(x,999), (a,35), (b,135), (d4,1350)}

One more call update (env, x, 988) on the returned environment will give:
{(x,988), (x,999), (a,35), (b,135), (d4,1350)}

A call to lookup the variable x in the new environment (here called env3):

lookup (env3, x)

will return the most recent value of x, which is 988.
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2443 Evaluation Semantics

The eval function from the earlier Exp2 language has been extended with cases for assignment
(ASSIGN) and variables (IDENT), as well as accepting an environment as an extra argument and
returning an (updated) environment as a result. In the case to evaluate an IDENT node, lookupextend
returns a possibly updated environment env2 and the value associated with the identifier id in the
current environment env. If there is no such value, identifier id will be bound to zero and the current
environment will be updated to become env?2.

function eval
input Env inEnv;
input Exp inExp;
output Env outEnv;
output Integer outlInteger;
algorithm
(outEnv, outlInteger) :=
matchcontinue (inEnv, inExp)
local
Env env,envl,env2,env3;
Integer ival, value, vl1,v2,v3;
Ident id;
Exp exp,el,e2,e;
BinOp binop; UnOp unop;

/* eval of an integer constant node INT in an environment is the integer
* value together with the unchanged environment.

*/

case (env,INT (ival)) then (env,ival);

/* eval of an identifier node IDENT will lookup the identifier and return a
* value if present; otherwise insert a binding to zero, and return zero.
*/

case (env, IDENT (id))
equation
(env2,value) = lookupextend(env, id);
then (env2,value);

/* eval of an assignment node returns the updated environment and
* the assigned value.

*/
case (env,ASSIGN (id,exp))
equation
(env2,value) = eval (env, exp);
env3 = update(env2, id, value);

then (env3,value);

The cases below specify the evaluation of the binary (ADD, SUB, MUL, DIV) and unary (NEG) operators.
The first case specifies that the evaluation of an binary node BINARY (el,binop,e2) in an
environment envl is a possibly changed environment env3 and a value v3, provided that function eval
succeeds in evaluating el to the value v2 and possibly a new environment env2, and e2 successfully
evaluates e2 to the value v2 and possibly a new environment env3. Finally, the applyBinop function
is used to apply the operator to the two evaluated values. The reason for returning new environments is
that expressions may contain embedded assignments, for example: e := 35+ (d := a + 100). The
case for unary operators is similar.

/* eval of a binary node BINARY (el,binop,e2), etc. in an environment env */
case (envl,BINARY (el, (binop,e2)))

equation
(env2,vl) = eval(envl, el);
(env3,v2) = eval (env2, e2);

v3 = applyBinop (binop, v1, v2);
then (env3,v3);

/* eval of a unary node UNARY (unop,e), etc. in an environment env */
case (envl,UNARY (unop,e))
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equation
(env2,vl) = eval (envl, e);
v2 = applyUnop (unop, vl1);
then (env2,v2);
end matchcontinue;
end eval;

The functions applyBinop and applyUnop are not shown here since they are unchanged from the
Exp2 specification.

In Section 2.6 the Assignments language will be extended into a language called AssignTwoType,
that can handle expressions containing constants and variables of two types: Real and Integer, which
has interesting consequences for the semantics of the evaluation cases and storing values in the
environment.

2.5 PAM - Introducing Control Structures and 1/O

PAM is a Pascal-like language that is too small to be useful for serious programming, but big enough to
illustrate several important features of programming languages such as control structures, including
loops (but excluding goto), and simple input/output. However, it does not include procedures/functions
and multiple types. Only integer variables and values are dealt with during computation, although
Boolean values can occur temporarily in comparisons within if- or while-statements.

2.51 Examples of PAM Programs

A PAM program consists of a series of statements, as in the example below where the factorial of a
number N is computed. First the number N is read from the input stream. Then the special case of
factorial of zero is dealt with, giving the value 1. Note that factorial of a negative number is not handled
by this program, not even by an error message since there are no strings in this language.

The factorial for N>0 is computed by the else-part of the if-statement, which contains a definite loop:

to expression do series-of-statement end

This loop computes series-of-statement a definite number of times given by first evaluating expression.
In the example below, to N do ... end will compute the factorial by iterating N times.
Alternatively, we could have expressed this as an indefinite loop, i.e., a while statement:

while comparison do series-of-statement end

which will evaluate series-of-statement as long as comparison is true.

/* Computing factorial of the number N, and store in variable Fak */
/* N is read from the input stream; Fak is written to the output */
/* Fak is 1 * 2 * ... (N-1) * N */
read N;
if N=0 then
Fak := 1;
else
if N>0 then
Fak := 1;
I :=0;
to N do
I := I+1;
Fak := Fak*I;
end
endif
endif
write Fak;

Variables are not declared in this language, they are created when they are assigned values. The usual
arithmetic operators “+”, “-”” with weak precedence and “*”, */”” with stronger precedence, are included.
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Comparisons are expressed by the relational operators “<”, “<=", “="_“>="_“>" One small change has
been done to PAM as compared to Pagan’s book: the reserved word FI has been replaced by the more
readable endif.

25.2 Concrete Syntax of PAM

The concrete syntax of the PAM language is given as a BNF grammar below. A program is a
series_of statement. A statement is an input statement (read idl,id2,...); an output statement
(write idl,id2...); an assignment statement (id := expression); an if-then conditional statement
(if expression then series-of-statement endif), an if-then-else conditional statement (if expression
then series-of-statement else series-of-statement endif), a definite loop for a fixed number of
iterations (to expression do series-of-statement end), or a while loop for an indefinite number of
iterations (while comparison do series-of-statement end). The usual arithmetic expressions are
included, as well as comparisons using relational operators.

/* Yacc BNF grammar of the PAM language */

program :  series

series : statement
| statements series

statement :  input statement T SEMIC
| output statement T SEMIC
| assignment statement T SEMIC
| conditional statement
| definite loop
|

while loop
input statement : T READ variable list
output statement : T WRITE variable list
variable list : variable

| variable variable list
assignment statement : <variable T ASSIGN expression
conditional statement : T IF comparison T THEN series T ENDIF

| T _IF comparison T THEN series
T ELSE series T ENDIF

definite loop | T TO expression T DO series T END
while loop | T WHILE comparison T DO series T END
expression : term

| expression weak operator term

term : element
| term strong operator element

element : constant
| wvariable
\ T LPAREN expression T RPAREN

comparison : expression relation expression
variable : T IDENT

constant : T INTCONST

relation : TEQ | TLE | TLT TGT | T GE | T NE
weak operator : T ADD | T SUB

strong operator : T MUL | T DIV
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The lexical syntax of the PAM language has two extensions compared to the previously presented
Assignments language: tokens for relational operators “<”, “<=", “=" “<>” “>="_“>" and tokens for
reserved words: if, then, else, endif, while, do, end, to, read, write. The function lex ident
checks if a possible identifier is a reserved word, and in that case returns one of the tokens T IF,
T THEN, T ELSE,T ENDIF, T ELSE,T WHILE,T DO, T END,T TO,T READOr T WRITE.

/* Lex style lexical syntax of tokens in the PAM language */

whitespace [ \t\n]+

letter [a—-zA-7]

ident {letter} ({letter} | {digit})™*

digit [0-9]

digits {digit}+

icon {digits}

{whitespace} ;

{ident} return lex ident(); /* T IDENT or reserved word tokens */

/* Reserved words: if,then,else,endif,while,do,end, to,read,write */

{digits} return lex icon(); /* T _INTCONST */
"o=" return T ASSIGN;

"4 return T _ADD;

"= return T SUB;

ten return T MUL;

n/m return T DIV;

" return T LPAREN;
" return T RPAREN;

nen return T LT;
=" return T LE;
n"=n return T EQ;
"> return T_NE;
">=n return T GE;
n>n return T GT;

2.5.3 Abstract Syntax of PAM

Since PAM is slightly more complicated than previous languages we choose the parameterized style of
abstract syntax, first introduced in Section 2.2 and Section 2.2. This style is better at grouping related
semantic constructs and thus making the semantic specification more concise and better structured.

In comparison to the Assignments language, we have introduced relational operators (Re10p) and the
RELATION constructor which belongs to the set of expression nodes (Exp). There is also a union type
stmt for different kinds of statements. Note that statements are different from expressions in that they
do not return a value but update the value environment and/or modify the input or output stream.
However, in this simplified semantics the streams are implicit and not part of the semantic model to be
presented. The constructor SEQ allows the representation of statement sequences, whereas SKIP
represents the empty statement.

/* Parameterized abstract syntax for the PAM language */
type Ident = String;

uniontype BinOp
record ADD end ADD;
record SUB end SUB;
record MUL end MUL;
record DIV end DIV;
end BinOp;

uniontype RelOp
record EQ end EQ;
record GT end GT;
record LT end LT;
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record LE end LE;

record GE end GE;

record NE end NE;
end RelOp;

uniontype Exp
record INT Integer int; end INT;
record IDENT Ident ident; end IDENT;
record BINARY Exp expl; BinOp binOp; Exp exp2; end BINARY;
record RELATION Exp expl; RelOp relOp; Exp exp2; end RELATION;
end Exp;

type IdentlList = list<Ident>;
uniontype Stmt

record ASSIGN Ident ident; Exp exp; end ASSIGN; // Id := Exp
record IF Exp exp; Stmt stmtl; Stmt stmt2; end IF; // if Exp then Stmt..
record WHILE Exp exp; Stmt stmt; end WHILE; // while Exp do Stmt
record TODO Exp exp; Stmt stmt; end TODO; // to Exp do Stmt...
record READ  IdentList identList; end READ; // read idl,id2,...
record WRITE IdentList identList; end WRITE; // write idl,id2, ..
record SEQ Stmt stmtl; Stmt stmt2; end SEQ; // Stmtl; Stmt2
record SKIP end SKIP; // ; empty stmt

end Stmt;

The type specifications below are not part of the abstract syntax of the language constructs, but needed
to model the static and dynamic semantics of PAM. As for the Assignments language, the environment
(Env) is a mapping from identifiers to values, used to store and retrieve variable values. Here it is
represented as a list of pairs of variable bindings (VarBnd).

/* Types needed for modeling static and dynamic semantics */

/* Variable binding and environment/state type */
type VarBnd = tuple<Ident,Value>;

type Env = list<VarBnd>;

type Stream = list<Integer>;

type State = tuple<Env,Stream,Stream> "Environment, input stream,output stream";

uniontype Value "Value type needed for evaluated results"
record INTval Integer intval; end INTval;
record BOOLval Boolean boolval; end BOOLval;

end Value;

We also introduce a union type value for values obtained during expression evaluation. Even though
only Integer values tagged by the constructor INTval are stored in the environment, Boolean values,
represented by BOOLval (Boolean), occur when evaluating comparison functions.

Since PAM contains input and output statements, we need to model the overall state including both
variable bindings and input and output files. This could have been done (as in Pascal [ref **]) by
introducing two predefined variables in the environment denoting the standard input stream and output
stream, respectively. Since standard input/output streams are not part of the PAM language definition we
choose another solution. The concept of state is introduced, of type State, which is represented as a
triple of environment, input stream and output stream (Env, Stream, Stream). The term configuration
is sometimes used for this kind of state.

2.54 Semantics of PAM

The semantics of PAM is specified by several functions that contain groups of cases for similar
constructs. Expression evaluation together with binary and relational operators are described first, since
this is very close to previously presented expression languages. Then we present statement evaluation
including simple control structures and input/output. Finally some utility functions for lookup of
identifiers in environments, repeated evaluation, and I/O are defined.
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2541 Expression Evaluation

The eval function defines the semantics of expression evaluation. The first case specifies evaluation of
integer constant leaf nodes (INT (v) ) which evaluate independently of the environment (because of the
underscore wildcard ) into the same constant value v tagged by the constructor INTval.

We choose to introduce a special data type Value with constructors INTval and BOOLval for values
generated during the evaluation. Alternatively, we could have used the abstract syntax leaf node INT,
and introduced another node called BOOL. However, we chose the Value alternative, in order not to mix
up the type of values produced during evaluation with the node types of the abstract syntax. An
additional benefit of giving the specification a more clear type structure is that the MetaModelica
compiler will have better chances of detecting type errors in the specification.

function eval "Evaluation of expressions in the current environment"
input Env inEnv;
input Exp inExp;
output Value outValue;
algorithm
outValue:=
matchcontinue (inEnv, inExp)
local
Integer v,vl,v2,v3;
Env env;
Ident id;
Exp el,e2;
BinOp binop;
RelOp relop;
case (_,INT(v)) then INTval(v); // Integer constant v

The next two cases define the evaluation of identifier leaf nodes (IDENT (id) ). The first case describe
successful lookup of a variable value in the environment, returning a tagged integer value (INTval (v)).
The second case describes what happens if a variable is undefined. An error message is given and the
evaluation will fail.
case (env,IDENT(id)) then lookup (env, id); // Identifier id
case (env, IDENT (id))
equation // If id not declared, give an error

failure (v = lookup(env, id)); // message and fail by calling error()
then error ("Undefined identifier", id);

The last two cases specify evaluation of binary arithmetic operators and boolean relational operators,
respectively. These cases first take care of argument evaluation, which thus need not be repeated for
each case in the invoked functions applyBinop and applyRelop which compute the values to be
returned. Here we see the advantages of parameterized abstract syntax, which allows grouping of
constructs with similar structure. The last case returns values tagged BOOLval, which cannot be stored in
the environment, and are used only for comparisons in while- and if-statements.

case (env,BINARY (el,binop,e2)) // exprl binop expr2
equation
INTval (vl) = eval (env, el);
INTval (v2) = eval (env, e2);
v3 = applyBinop (binop, vl1, v2); then INTval (v3);
case (env,RELATION (el,relop,e2)) // exprl relop expr2
local Boolean v3;
equation
INTval (vl) = eval (env, el);
INTval (v2) = eval (env, e2);

v3 = applyRelop(relop, vl1, v2); then BOOLval (v3);
end matchcontinue;
end eval;

254.2 Arithmetic and Relational Operators

The functions applyBinop and applyRelop define the semantics of applying binary arithmetic
operators and binary boolean operators to integer arguments, respectively. Since argument evaluation
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has already been taken care of by the eval function, only one local equation is needed in each case to
invoke the appropriate predefined MetaModelica operation.

function applyBinop
"Apply a binary arithmetic operator to constant integer arguments"
input BinOp op;
input Integer argl;
input Integer arg2;
output Integer outlInteger;
algorithm
outInteger:= matchcontinue (op,argl,arg2)
local Integer x,y;

case (ADD(),x,y) then x + y;
case (SUB(),x,y) then x - y;
case (MUL(),x,y) then x * y;
case (DIV(),x,y) then x / y;

end matchcontinue;
end applyBinop;

function applyRelop "Apply a relation operator, returning a boolean value"
input RelOp op;
input Integer argl;
input Integer arg2;
output Boolean outBoolean;
algorithm
outBoolean :=
matchcontinue (op,argl,arg2)
local Integer x,Yy;

case (GT(),x,y) then (x > y);

case (LT(),x,y) then (x < y);
case (LE(),x,y) then (x <= y);
case (EQ(),x,y) then (x == y);
case (NE(),x,y) then (x <> y);
case (GE(),x,y) then (x >= y);
)
e

’

end applyRelop;

2543 Statement Evaluation

The evalstmt function defines the semantics of statements in the PAM language. In contrast to
expressions, statements return no values. Instead they modify the current state which contains variable
values, the input stream and the output stream. The type State is defined as follows:

type State = tuple<Env,Stream,Stream>;

Statements change the current state, returning a new updated state. This is expressed by the type
signature of evalstmt which is (State, Stmt) => State. Below we describe the function evalStmt
by explaining the semantics of each statement type separately.

First we show the function header and the beginning of the match-expression

function evalStmt
"Statement evaluation: map the current state into a new state"
input State inState;
input Stmt inStmt;
output State outState;
algorithm
outState :=
matchcontinue (inState, inStmt)
local
Value vl;
Env env,env2;
State state,statel,state2,state3;
Stream istream, istream2,ostream,ostream?;
Ident id; Exp el,comp;
Stmt sl,s2,stmtl,stmt2;
Integer nl,v2;
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The semantics of an assignment statement id := el is to first evaluate the expression e1 in the current
environment env, and then update env by associating identifier id with the value v1, giving a new
environment env2. The returned state contains the updated environment env?2 together with unchanged
input stream (is) and output stream (os).
case (env,ASSIGN(id,el)) /* Assignment */
equation

vl = eval (env, el);
env2 = update(env, id, vl); then env2;

The conditional statement occurs in two forms: a long form: i £ comparison then stmtl else stmt2
or a short form if comparison then stmtl. Both forms are represented by the abstract syntax node
(IF (comp, s1,s2)), where the short form has an empty statement (a SKIP node) in the else-part. Both
stmtl and stmt2 can be a sequence of statements, represented by the SEQ abstract syntax node.

The pattern statel as (env, , ) means that the state argument that matches (env, , ) will
also be bound to statel. The environment component of the state will be bound to env, whereas the
input and output components always match because of the wildcards ( , ).

The first case is the case where the comparison evaluates to true. Thus the then-part (statement s1)
will be evaluated, giving a new state state2, which is the result of the if-statement. The second case
covers the case where the comparison evaluates to false, causing the else-part (statement s2) to be
evaluated, giving a new state state2, which then becomes the result of the if-statement.

case (statel as (env, , ), IF(comp,sl,s2)) /* 1f true ... */
equation
BOOLval (true) = eval (env, comp);
state2 = evalStmt (statel, sl); then state2;
case (statel as (env, , ), IF(comp,sl,s2)) /* 1f false ... */
equation
BOOLval (false) = eval (env, comp);

state?2 = evalStmt (statel, s2); then state2;

These two cases can be compacted into one case, using a conditional expression:

case (state as (env, , ), IF(comp,sl,s2)) /*if Lo0 %/
then
if BOOLval (true) == eval (env, comp) then evalStmt (state, sl)
else if BOOLval (false) == eval (env, comp) then evalStmt (state, s2)

else fail();

The next case defines the semantics of the iterative while-statement. It is fundamentally different from
all cases we have previously encountered in that the while construct recursively refers to itself in the
local equation of the case. The meaning of while is the following: first evaluate the comparison comp in
the current state. If true, then evaluate the statement (sequence) s1, followed by recursive evaluation of
the while-loop. On the other hand, if the comparison evaluates to false, no further action takes place.

There are at least two ways to specify the semantics of while. The first version, shown in the case
immediately below, uses the availability of if-statements and empty statements (SKIP) in the language.
The if-statement will first evaluate the comparison comp. If the result is true, the then-branch will be
chosen, which consists of a sequence of two statements. The while body (s1) will first be evaluated,
followed by recursive evaluation of the while-loop once more. On the other hand, if the comparison
evaluates to false, the else-branch consisting of the empty statement (SKIP) will be chosen, and no
further action takes place.

Since the recursive invocation of while is tail-recursive (this occurs as the last action, at the end of
the then-branch), the MetaModelica compiler can implement this case efficiently, without consuming
stack space, similar to a conventional implementation that uses a backward jump. Note that this is only
possible if there are no other candidate cases in the function.

case (state,WHILE (comp,sl)) // while
equation
state2 = evalStmt (state, IF(comp,SEQ(sl,WHILE (comp,sl)),SKIP()));

then state2;
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The semantics of the while-statement can alternatively be modeled by the two cases below. The first
case, when the comparison evaluates to false, returns the current state unchanged. The second case, in
which the comparison evaluates to true, subsequently evaluates the while-body (s1) once, giving a new
state state2, after which the while-statement is recursively evaluated, giving the state state3 to be
returned.

case (state as (env, , ), WHILE(comp,sl)) // while false
equation
BOOLval (false) = eval (env,comp); then state;
case (state as (env, , ), WHILE (comp,sl)) // while true
equation
BOOLval (true) = eval (env,comp) ;

state2 = evalStmt (state,sl);
state3 = evalStmt (state2,WHILE (comp,sl)); then state3;

Both versions of the while semantics are OK. Since the previous version is slightly more compact, using
only one case, we choose that one in our final specification of PAM.

The definite iterative statement: to expression do statement end first evaluates expression el to
obtain some number n1, and provided that n1 is positive, repeatedly evaluates statement s1 the definite
number of times given by n1. The repeated evaluation is performed by the function repeatEval.

case (state as (env, , ), TODO(el,sl)) // to el do sl
equation
INTval (nl) = eval (env, el);

state2 = repeatEval (state, nl, sl); then state2;

Read and write statements modify the input and output stream components of the state, respectively. The
input stream and output streams can be thought of as infinite sequences of items (for PAM: sequences of
integer constants), which are handled by the operating system. First we describe the read statement.

The read statement: read idl,id2,...idN reads N values into variables idl, id2,... idN, picking them
from the beginning of the input stream which is updated as a result.

The first case covers the case of reading into an empty list of variables, which has no effect and
returns the current state unchanged. The second case models actual reading of values from the input
stream. First, one item is extracted from the input stream by calling inputItem, which returns a
modified input stream and a value. The inputTtem function should be regarded as part of an abstract
interface that hides the implementation of St ream.

case (state,READ({})) then state; // read ()
case (state as (env,istream,ostream, READ(id :: rest)) // read idil, ..
equation
(istream2,v2) = inputltem(istream);
env2 = update(env, id, INTval (v2));
state2 = evalStmt ((env2,istream?2,ostream), READ(rest)); then state2;

Analogously, the write statement: write idl,id2,...idN writes N values from variables idl, id2,... idN,
adding them to the end of the current output stream which is modified accordingly. Writing an empty list
of identifiers has no effect.

case (state, WRITE({})) then state; // write ()
case (state as (env,istream,ostream), WRITE (id :: rest)) // write idil, ..
equation
INTval (v2) = lookup(env, id);
ostream?2 = outputltem(ostream,v2);
state?2 = evalStmt ((env,istream,ostream?2), WRITE (rest)); then state2;

The semantics of a sequence stmt1; stmt2 of two statements is simple. First evaluate stmt1, giving
an updated state state2. Then evaluate stmt2 in state2, giving state3 which is the resulting state.

case (state,SEQ(stmtl,stmt2)) // stmtl ; stmt2
equation
state2 = evalStmt (state, stmtl);

state3 = evalStmt (state2, stmt2); then state3;
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The semantics of the empty statement, represented as SKIP, is even simpler. Nothing happens, and the
current state is returned unchanged.

case (state,SKIP()) then state; // ; empty statement
end matchcontinue;

end evalStmt;

2544 Auxiliary Functions

The next few subsections defines auxiliary functions, repeatEval, error, inputItem, outputItem,
lookup, and update, needed by the rest of the PAM specification.

2545 Repeated Statement Evaluation

The function repeatEval (state,n, stmt) simply evaluates the statement stmt n times, starting with
state, which is updated into a new state for each iteration. The then-part specifies that nothing happens if
n <= 0. The else-part evaluates stmt in state and recursively calls repeatEval for the remaining n-1
iterations, giving state which is returned.

function repeatEval '"repeatedly evaluate stmt n times"
input State state;
input Integer n;
input Stmt stmt;
output State outState;

algorithm
outState :=
if n <= 0 then state /* n <=0 */
else repeatEval (evalStmt (state, stmt), n-1, stmt); /* eval n times */

end repeatEval;

25.4.6 Error Handling

The error function can be invoked when there is some semantic error, for example when an undefined
identifier is encountered. It simply prints one or two error messages, returns the empty value, and fails,
which will stop evaluation (for an interpreter) or stop semantic analysis (for a translator).

function error "Print error messages strl and str2, and fail"

input Ident strl;
input Ident str2;

algorithm
print ("Error - ");
print(strl); print(" ");
print (str2); print("\n");
fail();

end error;

2547 Stream /O Primitives

The inputItem function retrieves an item (here an integer constant) from the input stream, which can
be thought of as an infinite list implemented by the operating system. The item is effectively removed
from the beginning of the stream, giving a new (updated) stream consisting of the rest of the list. Since
Stream in reality is implemented by the operating system, the streams passed to and returned from this
implementation of inputItem and outputItem are not updated, they are just dummy streams which
give the functions the correct type signatures.

function inputItem "Read an integer item from the input stream"
input Stream istream;
output Stream istream?2;
output Integer i;
algorithm
print ("input: ");
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i := Input.read();
print ("\n");
istream?2 := istream;

end inputlItem;

The outputItem function outputs an item by attaching the item to the front of the output stream
(effectively a possibly infinite list of items), giving an updated output stream ostream2.

function outputItem "Write an integer item on the output stream"
input Stream ostream;
input Integer i;
output Stream ostream2;
protected
String s;
algorithm
s := intString(i);
print(s);
ostream2 := ostream;
end outputltem;

25438 Environment Lookup and Update

The function lookup (env, id) returns the value associated with identifier id in the environment env.
If there is no binding for id in the environment, 1ookup will fail. Here the environment is implemented
(as usual) as a linked list of (identifier,value) pairs.

The first case covers the case where id is found in the first pair of the list. The pattern (id2,value)
is concatenated (: :) to the rest of the list (the pattern wildcard: ), whereas the second case covers the
case where id is not in the first pair, and therefore recursively searches the rest of the list.

function lookup "lookup returns the value associated with an identifier.
If no association is present, lookup will fail."
input Env inEnv;
input Ident inIdent;
output Value outValue;
algorithm
outValue :=
matchcontinue (inEnv, inIdent)
local 1Ident id2,id; Value value; State rest;

case ((id2,value) :: rest, id) then
if id==&id2 then value // id first in list
else lookup (rest,id); // i1d in rest of list
end matchcontinue;
end lookup;

The function update (env, id,value) inserts a new binding between id and value into the
environment. Here the new (id, value) pair is simply put at the beginning of the environment. If an
existing binding of id was already in the environment, it will never be retrieved again because 1ookup
performs a left-to-right search that will always encounter the new binding before the old one.

function update

input Env env;

input Ident id;

input Value value;

output Env outEnv;
algorithm

outEnv := (id,value) :: env;
end update;
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2.6 AssignTwoType - Introducing Typing

AssignTwoType is an extension of the Assignments language made by introducing Real numbers. Now
we have two types in the language, Integer and Real, which creates a need both to check the typing of
expressions during evaluation, and to be able to store constant values of two different types in the
environment.

2.6.1 Concrete Syntax of AssignTwoType

Real valued constants contain a dot and/or an exponent, as in:

3.14159
5.36E-10
11E+5

Only one additional case has been added compared to the BNF grammar of the Assignments language.
The non-terminal element can now also expand into a Real constant, as shown below:
element : T INTCONST

| T REALCONST
| T LPAREN expression T RPAREN

The lexical specification follows below. One new token type, T REALCONST, has been introduced
compared to the Assignments language. The regular expression rconl represents a real constant that
must contain a dot, whereas rcon2 must contain an exponent. Any real constant must contain either a
dot or an exponent. The ? in the regular expressions signify optional occurrence.

/* Lex style lexical syntax of tokens in the language AssignTwoType */

whitespace [ \t\n]+

letter [a-zA-Z2 ]

ident {letter} ({letter} | {digit})*
digit [0-9]

digits {digit}+

icon {digits}

pt "."

sign [+-1

exponent ([eE]l{sign}?{digits})

rconl {digits} ({pt}{digits}?) ?{exponent}
rcon?2 {digits}?{pt}{digits}{exponent}?
rcon {rconl} | {rcon2}

{whitespace} ;

{ident} return lex ident(); /* T IDENT */
{icon} return lex icon(); /* T_INTCONST */
{rcon} return lex rcon(); /* T _REALCONST */
Mi=" return T ASSIGN;

nyn return T ADD;

"= return T SUB;

e return T MUL;

"/ return T_DIV;

" return T LPAREN;
" return T RPAREN;

2.6.2 Abstract Syntax

The abstract syntax of AssignTwoType has been extended in two ways compared to the Assignments
language. A REAL node has been inserted into the expression (Exp) union type, and a parameterized
abstract syntax (Section 2.2) has been selected to enable a more compact semantics part of the
specification by grouping cases for similar constructs in the language.



Chapter 2 Expression Evaluators and Interpreters in MetaModelica 47

The environment must now be able to store values of two types: Integer or Real. This is achieved
by representing values, of type Value, as either INTval or REALval nodes. We could alternatively have
used the INT and REAL constructors of the Exp union type. However, this would have had the
disadvantages of mixing up the evaluation value type value with the abstract syntax (which contain
many other nodes), and making the strong typing of the specification less orthogonal, thus reducing the
probability of the Modelica system catching possible type errors.

An auxiliary union type Ty2 has been introduced to more conveniently be able to encode the
semantics of different combinations of Integer and Real typed values.

The package header of AssignTwoType preceeds the abstract syntax declarations.

package AssignTwoType "Assignment language with two types, integer and real"
/* Parameterized abstract syntax for the AssignTwoType language */

uniontype Program
record PROGRAM ExpLst expLst; Exp exp; end PROGRAM;
end Program;

uniontype Exp
record INT Integer int; end INT;
record REAL Real real; end REAL;
record BINARY Exp expl; BinOp binOp; Exp exp2; end BINARY;
record UNARY UnOp unOp; Exp exp; end UNARY;
record ASSIGN Ident id; Exp exp; end ASSIGN;
record IDENT Ident id; end IDENT;
end Exp;

type ExpLst = list<Exp>;

uniontype BinOp
record ADD end ADD;
record SUB end SUB;
record MUL end MUL;
record DIV end DIV;
end BinOp;

uniontype UnOp
record NEG end NEG;
end UnOp;

type Ident = String;

/* Values, bindings and environments */

uniontype Value "Values stored in environments"
record INTval Integer int; end INTval;
record REALval Real real; end REALval;

end Value;

type VarBnd = tuple<Ident,Value>;

type Env = list<VarBnd>;

uniontype Ty2 "An auxiliary datatype used to handle types during evaluation"
record INT2 Integer intl; Integer int2; end INTZ2;

record REAL2 Real reall; Real real2; end REAL2;
end Ty2;
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2.6.3 Semantics of AssignTwoType

The semantics of the AssignTwoType language is quite similar to the semantics of the Assignments
language described in Section 2.4.4, except for the introduction of multiple types. Having multiple types
in a language may give rise to a combinatorial explosion in the number of cases needed, because the
semantics of each combination of argument types and operators needs to be described.

In order to somewhat limit this potential “explosion” of cases, we introduce a type lattice (see Section
2.6.3.2), and use the function type lub (for least upper bound of types; Section n order to somewhat
limit this potential “explosion” of cases, we introduce a type lattice (see Section 2.6.3.2) which derives
the resulting type and inserts possibly needed type conversions. This reduces the number of needed cases
for binary operators to two: one for Integer results and one for Real results. The parameterized
abstract syntax makes it possible to place argument evaluation and type handling for binary operators in
only those two cases.

2.6.3.1 Expression Evaluation

Compared to the Assignments language, the eval function is still quite similar. Values are now tagged
by either INTval or REALval. We have inserted one additional case for Real constants, and collected
all binary operators together into two cases, and unary operators into two additional cases. The cases for
assignments and variable identifiers are the same as before.

We show the application of some cases to a small example, e.g:

44 + 3.14

The abstract syntax representation will be:

BINARY ( INT (44), ADD, REAL(3.14))

On calling eval, this will match the case for binary operators and real number results. The first
argument will be evaluated to TNTval (44), bound to v1, and the second argument to REALval (3.14)
bound to v2. The call to type lub will insert a conversion of the first argument from Integer to a
Real value, giving the result REAL2 (44.0, 3.14), which also causes x to be bound to 44.0 and vy to
be bound to 3.14. Finally, applyRealBinop will apply the operator ADD to the two arguments,
returning the result 47.14, which in the form REALval (47.14) together with the unchanged
environment is the result of the call to function eval.

function eval
"Evaluation of an expression inExp in current environment inEnv, returning
a possibly updated environment outEnv, and an outValue which can be
either an integer- or real-typed constant value, tagged with constructors
INTval or REALval, respectively.

Note: there will be no type error if a real value is assigned to an

existing integer-typed variable, since the variable will change
type when it is updated

input Env inEnv;
input Exp inExp;
output Env outEnv;
output Value outValue;
algorithm
(outEnv, outValue) :=
matchcontinue (inEnv, inExp)
local
Env env,env2,envl;
Integer ival,x,y,z;
Real rval;
Value value,vl,v2;
Ident id;
Exp el,e2,e,exp;
BinOp binop; UnOp unop;
case (env,INT(ival)) then (env,INTval (ival));
case (env,REAL(rval)) then (env,REALval (rval));
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case (env, IDENT (id)) // variable id
equation
(env2,value) = lookupextend(env, id); then (env2,value);
case (env,BINARY (el,binop,e?2)) // integer integerBinop integer
equation
(envl,vl) = eval(env, el);
(env2,v2) = eval(env, e2);
INT2 (x,y) = type lub(vl, v2);
z = applyIntBinop (binop, x, y); then (env2,INTval(z));
case (env,BINARY (el,binop,e2)) // integer/real realBinop integer/real
local Real x,y,z;
equation
(envl,vl) = eval (env, el);
(env2,v2) = eval (env, e2);
REALZ (x,y) = type lub(vl, v2);
z = applyRealBinop (binop, x, y); then (env2,REALval(z));
case (env,UNARY (unop,e)) // integerUnop exp
equation
(envl, INTval (x)) = eval (env, e);
y = applyIntUnop (unop, x); then (envl,INTval(y));
case (env,UNARY (unop,e)) // real unop exp"
local Real x,y;
equation
(envl,REALval (x)) = eval (env, e);
y = applyRealUnop (unop, x); then (envl,REALval(y));
case (env,ASSIGN(id,exp)) /* id := exp; eval of an assignment node returns
the updated environment and the assigned value.*/
equation
(envl,value) = eval (env, exp);
env?2 = update(envl, id, value); then (env2,value);
end matchcontinue;
end eval;

2.6.3.2 Type Lattice and Least Upper Bound

One general way to partially avoid the potential “combinatorial explosion” of semantic cases for
different combinations of operators and types is to introduce a type lattice. The trivial type lattice for real
and integer (i.e., Real and Integer) is shown in Figure 2-4 below, using the partial order that Real is
greater than Integer since integers always can be converted to reals, but not the other way around.

Real «—— lub

Integer «—— glb

Figure 2-4. Simple type lattice for types integer and real. The least upper bound (lub) is real; the greatest
lower bound (glb) is integer.

We are however more interested in combinations of two argument types for binary operators, for which
the following four cases apply:

® Real op Real => Real
® Real op Integer =>Real
® TInteger op Real =>Real

e TInteger op Integer => Integer

These cases are represented by the function type 1lub, introduced below. The function is in fact doing
two jobs simultaneously. It is computing the least upper bound of pairs of types, represented by the
constructors INT2 or REAL2. Additionally, it performs type conversions of the arguments as needed, to
ensure that both arguments become either Integer (for INT2) or Real (for REAL2). Thus we will need
only two sets of cases for each operator, covering the cases when both arguments are Integer or both
arguments are Real.
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function type lub "Type least upper bound, e.g. real & integer gives real"
input Value inValuel;
input Value inValue2;
output Ty2 outTy2;
algorithm
outTy2:=
matchcontinue (inValuel, inValue?2)
local
Integer x,y;
Real x2,v2;
case (INTval(x),INTval (y
case (INTval (x),REALval (
local Real y;
equation
x2 = int real (x); then REALZ ((x2,y));
case (REALval (x),INTval (y))
local Real x;
equation
y2 = int real(y); then REALZ ((x,y2));
case (REALval (x),REALval (y))
local Real x,y; then REAL2 ((x,Vy));
end matchcontinue;
end type lub;

)) then INT2 ((x,y));
v))

2.6.3.3 Binary and Unary Operators

The essential properties of binary arithmetic operators are described below in the functions
applyIntBinop and applyRealBinop, respectively. Argument evaluation has been taken care of by
the two cases for binary operators in the function eval, and thus need not be repeated for each case. The
type conversion needed for some combinations of Real and Integer values have already been
described by the function type lub, which reduces the number of cases that need to be handled for
each operator to two: either Integer values (applyIntBinop) or Real values (applyRealBinop).

function applyIntBinop "Apply integer binary operator"
input BinOp inBinopl;
input Integer inInteger2;
input Integer inInteger3;
output Integer outlInteger;
algorithm
outInteger:=
matchcontinue (inBinopl,inInteger2,inInteger3)
local Integer x,y;
case (ADD(),x,y) then x + y;
case (SUB(),x,y) then x - y;
case (MUL(),x,y) then x*y;
case (DIV(),x,y) then x/y;
end matchcontinue;
end applyIntBinop;

function applyRealBinop "Apply real binary operator"
input BinOp inBinopl;
input Real inReal?2;
input Real inReal3;
output Real outReal;
algorithm
outReal:=
matchcontinue (inBinopl,inReal?2, inReal3)
local Real x,y;

case (ADD(),x,y) then x +. y;
case (SUB(),x,y) then x +. y;
case (MUL(),x,y) then x*.y;
case (DIV(),x,y) then x/.y;

end matchcontinue;
end applyRealBinop;
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There is only one unary operator, unary minus, in the current language. Thus the functions
applyIntUnop and applyRealUnop for operations on integer and real values, respectively, become
rather short.

function applyIntUnop "Apply integer unary operator"
input UnOp inUnop;
input Integer inInteger;
output Integer outlInteger;
algorithm
outInteger:=
matchcontinue (inUnop, inInteger)
local Integer x;
case (NEG(),x) then -x;
end matchcontinue;
end applyIntUnop;

function applyRealUnop "Apply real unary operator"
input UnOp inUnop;
input Real inReal;
output Real outReal;
algorithm
outReal:=
matchcontinue (inUnop, inReal)
local Real x;
case (NEG(),x) then -.x;
end matchcontinue;
end applyRealUnop;

2.6.3.4 Functions for Lookup and Environment Update

We give the usual functions for lookup and environment update. Stored values may be either integers,
tagged by INTval (), or real numbers tagged by REALval () . However, there is no declaration of types
or static typing of variables in this language. A variable gets its type when it is assigned a value.

function lookup "lookup returns the value associated with an identifier.
If no association is present, lookup will fail."
input Env env;
input Ident id;
output Value outValue;
algorithm
outValue :=
matchcontinue (env,id)
local Ident id2,id; Value value; Env rest;
case ((id2,value) :: rest, id) then
if id==&id2 then value // id first in list
else lookup (rest,id); // id in rest of list
end matchcontinue;
end lookup;

function lookupextend "lookupextend returns the value associated with
an identifier and an updated environment.
If no association is present, lookupextend will fail."
input Env inEnv;
input Ident inIdent;
output Env outEnv;
output Value outValue;
algorithm
(outEnv,outValue) :=
matchcontinue (inEnv, inIdent)

local
Value value; Env env; Ident id;
case (env,id) // Return value of id in env.

// If id not present, add id and return 0
equation
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failure (v = lookup (env, id));

value = INTval(0); then ((id,value) :: env,value);
case (env, id)
equation
value = lookup(env, id); then (env,value);

end matchcontinue;
end lookupextend;

function update T"update returns an updated environment with a new
(id,value) association"
input Env env;
input Ident id;
input Value value;
output Env outEnv;
algorithm
outEnv := (id,value) :: env;
end update;

end AssignTwoType;

2.7 A Modular Specification of the PAMDECL Language

PAMDECL is PAM extended with declarations of variables and two types: Integer and Real. Thus it
combines the properties of both PAM and AssignTwoType. The specification is modular, including
separate packages for different aspects.

In general, Modelica packages facilitates writing modular specifications, where each package
describes some related aspects of the specified language. Thus, it is common to specify the abstract
syntax in a special package and other aspects such as evaluation, translation, or type elaboration in
separate packages.

We present a modularized version of the complete abstract syntax and semantics for PamDecl in
Appendix C.2, using five packages: Main for the main program, ScanParse for scanning and parsing,
Absyn for abstract syntax, Env for variable bindings and environment handling, and Eval for
evaluation.

A package must import definitions from other packages in order to reference items declared in those
packages. References to names defined in other packages must be prefixed by the defining package
name followed by a dot, as in Absyn.ASSIGN () when referencing the ASSIGN constructor from
package Absyn.

2.8 Summary

In this chapter we present a series of small example languages to introduce MetaModelica together with
techniques for programming language specification. We start with the very simple Expl language,
containing simple integer arithmetic and integer constants. Then follows a short section on the
parameterized style of abstract syntax.The Exp2 specification describes the same language as Expl but
shows the consequences of using parameterized abstract syntax. The Assignments language extends
Expl with variables and assignments, thus introducing the concept of environment.

The small Pascal-like PAM language further extends our toy language by introducing control
structures such as if-then-else statements, loops (but not goto), and simple input/input. However, PAM
does not include procedures and multiple variable types. Only integer variables are handled by the
produced evaluator. PAM also introduces relational expressions. Parameterized abstract syntax is used in
the specification.

Our next language, called AssignTwoType, is designed to introduce multiple variable types in the
language. It is the same language as Assignments, but adding real values and variables, and employing
the parameterized style of abstract syntax. The concept of type lattice is also introduced in this section.
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Next, we present the concept of Modelica packages, to show how different aspects of a specification
such as abstract syntax, environment handling, evaluation cases, etc. can be separated into different
packages. Such modularization is especially important for large specifications.

Finally, we combine the constructs of the PAM language, the multiple variable types of
AssignTwoType and the usage of Modelica packages, to produce a modular specification of a language
called PAMDECL, which is PAM extended with declarations and multiple (integer and real) variable
types.

The style of all specifications so far have been “evaluative” in nature, aiming at producing
interpreters. In Chapter 3 we will present “translational” style specifications, from which compilers can
be generated.

2.9 Exercises

A number of exercises concerning some MetaModelica language constructs and interpretive semantics
modeling of small languages are available in Appendix D. Solutions are available in Appendix E.
Translational semantics exercises can be found in Chapter 3. Exercises for functional programming and
higher order functions are available at the end of Chapter 6.
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Chapter 3

Translational Semantics

A compiler is a translator from a source language to a target language. Thus, it would be rather natural if
the idea of translation is somehow reflected in the semantic definition of a programming language. In
fact, the meaning of a programming language can be precisely described by defining the meaning
(semantics) of the source language in terms of a translation to some target (object) language, together
with a definition of the semantics of the object language itself, see Figure 3-1. This is called a
translational semantics of the programming language.

Inferpretive semantics Translational semantics
J ——————————— Source program 1 ——————————— Source program
Interpretive Translational
semantics of semantics
source language source—p-object
primitives
_______ - - -+ Object program
w
Interpretive
semantics of
object language
primitives

Figure 3-1. A comparison between an interpretive semantics and translational semantics. In an
interpretive semantics, the computational meaning of source language primitives are directly defined, e.g.
using MetaModelica. In a translational semantics, the meaning is defined as a translation to object
language primitives, which in turn are defined using an interpretive semantics.

However, so far in this text we have primarily focused on how to define the semantics of programming
languages directly in terms of evaluation of MetaModelica primitives. That style of semantics
specification, called interpretive semantics, can be used for automatic generation of interpreters which
interpret abstract syntax representations of source programs. Analogously, a translational semantics can
be used for the generation of a compiler from a source language to a target language, as briefly
mentioned in Section 1.4.

There are also techniques based on partial evaluation (Jones, Gomard, and Sestoft 1993), for the
generation of compilers from certain styles of interpretive semantics. However, these techniques often
give unpredictable results and performance problems. Therefore, in the rest of this text we will
exclusively use translational semantics as a basis for practical compiler generation.

In fact, writing translational semantics is usually not harder than writing interpretive semantics. One
just has to keep in mind that the semantics is described in two parts: the meaning of source language
primitives in terms of (a translation to) target language primitives, and the meaning of the target
primitives themselves. A simplified picture of compiler generation from translational semantics is shown
in Figure 3-2.
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Formalism  Generalor iool  Compiler phase Program representation
J ——————————— Text
Regular Lex
€Xpressions ’ S er
| ,,,,,,, - - . Token sequence
BNF +
grammar ___EQEE_, Parser
,,,,,,, ---. Abstract syntax
Elat‘m’l semantics c Trans. Semantics
RML —_— Translation to
object code
| ........... Machine code
-

Figure 3-2. Simplified version of compiler generation based on translational semantics. The semantics of
a language is specified directly in terms of object code primitives. In comparison to Figure 1-1, the
optimization and final code generation phases have been excluded.

3.1 Translating PAM to Machine Code

As an introduction translational semantics, we will specify the translational semantics of a simple
language, with the goal of generating a compiler from this language to machine code. The simple PAM
language has already been described, and an interpretive semantics has been given in Section 2.5. This
makes it a natural first choice for a translational semantics. In Chapter 3 of (Pagan 1981), an attribute
grammar style translational semantics of PAM can be found. It is instructive to compare the attribute
grammar specification to the MetaModelica style translational semantics of PAM described in this
chapter. The target assembly language described in the next section has been chosen to be the same as in
(Pagan 1981) to simplify parallel study.

3.1.1 A Target Assembly Language

In the translational approach, a target language for the translation process is needed. Here we choose a
very simple assembly (machine code) language, which is similar to realistic assembly languages, but
very much simplified. For example, this machine has only one register (an accumulator) and much fewer
instructions than commercial microprocessors. Still, it is complete enough to reflect most properties of
realistic assembly languages. There are 17 types of instructions, listed below:

LOAD Load accumulator

STO Store

ADD Add

SUB Subtract

MULT Multiply

DIV Divide

GET Input a value

PUT Output a value

J Jump

JN Jump on negative

Jp Jump on positive

JINZ Jump on negative or zero
JPZ Jump on positive or zero
JNP Jump on negative or positive
LAB Label (no operation)

HALT Halt execution
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All instructions, except HALT, have one operand. For example, .0AD X, will load the variable at address
X into the accumulator. Conversely, STO X will store the current value in the accumulator at the address
specified by x. The instructions ADD, SUB, MULT, and DIV perform arithmetic operations on two values,
the accumulator value and the operand value. Operands can be integer constants or symbolic addresses
of variables or temporaries (T1,T2,...), or symbolic labels representing code addresses. Instructions
which compute a result always store it in the accumulator. For example, SUB x means that accumulator-x
is computed, and stored in the accumulator.

The input/output instructions GET X and PUT X will input and output a value to variable X,
respectively. There are 5 conditional jump instructions and one unconditional jump. The conditional
jumps are: JN,JP,JNZ,JPz, and JNP which jump to a label (address) conditionally on the current value in
the accumulator. The J L1 instruction is an example of an unconditional jump to the label L.1. The LAB
pseudo instruction is no instruction, it just declares the position of a label in the code. Finally, the HALT
instruction stops execution.

3.1.2 A Translated PAM Example Program

Before going into the details of the translational semantics, it is instructive to take a look at the
translation of a small PAM example PAM program, shown below:

read x,V;

while x<> 99 do
ans := (x+1) - (y / 2);
write ans;
read x,V;

end

This example program is translated into the following assembly code, presented in its textual
representation:

GET x STO T1
GET y LOAD TO
L2 LAB SUB T1
LOAD x STO ans
SUB 99 PUT ans
Jz L3 GET X
LOAD x GET y
ADD 1 J L2
STO TO L3 LAB
LOAD vy HALT
DIV 2

However, to simplify and structure the translational semantics of PAM, the target language will be a
structured representation of the assembly code, called Mcode, which is defined in MetaModelica. The
Mcode representation of the translated program, as shown below, is finally converted into the textual
representation previously presented.

All Mcode operators start with the letter M. Binary arithmetic operators are grouped under the node
MB, and conditional jump operators under MJ. There are four kinds of operands, indicated by the
constructors I (Identifier), 1. (Label), N (Numeric integer), and T (for Temporary).

MGET ( I(x) ) MSTO(  T(2) )
MGET( I(y) ) MLOAD( T(1) )
MLABEL ( L (1) ) MB (MSUB, T (2) )
MLOAD( I(x) ) MSTO ( I(ans) )
MB (MSUB, N (99) ) MPUT ( I(ans) )
MJ (MJZ, L(2) ) MGET ( I(x) )
MLOAD( I(x) ) MGET ( I(y) )
MB (MADD, N (1) ) MJMP (  L(1) )
MSTO(  T(1l) ) MLABEL ( L(2) )
MLOAD( I(y) ) MHALT

MB (MDIV,N(2) )
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3.1.3  Abstract Syntax for Machine Code Intermediate Form

The abstract syntax of the structured machine code representation, called Mcode, is defined in
MetaModelica below. We group the four arithmetic binary operators MADD, MSUB, MMULT and MDIV in
the union type MBinOp. The six conditional jump instructions MJMP,MJP,MJN,MINZ,MJPZ,MJIZ are
represented by constructors in the union type MCondJmp. As usual, this grouping of similar constructs
simplifies the semantic description. There are four kinds of operands: identifiers, numeric constants,
labels, and temporaries. For these we have defined the type aliases MLab, MTemp, MIdent, MidTemp in
order to make the translational semantics more readable.

The constructors MB and MJ are used for binary arithmetic instructions and conditional jumps,
respectively. The first argument to these constructors indicates the specific arithmetic operation or
conditional jump.

package Mcode

uniontype MBinOp
record MADD end MADD;
record MSUB end MSUB;
record MMULT end MMULT;
record MDIV end MDIV;
end MBinOp;

uniontype MCondJmp
record MJNP end MJNP;
record MJP end MJP;
record MJN end MJN;
record MJNZ end MJNZ;
record MJPZ end MJPZ;
record MJZ end MJZ;

end MCondJmp;

uniontype MOperand
record I 1Id id; end I;
record N Integer int; end N;
record T Integer int; end T;
end MOperand;

type MLab = MOperand; // Label
type MTemp = MOperand; // Temporary
type MIdent = MOperand; // Identifier

type MIdTemp = MOperand; // Id or Temporary

uniontype MCode
record MB MBinOp mBinOp; Moperand Moperand; end MB; /* Binary arith ops */
record MJ MCondJmp mCondJmp; MLab mLab; end MJ; /* Conditional jumps */
record MJMP Mlab mlab; end MJMP;
record MLOAD MIdTemp mIdTemp; end MLOAD;
record MSTO MIdTemp mIdTemp; end MSTO;
record MGET MIdent mIdent; end MGET;
record MPUT MIdent mIdent; end MPUT;
record MLABEL MLab mLab; end MLABEL;
record MHALT end MHALT;
end MCode;

end Mcode;

3.1.4  Concrete Syntax of PAM

The concrete syntax of PAM has already been described in Section 2.5.2.
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3.1.5  Abstract Syntax of PAM

The abstract syntax of PAM is identical to that described in Section 2.5.3. It is repeated here for
convenience.

package Absyn "Parameterized abstract syntax for the PAM language"
type Ident = String;

uniontype BinOp
record ADD end ADD;
record SUB end SUB;
record MUL end MUL;
record DIV end DIV;
end BinOp;

uniontype RelOp
record EQ end EQ;
record GT end GT;
record 1T end 1T;
record LE end LE;
record GE end GE;
record NE end NE;

end RelOp;

uniontype Exp

record INT Integer int; end INT;
record IDENT Ident id; end IDENT;
record BINARY Exp expl; BinOp op; Exp exp2; end BINARY;

record RELATION Exp expl; RelOp op; Exp exp2; end RELATION;
end Exp;

type IdentList = list<Ident>;
uniontype Stmt

record ASSIGN Ident id; Exp exp; end ASSIGN; // Id := Exp
record IF Exp exp; Stmt stmtl; Stmt stmt2; end IF; // if Exp then Stmt
record WHILE Exp exp; Stmt stmt; end WHILE; // while Exp do Stmt"
record TODO Exp exp; Stmt stmt; end TODO; // to Exp do Stmt..."
record READ IdentList idlist; end READ; // read idl,id2,..."
record WRITE IdentList idlist; end WRITE; // write idl,id2,.."
record SEQ Stmt stmtl; Stmt stmt2; end SEQ; // Stmtl; Stmt2"
record SKIP end SKIP; // ; empty stmt"

end Stmt;

end Absyn;

3.1.6 Translational Semantics of PAM

The translational semantics of PAM consists of several separate parts. First we describe the translation of
arithmetic expressions, which is the simplest case. Then we turn to comparison expressions which occur
in the conditional part of if-statements and while-statements. Such comparisons are translated into
conditional jump instructions. Next, the translation of all statement types in PAM are described together
with the translation of a whole program. Finally, a MetaModelica program for emitting assembly text
from the structured MCode representation is presented, although this is not really part of the translational
semantics of PAM.

3.1.61 Arithmetic Expression Translation

The translation of binary arithmetic expressions is specified by the transExpr function together with
two small help functions transBinop and gentemp. The transBinop function just translates the four
arithmetic node types in the abstract syntax into corresponding MCode node types. Each call to the
gentemp generator function produces a unique label of type L1, L2, etc.
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The transExpr function contains essentially all semantics of PAM arithmetic expressions. The first
two cases handle the simple cases of expressions which are either an integer constant or a variable. The
generated code is in the form of a list of MCode tuples, as is reflected in the signature of the transExpr
function below:

function transExpr "Arithmetic expression translation"
input Absyn.Exp inExp;

output list<Mcode.MCode> outMCodelist;

algorithm
case Absyn.INT(v) then list (Mcode.MLOAD (Mcode.N(v))); // integer constant
case Absyn.IDENT (id) then list (Mcode.MLOAD (Mcode.I(id))); // identifier id

The semantics of computing a constant or a variable is to load the value into the accumulator, as in the
following instruction where id is the variable x4:

MLOAD ( I (X4) )

and in assembly text form:

LOAD X4

The first case is for simple binary arithmetic expressions such as e1 — e2 where expression e2 only is a
constant or a variable which gives rise to a load instruction (see the second local equation in the case).
The code for this expression is as follows, where MB denotes a binary operator and MSUB subtraction:

<code for expression el>
MB (MSUB () , e2)

and in assembly text form:

<code for expression el>
SUB e2

The corresponding case follows below.

case Absyn.BINARY (el,binop,e2) "Arith binop: simple case, expr2 is just an

identifier or constant: exprl binop expr2"
equation
codl = transExpr(el);
list (Mcode.MLOAD (operand2)) = transExpr(e2); // Condition expr2 simple
opcode = transBinop (binop) ;
cod3 = listAppend(codl, list (Mcode.MB (opcode,operand?))); then cod3;

The second case handles binary arithmetic expressions such as el-e2, el+e2, etc., where e2 can be a
complicated expression. The code pattern for el-e2 in assembly text form becomes:

<code for el>

STO Tl
<code for e2>
STO T2
LOAD T1
SUB T2

The case is presented below. The generated code for expressions el and e2 are bound to codl and
cod?, respectively. The binary operation is translated to the MCode version, which is bound to opcode.
Then two temporaries are produced. Finally a code sequence is produced which closely follows the code
pattern above. The function 1istAppendé6 appends the elements of six argument lists, whereas the
standard 1istAppend only accepts two list arguments.

case Absyn.BINARY (el,binop,e2) "Arith binop: general case, expr2 is a more
complicated expr: exprl binop expr2"
equation
codl = transExpr(el);
cod2 = transExpr (e2);
opcode = transBinop (binop) ;
tl = gentemp () ;
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t2 = gentemp () ;
cod3 = listAppend6 (codl, // code for exprl

{Mcode .MSTO (t1) }, // store exprl

cod2, // code for expr?2

{Mcode .MSTO (t2) }, // store expr?2

(Mcode .MLOAD (t1) }, // load exprl value into Acc

{Mcode.MB ( (opcode, t2))} // Do arith operation
)
then cod3;

As one additional example, we show the following expression:
(x + y*z) + b*c

which is translated into the code sequence:

LOAD p:4 STO T3
STO T1 LOAD b
LOAD vy MULT ¢}
MULT Z STO T4
STO T2 LOAD T3
LOAD T1 ADD T4
ADD T2

Note that the two cases for binary arithmetic operations overlap. The first case covers the simple case
where the second expression is just an identifier or constant, and will give rise to more compact code
than the second case which covers both the simple and the general case. From a semantic point of view,
the first case is not needed since the second case specifies the same semantics for simple arithmetic
expressions as the second case, even though the second case will give rise to more instructions in the
translated code. Still, it is not incorrect to keep the first case, since the PAM semantics is not changed by
it.

Operationally, MetaModelica will evaluate the cases in top-down order, and thus will use the more
specific first case whenever it matches. Therefore we keep the first case in order to obtain a compiler
that produces slightly more efficient code than otherwise possible.

The complete t ransExpr function follows below, together with some help functions:

function transExpr "Arithmetic expression translation"
input Absyn.Exp inExp;
output list<Mcode.MCode> outMCodelist;
algorithm
outMCodeList:=
matchcontinue (inExp)
local
Integer v;
String id;
MCodeList codl,cod3,cod2;
Mcode.MOperand operand2,tl,t2;
Mcode.MBinOp opcode;
Absyn.Exp el,e2;
Absyn.BinOp binop;
case Absyn.INT(v) then list (Mcode.MLOAD (Mcode.N(v))); // integer constant
case Absyn.IDENT (id) then list (Mcode.MLOAD (Mcode.I(id))); // identifier id

case Absyn.BINARY (el,binop,e2) // Arith binop: simple case, expr2 is just an

// identifier or constant: exprl binop expr2
equation
codl = transExpr (el);
list (Mcode.MLOAD (operand2)) = transExpr(e2);
opcode = transBinop (binop) ; // expr2 simple

cod3 = listAppend(codl, list(Mcode.MB (opcode,operand2))); then cod3;

case Absyn.BINARY (el,binop,e2) // Arith binop: general case, expr2 is a more
// complicated expr: exprl binop expr2
equation
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codl = transExpr(el);
cod2 = transExpr (e2);
opcode = transBinop (binop) ;
tl = gentemp();
t2 = gentemp();
cod3 = listAppend6 (codl,

{Mcode .MSTO (t1) }, //
cod2, //
{Mcode .MSTO (t2) }, //
(Mcode .MLOAD (t1) }, //

{Mcode.MB (opcode, t2) }

code for exprl

store exprl

code for expr2

store expr2

load exprl value into Acc
Do arith operation

)
then cod3;
end matchcontinue;
end transExpr;

function transBinop "Translate binary operator from Absyn to MCode"
input Absyn.BinOp inBinop;
output Mcode.MBinOp outMBinop;
algorithm
outMBinop:=
matchcontinue
case Absyn.ADD ()
case Absyn.SUB()
case Absyn.MUL ()
case Absyn.DIV ()
end matchcontinue;
end transBinop;

(inBinop)

then
then
then
then

Mcode .MADD () ;
Mcode .MSUB () ;
Mcode .MMULT () ;
Mcode .MDIV () ;

function gentemp "Generate temporary"
output Mcode.MOperand outMOperand;
protected
Integer no;
algorithm
no = tick();
outMOperand :=
end gentemp;

Mcode.T (no) ;

function listAppendo6
replaceable type Type a subtypeof Any;
input list<Type a> 11;
input list<Type a> 12;
input list<Type a> 13;
input list<Type a> 14;
input list<Type a> 15;
input list<Type a> 16;
output list<Type a> 116;
protected
list<Type a> 113,146;
algorithm
113 = listAppend3 (11,
146 listAppend3 (14,
116 = listAppend (113,
end listAppend6;

12, 13);
15, 106);
146);

3.1.6.2 Translation of Comparison Expressions

Comparison expressions have the form <expression><relop> <expression>, as for example in:

x < 5
y >= z

In the simple PAM language, such comparison expressions only occur as predicates in if-statements and
while-statements. If the predicate is true, then the body of the if-statement should be executed, otherwise

jump over it to some label if the predicate is false. Thus, a conditional jump to a label occurs if the
predicate is false.
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This is reflected in the translation of relational operators by the function transRelop, where the
selected conditional jump instruction is logically opposite to the relational operator. For example,
regarding the comparison x <=y which is equivalent to x-y <= 0 if we ignore the fact that overflow or
underflow of arithmetic operations can cause errors, a jump should occur if the comparison is false, i.e.,
x-y > 0, meaning that the relational operator LE (less or equal) should be translated to MJP (jump on
positive):

function transRelop "Translate relation operator"

input Absyn.RelOp inRelop;
output Mcode.MCondJmp outMCondJmp;

algorithm

outMCondJmp: =

matchcontinue (inRelop)
case Absyn.EQ() then Mcode.MJNP(); // Jump on Negative or Positive
case Absyn.LE() then Mcode.MJP(); // Jump on Positive
case Absyn.LT() then Mcode.MJPZ(); // Jump on Positive or Zero
case Absyn.GT () then Mcode.MJNZ(); // Jump on Negative or Zero
case Absyn.GE () then Mcode.MJN () ; // Jump on Negative
case Absyn.NE() then Mcode.MJZ () ; // Jump on Zero

end matchcontinue;

end transRelop;

Translation of the actual comparison expression is described by the transComparison function, having
the following signature:
function transComparison "Translate comparison relation operator"
type MCodelist = list<Mcode.MCode>;
input Absyn.Comparison inComparison;
input Mcode.MLab inMLab;
output MCodeList outMCodelList;

The label argument is needed as an argument to the generated conditional jump instruction. The
following code sequence is suitable for all comparison expressions having the structure el <relop> e2,
here represented by the example el <= e2, which is equivalentto 0 <= e2-el:

<code for el>

STO T1

<code for e2>

SUB T1 /* Compute e2-el; comparison false if negative */
JN Lab /* Jump to label Lab if negative */

The second case in the transComparison function translates according to this pattern, as shown
below. The first case applies to the special case when e2 is a variable or a constant, and can then avoid
using a temporary.

case (Absyn.RELATION (el,relop,e2),lab) /* exprl relop expr2 */
equation
codl = transExpr (el);
list (Mcode.MLOAD (operand?)) = transExpr(e2);
Jjmpop = transRelop (relop) ;
cod3 = listAppend3(codl, {Mcode.MB (Mcode.MSUB(),operand?2)},
{Mcode.MJ (jmpop, lab)} ); then cod3;

The functions needed for translation of comparison expressions, including t ransComparison, follow
below:

/*************** Comparison expression translation **************/

function transComparison "translation of a comparison: exprl relop expr2
Example call: transComparison (RELATION (INDENT (x), GT, INT(5)), L(10))"
input Absyn.Comparison inComparison;
input Mcode.MLab inMLab;
output list<Mcode.MCode> outMCodeList;
algorithm
outMCodeList :=
matchcontinue (inComparison,inMLab)
local
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list<Mcode.MCode> codl, cod3, cod2;
Mcode.MOperand operand2,lab, tl;
Mcode.MCondJmp Jmpop;

Absyn.Exp el,e2;

Absyn.RelOp relop;

Use a simple code pattern (the first case), when expr2 is a simple
identifier or constant:

code for exprl

SUB operand?2

conditional jump to lab

or a general code pattern (second case), which is needed when expr2
is more complicated than a simple identifier or constant:

code for exprl

STO templ

code for expr2

SUB templ

conditional jump to lab

%% kX ok ok ok ok X X X ok

*

*/
case (Absyn.RELATION (el,relop,e2),lab) // Simple case, exprl relop expr2
equation
codl = transExpr(el);
list (Mcode.MLOAD (operand2)) = transExpr(e2); // Simple if a load
jmpop = transRelop (relop);
cod3 = listAppend3(codl, {Mcode.MB (Mcode.MSUB(),operand?)},
{Mcode.MJ (jmpop, lab)} ); then cod3;

case (Absyn.RELATION (el,relop,e2),lab) // Complicated, exprl relop expr2
equation
codl = transExpr(el);
cod2 = transExpr (e2);
jmpop = transRelop (relop);
tl = gentemp () ;
cod3 = listAppend5 (codl, {Mcode.MSTO(tl)}, codz,
{Mcode.MB (Mcode.MSUB() ,tl)}, {Mcode.MJ(jmpop,lab)} );
then cod3;
end matchcontinue;
end transComparison;

function transRelop "Translate comparison relation operator"
/* Note that for these relational operators, the selected Jjump
* instruction is logically opposite. For example, if equality to zero
* is true, we should should just continue, otherwise jump (MJNP)
*/
input Absyn.RelOp inRelop;
output Mcode.MCondJmp outMCondJmp;

algorithm

outMCondJmp: =

matchcontinue (inRelop)
case Absyn.EQ() then Mcode.MJNP(); // Jump on Negative or Positive
case Absyn.LE() then Mcode.MJP(); // Jump on Positive
case Absyn.LT () then Mcode.MJPZ(); // Jump on Positive or Zero
case Absyn.GT () then Mcode.MJINZ(); // Jump on Negative or Zero
case Absyn.GE() then Mcode.MJN () ; // Jump on Negative
case Absyn.NE() then Mcode.MJZ () ; // Jump on Zero

end matchcontinue;

end transRelop;

3.1.6.3 Statement Translation

We now turn to the translational semantics of the different statement types of PAM, which is described
by the cases of the function transStmt.

The first case specifies translation of an assignment statement id := el; which is particularly
simple. Just compute the value of e1 and store in variable id, according to the following code pattern:
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<code for el>
STO id

and the case:

case Absyn.ASSIGN (id,el) /* Assignment Statement translation:
map the current state into a new state */
equation
codl = transExpr (el);

cod2 = listAppend(codl, {Mcode.MSTO (Mcode.I(id))} ); then cod2;

Translation of an empty statement, represented as a SKIP node, is very simple since only an empty
instruction sequence is produced as in the case below:

case Absyn.SKIP then {}; /* ; empty statement */

Translation of if-statements is more complicated. There are two cases, the first valid for if-then
statements in the form if comparison then s1 using the code pattern:

<code for comparison with conditional jump to L1>
<code for sl>
LABEL L1

and the case:

case Absyn.IF (comp,sl,Absyn.SKIP) /* if comp then sl */
equation
slcod = transStmt (sl);
11 = genlabel();
compcod = transComparison (comp, 11);
cod3 = listAppend3 (compcod, slcod, {Mcode.MLABEL(11l)} ); then cod3;

Note that if-then statements are represented as if-then-else statement nodes with an empty statement
(Sk1P) in the else-part.
General if-then-else statements of the form if comparison then sl else s2 are using the code

pattern:

<code for comparison with conditional jump to L1>

<code for sl>

J L2

LABEL L1

<code for s2>
LABEL L2

and the case:

case Absyn.IF (comp,sl,s2) /* 1if comp then sl else s2 */
equation
slcod = transStmt(sl);

s2cod = transStmt (s2);
11 = genlabel();
12 = genlabel();
compcod = transComparison (comp, 11);
cod3 = listAppend6 (
compcod, slcod,
{Mcode.MJMP (12) },
{Mcode.MLABEL (11) },
s2cod,
{Mcode.MLABEL (12)} ); then cod3;

This second case also specifies correct semantics for if-then statements, although one unnecessary jump
instruction would be produced. Avoiding this jump is the only reason for keeping the first case.

We now turn to while-statements of the form while comparison do sl1. This is an iterative
statement and thus contain a backward jump in its code-pattern below:
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LABEL Ll

<code for comparison, including conditional jump to L2>
<code for sl>

J Ll

LABEL L2

with the case:

case Absyn.WHILE (comp,sl) // while
equation

bodycod = transStmt (sl);

11 = genlabel();

12 genlabel () ;

compcod = transComparison (comp, 12);

cod3 = listAppend) (
{Mcode .MLABEL (11) },
compcod, bodycod,
{Mcode.MJMP (11) },
{Mcode.MLABEL (12)} ); then cod3;

The definite loop statement of the form to el do s1 is a kind of for-statement that found in many other
languages. The statement s1 is executed the number of times specified by evaluating expression el once
at the beginning of its execution. The value of el initializes a temporary counter variable which is
decremented before each iteration. The loop is exited when the counter becomes negative. The code
pattern follows below:

<code for el>

STO T1 /* Tl is the counter */
LABEL L1

LOAD T1

SUB 1 /* Decrement T1 */

JN L2 /* Exit the loop */

STO T1

<code for sl>

J L1

LABEL L2

and the case:

case Absyn.TODO (el, sl) // to el do sl
equation
tocod = transExpr(el);
bodycod = transStmt (sl);
tl gentemp () ;
11 = genlabel();
12 = genlabel();
cod3 = listAppendlO (
tocod,
{Mcode.MSTO (t1l) },
{Mcode .MLABEL (11) },
{Mcode .MLOAD (t1) },
{Mcode .MB (Mcode .MSUB () ,Mcode.N (1))},
{Mcode .MJ (Mcode .MJN, 12) },
{Mcode .MSTO (t1) },
bodycod,
{Mcode .MJMP (11) },
{Mcode .MLABEL (12)} ); then cod3;

Next we turn to the input/output statements of PAM. A read-statement of the form read
idl,id2,1d3... will input values to the variables idl, id2, id3 etc. in that order. This is
accomplished by generating code according to the following pattern:

GET id1

GET id2
GET id3
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The translation is specified by the following two cases, stating that reading an empty list of variables
produces an empty sequence of GET instructions, whereas the second case specifies emission of one GET
instruction for the first identifier in the non-empty list, and then recursively invokes transStmt for the
rest of the identifiers in the list. The two cases follow below:

case Absyn.READ({}) then {}; // read {}
case Absyn.READ(id :: idListRest) // read idl,id2, ...
equation
cod2 = transStmt (Absyn.READ (idListRest)) ;
then Mcode.MGET (Mcode.I (id) :: cod2);

The translation of write-statements of form write idl,id2,id3,... is analogous to that of read-
statements, but produces PUT instructions as in:

PUT idl
PUT id2
PUT id3

The translation is specified by the following cases:

case Absyn.WRITE({}) then {}; // write {}
case Absyn.WRITE (id :: idListRest) // write idl,id2, ...
equation
cod2 = transStmt (Absyn.WRITE (idListRest)) ;
then Mcode.MPUT (Mcode.I (id) :: cod2);

A sequence of two statements, of the form stmt1; stmt2 is represented by the abstract syntax node
SEQ. Since one or both statements can be a statement sequence itself, sequences of arbitrary length can
be represented. The instructions from translating two statements in a sequence are simply concatenated
as in the case below:
case Absyn.SEQ (stmtl, stmt2) // stmtl ; stmt2
equation
codl = transStmt (stmtl);

cod?2 transStmt (stmt2) ;
cod3 = listAppend(codl, cod2); then cod3;

The semantics of translating a whole PAM program is described by a translation of the program body,
which is a statement, followed by the HALT instruction. This is clear from the function transProgram
below:

function transProgram "Translate a whole program"
type MCodelist = list<Mcode.MCode>;
input Absyn.Stmt progbody;
output MCodelist programcode;
protected
MCodeList codl;
algorithm
codl := transStmt (progbody) ;
programcode := listAppend(codl, {Mcode.MHALT()});
end transProgram;

Finally, the complete translational semantics of PAM statements is presented below as the cases and
cases of the function transStmt.

/*************** Statement translation **************/

function transStmt "Statement translation"
input Absyn.Stmt inStmt;
output list<Mcode.MCode> outMCodelist;

algorithm
outMCodeList:=
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matchcontinue (inStmt)
local
list<Mcode.MCode> codl,cod2,slcod, compcod, cod3, s2cod,bodycod, tocod;
String id;
Absyn.Exp el,comp;
Mcode.MOperand 11,12,t1l;
Absyn.Stmt sl,s2,stmtl,stmt2;
list<String> idListRest;

case Absyn.ASSIGN (id,el) /* Assignment Statement translation:
map the current state into a new state */
equation
codl = transExpr (el);
cod2 = listAppend(codl, {Mcode.MSTO (Mcode.I(id))} ); then cod2;
case Absyn.SKIP then {}; /* ; empty statement */
case Absyn.IF (comp,sl,Absyn.SKIP) /* if comp then sl */
equation

slcod = transStmt (sl);
11 = genlabel();
compcod = transComparison (comp, 11);

cod3 = listAppend3 (compcod, slcod, {Mcode.MLABEL(11l)} ); then cod3;
case Absyn.IF (comp,sl,s2) /* if comp then sl else s2 */
equation

slcod = transStmt (sl);
s2cod = transStmt (s2);
11 = genlabel();
12 = genlabel();
compcod = transComparison (comp, 11);
cod3 = listAppend6 (
compcod, slcod,
{Mcode .MJMP (12) },
{Mcode .MLABEL (11) },

s2cod,
{Mcode .MLABEL (12)} ) then cod3;
case Absyn.WHILE (comp, sl) // while
equation

bodycod = transStmt (sl);
11 = genlabel();
12 = genlabel();
compcod = transComparison (comp, 12);
cod3 = listAppend) (
{Mcode .MLABEL (11) },
compcod, bodycod,
{Mcode.MJMP (11) },

{Mcode .MLABEL (12)} ); then cod3;
case Absyn.TODO (el, sl) // to el do sl
equation

tocod = transExpr(el);
bodycod = transStmt (sl);
tl = gentemp () ;
11 = genlabel();
12 = genlabel();
cod3 = listAppendlO (
tocod,
{Mcode.MSTO (t1l) },
{Mcode .MLABEL (11) },
{Mcode .MLOAD (t1) },
{Mcode .MB (Mcode .MSUB () ,Mcode.N (1))},
{Mcode.MJ (Mcode.MJN, 12) },
{Mcode .MSTO (t1) },
bodycod,
{Mcode.MJMP (11) },
{Mcode.MLABEL (12)} ); then cod3;



Chapter 4 Translational Semantics

69

case Absyn.READ({}) then {}; // read {}
case Absyn.READ(id :: idListRest) // read idl,id2,...
equation
cod2 = transStmt (Absyn.READ (idListRest)) ;
then Mcode.MGET (Mcode.I (id) :: cod2);
case Absyn.WRITE ({})then {}; // write {}
case Absyn.WRITE (id :: idListRest) // write idl,id2, ...
equation
cod2 = transStmt (Absyn.WRITE (idListRest));
then Mcode.MPUT (Mcode.I (id) :: cod2);
case Absyn.SEQ(stmtl, stmt2) // stmtl ; stmt2
equation
codl = transStmt (stmtl) ;

cod?

transStmt (stmt2) ;

end matchcontinue;

end transStmt;

3.1.64

Emission of Textual Assembly Code

The translational semantics of PAM is specified as a translation from abstract syntax to a sequence of
machine instructions in the structured MCode representation. However, we would like to emit the
machine instructions in a textual assembly form. The conversion from the MCode representation to the
textual assembly form is accomplished by the emitAssembly function and associated functions below.
This is not really part of the translational semantics. Here, MetaModelica is used as a semi-functional
programming language, to implement the desired conversion. The print primitive has been included in
the standard MetaModelica library for such purposes.

package Emit

/* Print out the MCode in textual assembly format

* Note:

*/

import Mcode;

this is not really part of the specification of PAM semantics

function emitAssembly "Print an MCode instruction"
input list<Mcode.MCode> inMCodeList;
algorithm

matchcontinue (inMCodelList)

local

Mcode.MCode instr;
MCodelList rest;

case ({}) then ();
case (instr :: rest)
equation

emitInstr (instr);

emitAssembly (rest); then ();
end matchcontinue;

end emitAssembly;

function emitInstr
input Mcode.MCode inMCode;
algorithm

matchcontinue (in MCode)

local

String op;
Mcode .MBinOp mbinop;
Mcode .MOperand mopr,mlab;
Mcode.MCondJmp Jmpop;
case (Mcode.MB (mbinop,mopr)) // Print an MCode instruction
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equation
op = mbinopToStr (mbinop) ;
emitOpOperand (op, mopr); then ();
case (Mcode.MJ (jmpop,mlab))
equation
op = mjmpopToStr (jmpop) ;
emitOpOperand (op, mlab); then ();
case (Mcode.MJMP (mlab))
equation
emitOpOperand("J", mlab); then ();
case (Mcode.MLOAD (mopr))
equation
emitOpOperand ("LOAD", mopr); then ();
case (Mcode.MSTO (mopr))
equation
emitOpOperand ("STO", mopr); then ();
case (Mcode.MGET (mopr))
equation
emitOpOperand ("GET", mopr); then ();
case (Mcode.MPUT (mopr))
equation
emitOpOperand ("PUT", mopr); then ();
case (Mcode.MLABEL (mlab))
equation
emitMoperand (mlab) ;
print ("\tLAB\n"); then ();
case (Mcode.MHALT ())
equation
print ("\tHALT\n"); then ();
end matchcontinue;
end emitInstr;

function emitOpOperand
input String opstr;
input Mcode.MOperand mopr;
algorithm
print ("\t");
print (opstr) ;
print ("\t");
emitMoperand (mopr) ;
print ("\n");
end emitOpOperand;

function emitInt
input Integer i;
protected
String s;
algorithm
s := intString(i);
print(s);
end emitInt;

function emitMoperand
input Mcode.MOperand inMOperand;
algorithm

matchcontinue (inMOperand)
local
String id;
Integer number, labno, tempnr;
case (Mcode.I(id))
equation
print (id); then ();
case (Mcode.N (number))
equation
emitInt (number); then ();
case (Mcode.L (labno))
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equation
print ("L");
emitInt (labno); then ();
case (Mcode.T (tempnr))
equation
print ("T");
emitInt (tempnr); then ();
end matchcontinue;
end emitMoperand;

function mbinopToStr
input Mcode.MBinOp inMBinOp;
output String outString;

algorithm
outString:=
matchcontinue (inMBinOp)
case (Mcode.MADD()) then "ADD";
case (Mcode.MSUB()) then "SUBR";
case (Mcode.MMULT()) then "MULT";
case (Mcode.MDIV()) then "DIV";

end matchcontinue;
end mbinopToStr;

function mjmpopToStr
input Mcode.MCondJmp inMCondJmp;
output String outString;

algorithm

outString:=

matchcontinue (inMCondJmp)
case (Mcode.MJNP()) then "JNP";
case (Mcode.MJP()) then "JP";
case (Mcode.MJN()) then "JN";
case (Mcode.MJNZ()) then "JNZ";
case (Mcode.MJPZ()) then "JPZ";
case (Mcode.MJZ()) then "Jz";

end matchcontinue;
end mjmpopToStr;

end Emit;

3.1.6.5 Translate a PAM Program and Emit Assembly Code

The main function below performs the full process of translating a PAM program to textual assembly
code, emitted on the standard output file. First, the PAM program is parsed, then translated to Mcode,
which subsequently is converted to textual form.

package Main

import Parse;
import Trans;
import Emit;

function main
"Parse and translate a PAM program into Mcode,
then emit it as textual assembly code."
protected
type MCodelist = list<Mcode.MCode>;
Absyn.Stmt program;
MCodeList mcode;

algorithm
program := Parse.parse();
mcode := Trans.transProgram(program) ;

Emit.emitAssembly (mcode) ;
end main;
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end Main;

3.2 The Semantics of Mcode

In order to have a complete translational semantics of PAM, the meaning of each Mcode instruction
must also be specified. This can be accomplished by an interpretive semantic definition of Mcode in
MetaModelica.

However, we abstain from giving semantic definitions of machine code instruction sets for now since
the current focus is the translation process, but may return to this topic later.

3.3 Translational Semantics for Symbolic Differentiation

Symbolic differentiation of expressions is a translational mapping that transforms expressions into
differentiated expressions.
uniontype Exp
record RCONST Real x1; end RCONST;
record PLUS Exp xl; Exp x2; end PLUS;
record SUB Exp x1; Exp x2; end SUB;
record MUL Exp x1; Exp x2; end MUL;
record DIV Exp x1; Exp x2; end DIV;
record NEG Exp x1; end NEG;
record IDENT String name; end IDENT;
record CALL Exp id; list<Exp> args; end CALL;
record AND Exp x1; Exp x2; end AND;
record OR Exp x1; Exp x2; end OR;
record LESS Exp xl1l; Exp x2; end LESS;
record GREATER Exp x1; Exp x2; end GREATER;
end Exp;

An example function difft performs symbolic differentiation of the expression expr with respect to
the variable time, returning a differentiated expression. In the patterns, _underscore is a reserved word
that can be used as a placeholder instead of a pattern variable when the particular value in that place is
not needed later as a variable value. The as-construct: id as IDENT( ) in the third of-branch is used
to bind the additional identifier id to the relevant expression.

We can recognize the following well-known derivative cases represented in the match-expression
code:

e The time-derivative of a constant (RCONST () ) is zero.

o The time-derivative of the t ime variable is one.

e The time-derivative of a time dependent variable id is der (id), but is zero if the variable is not
time dependent, i.e., not in the list tvars/timevars.

e The time-derivative of the sum (add(el,e2)) of two expressions is the sum of the expression
derivatives.

e The time-derivative of sin (x) 1S cos (x) *x’ if x is a function of time, and x’ its time derivative.

e ctfc...
We have excluded some operators in the di £ft example.

function difft "Symbolic differentiation of expression with respect to time"
input Exp expr;
input 1list<IDENT> timevars;
output Exp diffexpr;
algorithm
diffexpr :=
matchcontinue (expr, timevars)
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local Exp elprim,e2prim, tvars;
Exp el,e2,id;

case (RCONST( ), ) then RCONST (0.0); // der of constant
case (IDENT ("time"), ) then RCONST(1.0); // der of time variable
case difft(id as IDENT( ), tvars) then // der of any variable id

if listMember(id,tvarg) then
CALL (IDENT ("der"),list (id))
else
RCONST (0.0) ;
case (ADD(el,e2),tvars) // (el+e2)’ => el’+e2’
equation
elprim = difft(el, tvars);
e2prim = difft(e2,tvars); then ADD(elprim,el2prim);
case (SUB(el,e2),tvars)
equation
elprim = difft(el, tvars);
e2prim = difft (e2,tvars);
then SUB(elprim,e2prim);
case (MUL(el,e2),tvars) // (el*e2)’ => el’*e2 + el*e2’
equation
elprim = difft(el, tvars);
e2prim = difft(e2,tvars);
then PLUS (MUL (elprim,e2),MUL(el,e2prim)) ;
case (DIV(el,e2),tvars) // (el/e2)’ => (el’*e2 — el*el2’)/e2*e2
equation
elprim = difft(el, tvars)
e2prim = difft(e2,tvars);
then DIV (SUB(MUL (elprim,e2),MUL(el,e2prim)), MUL(e2,e2));

’

case (NEG(el),tvars) // (-el)’ => -el’
equation
elprim = difft(el,tvars); then NEG(elprim);
case CALL (IDENT ("sin"),list(el)),tvars) // sin(el)’ => cos(el)*el’
equation

elprim = difft(el, tvars);
then MUL (CALL (IDENT ("cos"),list(el)),elprim);
case (AND(el,e2),tvars) // (el and e2)’ => el’and e2’
equation
elprim = difft(el, tvars);
e2prim = difft(e2, tvars);
then AND (elprim,e2prim);
case (OR(el,e2),tvars) // (el or e2)’ => el’ or e2’
equation
elprim = difft(el, tvars);
e2prim = difft(e2, tvars);
then OR (elprim,e2prim);
case (LESS(el,e2),tvars) // (el<e2)’ => el’<e2’
equation
elprim = difft(el, tvars);
e2prim = difft(e2, tvars);
then LESS (elprim,e2prim);
case (GREATER (el,e2),tvars) // (el>e2)’ => el’>e2’
equation
elprim = difft(el, tvars)
e2prim = difft(e2, tvars);
then GREATER (elprim,e2prim);

I

// etc...

end matchcontinue;

end difft;
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3.4 Summary

This chapter introduced the concept of translational semantics, which was applied to the small PAM
language. A translational semantics for translating PAM to a simple machine language was developed.
The machine has only one register, and includes arithmetic instructions and conditional and
unconditional jump instructions. A structured representation of the instruction set, called Mcode, was
defined. Much of the translation is expressed through parameterized code templates within some of the
MetaModelica semantic cases. The complete PAMTRANS translational semantics is available in
Appendix C.3.

The reader may have noted that we used many append instructions in the semantics, since the
sequence of output code instructions is represented as a linked list. This can be avoided by an alternative
way of representing the output code as an ordered sequence of instructions. For example, we can use a
binary tree built by a binary sequencing operator (e.g. MSEQ), which can be obtained by for example
adding an MSEQ of Mcode * Mcode operator declaration to the Mcode union type.

We have also shown a small set of translation rules for symbolic differentiation of mathematical
expressions.

3.5 Exercises

See Appendix D.2, page 194.
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Chapter 4

Getting Started — Practical Details

This chapter provides information about a number of technical details that the reader will need to know
in order to get started using the MetaModelica mmc generator system. This includes information about
where the mmc system resides, how to invoke the mmc program generator, how to compile and link
generated code, how to run the MetaModelica debugger, etc.

In order to keep the presentation concise, we return to the simplest of all language examples
described so far—the expression language Expl presented at the beginning of Chapter 2. We will show
how to build and run a working calculator that can evaluate constant arithmetic expressions expressed in
the Expl language. We will also describe how to build an interpreter for a larger language—the
PAMDECL language described in Section 2.7.

4.1 Path and Locations of Needed Files

Before one can use the MetaModelica system, some packages need to be installed. The OpenModelica
subversion repository is referenced below. In order to use it, you need to provide a username
(anonymous) and password (none, 4 letters).

411 Windows Dependencies

All dependencies are installed by  fetching https://openmodelica.org/svn/
OpenModelica/installers/Windows/OMDEV to C:/OMDev, and settings the environment variable
OMDEV to C:/0MDev. Use the script in C: \OMDev\tools\msys\msys.bat to launch the shell that you
use to run the examples later in this chapter.

4.1.2 Linux and Mac OSX Dependencies

Use the rml-mmc package provided in the OpenModelica repositories for Debian/Ubuntu
(http://openmodelica.org/index.php/download/download-linux) and Macports (http://openmodelica.org/
index.php/download/download-mac). If your operating system of choice is not supported, build rm1-
mmc from source.

41.3 Downloading the Examples

The reader may fetch the example files from  http://openmodelica.org/
metamodelica/exercises/ where the MetaModelica 1.0 related examples from this book are
currently located.
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4.2 The Exp1 Calculator Again

421 Running the Exp1 Calculator

Before building the Exp1 calculator it is instructive to show how it can be used. The executable has been
named calc, and is invoked by just typing calc at the Unix command prompt (sen20%10). Input typed by
the user is shown in boldface.

First type executable to invoke the calculator, which responds with some trace printout to show
that it has initialized and has started parsing text read from the command line.

Then type the expression to be evaluated (here: -5+10-2), followed by pushing the Enter key and
typing ctr1l-D (~D)'. The ctrl-D is needed to close the input file (which here is a “terminal”), since
the Yacc-generated parser currently expects to read a whole input file before completing the parsing.
Finally a trace printout ([Calc]) from the evaluator is printed, together with the result (3) of evaluating
the expression.

>> calc
[Init]

[Parse]
-5+10-2
“"D[Eval]

Result: 3

The following example shows how the calculator reacts when it is fed an expression which does not
belong to the Expl expression language. Remember that this language only allows simple arithmetic
expressions not including variables or symbolic constants.

sen20%11 executable

[Init]

[Parse]

hej+5

Syntax error at or near line 1.

Parsing failed!

422 Building the Exp1 Calculator

Before building the Expl calculator, we need to locate the MetaModelica, Lex and Yacc tools. It is
useful for the reader who wishes to test building and running the calculator to create his/her own work
directory (e.g. called myexpl).

4.2.21 Source Files to be Provided

Three files are needed to specify all properties (syntax and semantics) of the Expl language. One
additional file defines the main program.

e The file Expl.mo contains an interpretive style MetaModelica specification and abstract syntax
of the Expl language in MetaModelica form, here within the single MetaModelica package
Expl.

e The file parser.y contains the grammar of the Exp1 language in Yacc-style BNF form.

o The file lexer.l specifies the lexical syntax of tokens in the Expl language in Lex-style regular
expression form.

e In addition, a file main.c defines the C main program that calls initialization routines, the
generated scanner, parser and evaluator, and prints the evaluated result.

' Windows users may need to use ctr1-7 depending on what terminal software is used
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4.2.2.2 Generated Source Files

The following five files are generated by the MetaModelica system and the Yacc and Lex tools,
respectively:

The files Expl.c and Expl.h are generated by the mmc translator using the rm1 command. The
generated C code that performs evaluation of Expl expressions can be found in Expl.c,
whereas Exp1 .h contains tree-building macros to be called by the parser to build abstract syntax
trees of input expressions that are passed to the evaluator.

The files parser.c and parser.h are generated by Yacc, and contain a parser for Expl and
token definitions, respectively.

The file 1exer.c is generated by Lex, and contains a scanner for Exp1.

4223 Library File(s)

The following system specific library files and header files are used.

The file rm1.h contains definitions and macros for calling the MetaModelica runtime system
and predefined functions (located in SRMLHOME/include/plain).

The file 1ibrml.a is a library of all MetaModelica runtime system routines and predefined
functions (located in $RMLHOME/1ib/plain).

4224 Makefile for Building the Exp1 Calculator

Building the Expl calculator from the needed components is conveniently described by a Makefile,
such as the one below. The GNU Compiler Collection is used here. Library files and header files are
found in $RMLHOME/ {include, 1ib}. The usual make dependencies are specified. The command:

make —-f Makefile.rml executable

will build the binary executable of the calculator (called executable) whereas the command:

make —-f Makefile.rml clean

will remove all generated files, object files and the binary executable file.

# Makefile.rml

# Makefile for building the Expl calculator

CLEAN=Expl.{c,h,o0,srz} main.o

HEADERS=Expl.h

OBJS=Expl.o main.o lexer.o parser.o
include ../common.rml

. ./common.rml

ifdef OMDEV

RMLC=$ (OMDEV) /tools/rml/bin/rmlc

#

LDLIBS = -1fl1 -1m -lwsock32
else

RMLC=rmlc

LDLIBS = -1m —-lpthread
endif

RMLCFLAGS=-g -Wr,-Ono-cps —-DRML
COMPILE.rml=$ (RMLC) $(RMLCFLAGS) $(CPPFLAGS) -I../rml/ -c
LINK.rml=$ (RMLC) -g

.SUFFIXES: .c .0 .rml .h .mo

.C.

O:

$ (COMPILE.rml) $<

.rml.c:

$ (COMPILE.rml) +C $<

.rml.h:
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$ (COMPILE.rml) +C $<

.rml.o:

$(COMPILE.rml) S<
.mo.cC:

S (COMPILE.rml) +C $<
.mo.h:

S (COMPILE.rml) +C $<
.M0.0:

$ (COMPILE.rml) $<
all: clean executable
# LEXER

lexer.o: lexer.c parser.h $ (HEADERS)
lexer.c: lexer.l
flex -t -1 lexer.l >lexer.c

# PARSER

parser.o: parser.c parser.h $(HEADERS)
parser.c parser.h: parser.y

bison -d parser.y

mv parser.tab.c parser.c

mv parser.tab.h parser.h

clean:
rm -f $(CLEAN) *.o *.so *.dll *.exe executable parser.c lexer.c parser.h
lexer.h rtest yacclib.c *~

executable: $ (HEADERS) $(OBJS)
S(LINK.rml) $(OBJS) $(LDLIBS) -o executable

run: executable
cat program.txt
./executable 10 < program.txt

4.2.3 Source Files for the Exp1 Calculator

Below we present the three source files lexer.1, parser.y, and Expl.mo, needed to specify the
syntax and semantics of the Exp1 language, as well as the main program file main.c.

4.2.31 Lexical Syntax: lexer.l|

The file 1exer.1 defines the lexical syntax of the Expl language, identical to what was presented in
Section 2.1.1, but augmented by mentioning necessary include files.
The global variable yylval is used to transmit the values of tokens that have values—such as integer
constants (T INTCONST)—to the parser.
Character sequences including new line (\n) which cannot give rise to legal tokens in Expl are taken
care of by junk, which is just skipped.
The routine Expl INTconst in Expl.h builds abstract syntax integer leaf nodes and is generated
by mmec when processing the abstract syntax definitions in Exp1 . mo.
The routine mk_icon (from rml.h) builds MetaModelica compatible integer constants that can be
passed to MetaModelica constructors such as Expl . INTconst, here callable as Expl INTconst.
/* file lexer.l */
#include "parser.h"

#include "rml.h"
#include "Expl.h"

typedef void *rml t;
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extern rml t yylval;

rml t absyn integer (char *s);

oe

}

digit ("0" | "1" | "2" | "3" | "4" | "5" | "6" | "7" | "8" | ll9ll)

digits {digit}+

junk . I\n

{digits} { yylval=absyn integer (yytext); return T INTCONST;}
nyn return T ADD;

n-n return T SUB;

nxw return T MUL;

A return T DIV;

(" return T LPAREN;
" return T RPAREN;
{junk}+ ;

oe
oe

omc_t absyn integer (char *s)
{
return (rml_t) Expl INTconst(mk icon(atoi(s)));

}

4.2.3.2 Grammar: parser.y

The grammar file parser.y follows below. The grammar rules are identical to those presented in
Section 2.1.1. However, some include files are mentioned here and tree-building calls have been inserted
at the parser rules in order to build the abstract syntax tree during parsing.

The tree building routines Expl ADDop, Expl SUBop, Expl MULop, Expl DIVop,
Expl NEGop, and Expl INTconst are generated by mmc from the definition of the Expl abstract
syntax in the package Exp1 that can be found in the file Expl .mo. The definition of these can be found
in Expl.h. Leaf nodes such as INTconst are returned by the scanner.

/* file parser.y */
5 {
#include <stdio.h>

#include "rml.h"
#include "Expl.h"

#define YYSTYPE rml t
extern rml t absyntree;

oe

}
$token T INTCONST

$token T LPAREN T RPAREN
stoken T ADD

stoken T SUB

stoken T MUL

$token T DIV

stoken T GARBAGE

oe
o

/* Yacc BNF Syntax of the expression language Expl */

program
expression
{ absyntree = $1; }
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expression : term
| expression T ADD term
{ $$ = Expl_ ADDop ($1,$3);}
| expression T SUB term
{ $$ = Expl_SUBop(S$1,$3);}

term : u_element
| term T MUL u element
{ $$ = Expl MULop(S$1,$3);}
| term T DIV u element
{ $$ = Expl_DIVop(S$1,$3);}

u_element : element
| T SUB element
{ $$ = Expl_ NEGop($2);}

element : T INTCONST
T LPAREN expression T RPAREN
{ 88 = $2;}

4.2.3.3 Semantics: Exp1.mo

The abstract syntax and semantics of the small expression language Exp1 appears below, identical to the
definitions in Section 2.1.2 and Section 2.1.4. Both have been placed in the MetaModelica package
Expl. For larger specifications it is customary to place the definition of abstract syntax in a package of
its own. Note that the abstract syntax specification has been placed in the interface sections since the
constructors need to be exported to be callable by the parser.

/* file Expl.mo */

package Expl

/* RAbstract syntax of the language Expl as defined using Modelica */

uniontype Exp
record INTconst Integer x1; end INTconst;
record ADDop Exp xl1; Exp x2; end ADDop;
record SUBop Exp x1; Exp x2; end SUBop;
record MULop Exp xl1; Exp x2; end MULop;
record DIVop Exp x1; Exp x2; end DIVop;
record NEGop Exp x1; end NEGop;

end Exp;

/* Evaluation semantics of Expl */

function eval

input Exp inExp;

output Integer outlInteger;
algorithm

outInteger :=

matchcontinue inExp
local Integer vl,v2;
Exp el,e2;
case INTconst(vl) then vl;

case ADDop (el,e2) equation
vl = eval(el; v2 = eval(e2; then vl1+v2;

case SUBop(el,e2) equation
vl = eval(el); v2 = eval(e2); then v1-v2;

case MULop (el,e2) equation
vl = eval(el); v2 = eval(e2); then vl1*v2;
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case DIVop(el,e2) equation
vl = eval(el); v2 = eval(e2); then vl1/v2;

case NEGop (el) equation
vl = eval (el); then -vl1;
end matchcontinue;

end eval;

4.2.3.4 main.c

See Section 4.2.4 for more information.

424 Calling MetaModelica from C — main.c

The main program in a MetaModelica-based application can be written either in C or in MetaModelica
itself. Here we present an example where the main program is in C.

The main program ties the different packages together and initializes the MetaModelica runtime
system. It may also take care of possible command line arguments if the generated application needs
those.

In this particular program, the procedure Expl 5finit is first called to in order to initialize the
MetaModelica runtime system. In fact, for each package M written in this implementation of
MetaModelica, the C main program must callM 5finit () ; for initialization. Then the printouts [Init]
and [Parse] are produced, after which the user is expected to type in an expression, which is parsed and
scanned by yyparse. The abstract syntax tree is built by the parser and placed into the global variable
absyntree.

The parameter passing facilities between C code and MetaModelica functions are tied to the mmc
implementation and a bit primitive. The abstract syntax tree need to be passed to the Modelica function
Expl.eval for evaluation, which is the main functionality in our calculator. To do this, the tree is
placed into the global location rm1 state ARGS[0] which transfers the first argument to Expl.eval
through the call rm1 prim once (RML LABPTR (Expl eval)) which returns a non-zero value if the
evaluation is successful. The integer result of the evaluation is placed in the global variable
rml state ARGS[0]. Note that the result must be converted from the MetaModelica tagged integer
representation to the ordinary C integer representation before being printed. This conversion is handled
by RML_ UNTAGFIXNUM.

The special MetaModelica runtime system procedures and locations referred to, such as
rml prim once, rml state ARGS, RML LABPTR, etc., are all declared in the include file omc. h. The
file main.c follows below.

/* file main.c */
/* Main program for the small Expl evaluator */

finclude <stdio.h>
#include <rml.h>
#include "Expl.h"

rml t absyntree;

yyerror (char *s)
{
extern int yylineno;
fprintf (stderr, "Syntax error at or near line %d.\n",yylineno);

}

main ()

{

int res;
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/* Initialize the Modelica packages */

printf (" [Init]\n");
expl 5finit();

/* Parse the input into an abstract syntax tree (in Modelica form)
using yacc and lex */

printf (" [Parse]l\n");

if (yyparse() !=0)

{
fprintf (stderr, "Parsing failed!\n");
exit (1) ;

}

/* Evalute it using the Modelica relation "eval" */

printf (" [Eval]l\n");
rml state ARGS[0]= absyntree;
if (!rml prim once(RML LABPTR(Expl eval)) )
{
fprintf (stderr, "Evaluation failed!\n");
exit (2);
}

/* Present result */

res=RML UNTAGFIXNUM (rml_state_ARGS [01);
printf ("Result: %d\n", res);

4.2.5 Generated Files and Library Files

We have already mentioned the five generated files lexer.c, parser.h, parser.c, Expl.h, and
Expl.c in Section 4.2.2.2. The MetaModelica system generates Expl.h and Expl.c. Here we will
present the header file Expl.h in more detail. The file Expl . c contains optimized C implementations of
the Expl MetaModelica functions, which is rather unreadable C code that is not so interesting to look at.

Additionally, we describe the parts of the header file rm1.h that are used for building and printing
abstract syntax trees.

4.2.51 Exp1.h

The header file Expl.h contains declarations that makes it possible to call entities declared in the
interface section of the Expl Modelica package. These include the Expl.eval function referred to
through the label Expl eval, and abstract syntax tree constructors Expl .NEGop, Expl.DIVop, etc.
which can be called through the macros Expl NEGop, Expl DIVop, etc. respectively.

/* interface Expl */

extern void Expl 5finit();

extern RMLiFORWAﬁDiLABEL(Explgﬁeval);
#define Expl NEGop_ 3dBOX1 5

#define Expl NEGop (X1) (mk boxl (5, (X1)))
#define Expl DIVop_ 3dBOX2
#define Expl DIVop (X1, X2)
#define Expl MULop_ 3dBOX2
#define Expl MULop (X1, X2)
#define Expl SUBop_ 3dBOX2
#define Expl SUBop (X1, X2)
#define Expl ADDop_ 3dBOX2
#define Expl ADDop (X1,X2) (mk box2 (1, (X1), (X2)))
#define Expl INTconst 3dBOX1 0

#define Expl INTconst (X1l) (mk boxl (0, (X1)))

mk_box2 (4, (X1), (X2)))
mk_box2 (3, (X1), (X2)))

mk_box2 (2, (X1), (X2)))

P _ N~ W~
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4.2.5.2 rml.h

The header file rm1 .h declares a number of primitive routines which are primarily used in the course of
building abstract syntax trees during parsing.

The routines mk_icon, mk rcon, mk_scon create MetaModelica representations for integers, real
numbers and strings, respectively, whereas print icon, print rcon, and print scon can print
Modelica integers, real numbers and strings.

List construction is provided by mk _cons which creates a list cell and mk_nil which creates a nil
pointer to represent the end of a list. The mk _none and mk_some constructors are used for the builtin
MetaModelica Option type which is convenient for representing optional syntactic constructs.

Finally, the routines mk_box0 to mk box9 construct abstract syntax tree nodes of arity 0 to 9. These
should not be called directly, however. Instead use the abstract syntax building routines, one for each
node type, which are declared in the file Exp1.h.

4.3 An Evaluator for PAMDECL

4.3.1 Running the PAMDECL Evaluator

The executable is named executable, and is invoked by typing executable at the Unix prompt
(sen20%10). Input typed by the user is shown in boldface.

sen20%10 cat|executable

program
a: integer;
foo: real;
body
a:=17;
foo:=a*2+8;
write foo;
end program
“D42.0

Supplied with PAMDECL are a number of test programs located in subdirectory prg/. To run prg5
type the following:

sen20%11 executable > prg/prgb

.01

.0201

.04060401
.08285670562808
.1725786449237
.3749406785311
.89046186947955
3.57384607995613
12.7723758032178
163.133583658624
26612.5661173053
708228675.347948

[ e N SN

43.2 Building the PAMDECL Evaluator

The following files are needed for building PAMDECL: Absyn.mo , Env.mo, Eval.mo, lexer.1,
parser.y,Main.mo, ScanParse.mo, ScanParseRML.c and Makefile.rml.

The file contents are listed in Appendix C.2 and can be also be obtained by following the instructions
in Section 4.1.3.

The executable is built by typing:
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sen20%12 make —f Makefile.rml executable

43.3

Calling C from MetaModelica

The file ScanParse.mo looks somewhat weird. It does not contain the usual package implementation
section. In the makefile one also notices that it is not compiled using mmc. Instead we supply the body
for ScanParse.mo through the file ScanParseRML. ¢, which in turn is compiled in a regular way. This
is the trick to use when there is a need to call C from MetaModelica.

This is how you do it in PAMDECL.:

In ScanParse.mo specify the functions (C functions) that are to be implemented in C. In this
case it is a function (function) that takes no arguments and returns an Absyn.prog.

In ScanParseRML.c we need to implement the functions (function) specified in
ScanParse.mo. This is done by typing the code for the function between RML,. BEGIN LABEL (
ScanpParse relationname) and RML END LABEL.

One also needs to add the constructor ScanParse 5finit (void) for ScanParse.mo, which
in this case does nothing.

If one wants the function to fail call RML_ TAILCALLK (omcFC) or call RML TAILCALLK (omcSC) if one
want it to succeed.

Values are returned through the variable rm120. Values submitted to the function (function) can be
retrieved from rm120 through rm129. Before the values can be retrieved or returned they have to be
untagged or tagged, e.g. get a string parameter.

char *first param = RML STRINGDATA (rmlAQ) ;

or return a string constant

rmlAQ

= (void *) mk scon("Hello, world!");
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Chapter 5

Comprehensive Overview of the Current
MetaModelica Subset

This chapter gives a comprehensive overview of all MetaModelica constructs, from basic primitives
such as as characters and lexical units including identifiers, literals, and operators, to expressions,
functions, and declarations.

5.1 MetaModelica Constructs to be Depreciated

The current MetaModelica 1.0 subset contains several constructs which will eventually eventually be
removed from the MetaModelica language. They are needed before compiler support for better
alternatives has been implemented. The constructs to be depreciated are the following:

e matchcontinue-expressions will probably eventually be replaced by match-expressions and
exception handling or match-expressions with guards.

e Real number arithmetic operators containing a dot (+., -., *., /., etc.) will be replaced by
ordinary overloaded arithmetic operators (+, - ,* , /, etc.)

e The String ==& equality operation and +& string append operator will be replaced by the
overloaded operators == and + respectively.

e The equality(...) operator will be removed.
e Some additional smaller items.

5.2 Character Set

The character set of the Modelica language is not yet completely specified. However, in practice the
currently available Modelica tools work well for code written in the 8-bit Latin-1 character set. Most of
the first 128 characters of Latin-1 are equivalent to the 7-bit ASCII character set.

5.3 Comments

There are three kinds of comments in Modelica which are not lexical units in the language and therefore
are ignored by a Modelica translator. The comment syntax is identical to that of Java. The following
comment variants are available:

// comment Characters from // to the end of the line are ignored.
/* comment */ Characters between /* and */ are ignored, including line terminators.
/** comment */ Characters between /** and */ are ignored, including line terminators.

These are documentation comments that come immediately before
declarations and can be included in automatically generated
documentation. However, currently available Modelica tools primarily
support another mechanism for documentation, so-called documentation
strings described below, which can be attached after each declaration.
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Modelica comments do not nest, i.e., /* */ cannot be embedded within /* */. The following is
invalid.:
/* Commented out - erroneous comment, invalid nesting of comments!

/* This is a interesting model */
function interesting

éﬁ& interesting;
*/
There is also a kind of “documentation comment,” really a documentation string, that is part of the
Modelica language and therefore not ignored by the Modelica translator. Such “comments” may occur at

the ends of declarations, at the beginnings of function definitions, or immediately after any equation. For
example:

function foo "This is a function comment"
Real x '"the variable x is used for ...";

end foo;

54 Identifiers, Names, and Keywords

Identifiers are sequences of letters, digits, and other characters such as underscore, which are used for
naming various items in the language. Certain combinations of letters are keywords represented as
reserved words in the Modelica grammar and are therefore not available as identifiers.

5.41 Identifiers

Modelica identifiers, used for naming classes, variables, constants, and other items, are of two forms.
The first form always start with a letter or underscore (), followed by any number of letters, digits, or
underscores. Case is significant, i.e., the names Inductor and inductor are different. The following
BNF-like rules define MetaModelica identifiers, where curly brackets {} indicate repetition zero or more
times, and vertical bar | indicates alternatives.

IDENT = NONDIGIT { DIGIT | NONDIGIT } | Q-IDENT
NONDIGIT = "_" | letters "a" to "z" | letters "A" to "2Z"
DIGIT =01 112131415161 7181]029
S-ESCAPE = "\/™ | "\"" | "\2" | "\\" |

"\a" | "\b" | "\NE" | "\n" | "\r" | "\t" | "\y"

5.4.2 Names

A name is an identifier with a certain interpretation or meaning. For example, a name may denote an
Integer variable, a Real variable, a function, a type, etc. A name may have different meanings in
different parts of the code, i.e., different scopes.

5.4.3 MetaModelica Keywords

The following MetaModelica keywords are reserved words and may not be used as identifiers:

_ as and annotation algorithm
block case constant

else end
equality equation external false
failure fail function if
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input list local match matchcontinue

not or output package
protected public record
subtypeof then true

tuple type uniontype

5.5 Predefined Types

The predefined built-in based types of MetaModelica 1.0 are Real, Integer, Boolean, and String.
The machine representations of the values of these predefined types have the following properties:

Real IEC 60559:1989 (ANSI/IEEE 754-1985) double format, at least 64-bit precision.

Integer typically two’s-complement 32-bit integer. (But currently 31 bit integer in the
boxed Integer type.)

Boolean true or false.

String string of 8-bit characters.

list<eltype> list of element type

Note that for argument passing of values when calling external functions in C from MetaModelica, Real
corresponds to double and Integer corresponds to int.

5.51 Literal Constants

Literal constants are unnamed constants that have different forms depending on their type. Each of the
predefined types in MetaModelica has a way of expressing unnamed constants of the corresponding
type, which is presented in the ensuing subsections. Additionally, array literals and record literals can be
expressed.

5.5.2 Floating Point Numbers

A floating point number is expressed as a decimal number in the form of an optional sign (+ or —), a
sequence of decimal digits optionally followed by a decimal point, optionally followed by an exponent.
At least one digit must be present. The exponent is indicated by an E or e, followed by an optional sign
(+ or —) and one or more decimal digits. The range is that of IEEE double precision floating point
numbers, for which the largest representable positive number is 1.7976931348623157E+308 and the
smallest positive number is 2.2250738585072014E-308. For example, the following are floating point
number literal constants:

22.5, 3.141592653589793, 1.2E-35, -56.08
The same floating point number can be represented by different literals. For example, all of the
following literals denote the same number:

13., 13E0, 1.3el, .13E2

5.5.3 Integers

Literals of type Integer are sequences of decimal digits, e.g. as in the integer numbers 33, 0, 100,
30030044, or negative numbers such as —998. The range depends on the C compiler implementation of
integers (Modelica compiles to C), but typically is from —2,147,483,648 to +2,147,483,647 for a two’s-
complement 32-bit integer implementation. Currently only 31-bit integers are supported as the boxed
Integer type in MetaModelica.
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5.5.4 Booleans

The two Boolean literal values are true and false.

5.5.5  Strings

String literals appear between double quotes as in "between". Any character in the MetaModelica
language character set apart from double quote (") and backslash (\), but including nonprintable
characters like new-line, backspace, null, etc., can be directly included in a string without using an
escape code. Certain characters in string literals are represented using escape codes, i.e., the character is
preceded by a backslash (\) within the string. Those characters are:

\I
\H
\?
AN\
\a
\b
\f
\n
\r
\t
\v

single quote—may also appear without backslash in string constants.
double quote

question-mark—may also appear without backslash in string constants.
backslash itself

alert (bell, code 7, ctrl-G)

backspace (code 8, ctrl-H)

form feed (code 12, ctrl-L)

new-line (code 10, ctrl-J)

return (code 13, ctrl-M)

horizontal tab (code 9, ctrl-I)

vertical tab (code 11, ctrl-K)

For example, a string literal containing a tab, the words: This is, double quote, space, the word:
between, double quote, space, the word: us, and new-line, would appear as follows:

"\tThis is\"

between\" us\n"

Concatenation of string literals in certain situations (see the Modelica grammar) is denoted by the +
operator in Modelica, e.g. "a" + "b" becomes "ab". This is useful for expressing long string literals
that need to be written on several lines.

5.5.7 Array Literals in MetaModelica

Array literals can be created using the constructor { }:

{1,2,3},

{3.14, 58E-6}

It is also possible to use the £i11 function to create an array, e.g.:

£i11 (0, 35)

// Create an Integer array of 35 elements filled with 0

Arrays of other types can be created by specifying another fill value:

£111(3.14, 99) // Create an array of 99 Real elements of value 3.14

5.5.8 List Literals

List literals can be expressed using the list constructor 1ist (...) or by the array constructor { } which
creates an array that is converted to a list. For example, the following are one-dimensional list constants:

list(1,2,3),

list(3.14, 58E-6)

The { } constructor can be used construct an array that is automatically converted to a list depending on
the type context, e.g. if it is past to a function formal parameter of list type, or assigned to a variable of

list type.
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{1,2,3}, {3.14, 58E-6}

5.5.9 Record Literals

Record literals can be expressed using the record constructor functions automatically defined as a
consequence of record declarations (inside union types). Below is an example record literal of a complex
number based on the record Complex:

Complex (1.3, 4.56)

5.6

Operator precedence determines the order of evaluation of operators in an expression. An operator with
higher precedence is evaluated before an operator with lower precedence in the same expression. For
example, relational operators have higher precedence than logical operators, e.g.:

Operator Precedence and Associativity

Xwithin := x>35.3 and x<=999.6;

Assuming x has the value 55.0, then both relational terms are first evaluated to true, eventually giving
the value true to be assigned to the variable Xwithin. The multiplication operator * has higher
precedence than the subtraction operator, causing the following expression to have the value 45, not
Zero:

10 * 5 - 5
Parentheses can be used to override precedence, e.g. causing the expression below to evaluate to zero:

10 * (5 - 5)
The associativity determines what happens when operators with the same precedence appear next to each
other. Left-associative operators evaluate the leftmost part first, e.g. the expression:

X +y +tw
is equivalent to
(x +vy) +w

The following table presents all the operators in order of precedence from highest to lowest. All
operators are binary except the postfix operators and those shown as unary together with expr, the
conditional operator, the array construction operator {} and . Operators with the same precedence occur
at the same line of the table:

Table 5-1. Operators.

Operator Group Operator Syntax Examples

postfix index operator [] arr[index]

name dot notation . PackageA. func
postfix function call (function-arguments) sin(4.36)

array or list construction {expressions} list(expressions) {2,3}

real power of ~ x "~ 2

integer multiplicative * o/ 2*3  2/3

real multiplicative *. /. 2.1 *. 3.2

integer additive + - +expr -expr a+b, a-b, +a, -a
real additive +. -. +. expr -. expr at.b, a-.b, +.a, -.a
integer relational < <= > >= == <> a<b, a<=b, a>b,
real relational <. <=, >, >=, ==, <>, a<.b, a<=.b, a>.b,
string equality == strl ==& str2
unary negation not expr not bl

logical and and bl and b2
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logical or or bl or b2

conditional expression if expr then expr else expr if b then 3 else x

list element concatenation "a:: {"b","c"} = | "a"::{"b","c"} =
{"a","b","c"} {"a","b","c"}

named argument ident = expr x = 2.26

Equality = and assignment : = are not expression operators since they are allowed only in equations and
in assignment statements respectively. All binary expression operators are left associative. There is also

a generic structural equality operator, equality (exprl =

expr2), giving fail or succeed, which can

be applied to values of primitive data types as well as to values of structured types such as arrays, lists,

and trees.

The above operators correspond to and can be called using the following function names, which are
mentioned below together with a few additional builtin functions:
The following are built-in common mathematical functions:

Table 5-2. Built-in common mathematical functions.

sin(u) sine
cos(u) cosine
tan(u) tangent (ushallnotbe: ..., —7z/2, ©/2, 37/2,...)
asin(u) inverse sine (—1<u <1)
acos(u) inverse cosine (—1<u <1)
atan(u) inverse tangent
atan2(ul,u2) |four quadrant inverse tangent
sinh(u) hyperbolic sine
cosh(u) hyperbolic cosine
tanh(u) hyperbolic tangent
exp(u) exponential, base e
log(u) natural (base ¢) logarithm (u > 0)
logl0(u) base 10 logarithm (u > 0)
Boolean operations:
boolAnd, boolOr, boolNot
Integer operations:
intAdd, intSub, intMul, intDiv
intMod, intAbs, intNeg, intMax, intMin
intLt, intLe, intEq, intNe, intGe, intGt, int real, intString
Real number operations:
realAdd, realSub, realMul, realDiv
realMod, realBAbs, realNeg, realMax, realMin
reallt, realle, realEq, realNe, realGe, realGt, reallnt, realString
realCos, realSin, realAtan, realExp, realln, realFloor, reallnt, realPow
String operations:
stringlLength, stringGet, stringAppend
stringInt, stringList, listString

For a complete set of builtin operators and functions, including their signatures, see Appendix B.
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5.7 Arithmetic Operators

MetaModelica supports four binary arithmetic operators in both integer and real variants. The real
number operators currently contain a dot.

Table 5-3. Arithmetic operators.

Integer operators Real operators
* Integer multiplication * Real multiplication
/ Integer mivision /. Real division
+ Integer addition + Real addition
- Integer subtraction -. Real subtraction

Some of these operators can also be applied to a combination of a scalar type and an array type, which
means an operation between the scalar and each element of the array.
Unary versions of the addition and subtraction operators are available, e.g. as in —35 and +84.

5.71 Integer Arithmetic

Integer arithmetic in Modelica is the same as in the ISO C language standard, since Modelica is
compiled into C. The most common representation of integers is 32-bit two’s complement, e.g. see a
definition in C—+A Reference Manual, Section 5.1.1, (Harbison and Steele 1991). This representation is
used on widespread modern microprocessors such as Pentium, Sparc, etc., with a minimum
representable value of —2,147,483,648 and a maximum value of 2,147,483,647. Note, however, that
other representations are also allowed according to the ISO C standard. Note that currently, only 31-bit
integer arithemtic is supported by the MetaModelica compiler for boxed integers..

For certain arithmetic operations, regarding both integer and floating point numbers, it can be the
case that the true mathematical result of the operation cannot be represented as a value of the expected
result type. This condition is called overflow, or in some cases underflow.

In general, neither the MetaModelica language nor the C language specify the consequences of
overflow of an arithmetic operation. One possibility is that an incorrect value (of the correct type) is
produced. Another possibility is that program execution is terminated. A third possibility is that some
kind of exception or trap is generated that could be detected by the program in some implementation-
dependent way.

For the common case of two’s complement representation, integer arithmetic is modular—meaning
that integer operations are performed using a two’s-complement integer representation, but if the result
exceeds the range of the type it is reduced modulo the range. Thus, such integer arithmetic never
overflows or underflows but only wraps around.

Integer division, i.e., division of two integer values, truncates toward zero with any fractional part
discarded (e.g. div (5, 2) becomes 2, div (-5, 2) becomes —2). This is the same as in the C language
according to the C99 standard. According to the earlier C89 standard, integer division for negative
numbers was implementation dependent.

Division by zero in Modelica causes unpredictable effects, i.e., the behavior is undefined. In typical
cases execution is aborted. Division by zero or other similar faults in MetaModelica generates a failure
which can be handled within a match-expression, see Section 5.14.6.

5.7.2 Floating Point Arithmetic

Analogous to the case for integer arithmetic, floating point arithmetic in Modelica is specified as floating
point arithmetic in the ISO C language. Values of the Modelica Real type are represented as values of
the double type in ISO C, and floating point operations in Modelica are compiled into corresponding
doubleprecision floating point operations in C. Even if not strictly required by the ISO C standard, most
C implementations have adopted the IEEE standard for binary floating point arithmetic (ISO/IEEE Std
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754-1985), which completely dominates the scene regarding C implementations as well as floating point
instructions provided by modern microprocessors. Thus, we can for practical purposes assume that
Modelica follows ISO/IEEE Std 754-1985. Real values are then represented as 64-bit IEEE floating
point numbers. The largest representable positive number in the IEEE double precision representation is
1.7976931348623157E+308 whereas the smallest positive number is 2.2250738585072014E-308.

The effects of arithmetic overflow, underflow, or division by zero in Modelica are implementation
dependent, depending on the C compiler and the Modelica tool in use. Either some value is produced
and execution continues, or some kind of trap or exception is generated which can terminate execution if
it is not handled by the application or the Modelica run-time system.

5.8 Equality, Relational, and Logical Operators

MetaModelica supports the standard set of relational and logical operators, all of which produce the
standard boolean values true or false.

Table 5-4. Integer and real relational operators.

Integer Relational Operators Real Relational Operators
> greater than >, greater than
>= | greater than or equal >=, greater than or equal
< less than <. less than
<= | less than or equal to <=. less than or equal to
== | equality within expressions | ==. equality within expressions
<> | Inequality <> Inequality

The equality and relational operators apply only to scalar arguments. Relational operators are typically
used within if-expressions, or to compute the value of a Boolean variable, e.g.:

x = if vli<v2 then ... ;
boolvar2 := v3 >= v35;

A single equals sign = is never used in relational expressions, only in equations and in function calls
using named parameter passing.

Table 5-5. Equality sign in equations and named parameter passing.

equality within equations
equality of named parameters to arguments at function calls using
named parameter passing

Comparison of strings or structured values can be done using an equation of the form equality (a=b)
which succeeds or fails. See numerous examples of comparision of identifiers in lookup functions
described in this document.

The following logical operators are defined:
Table 5-6. Logial operators.

not negation, unary operator
and  logical and
or logical or

Standard Modelica is free to use any order in evaluation of expression parts as long as the evaluation
rules for the operators in the expression are fulfilled.

Concerning the logical operators and, or in boolean expressions, one possibility is short-circuit
evaluation, i.e., the expression is evaluated from left to right and the evaluation is stopped if evaluation
of further arguments is not necessary to determine the result of the boolean expression. Thus, if the
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variable bl in the expression below has the value true, then evaluation of b2 and b3 would not be
necessary since the result will be true independent of their values. On the other hand, we cannot rely on
this order—evaluation might start with b3 and involve all three variables. However, this does not really

matter for the user since Modelica is a declarative language, and the result of evaluation is the same in
all these cases..

boolvar := true and false;
boolvar?2 = not boolvar;
boolvar3 := Dbl or b2 or b3;

5.8.2 String Concatenation in MetaModelica

The stringAppend operation is a built-in string concatenation function in MetaModelica, both for
string variables and literal string constants.

String vall = "This is";
String valz = " a ";

String concatvalue = stringAppend (stringAppend(vall, val2), stringAppend("rather
"," long string"));
// The value becomes: "This is a rather long string"

5.8.3 The Conditional Operator—if-expressions

The conditional operator in Modelica provides a single expression that computes one out of two
expressions dependent on the value of the condition. The general syntactic form is shown below:

if condition then expressionl else expression2
Both the then-part and the else-part of the conditional expression must be present. Conditional

expressions can be nested, i.e., expression2 can itself be an if-expression.
A conditional expression is evaluated as follows:

e First the condition is evaluated, which must be a boolean expression. If condition is true, then
expressionl is evaluated and becomes the value of the if-expression. Otherwise expression2 is
evaluated and becomes the value of the if-expression.

e The result expressions, i.e., expressionl and expression2, must have assignment-compatible
types. This means that the type of one result expression must be assignable to the type of the
other result expression, which defines the type of the conditional expression.

The following equation contains a conditional expression with a conditional operator on the right-hand
side:

value = (if a+b<5 then firstvalue else secondvalue);

5.9 Built-in Special Operators and Functions

The following built-in special operators in Modelica have the same syntax as a function call. However,
they do not behave as mathematical functions since the result depends not only on the input arguments
but also on the status of the simulation. The following operators are supported:

Table 5-7. Special operators with function syntax.

failure(...) If the argument fails this function succeeds.
equality(a = b) Same as a general structural equality equation a = b.
Either fails or succeeds.
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list(...) or {...} List constructor. Also use curly braces { }

Array constructor that creates a vector of length noElements

fill (value, noElements) X
filled with value.

5.10 Order of Evaluation

Evaluation order is currently left-to-right, but will become unspecified in the future when the
MetaModelica compiler is upgraded to also support full Modelica.

5.11 Expression Type and Conversions

All expressions have a #ype. The expression type is obtained from the types of its constituent parts, e.g.
variables, constants, operators, and function calls in an expression.

5.11.1 Type Conversions

Meta-Modelica is a strongly typed language. This means that type compatibility is checked at compile
time in almost all cases, and at run-time in the remaining cases. MetaModelica prevents incompatible
left-hand and right-hand sides in equations as well as incompatible assignments by not allowing anything
questionable.

The language also provides a few checking and #ype conversion operations for cases when the
compatibility of a type can be determined only at run-time, e.g. to check the size of a variable-length
array, or when we want to explicitly convert a type, for example, when assigning a Real value to an
Integer variable. We discuss these conversions in terms of assignment, sometimes called assignment
conversion, but what is said here is also applicable to conversions between left-hand sides and right-hand
sides of equations, and conversions when passing actual arguments to formal parameters at function
calls.

5.11.1.1 Implicit Type Conversions in Modelica

Sometimes a type can be converted without any explicit action from the Modelica programmer. The only
case in standard Modelica when this happens is implicit conversion of integer operands when used
together with floating point operands in an expression. However, in the current MetaModelica, all type
conversions must by explicit, but implicit conversions are planned for the next major version of
MetaModelica.

5.11.1.2 Implicit Type Conversions in MetaModelica

In the current MetaModelica, implicit type conversions are not available — all type conversions are
explicit. For example, use intReal (i) to convert from Integer to Real or realInt (r) from Real to
Integer.

5.11.1.3 Explicit Type Conversions

Explicit type conversions are needed when implicit conversions are not enough or are not available, for
example, when converting from a Real to an Integer.
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5.12 Global Constant Variables

Global constants can be declared in MetaModelica through the constant keyword, e.g. as below where
the initEnv variable is set to the empty list:

constant initEnv = {};

513 Types

The MetaModelica language supports a builtin set of primitive data types as well as means of declaring
more complex types and structures such as tuples and tree structures. First we will take a look at the
primitive data types.

5.13.1 Primitive Data Types

The MetaModelica language provides a basic set of primitive types found in most programming
languages:
e Boolean—booleans, e.g. true/false.

e Integer—integers, e.g. -123. (Normally 32-bit integers in Modelica, but 31-bit integers in the
current MetaModelica version)

e Real—double-precision IEEE floating point numbers, e.g. 3. 2E5.
e String—strings of characters, e.g. "Linképing™".

5.13.2 Type Name Declarations

Alternate names for types in MetaModelica can be introduced through the type declaration, e.g.:

type Identifier = String;
type IntConstant = Integer;
type MyValue = Real;

5.13.3 Tuples

Tuples are represented by parenthesized, comma-separated sequences of items each of which may have a
different type, e.g.:

e (55,66)—a2-tuple of integers.
e (55,"Hello",INTconst (77))— a3-tuple of integer, string, and Exp.

Named tuple types can be declared explicitly through the type declaration using the tuple type
constructor:

type Twolnt tuple<Integer, Integer>;
type Threetuple = tuple<Integer,String,Exp>;

5.13.4 Tagged Union Types for Records, Trees, and Graphs

The uniontype declaration in MetaModelica is used to introduce union types, for example the type
Number below, which can be used to represent several kinds of number types such as integers, rational
numbers, real, and complex within the same type:

uniontype Number

record INT Integer int; end INT;
record RATIONAL Integer intl; Integer int2; end RATIONAL;
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record REAL Real re; end REAL;
record COMPLEX Real re; Real im; end COMPLEX;
end Number;

The different names, INT, RATIONAL, REAL and COMPLEX, are called constructors, as they are used to
construct tagged instances of the type. For example, we can construct a Number instance REAL (3.14)
to hold a real number or another instance COMPLEX (2.1, 3.5) to hold a complex number.

Each variant of such a union type is actually a record type with one or more fields that (currently) can
only be referred to by their position in the record. The type Number can be viewed as the union of the
record types INT, RATIONAL, REAL and COMPLEX.

The most frequent use of union types in MetaModelica is to specify abstract syntax tree
representations used in language specifications as we have seen many examples of in earlier chapters of
this text, e.g. Exp below, first presented in Section 2.1.2:

uniontype Exp

record INTconst Integer int; end INTconst;

record ADDop Exp expl; Exp exp2; end ADDop;

record SUBop Exp expl; Exp exp2; end SUBop;

record MULop Exp expl; Exp exp2; end MULop;

record DIVop Exp expl; Exp exp2; end DIVop;

record NEGop Exp exp; end NEGop;
end Exp;

The constructors INTconst, ADDop, SUBop, etc. are can be used to construct nodes in abstract syntax
trees such as INTconst (55) and ADDop (INTconst (6), INTconst (44) ), etc.

Representing DAG (Directed Acyclic Graph) structures is no problem. Just pass the same argument
twice or more and the child node will be shared, e.g. when building an addition node using the ADDop
constructor below:

ADDop (x, Xx)

Building circular structures is not possible because of the declarative side-effect free nature of
MetaModelica. Once a node has been constructed it cannot be modified to point to itself. Recursive
dependencies such as recursive types have to be represented with the aid of some intermediate node.

5.13.5 Parameterized Data Types

A parameterized data type in MetaModelica is a type that may have another type as a parameter. A
parameterized type available in most programming languages is the array type which is usually
parameterized in terms of its array element type. For example, we can have integer arrays, string arrays,
or real arrays, etc. depending on the type of the array elements. The size of an array may also be
regarded as a parameter of the array.

The MetaModelica language provides three kinds of parameterized types:

e Lists — the 1ist builtin predefined type constructor, parameterized in terms of the type of the list
elements.

e Arrays — parameterized in terms of the array element type.

e Option types — the option builtin predefined type constructor, parameterized in terms of the
type of the optional value.

Note that all parameterized types in MetaModelica are monomorphic: all elements have to have the same
type, i.e., you cannot mix elements of type Real and type String within the same array or list. Certain
languages provide polymorphic arrays, i.e., array elements may have different types.

However, arrays of elements of “different” types in MetaModelica can be represented by arrays of
elements of tagged union types, where each “type” in the union type is denoted by a different tag.
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5.13.5.1 Lists

Lists are common data structures in declarative languages since they conveniently allow representation
and manipulation of sequences of elements. Elements can be efficiently (in constant time) added to
beginning of lists in a declarative way. The following basic list construction operators are available:

e The list constructor: {ell,el2,el3,...} and list(ell,el2,el3,...) create a list of
elements ell, e12, ... of identical type. Examples:{} and 1ist () denote the empty list;
{2,3,4)and 1ist (2, 3, 4) are a list of integers, etc.

o The empty list is denoted by { }.

o The list element concatenation operation cons (element, 1st) or using the equivalent ::
operator syntax as in element :: 1lst, adds an element in front of the list 1st and returns the
resulting list. For example:

cons ("a", {"b"}) => {"a", "b"};
Cons(uan, {}) => {"all}
"a"::"b"::"c"::{} => {"a","b","c"};

"ae . { "b", "C"} => {"a", "b", HCH}

Additional builtin MetaModelica list operations are briefly described by the following examples; see
Appendix B.3.7 on page 139 for type signatures of these functions:

e listAppend({2,3},{4,5}) => {2,3,4,5}

e listReverse({2,3,4,5}) => {5,4,3,2}

e listLength({2,3,4,5}) => 4

e listMember (3, {2,3,4,5}) => true

e listGet({2,3,4,5}, 4) => 5 // First list element is numbered 1
e listDelete({2,3,4,5},2) => {2,4,5}

The most readable and convenient way of accessing elements in an existing list or constructing new lists
is through pattern matching operations, see Section 6.1.1.

The types of lists often need to be specified. Named list types can be declared using MetaModelica
type declarations:

type IntegerList = list<Integer>;

An example of a list type for lists of real elements:

type Reallist = list<Real>;

The following is a parameterized MetaModelica list type with an unspecified element type
TYpe elemtype which is a type parameter (type variable) of the list. Type variable names in
MetaModelica are declared as replaceable types being subtypes of the “top” type Any.

replaceable type Type elemtype subtypeof Any;

type ElemList = list<Type elemtype>;

Lists in the MetaModelica language are monomorphic, i.e., all elements must have the same type. Lists
of elements with “different” types can be represented by lists of elements of tagged union types, where
each type in the union type has a different tag.

5.13.5.2 Arrays

A MetaModelica one-dimensional array is a sequence of elements, all of the same type. The main
advantage of an array compared to a list is that an arbitrary element of an array can be accessed in
constant time by an array indexing operation on an array using an integer to denote the ordinal position
of the accessed element. See Appendix B.3.8 for a full description of builtin array operations.

Constructing arrays is rather clumsy in MetaModelica. First a list has to be constructed which then is
converted to an array, e.g.:



98 Fritzson, Pop Meta-Programming and Language Modeling with MetaModelica 1.0

vec := listArray({2,4,6,8})
Accessing the third element of the array vec using the array indexing operation arrayGet, where the
first element has index 1:

arrayGet (vec,3) => 6

It is also possible to use the more concise square bracket indexing notation:

vec[3] => 6

Getting the length of array vec:

arrayLength (vec) => 4

Creating arrays of certain length filled with a single element value is possible using fill:

£111(3.14,98) // Gives an array of 98 Real-valued elements with the value 3.14

Named array types can of course be declared using the type construct, e.g. as in the declaration of a
one-dimensional array of boolean values:

type OneDimBooleanVector = Boolean([:];

Multi-dimensional arrays are represented by arrays of arrays, e.g. as in the following declaration of a
two-dimensional matrix of real elements.

type OneDimRealVector = Reall[:];

type TwoDimRealMatrix = OneDimRealVector([:];

Parameterized array types can be expressed using a type parameter declared as a replaceable type, such
as Type ElemType in the following example:

replaceable type Type ElemType subtypeof Any;
type Type ElemVector = Type ElemTypel[:];

Below we give the type signatures, i.e., the types, of input parameters and output results, for a few
builtin array operations, also presented in Appendix B.3.8. The following are the length and indexing
signatures:

function arrayLength "Compute the length of an array"
input Type af:] inVec;
output Integer outLength;
replaceable type Type a subtypeof Any;

end arrayLength;

function arrayGet "Extract (indexed access) an array element from the array"
input Type al:] inVec;
output Type a outElement;
replaceable type Type a subtypeof Any;

end arrayGet;

The following are signatures of the conversion operations between arrays and lists:

function arrayList "convert from array to list"
input Type af:] inVec;
output list<Type a> outLst;
replaceable type Type a subtypeof Any;

end arraylList;

function listArray "Convert from list to array"
input list<Type a> inLst;
output Type al:] outVec;
replaceable type Type a subtypeof Any;

end listArray;
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5.13.5.3 Option Types

Option types have been introduced in MetaModelica to provide a type-safe way of representing the
common situation where a data item is optionally present in a data structure — which in language
specification applications typically is an abstract syntax tree.

The option type is a predefined parameterized MetaModelica union type with the two constructors
NONE () and SOME () :

uniontype option
replaceable type Type a subtypeof Any;
record NONE end NONE;

record SOME Type a elem; end SOME;
end option;

The constant NONE () with no arguments automatically belongs to any option type. A constructor call
such as SOME (x1) where x1 has the type Type a, has the type Option<Type a>.

The constructor NONE () is used to represent the case where the optional data item (of type Type a in
the above example) is not present, whereas the constructor SOME () is used when the data item is present
in the data structure. One example is the optional return value in return statements, represented as
abstract syntax trees, where the NONE () constructor is used for the return; variant without value, and
SOME (...) for the return(valueexpression); variant.

5.14 MetaModelica Functions

We have already used MetaModelica functions extensively to express the semantics of a number of
small languages, as well as small declarative programs. This section gives a more complete presentation
of the MetaModelica function construct, its properties, and its usage.

Modelica functions are declarative mathematical functions, i.e., a Modelica function always returns
the same results given the same argument values. Thus a function call is referentially transparent, which
means that it keeps the same semantics or meaning independently of from where the function is
referenced or called.

The declarative behavior of function calls implies that functions have no memory (not being able to
store values that can be retrieved in subsequent calls) and no side effects (e.g. no update of global
variables and no input/output operations). However, it is possible that external functions could have side
effects or input/output operations. Moreover, there are built-in functions such as print and tick with
side-effects. See Section 6.1.2 for a discussion of these functions, also see Appendix B.3.11.

Both positional and named argument-passing at function calls are supported.

5.14.1 Function Declaration

The body of a MetaModelica function is a kind of algorithm section that contains procedural algorithmic
code to be executed when the function is called. Formal parameters are specified using the input
keyword, whereas results are denoted using the output keyword. This makes the syntax of function
definitions quite close to Modelica class definitions.

The structure of a typical function declaration is sketched by the following schematic function
example. At most one output formal parameter can be used in a MetaModelica function.

function <functionname>
input TypeIl inl;
input TypelI2 in2;
input TypeI3 in3 "Comment" annotation(...);?
output TypeOl outl;
protected

2 Note: default values and multiple output formal parameters are not yet available in MetaModelica.
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<local variables>
algorithm
<statements>

end <functionname>;

Comment strings and annotations can be given for any formal parameter declaration, as usual in
MetaModelica declarations.
All internal parts of a function are optional; i.e., the following is also a legal function:

function <functionname>
end <functionname>;

5.14.2 Current Restrictions of MetaModelica Functions

Only two supported forms of functions are supported by the current version of the MetaModelica
compiler:

e A function with a body consisting of an assignment statement with output variable(s) on the left
hand side and a match-expression on the right hand side.

e A function with a body consisting of simple assignment statements.

An example of the first kind:

function evalStmtList "Evaluate a list of statements in an environment.
Pass environment forward"
input Env.Env inEnv;
input Absyn.StmtList inStmtlist;
output Env.Env outEnv;
algorithm
outEnv :=
matchcontinue (inEnv,inStmtlist)
local
list<Env.Bind> env;
Absyn.StmtList s, ss;

case (env, {}) then env;
case (env, s :: ss)
equation
envl = evalStmt (env, s);
env2 = evalStmtList (envl, ss); then env2;

end matchcontinue;
end evalStmtList;

An example of the second kind:

function inputItem "Read an integer item from the input stream"
input Stream istream;
output Stream istream?2;
output Integer i;
algorithm
print ("input: ");
i := Input.read();
print ("\n");
istream?2 := istream;
end inputlItem;

There are also additional restrictions:

e Function formal input and output parameter default values and corresponding assignments are
not supported.

e In a function body consisting of a match-expression, formal input parameters may only be
referenced directly after the match keyword, e.g. match (inX,inY)... ormatch inZ

b
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and then only in the order declared in the function header. Formal output parameters may only be
referenced on the left hand side of the assignment comprising the function body.

5.14.4 Function Calls

Both positional and named argument passing is available both in Modelica and in MetaModelica.
Default values of formal parametes are not currently available in MetaModelica. The following
examples is used:

function polynomialEvaluator

input Real A[:]; // Array, size defined at function call time
input Real x;
output Real sum;

5.14.41 Positional Argument Passing

Example of positional argument passing:

p := polynomialEvaluator ({1, 2, 3, 4}, 1.0);

5.14.42 Named Argument Passing

Example of named argument passing:

p := polynomialEvaluator (A={1, 2, 3, 4}, x=21);

5.14.5 Builtin Functions

A number of “standard” builtin primitives are provided by the MetaModelica standard library—in a
package called MetaModelica. Examples are intAdd, intSub, stringAppend, 1istAppend, etc. A
complete list of these primitives can be found in Appendix B.

5.14.6 Generating and Handling Failures/Exceptions

There are two ways to generate a failure (also called exception) in MetaModelica
e A failure is generated by some error during the computation, e.g. array index out of bounds,
division by zero, etc.
e A failure is explicitly generated by calling the MetaModelica fail () operator.

A failure (i.e., a kind of exception) is handled in the following way:

e If the failure occurs during evaluation/solution of one of the local equations (or functions called
from within such a local equation) in a case of a match-expression, matching is continued in the
following case. If all subsequent rules are tried and no one matches and succeeds, the whole
match-expression will fail, and in the common case where a match-expression comprise the body
of a function, the whole function will fail.

e If the failure occurs during evaluation/solution of one of the statements in a function outside a
match-expression, the rest of the function will be aborted and the function will fail.

e Explicit testing for failure of an expression can be done by the failure (expr) call. If expr
fails, then failure (expr) succeeds.

See also Section 5.14.7 below and a discussion of failure versus negation in Section 5.15.2.
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5.14.7 Special Properties of matchcontinue

Two important properties of MetaModelica functions are absent for ordinary functions:

e Functions in MetaModelica can fail or succeed.
e Retry is supported between rules in a match-expression.

A call to a function can fail instead of always returning a result which is the case for functions. This is
convenient for the specification writer when expressing semantics, since other possibly matching rules in
the function will be applied without needing “try-again” mechanisms to be directly encoded into
specifications. The failure handling mechanism can also be used in general declarative programming,
e.g. the factorial example previously presented in Section 2.3.1.1.

This brings us into the topic of rule retry. If there is a failure in a case, or in one of the functions
directly or indirectly called via the local equations of the case, and a match-expression is used,
MetaModelica will backtrack (i.e., undo) the part of the “execution” which started from this case, and
automatically continue with the next case (if there is one) in top-down, left-to-right order. If no case in
the function matches and succeeds, then the call to this function will fail. Correct back-tracking is
however dependent on avoidance of side-effects in the cases of the specification.

5.14.8 Argument Passing and Result Values

Any kind of data structure, as well as functions, can be passed as actual arguments in a call to an
MetaModelica function. One or more results can be returned from such a call. The issues are discussed
in some detail in the following sections.

5.14.8.1  Multiple Arguments and Results

A MetaModelica function may be specified with multiple arguments, multiple results, or both. The
syntax is simple, the argument and result formal parameters are just listed, preceded by the input and
output keywords respectively.

5.14.8.2 Tuple Arguments and Results from Relations

We just noted that a MetaModelica function can have multiple arguments and results. This should not be
confused with the case where a Modelica tuple type (see Section 5.13.3) consisting of several constituent
types is part of the signature of a function. For example, the function incrementpair below accepts a
single tuple of two integers and returns a tuple where both integers have been incremented by one..

function incrementpair
input tuple<Integer,Integer> inVal;
output tuple<Integer, Integer> outVal;
algorithm
outvVal :=
matchcontinue inval
local Integer x1,x2;
case (x1,x2) then (x1+1,x2+1);
end matchcontinue;
end incrementpair;

For example, the call:
incrementpair((2,3))

gives the result:
(3,4)
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5.14.8.3 Passing Functions as Arguments

Functions can be passed as parameters, i.e., as a kind of function parameters. In the example below, the
function addl is passed as a parameter to the function map, which applies its formal parameter func to
each element of the parameter list.
A function declaration gives rise to both a function type and a single function object with the same
name. In this case the function object add1 is passed as an argument to map.
For example, applying the function addl to each element in the list {0,1,2}, e.g. map (addl,
{0,1,2}), will give the result list {1, 2, 3}.
function addl "Add 1 to integer input argument"
input Integer x;
output Integer y;
algorithm

y = x+1;
end addl;

function listMap /*
** Takes a list and a function over the elements of the lists, which is applied
** for each element, producing a new list.

** For example listMap({1l,2,3}, intString) => { "1", "2", "3"}
*/
input list<Type a> in alist;
input FuncType inFunc;
output list<Type b> out bList;
public

replaceable type Type a subtypeof Any;
replaceable type Type b subtypeof Any;
function FuncType
replaceable type Type b subtypeof Any;
input Type a in a;
output Type b out b;
end FuncType;
algorithm
out bList:=
matchcontinue (in_alist, inFunc)
local
Type b first 1;
listzType_b>_rest_1;
Type a first;
listzType_a> rest;
FuncType fn;

case ({},_ ) then {};
case (first :: rest, fn)
equation
first 1 = fn(first);
rest_f = listMap(rest, fn); then first 1 :: rest 1;

end matchcontinue;
end listMap;

function main

res := listMap({0,1,2}, addl); /* Pass addl as a parameter to map */
/* In this example res will be {1,2,3} */

end main;

5.15 Variables and Types in Functions

Except for global constants, MetaModelica variables only occur in functions. Types, including
parameterized types, can be explicitly declared in MetaModelica function type signatures.
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5.15.1.1 Type Variables and Parameterized Types in Relations

We have already presented the notion of parameterized list, array, and option types in Section 5.13.5.
Type variables in MetaModelica can only appear in function signatures.

For example, the tuple2GetFieldl function takes a tuple of two values having arbitrary types
specified by the type variables Type a and Type b, which in the example below will be bound to the
types String and Integer, and returns the first value, e.g.:

tuple2GetFieldl (("x",33)) => "x"

The function is parameterized in terms of the types of the first and second fields in the argument tuple,
which is apparent from the type signature in its definition:

function tuple2GetFieldl "
** Takes a tuple of two values and returns the first value.
** For example,
** tuple2GetFieldl ((true,1l)) => true
* "
input tuple<Type a,Type b> inTuple;
output Type a out Type a;
public
replaceable type Type a subtypeof Any;
replaceable type Type b subtypeof Any;
algorithm
out Type a :=
matchcontinue (inTuple)
local Type a a;
case (a, ) then a;
end matchcontinue;
end tuple2GetFieldl;

5.15.1.2 Local Variables in Match-Expressions in Functions

Variables in MetaModelica functions consisting of match-expressions are normally introduced at the
beginning of a match-expression or in math-expression cases and have a scope throughout the case. The
only exception are global constants. There are two kinds of local variables for values:

e  Pattern local variables, which are given values in patterns to be matched, and declared in a
local declaration.

e Ordinary local variables, which occur on the left hand side of equality signs, e.g.: variable =
expression, and also need to be declared in a 1ocal declaration. Result variables can be regarded
as a special case of pattern variables, for the trivial pattern consisting of the variable itself.

There are also type variables which are introduced through replaceable type declarations:
e Type variables, which are declared in a replaceable type declaration.

For example, in the function 1istThread below, Type a is a type variable for the type of elements in
the list, being a subtype of the pre-defined top level type Any, fa, rest a, fb, rest b are pattern
variables in the pattern listThread (fa::rest a, fb::rest b):

function listThread
"Takes two lists of the same type and threads them together.
For example, 1listThread({1,2,3},{4,5,6}) => {4,1,5,2,6,3}
"
input list<Type a> inListl;
input list<Type a> inList2;
output list<Type a> outList;
public
replaceable type Type a subtypeof Any;
algorithm
outList:=
matchcontinue (inListl,inList2)
local
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list<Type a> rest a,rest b; Type a fa,fb;
case ({},{}) then {};
case (fa :: rest a, fb :: rest b)
then fa :: fb :: listThread(rest a, rest b);
end matchcontinue;
end listThread;

5.15.2 Function Failure Versus Boolean Negation

We have previously mentioned that MetaModelica functions can fail or succeed, whereas conventional
functions always succeed in returning some value. The most common cause for an Modelica function to
fail is the absence of a case that matches and/or have local equations that succeed.

Another cause of failure is the use of the builtin Modelica command fail, which causes a case in a
match-expression with the matchcontinue keyword to fail immediately, subsequently trying the next
case that matches, if there is one. On the other hand, a fail in a match-expression with the match
keyword will cause the whole match-expression to fail immediately.

It is important to note that fail is quite different from the logical value false. A function returning
false would still succeed since it returns a value. The builtin operator not operates on the logical
values true and false according to the following definition:

function boolNot

input Boolean inBool;

output Boolean outBool;
algorithm

outBool := if inBool == true then false else true;
end boolNot;

However, failure can in a logical sense be regarded as a kind of negation—similar to negation by failure
in the Prolog programming language. A local equation that fails will certainly cause the containing case
to fail. The MetaModelica failure () operator can however invert the logical sense of a proposition.
The following local equation is logically successful since it succeeds (but it does not return the
predefined value true):

failure (function that fails(x))

The two operators not and failure () thus represent different forms of “negation”—negating the
boolean value true, or negating the failure of a call to a function.

5.16 Pattern-Matching and Match-Expressions

Pattern-matching on instances of structured data types is one of the central facilities provided by
MetaModelica, which significantly contributes to the elegance and ease with which many language
aspects may be specified. The pattern matching provided by the match-expression construct in
MetaModelica is very close to similar facilities in many functional languages.

5.16.1 The Match-Expression Construct

The match-expression construct is closely related to pattern matching constructs in functional languages,
but is also related to switch statements in C or Java. It has two important advantages over traditional
switch statements:

e A match-expression can appear in any of the three Modelica contexts: expressions, statements, or
in equations.

e The selection in the case branches is based on pattern matching, which reduces to equality testing
in simple cases, but is much more powerful in the general case.
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A very simple example of a match-expression is the following code fragment, which returns a number
corresponding to a given input string. The pattern matching is very simple — just compare the string
value of s with one of the constant pattern strings "one", "two" or "three", and if none of these
matches return 0 since the wildcard pattern _ (underscore) matches anything.

String s;
Real X;
algorithm
X =
matchcontinue s

case "one" then 1;
case "two" then 2;
case "three" then 3;
case _ then 0;

end matchcontinue;

Alternatively, an else-branch can be used instead of the last wildcard pattern:

String s;
Real X;
algorithm
X =
matchcontinue s

case "one" then 1;
case "two" then 2;
case "three" then 3;
else 0;

end matchcontinue;

or using a match-expression with the match keyword:

Real X7
algorithm
X =
match s
case "one" then 1;
case "two" then 2;
case "three" then 3;
else 0;

end match;

These are trivial special cases. The general structure and evaluation of match-expressions is described in
the following sections.

5.16.1.1 Syntactic Structure of Match-Expressions

The general structure of match-expressions starting with either the matchcontinue or the match
keyword is indicated by the template below. See Appendix A for the grammar.

The else-branch is optional and is identical to a case _ branch. First we show the variant using the
match keyword:

match <m-expr> <opt-local-decl>

case <pat-expr> <opt-local-decl>
equation
<opt-equations>
then <expr>;

case <pat-expr> <opt-local-decl>
equation
<opt-equations>
then <expr>;

else <opt-local-decl>
equation
<opt-equations>
then <expr>;
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end match;

The variant with the matchcontinue keyword appears as follows:

matchcontinue <m-expr> <opt-local-decl>

case <pat-expr> <opt-local-decl>

equation
<opt-equations>
then <expr>;

case <pat-expr> <opt-local-decl>

equation
<opt-equations>
then <expr>;

else <opt-local-decl>

equation
<opt-equations>
then <expr>;

end matchcontinue;

5.16.1.2 Evaluation of Match-Expressions

Match-expressions have the following semantic properties:

The match data value computed by the expression <m-expr> (see previous section) is matched
against the patterns <pat-expr> occurring in each case-branch. In the simple case, matching is
just equality testing of the match data value against a constant pattern. In the general case, the
matching is performed by a unification algorithm, that may assign unbound pattern variables
(declared in local declarations starting with the 1ocal keyword) to values during the matching
process.

matchcontinue. The match data value is matched against the patterns in the case-branches in
the order they are declared. If the matching against a pattern succeeds, the rest of the case-branch
is evaluated. If the matching against a pattern fails or the matching succeeds but but the rest of
the computation in that case-branch fails , the matching continues with the next case-branch. If
none of the cases succeed, the else-branch is evaluated if present. If all case-branches fails and
the else-branch fails (if present), the whole match-expression fails.

match. The match data value is matched against each of the patterns after the case keywords in
order; if one matching fails the next is tried until there are no more case-branches in which case
(if present) the else-branch is executed. If @ matching against a pattern succeeds but the rest of
the computation in that case-branch fails, then the whole match-expression immediately fails.

If an equation or an expression in a case-branch of a match-expression fails, all local variables
become unbound, and matching continues with the next branch.

Only algebraic equations are allowed as local equations, no differential equations.

Only locally declared variables (local unknowns) declared by local declarations within the
match-expression are solved for. Only such local variables may appear as pattern variables.
Local equations are solved in the order they are declared (this restriction may be removed in the
future by sorting local equations). Current restriction: unbound local variables to be solved for
may appear only on the left-hand side of local equations, not on the right-hand side; for example:
x = false; (OK), but false=x; (currently not OK). See also Section 5.16.5.

The scope of local variables (after the 1ocal keyword in match-expressions) declared at the top
of a match-expression extends throughout the rest of the whole match-expression.

The scope of local variables declared within a case-branch extends from the start of the same
case-branch, i.e. before the 1ocal keyword, throughout the case-branch. Example: case (x,y)
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local Real x,y,z; Here the scope of the local x, y start from the beginning of the case-
branch including the (x, v).

5.16.2 Usage Contexts and Allowed Forms of Patterns

Patterns can occur after the case keyword, and on the left- and right-hand side of the equality sign in
equations, in matching or constructive contexts, with somewhat different meanings. Patterns obey the
following rules:

e Patterns can contain calls to record constructor functions, not to other kinds of functions.

e Positional and/or named argument function call syntax can be used in patterns containing
constructors, e.g. the positional call Foo (1, ,2) is allowed; the named argument call version
FOO (argl=1,arg3=2) is also allowed.

e Patterns can contain literal constants, e.g. "string2", 3.14, 555.
e Patterns can contain the _wildcard.

e Patterns can contain the as binding operator, e.g. statel as (env, , ), see Section 2.5.4.3
for an example.

e Patterns can contain the : : operator, e.g. as in: ( (id2,value):: ,id).

e Only local variables declared in local declarations after the 1ocal keyword may appear as
unbound pattern variables in patterns.

5.16.3 Patterns in Matching Context

The most common usage of patterns is in a matching context after the case keyword, or at the left hand
side of = in a local equation, sometimes on the right-hand side.
For example, regard the pattern INT (x) on the left-hand side in the case below:
matchcontinue argument

local Integer x;
case INT(x)

This means that argument is matched using the pattern INT (x) . If there is a match, the case is invoked
and the local variable x is bound to the argument of INT, e.g. x will be bound to 55 if argument is
INT (55).

For cases where the value of the pattern variable is not referenced in the rest of the case, an
anonymous pattern can be used instead. The pattern variable x is then replaced by an underscore in the

pattern, as in INT (_), to indicate matching of an anonymous value.

Patterns can be nested to arbitrarily complexity and may contain several pattern variables, e.g.
ADD (INT (x), ADD(y,NEG(INT(77)))). Patterns may also be pure constants, e.g. 55, false,
INT (55).

5.16.3.1  Patterns with the as Binding Operator

The resulting value of a match of a pattern (also possible for pattern subexpressions) can be named, and
bound to a new variable using the as binding operator. The structure of such a pattern subexpression is
the following:

newname as pattern-expression
This means that if pattern-expression sucessfully matches a value, a new variable with the name

newname (need not be declared) and having a type equivalent to the type of pattern-expression, is
created and bound to that value.
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The following example from the Assignments language in Section 2.5.4.3, shows the use of the as
binding operator:
case (state as

equation
BOOLval (false) =

(env, , ), WHILE (comp,sl)) // while false

eval (env,comp); then state;

case (state as // while true
equation
BOOLval (true) =
state2 =

state3 =

(env, , ), WHILE (comp,sl))
eval (env, comp) ;
evalStmt (state, sl);

evalStmt (state2,WHILE (comp,sl); then state3;

5.16.3.2 Example of Patterns with Positional Matching

The following function eval, from Section 2.1.4.2, uses the usual positional matching, thereby giving
values to the initially unbound pattern variables e1 and e2, e.g. in patterns such as Addop (el,e2) .

function eval
input Exp inExp;
output Integer outlInteger;
algorithm
outInteger :=
matchcontinue inExp
local Integer vl1,v2;

Exp el,e2;

case INTconst(vl) then vl;
case ADDop (el,e2) equation

vl = eval(el; v2 = eval(e2; then vl1+v2;
case SUBop(el,e2) equation

vl = eval(el); v2 = eval(e2); then vl1-v2;
case MULop (el,e2) equation

vl = eval(el); v2 = eval(e2); then vl1*v2;
case DIVop(el,e2) equation

vl = eval(el); v2 = eval (e2); then vl1/v2;
case NEGop (el) equation

vl = eval(el); then -vl1;

end matchcontinue;

end eval;

5.16.3.3 Example of Named Arguments in Pattern Matching

The MetaModelica 1.0 language also allows using named pattern matching, using the record field names
of the corresponding record declaration to specify the pattern arguments. Thus, the pattern
Addop (el,e2) would appear as ADDop (expl=el,exp2=e2) using named pattern matching. One
advantage with named pattern matching is that only the parts of the pattern arguments that participate in
the matching need to be specified. The wildcard arguments need not be specified.

Below we have changed all cases in the previous eval function example to use named pattern
matching:

function eval
input Exp inExp;
output Integer outlInteger;
algorithm
outInteger :=
matchcontinue inExp
local Integer vl1,v2;
Exp el,e2;
case INTconst(vl) then vl;
case ADDop (expl=el, exp2=e2)
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equation
vl = eval(el; v2 = eval(e2; then vl1+v2;
case SUBop (expl=el, exp2=e2)
equation
vl = eval (el); v2 = eval(e2); then v1-v2;
case MULop (expl=el, exp2=e2)
equation
vl = eval(el); v2 = eval(e2); then vl1*v2;
case DIVop (expl=el, exp2=e2)
equation
vl = eval (el); v2 = eval (e2); then vl1/v2;
case NEGop (exp=el)
equation
vl = eval(el); then -vi1;
end matchcontinue;
end eval;

5.16.3.4 Patterns in Equations and as Constraints

Patterns in matching context may also occur on left-hand sides of local equations. For example:

matchcontinue ...
local Integer u; String w;
case ...
equation
(u,w) = ...;

If the right-hand side of the local equation produces the tuple (55, "Test), and u and w are unbound,
then the match to the pattern (u, w) will succeed by binding u to 55 and w to "Test".

A pattern in an equation may also be used as a constraint. For example, the variable x, which already
has a value, is here constrained to having the value false, otherwise the equation will fail:

false = x; // x is constrained to having the value false
Another example is from the translational semantics of PAM in the transExpr function in Section

3.1.6.1. Here the equation will be solvable only if transExpr (e2) returns a generated code which
consists of a simple load instruction, i.e., it is constrained to returning such a result.
equation

list (Mcode.MLOAD (operand2)) = transExpr (e2);

Otherwise, the equation will fail and matching will continue with the next case-branch.

5.16.4 Patterns in Constructive Context

The pattern examples presented so far have been in a matching context, where an existing data item is
matched against a pattern possibly containing unbound pattern variables. Patterns can also be used in a
constructive context, where a pattern that contains bound pattern variables indicates the construction of a
structured data item. For example, regard the pattern in the case below after the then keyword:

case ... then (x, {5,y}, INT(z))
If the case matches and succeeds and x is already bound to 44, y to "Hello" and z to 77, respectively,

then the following tuple term is constructed and returned as the value of the function to which the case
belongs:

(44, {5,"Hello"}, INT(77))

5.16.5 Forms of Equations in match-expression cases

The local equations in a match-expression case are currently restricted to having the following forms,
where funcName is the name of a function; see also the MetaModelica grammar in Appendix A;
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var or const is the name of a variable or a constant such as false, etc., or a constant expression, an
expr may contain constants, variables, constructor calls, and operators, but currently not functions:

expr = funcName(...)
func_name(...)

var or const = expr

equality (exprl = expr2)
failure(var_or const = expr)
failure (func name(...))
failure (expr = funcName(...))

failure(equality (exprl = expr2))

The failure () operator succeeds if the local equation it operates on fails. The equality operation
equality (exprl = expr2) succeeds if the data values are identical. Each of these forms can also be
parenthesized.
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Chapter 6

Declarative Programming Hints

The focus of this chapter is to present a few special issues and give examples of declarative
programming style.

6.1.1 Last Call Optimization — Tail Recursion Removal

A typical problem in declarative programming is the cost of recursion instead of iteration, caused by
recursive function calls, where the implementation of each call typically needs a separate allocation of an
activation record for local variables, etc. This is costly both in terms of execution time and memory
usage.

There is however a special form of declarative recursive formulation called fail-recursion. This form
allows the compiler to avoid this performance problem by automatically transforming the recursion to an
iterative loop that does not need any stack allocation and thereby be as efficient as iteration in imperative
programs. This is called the last call optimization or tail-recursion removal, and is dependent on the
following:

e A tail-recursive formulation of a function (or function) calls itself as its last action before
returning.

In the following we give several recursive formulations of the summation function sum, both with and
without tail-recursion. This function sums integers from i to n according to the following definition:

sum(i,n) =1 + (i+l1) + ... + (n-1) + n

This can be stated as a recursive function:

sum(i,n) = if i>n then 0 else it+sum(i+1l,n)

A recursive MetaModelica function for computing the sum of integers can be expressed as follows:

function sum
input Integer inInteger;
input Integer in n;
output Integer outRes;
algorithm
outRes :=
matchcontinue (inInteger,in n)
local Integer i,n,il,resl;
case (i, n)

equation
true = (i>n); then true;
case (i,n)
equation
false = (i>n);
il = i+1;
resl = sum(il,n); then i+resl;

end matchcontinue;
end sum;
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The above function sum is recursive but not tail-recursive since its last action is adding the result res1

of the sum call to 1, i.e., the recursive call to sum is not the last action that occurs before returning from
the function.

Fortunately, it is possible to reformulate the function into tail-recursive form using the method of
accumulating parameters, which we will show in the next section.

Note that when the full MetaModelica language is available, the above sum function can be
expressed more concisely:

function sum

input Integer i;

input Integer n;

output Integer outRes;
algorithm

outRes := if i>n then 0 else i+sum(i+1l,n)
end sum;

6.1.1.1 The Method of Accumulating Parameters for Collecting Results

The method of accumulating parameters is a general method for expressing declarative recursive
computations in a way that allows collecting intermediate results during the computation and makes it
easier to achieve an efficient tail-recursive formulation.

We reformulate the sum function by adding an accumulating input parameter sumSoFar to a help
function sumTail, keeping the counter i. When the terminating condition i>n occurs the accumulated
sum sumSoFar is returned. The function sumTail is tail-recursive since the call to sumTail is the last
action that occurs before returning from the function bodyi, i.e.:

sum(i,n) = sumTail (i, j,0)

sumTail (i, n, sumSoFar) = if i>n then sumSoFar else sumTail (i+1,n,i+sumSoFar)

The functions sum and sumTail expressed as MetaModelica functions:

function sum

input Integer i;

input Integer n;

output Integer outRes;
algorithm

outRes := sumTail(i,n,0);
end sum;

function sumTail
input Integer inInteger;
input Integer in n;
input Integer inSumSoFar;
output Integer outRes;
algorithm
outRes :=
matchcontinue (inInteger, in n, inSumSoFar)
local Integer i,n,il,resl;
case (i,n, )
equation
true = (i>n); then sumSoFar;
case (i,n,sumSoFar)
equation
false = (i>n);
il = i+1;
resl = i+sumSoFar; then sumTail (il,n,resl);
end matchcontinue;
end sumTail;

It is easy to see that the function sumTail is tail-recursive since the call to sumTail is the last
computation in the last local equation of the second case.
A more concise formulation of the above sumTai1 function using if-then-else expressions:
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function sumTail

input Integer i;

input Integer n;

input Integer sumSoFar;

output Integer outRes;
algorithm

outRes := if i>n then sumSoFar else sumTail (i+1,n, it+sumSoFar) ;
end sumTail;

Another example of a tail-recursive formulation is a revised version of the previous listThread
function from Section 5.15.1.2, called 1istThreadTail:

listThread(a,b) = listThreadTail (a,b, {})

We have introduced an accumulating parameter as the third argument of 1istThreadTail, e.g.:

listThreadTail ({1,2,3},{4,5,6},{}) => {4,1,5,2,6,3}

Its definition follows below:

function listThreadTail
"Takes two lists of the same type and threads them togheter.
For example, 1listThread({1,2,3},{4,5,6}) => {4,1,5,2,6,3}
input list<Type a> inListl;
input list<Type a> inList2;
input list<Type a> in accumlst;
output list<Type a> outList;

public
replaceable type Type a subtypeof Any;
algorithm
outList:=
matchcontinue (inListl,inList2,in accumlst)
local
list<Type a> rest a,rest b,accumlst; Type a fa, fb;
case ({},{},{}) then {};
case (fa :: rest a, fb :: rest b, accumlst)
then listThreadTail (rest _a, rest b, fa :: fb :: accumlst);

end matchcontinue;
end listThreadTail;

6.1.2 Using Side Effects in Specifications

Can side effects such as updating of global data or input/output be used in specifications? Consider the
following contrived example:

function foo
input Real in x;
output Real out y;
algorithm
out y :=
matchcontinue in x
local Real x,y;
case x equation
print "A"; y = condition A(x); then y;
case x equation
print "A"; y = condition A(x); then y;
end matchcontinue;
end foo;

The builtin function print is called in both cases, giving rise to the side effect of updating the output
stream. The intent is that if condition A is fulfilled, "A" should be printed and a value returned. On
the other hand, if condition B is fulfilled, "B" should be printed and some other value returned. The
problem occurs if condition A fails. Then backtracking will occur, and the next case (which has the
same matching pattern) will be tried. However, the printing of "A" has already occurred and cannot be
undone.
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Such problems can be avoided if the code is completely determinate—at most one case in a function
matches and backtracking never occurs. Thus we may formulate the following usage rule:

e  Only use side-effects in completely deterministic functions for which at most one case matches
and backtracking may never occur.

The problem can be avoided by separating the print side effect from the locally non-determinate
choice, which is put into a side-effect free function chooseFoo.

function chooseFoo
input Real in x;
output Real out y;
algorithm
out y :=
matchcontinue in x
local Real x,y;
case x equation
y = condition A(x); then ("A",y);
case x equation
y = condition B(x); then ("B",y);
end matchcontinue
end chooseFoo;

function foo
input Real x;
output Real y;
protected
Real z;
algorithm
(z,y) := chooseFoo (x);
print(z);
end foo;

In the above contrived example, the problem can also be avoided in an even simpler way by just putting
print after the condition using the fact that the evaluation of the local equations stops after the first
local equation that fails:
function foo2
input Real in x;
output Real out y;
algorithm
out y :=
matchcontinue in x
local Real x,y;
case x equation
y = condition A(x); print "A"; then y;
case x equation
y = condition B(x); print "B"; then y;
end matchcontinue;
end foo2;

A natural question concerns the circumstances when side effects may occur, since MetaModelica is
basically a side-effect free specification language. The following two cases can however give rise to side
effects:

e The print primitive causes side effects by updating the output stream.
e External C functions which may contain side effects can be called from MetaModelica.

There is also a builtin function tick, that generates a new unique (integer) “identifier” at each call—
analogous to a random number generator. In order to ensure that each new integer is unique, some global
state (e.g. a counter) has to be updated, which is a side effect. However, from the point of view of a
semantics specification the actual value from tick is irrelevant—only the uniqueness is important. It
does not matter if tick is called a few extra times and some values are thrown away during
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backtracking. Thus, from a practical semantics point of view tick may be treated as a side effect free
primitive if used in an appropriate way.

6.2 More on the Semantics and Usage of MetaModelica Cases

Below we present a number of issues regarding the semantics and usage of MetaModelica match-
expression cases.

6.2.1 Logically Overlapping Match Cases

A programming language specification in MetaModelica are often written in such a way that the local
equations of different cases in a function are logically overlapping. For example, the predicates x<5 and
3 x<10 are logically overlapping since there are values of x, in the interval [3,5) that satisfy both
predicates.
Below we specify a function func, which is specified to return x+10 when x<5, and x+20 for
3 <x<10. This is logically ambiguous in the interval 3 < x <5 where both alternatives are valid.
function func
input Real in x;
output Real out y;
algorithm
out y :=
matchcontinue in x
local Real x,y;

case x // x <5
equation
true = x<5; then x+10;
case x
equation // x>=3 and x<10
true = (x>=3);
true = (x<10); then x+20;
end matchcontinue;
end func;

The determinate search rule of match-expressions in MetaModelica will resolve such ambiguities since
the first matching case will always return in the interval 3 < x < 5. Thus, the first case giving the value
x+10 will be selected.

There is one rather common case where logically overlapping cases together with MetaModelica’s
search rule of case matching top-down, left-to-right, can be used to advantage, to allow more concise
and easily readable specifications. The cases can be ordered such that cases with more specific
conditions appear first, and more general cases which may logically overlap some previous cases appear
later.

However, from a strictly logical point of view, from classical Natural Semantics style, ambiguous
cases in specifications are inconsistent and should be avoided..

Anyway, the style of specification with more specific conditions first and more general cases later
makes sense from a logical point of view when interpreted together with MetaModelica’s top-down left-
to-right search rule— but is regarded as logically incorrect by purists because of the overlap. It also has
the disadvantage that local referential transparency is destroyed, i.e., the semantics of the function is
changed if the ordering of the cases is changed. Such a set of cases can be converted to a semantically
equivalent set of clumsier non-overlapping cases. Negated conjunctions must then be added to
overlapping cases.
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6.2.2 Using a Default Match Case in Match-Expressions

There is are common situations in specifications where a large number of cases are handled similarly,
except a few special cases which need to be treated specially. For example in the function isunfold
below, where only the UNFOLD node returns t rue. All other nodes—which here are mentioned explicitly
as separate cases—return false.

function isunfold

input Ty inNode;
output Boolean outRes;
algorithm
outRes :=
matchcontinue inNode
case UNFOLD(_) then true;
case ARITH( ) then false;
case PTR( ) then false;
case ARR( , ) then false;
case REC( ) then false;

end matchcontinue;
end function;

A more concise specification of this function can be obtained by adding a default case at the end of the
match-expression with a general pattern that matches all cases returning the same default result. The top-
down, left-to-right search case in match-expressions ensures that the special cases will match if they
occur—before the default case which always matches. The logical specification purist will unfortunately
regard such a specification as logically incorrect because of the overlap. MetaModelica solves this
problem by the use of a general matching pattern _, as in the example below:

function isunfold

input Ty inNode;
output Boolean outRes;
algorithm
outRes :=
matchcontinue inNode
case UNFOLD( ) then true;
case then false;

end matchcontinue;
end function;

6.3 Examples of Higher-Order Programming with Functions

The idea of higher-order functions in declarative/functional programming languages is that functions
should be treated as any data object: passed as arguments, assigned to variables, returned as function
values, etc.

MetaModelica supports a limited form of higher-order programming: functions can be passed as
arguments to other functions, but cannot yet be returned as values or directly assigned as values.

We give three examples of higher-order MetaModelica functions that take another function as a
parameter, and a function that can be used as a conditional expression (if ) construct within a single
MetaModelica case. The functions are the following:

e if

e listReduce
e listMap

e listFold
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6.3.1 If-Expressions Using if_

The if function makes it possible in many cases to avoid having the then-part and the else-part as
separate cases. However, the drawback is the both the then-part and the else-part are always evaluated,
since they are passed as arguments to the 1 £ function.

The function takes a boolean and two values. Returns the first value (second argument) if the
Boolean value is true, otherwise the second value (third argument) is returned.

if_(true,"a","b") => mng"

function if

input Boolean inBooleanl;

input Type a inType a2;

input Type a inType a3;

output Type a outType a;
public

replaceable type Type a subtypeof Any;
algorithm

outType a:=

matchcontinue (inBooleanl, inType a2, inType_ a3)

local Type a r;

case (true,r, ) then r;
case (false, ,r) then r;
end matchcontinue;
end if ;

6.3.2 Reducing a List to a Scalar Using listReduce

The listReduce function takes a list and a function argument operating on two elements of the list.
The function performs a reduction of the list to a single value using the function passed as an argument.

listReduce ({1,2,3},intAdd) => 6

function listReduce
input list<Type a> inType alist;
input FuncType inFunc;
output Type a outType a;
public
replaceable type Type a subtypeof Any;
function FuncTyp
input Type a inType al;
input Type a inType a2;
output Type a outType a;
end FuncType;
algorithm
outType a:=
matchcontinue (inType alist, inFunc)
local
Type a e,res,a,b,resl,res2;
FuncType r;
list<Type a> xs;
case (list(e),r) then e;
case (list(a,b),r)
equation
res = r(a, b); then res;
case (a :: b :: (xs = :: ), T)
equation
resl = r(a, b);
res?2 = listReduce(xs, r);
res = r(resl, res2); then res;
end matchcontinue;
end listReduce;
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6.3.3

Mapping a Function Over a List Using listMap

The 1istMap function takes a list and a function over the elements of the lists, which is applied to each
element, producing a new list. For example, intString has the signature: (int => string)

listMap({1,2,3}, intString) => { "1", "2",

function listMap
input list<Type a> inVtype alist;
input FuncType inFunc;
output list<Type b> out vtype blist;
public
replaceable type Type a subtypeof Any;
replaceable type Type b subtypeof Any;
function FuncType
input Type a inType a;
output Type b outType b;
end FuncType;
algorithm
out vtype blist:=
matchcontinue (inVtype alist, inFunc)
local
Type b £ 1;
list<Type b> r 1;
Type a f;
list<Type a> r;
FuncType fn;

case ({}, ) then {};
case (f :: r,fn)
equation
f 1 = fn(f);
r 1 = listMap(r, fn); then f 1

end matchcontinue;
end listMap;

"3"}

The 1istFold function takes a list and a function operating on pairs of a list element and an
accumulated value, together with an extra accumulating parameter which is eventually returned as the
result value. The third argument is the start value for the accumulating parameter. 1istFold will call
the passed function for each element in a sequence, adding to the accumulating parameter value.

listFold({1,2,3},intAdd,2) => 8

intAdd(1l,2) => 3, intAdd(2,3) => 5, intAdd(3,5) => 8

function listFold
input list<Type a> inVtype alist;
input FuncType inFunc;
input Type b inType b;
output Type b outType b;
public
replaceable type Type a subtypeof Any;
replaceable type Type b subtypeof Any;
function FuncType
input Type a inType a;
input Type b inType b;
output Type b outType b;
end FuncType;
algorithm
outType b:=

matchcontinue (inVtype alist, inFunc, inType b)

local
FuncType r;
Type b b,b 1,b 2;
Type a 1;
list<Type a> 1lst;
case ({},r,b) then b;
case (1 1st, r,b)
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equation
b1l=1xr(l, b);
b 2 = listFold(lst, r, b 1); then b 2;
end matchcontinue;
end listFold;

6.4 Exercises

See Appendix D.
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Appendix A

MetaModelica Grammar

This appendix contains the grammar of the MetaModelica language. This is the grammar for the
MetaModelica 1.0 extended subset only, not including standard Modelica.

Below is brief description of the MetaModelica concrete syntax. Keywords and special symbols (eg, *,
&, =) are shown in bold letters, other tokens are shown in capital letters.

modelica
stored definition
( stored definition )

(* PATTERNS *)

pat (* patterns possibly starting with LPAREN *)
: ident EQ pat
| ident AS pat
| pat_a

pat_a
: pat_b COLONCOLON pat a
| pat_b

pat b (* simple patterns possibly starting with LPAREN ¥*)
: LPAREN RPAREN
| LPAREN pat RPAREN
| LPAREN pat COMMA pat comma plus RPAREN
| pat d

pat ¢ (* patterns not starting with LPAREN *)
pat_d COLONCOLON pat c
| pat d

pat_d (* simple patterns not starting with LPAREN ¥*)
name path pat star
| name path pat e
| pat e

pat e (* atomic patterns not starting with LPAREN *)
: WILD

SUB_INT ICON 3%prec UNARY

SUB_REAL RCON %prec UNARY

ADD INT ICON S%prec UNARY

ADD_REAL RCON %prec UNARY

ICON

RCON

SCON

name path

FALSE

TRUE

LBRACK pat_comma_ star RBRACK

LBRACE pat comma star RBRACE

seq pat
: (Yempty*)
| pat_c (* cannot start with LPAREN *)
| pat star
| ident AS pat
| ident EQ pat
pat star

LPAREN pat comma_ star RPAREN

pat_comma_star
(*empty™)
| pat_comma_plus
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pat_comma plus
pat
| pat COMMA pat comma plus

(* SHORT IDENTIFIERS *)
ident
IDENT

stored definition
class_type ident opt string comment composition END ident SEMICOLON

class_definition:
class_type ident class specifier

class_type:
RECORD
| TYPE
| PACKAGE
| PARTIAL FUNCTION
| FUNCTION
| UNIONTYPE

class specifier:
opt_string comment composition END ident
| opt string comment
| EQ type specifier comment
| EQ enumeration

enumeration:
ENUMERATION LPAREN enum_list RPAREN comment

enum_ list:
enumeration literal COMMA enum list
| enumeration literal

enumeration literal:
ident

variability prefix:
PARAMETER

| CONSTANT

| (* empty *)

direction prefix:
INPUT

| OUTPUT

| (* empty *)

component clause:
direction prefix type specifier component list
| CONSTANT direction prefix type specifier component list
| direction prefix FUNCTION type specifier component list
| direction prefix REPLACEABLE FUNCTION component list EXTENDS type specifier

component clausel:
variability prefix direction prefix
type specifier component declaration (* 063 *)

import clause:
IMPORT explicit import name comment (* 064 ~*)
| IMPORT implicit import name comment (* 065 *)
explicit import name:

ident EQ name path (* 066 *)

implicit import name:

name_path DOTSTAR (* 067 *)
| name path (* 068 *)
composition:

element list (* 069 *)
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| element list composition sublist (*

composition sublist:

PUBLIC element list composition_sublist (*
| PROTECTED element list composition sublist (*
| LOCAL element list composition sublist (* 073 *)
| algorithm clause composition_sublist (*
| equation clause composition sublist (*
| external clause SEMICOLON (*
| (* empty *) (*

external clause:
EXTERNAL external function_ call (*

language specification:
SCON (*

external function call:
language specification (*
| language specification component reference EQ ident
RPAREN

opt_expression list:

expression list (*
| (* empty *) (*
element list:
element SEMICOLON element list (*
| (* empty ¥*) (*
element:
component clause (*
| REPLACEABLE class or component (*
| import clause (*
| extends clause (*
| class_definition (*
class_or component:
component clause
| class_definition (*
subscript:
expression (*
| COLON (*
array subscripts:
LBRACK subscript RBRACK (*
| (* empty ¥*) (*
type specifier list:
type specifier (*
| type specifier COMMA type specifier list (*
type specifier:
name path (*
| name path LT INT type specifier list GT_INT (* 100
| type specifier LBRACK COLON RBRACK (* 101
component list:
component declaration (*
| component declaration COMMA component list (*
component declaration:
declaration comment (*
declaration:
ident opt modification (*
modification:
class modification EQ expression (*
| class_modification (*
| EQ expression (*

070

071
072
074
075

076
077

078

079

080

LPAREN opt expression list

082
083

084
085

086
087
088
089
090

(*
092

093
094

095
096

097
098

099

*)

102
103

106
107
108

*)
*)
*)

*)
*)

*)

*)

*)

*)

*)

*)
*)

091 =)
*)

*)
*)

*)
*)

*)

*)

*)
*)
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| ASSIGN expression (* 109 *)

opt modification:
modification (* 110 *)
I (* empty *) (* 111 *)

class modification:
LPAREN argument list RPAREN (* 112 *)
| LPAREN RPAREN (* 113 *)

argument list:
argument COMMA argument list (* 114 *)
| argument (* 115 *)

argument:

OpPtEACH oOptFINAL component reference opt modification opt string comment

| OoptEACH optFINAL component reference opt modification

| REDECLARE optEACH optFINAL REPLACEABLE class definition opt constraining clause
| REDECLARE optEACH optFINAL REPLACEABLE component clausel opt constraining clause
| REDECLARE optEACH optFINAL class definition (* 120 *)
| REDECLARE optEACH optFINAL component clausel (* 121 *)

equation clause:
EQUATION equation annotation list (* 122 *)

equation annotation list:
equation SEMICOLON equation_annotation list (* 123 *)
I (* empty *) (* 124 *)

constraining clause:

extends clause (* 125 *)

opt constraining clause:
constraining clause (* 126 *)
[ (* empty *) (* 127 *)

extends_clause:
EXTENDS name path class modification (* 128 *)
algorithm clause:

ALGORITHM algorithm annotation list (* 129 *)

algorithm annotation list:

algorithm SEMICOLON algorithm annotation list (* 130 *)
| (* empty *) (* 131 *)
equation:
simple expression eq equals (* 132 *)
| conditional equation e comment (* 133 *)
| for clause e comment (* 134 *)
| connect clause comment (* 135 *)
| when clause e comment (* 136 *)
| FAILURE LPAREN equation RPAREN comment (* 137 *)
| EQUALITY LPAREN equation RPAREN comment (* 138 *)

eq equals:
EQ expression comment (* 139 *)
| comment (* 140 *)

alg assign:

ASSIGN expression comment (* 141 *)
| comment (* 142 ~*)
algorithm:

simple expression alg assign (* 143 ~*)
| conditional equation a comment (* 144 *)
| for clause_a comment (* 145 *)
| while clause comment (* 146 *)
| when clause_a comment (* 147 *)
|

FAILURE LPAREN algorithm RPAREN comment (* 148 *)
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| EQUALITY LPAREN algorithm RPAREN comment (* 149

equation elseif:
ELSEIF expression THEN equation_ list equation_elseif
I (* empty *) (* 151

algorithm elseif:
ELSEIF expression THEN algorithm list algorithm elseif
[ (* empty *) (* 153

opt_equation else:
ELSE equation_list (* 154
I (* empty *) (* 155

opt_algorithm else:

ELSE algorithm list (* 156
| (* empty ¥*) (* 157

conditional equation e:

IF expression THEN equation list equation_elseif opt_equation_else END IF

conditional equation a:

IF expression THEN algorithm list algorithm elseif opt_algorithm else END IF

for_ indices:
for indice COMMA for indices (* 160
| for indice (* 16l

for indice:
ident (* 162
| ident IN expression (* 163

for clause_e:
FOR for_ indices LOOP equation_ list END FOR (* 164

for clause a:
FOR for indices LOOP algorithm list END FOR (* 165

while clause:
WHILE expression LOOP algorithm list END WHILE (* 166

when clause e:
WHEN expression THEN equation list else when e END WHEN

else when e:
ELSEWHEN expression THEN equation list else when e (* 168
I (* empty *) (* 169

when clause a:
WHEN expression THEN algorithm list else when a END WHEN

else when a:
ELSEWHEN expression THEN algorithm list else when a(* 171
| (* empty *) (* 172

equation list:
equation SEMICOLON equation list (* 173
[ (* empty *) (* 174

algorithm list:
algorithm SEMICOLON algorithm list (* 175
| (* empty *) (* 176

connect clause:

CONNECT LPAREN component reference COMMA component reference RPAREN

local element list:

*)
*)

*)
*)

*)

*)

*)

*)

*)
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LOCAL element list (* 178 *)
| (* empty *) (* 179 *)
match:
MATCH (* 180 *)
| MATCHCONTINUE (* 181 *)

match expression:
match expression opt string comment
local element list
case list
case_else
END match (* 182 *)

case list:
case_stmt case list (* 183 *)
| case_ stmt (* 184 *)

equation clause case:
EQUATION equation annotation list (* 185 *)
[ (* empty *) (* 186 *)

case_stmt:

CASE seq pat opt string comment local element list equation clause case THEN
expression SEMICOLON

case_else:
(* empty *) (* 188 *)
| ELSE opt string comment local element list equation clause case THEN expression SEMICOLON

expression:
ident AS expression (* 190 *)
| LPAREN ident AS expression RPAREN (* 191 *)
| if expression (* 192 *)
| simple expression (* 193 *)
| match expression (* 194 *)

if expression:
IF expression THEN expression elseif expression list ELSE expression

elseif expression list:
ELSEIF expression THEN expression elseif expression list

| (* empty ¥*) (* 197 *)

simple expression:

logical expression (* 198 *)
| logical expression COLONCOLON simple expression (* 199 *)
| logical expression COLON logical expression (* 200 *)

| logical expression COLON logical expression COLON logical expression

logical expression:
logical term (* 202 *)
| logical term OR logical expression (* 203 *)

logical term:
logical factor (* 204 *)
| logical factor AND logical term (* 205 *)

logical factor:

relation (* 206 *)

| NOT relation %prec UNARY (* 207 *)
relation:

arithmetic expression (* 208 *)

| arithmetic expression rel op arithmetic expression
| LPAREN arithmetic expression rel op arithmetic expression RPAREN

rel op:
(* integer operators *)

LT INT (* 211 *)
| LE _INT (* 212 *)
| GT_INT (* 213 *)
| GE_INT (* 214 *)
| EQEQ INT (* 215 *)
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| NE_INT

(* real operators *)
| LT REAL
| LE_REAL
| GT_REAL
| GE_REAL
| EQEQ REAL
| NE REAL

(* string operators *)
| EQEQ STRING

addsub_op:
ADD_INT

| ADD_REAL

| SUB_INT

| SUB_REAL

| ADD STRING

| ADD LIST

arithmetic_expression2:

(* 216 *)

(* 217
(* 218
(* 219
(* 220
(* 221
(* 222

* % X X X %

(* 223 *)

(* 224 *)
(* 225 *)
(* 226 *)
(* 227 *)
(* 228 *)
(* 229 *)

term addsub_op arithmetic expression2 (* 230 *)

| term
( term )

arithmetic expression:
unary arithmetic_expression

| unary arithmetic expression addsub_op arithmetic expression2

unary arithmetic expression:
term

| ADD_INT term %prec UNARY
| ADD REAL term 3%prec UNARY
| SUB_INT term %prec UNARY
| SUB_REAL term 3%prec UNARY

muldiv_op:
STAR

| MUL_REAL

| DIV_INT

| DIV_REAL

term:
factor
| factor muldiv_op term

pow_op:
POW_REAL

factor:
primary
| primary pow op primary

expression matrix list:
expression list SEMICOLON expression matrix list
| expression list

expression matrix:
expression_matrix_ list

primary:

SCON
FALSE
TRUE

I

| RCON
|

|

I

| WILD
I

(* 233 *)
(* 234 *)
(* 235 *)
(* 236 *)
(* 237 *)

(* 238 *)

(* 239 *)

(* 240 *)

(* 241 *)

(* 242 *)
(* 243 *)

(* 244 *)

(* 245 *)
(* 246 *)

(* 247 *)
(* 248 *)

(* 250
(* 251
(* 252
(* 253
(* 254
(* 255

* ok ok k% %

component reference LPAREN function arguments RPAREN

(* lists *)

| LIST LPAREN function arguments RPAREN
| LBRACE function arguments RBRACE

| LBRACE RBRACE

| FAIL LPAREN RPAREN

| LPAREN RPAREN

| component reference LPAREN RPAREN

| component reference

(* 257 *)
(* 258 *)
(* 259 *)
(* 260 *)
(* 261 *)
(* 262 *)
(* 263 *)
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| LPAREN function arguments RPAREN (* 264 *)
| LBRACK expression matrix RBRACK (* 265 *)

dot name path:
DOT name_path (* 266 *)
I (* empty *) (* 267 *)

name _path:

ident dot name path (* 268 *)
| TUPLE (* 269 *)
| LIST (* 270 *)

component reference:
ident array subscripts (* 271 *)
| ident DOT component reference (* 272 *)

function arguments:
named_arguments (* 273 *)

named_arguments:
named argument COMMA named arguments (* 274 *)
| named_argument (* 275 *)

named_argument:
ident EQ expression (* 276 *)

| expression (* 277 *)

expression_ list:

expression (* 278 *)

| expression list COMMA expression (* 279 *)
comment :

string comment annotation (* 280 *)

| string comment (* 281 *)

| annotation (* 282 *)

| (* empty *) (* 283 *)

string_comment_add:
ADD INT string comment (* 284 *)

string comment:
SCON (* 285 *)
| SCON string comment add (* 286 *)

opt string comment:
string comment (* 287 *)
| (* empty *) (* 288 *)

annotation:
ANNOTATION class modification (* 289 *)
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Appendix B

Predefined MetaModelica Operators and
Functions

This appendix contains a number of basic primitives, for which the semantics is assumed to be known or
having a mathematical definition. First we show the precedence and associativity of the builtin operators.
Then we present short definitions of the builtin functions. Finally we present the definitions packaged in
a standard MetaModelica package, called MetaModelica, shown below. First the type signatures of all
predefined primitives are presented. Then the semantics of some primitives is explained or defined in
MetaModelica.

B.1 Precedence of Predefined Operators

The following table presents all the operators in order of precedence from highest to lowest. All
operators are binary except the postfix operators and those shown as unary together with expr, the
conditional operator, the array construction operator {} and . Operators with the same precedence occur
at the same line of the table:

Table B-1. Operators and their precedence (This is the same as Table 5-1).

Operator Group Operator Syntax Examples

postfix index operator [ arr[index]

name dot notation . PackageA. func

postfix function call (function-arguments) sin(4.36)

array or list construction {expressions} list(expressions) | {2,3}

real power of ~. x ~.02

integer multiplicative * 2*3  2/3

real multiplicative /. 2.1 x. 3.2

integer additive + - +expr -expr atb, a-b, +a, -a

real additive +. -. +. expr -. expr at.b, a-.b, +.a, -.a

integer relational < <= > >= == <> a<b, a<=b, a>b,

real relational < <=, >, >=., ==, <>, a<.b, a<=.b, a>.b,

string equality ==g strl ==& str2

unary negation not expr not bl

logical and and bl and b2

logical or or bl or b2

conditional expression if expr then expr else expr if b then 3 else x

list element concatenation "a'::{"b","c"} => | "a"::{"b","c"} =>
{"a","b","c"} {"a","b","c"}

named argument ident = expr x = 2.26

Equality = and assignment : = are not expression operators since they are allowed only in equations and
in assignment statements respectively. All binary expression operators are left associative. There is also
a generic structural equality operator, equality (exprl = expr2), giving fail or succeed, which can
be applied to values of primitive data types as well as to values of structured types such as arrays, lists,
and trees.
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B.2 Short Descriptions of Builtin Functions and Operators

In this section we provide approximate or exact short descriptions of the builtin MetaModelica primitive
functions and operators. Most functions are defined in terms of known mathematical operators.

clock —return a clock tick value.
print — printa value.

tick — generate a unique integer compared previous calls to tick from the start of this
execution.

The following operations only apply to primitive MetaModelica values, which can be either an integer 1,
areal r, a string str, a list 1st, an array vec, or an unbound location.

intAdd (i1,12) =il + i2 if the result can be represented by the implementation, otherwise the
operation fails.

intSub(il, i2) =il — i2 if the result can be represented by the implementation, otherwise the
operation fails.

intMul (11,12) = i1 X i2 if the result can be represented by the implementation, otherwise
the operation fails.

intDiv (i1,12) returns the Real quotient of i1 and i2 if i2 # 0 and the result can be
represented by the implementation, otherwise the operation fails.

intMod (i1,1i2) returns the integer modulus of i1 and i2 if i2 # 0 and the result can be
represented by the implementation, otherwise the operation fails.

intAbs (i) returns the absolute value of i if the result can be represented by the
implementation, otherwise the operation fails.

intNeg (i) returns —i if the result can be represented by the implementation, otherwise the
operation fails.
intMax (i1,i2) =i1ifi1

> i2, otherwise i2.
intMin(i1,12) =i1ifi1 < i2, otherwise i2.

intLt (i1,i2) =trueifil <i2, otherwise false.
intLe (i1,i2) =trueifil < i2, otherwise false.
intEq(il,i2) =trueifil =i2, otherwise false.
intNe (il,i2) =trueif il # i2, otherwise false.
intGe (il,1i2) =trueifil = 1i2, otherwise false.
intGt (i1,i2) =trueif il > i2, otherwise false.

intReal (i) = r where r is the corresponding real value equal to 1.
intString (i) returns a textual representation of 1, as a string.

realAdd(rl,r2) =rl+l r2.
realSub(rl,r2) =rl —r2.
realMul (rl,r2) =rl X r2.
realDiv(rl,r2) =rl/r2.

realMod (rl,r2) = returns the integer modulus of r1 / r2. This is the value r1—1i X r2, for
some integer i such that the result has the same sign as rl1 and magnitude less than the
magnitude of r2. If r2 = 0, the operation fails.

realAbs returns the absolute value of r.

realNeg (r

realCos (r) returns the cosine of r (measured in radians).

(r)
(r) =
(r)
realSin (r) returns the sine of r (measured in radians).
realAtan (r) returns the arc tangent of r.

realExp (r) returns e .
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e realln(r) returns In(r).
e realFloor (r) returns the largest integer (as a real value) not greater than r.

e reallnt(r) discards the fractional part of r and returns the integral part as an integer; fails if
this value cannot be represented by the implementation.

e realPow(rl,r2) = r1"*; fails if this cannot be computed.
® realSqgrt(r) = \/;; fails if r < 0.

e realMax(rl,r2) =rlifrl 2 r2,otherwise r2.

e realMin(rl,r2) =rlifrl £ r2, otherwise r2.

e reallt(rl,r2) =trueifrl <r2,otherwise false.

e realle(rl,r2) =trueifrl £ r2, otherwise false.

® realEg(rl,r2) =trueif rl =r2, otherwise false.

e realNe(rl,r2) =trueifrl #r2, otherwise false.

e realGe(rl,r2) =trueifrl 2 r2, otherwise false.

)
)
)
)
)
® realGt(rl,r2)

= true if r1 > r2, otherwise false.

e stringInt(str) =i if the string str has the lexical structure of an integer constant and i is
the value associated with that constant. Otherwise the operation fails.

B.3 Interface to the Standard MetaModelica Package

The following subsections present type signatures for all builtin MetaModelica primitives. First comes
the package header for the MetaModelica package:

package MetaModelica:

B.3.1 Predefined Types and Type Constructors

The following predefined types are available:

type Integer "Builtin Integer type";
type Real "Builtin Real type";
type String "Builtin String type";

uniontype Boolean "Builtin Boolean type"
record false end false;
record true end true;

end Boolean;

uniontype list "Builtin list uniontype"
record nil end nil;
record cons
replaceable type TypeVar subtypeof Any;
TypeVar hd "The head of the list";
list<TypeVar> tail "The rest of the list";
end cons;
end list;

uniontype option "Builtin option uniontype"
record NONE end NONE;
record SOME
replaceable type TypeVar subtypeof Any;
TypeVar some;
end SOME;
end option;

B.3.2 Boolean Operations

The following builtin boolean operations are available:
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function boolAnd "Boolean and"
input Boolean bl;
input Boolean b2;
output Boolean result;
algorithm
result := matchcontinue (bl, b2)
case (true, true) then true;
case (_, ) then false;
end boolAnd;

function boolOr "Boolean or"
input Boolean bl;
input Boolean b2;
output Boolean result;

algorithm
result := matchcontinue (bl, b2)
case (true, ) then true;
case (_, true) then true;
case (_, ) then false;
end matchcontinue;
end boolOr;

function boolNot "Boolean not"
input Boolean b;
output Boolean result;
algorithm
result := matchcontinue (b)
case (true) then false;
case (false) then true;
end matchcontinue;
end boolNot;

B.3.3 Integer Operations

Some of the builtin integer operations are also available as operators according to the following table:

intAdd +
intSub -
intNeg - // unary -
intMul *
intDiv /
intEq ==
intNe <>
intGe >=
intGt >
intLe <=
intLt <

The following builtin integer operations are available:

function intAdd "Integer addition"
input Integer il;
input Integer i2;
output Integer result;
algorithm
result := il + 1i2;
end intAdd;

function intSub "Integer subtraction"
input Integer il;
input Integer i2;
output Integer result;
algorithm
result := il - 1i2;
end intSub;

function intMul "Integer multiplication"
input Integer il;
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input Integer i2;
output Integer result;
algorithm
result := il * i2;
end intMul;

function intDiv "Integer division"
input Integer il;
input Integer i2;
output Integer result;
algorithm
result := div(il,i2);
end intDiv;

function intMod "Integer modulus"
input Integer il;
input Integer i2;
output Integer result;
algorithm
result := mod(il,i2);
end intMod;

function intAbs "Absolute value of the integer"
input Integer i;
output Integer result;

algorithm
result := if (i < 0) then -i else i;

end intAbs;

function intNeg "Integer negation"
input Integer i;
output Integer result;

algorithm
result := -i;

end intNeg;

function intMax "Returns the maximmum of the two integers"

input Integer il;

input Integer i2;

output Integer result;
algorithm

result := if i1l >= 12 then i1l else 12;
end intMax;

function intMin "Returns the minimum of the two integers"

input Integer il;

input Integer i2;

output Integer result;
algorithm

result := if 11 <= 12 then 11 else 12;
end intMin;

function intLt "Less than integer comparison"
input Integer il;
input Integer i2;
output Boolean result;
algorithm
result := (il < 12);
end intLt;

function intLt "Less or equal integer comparison"
input Integer il;
input Integer i2;
output Boolean result;
algorithm
result := (il <= 12);
end intLt;

function intEg "Integer equality comparison"
input Integer il;
input Integer i2;
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output Boolean result;
algorithm

result := (il == 1i2);
end intEqg;

function intNe "Different than integer comparison"
input Integer il;
input Integer i2;
output Boolean result;
algorithm
result := (il <> 12);
end intNe;

function intGe "Greater or equal integer comparison"
input Integer il;
input Integer i2;
output Boolean result;
algorithm
result := (i1l >= 12);
end intGe;

function intGt "Greater than integer comparison"
input Integer il;
input Integer i2;
output Boolean result;
algorithm
result := (il > 1i2);
end intGt;

function intReal "Integer to Real conversion"
input Integer i;
output Real result;

algorithm
result := (Real)i;

end intReal;

function intString "Integer to String conversion"

input Integer i;

output String result;
algorithm

/* convert 'i' to String and assign it to the 'result' */;
end intString;

B.3.4 Real Number Operations

Some of the builtin Real number operations are also available as operators according to the following
table:

realAdd +.
realSub -.
realNeg - // unary
realMul *
realDiv /.
realPow ~.
realEq ==,
realNe <>,
realGe >=,
realGt >.
realle <=.
reallt >,

The following builtin real number operations are available:

function realAdd "Real addition"
input Real rl;
input Real r2;
output Real result;
algorithm
result := rl + r2;
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end realAdd;

function realSub "Real subtraction"
input Real rl;
input Real r2;
output Real result;
algorithm
result := rl - r2;
end realSub;

function realMul "Real multiplication"
input Real rl;
input Real r2;
output Real result;
algorithm
result := rl * r2;
end realMul;

function realDiv "Real division"
input Real rl;
input Real r2;
output Real result;
algorithm
result := rl / r2;
end realDiv;

function realMod "Real modulo"
input Real rl;
input Real r2;
output Real result;
algorithm
result := mod(rl,r2);
end realMod;

function realAbs "Absolute value of the Real"
input Real r;
output Real result;

algorithm
result := if (r < 0.0) then -r else r;

end reallbs;

function realNeg "Real negation"
input Real r;
output Real result;

algorithm
result := -r;

end realNeg;

function realCos "Cosine"
input Real r;
output Real result;
algorithm
result := cos(r);
end realCos;

function realSin "Sine"
input Real r;
output Real result;
algorithm
result := sin(r);
end realSin;

function realAtan "Arcustangent"
input Real r;
output Real result;

algorithm
result := atan(r);

end realAtan;

function realExp "Exponentiation"
input Real r;
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output Real result;
algorithm

result := exp(r);
end realExp;

function realln "Natural logarithm"
input Real r;
output Real result;

algorithm
result := 1ln(r);

end realln;

function realFloor "Floor of the real"
input Real r;
output Real result;

algorithm
result := floor(r);

end realFloor;

function realPow "Power r”p"

input Real r;

input Real p;

output Real result;
algorithm

result := r"p; // r to the power of p
end realPow;

function realSqgrt "Square root of the real”
input Real r;
output Real result;

algorithm
result := sqgrt(r);

end realSqrt;

function realMax "Returns the maximmum of the two Reals"
input Real il;
input Real i2;
output Real result;
algorithm
result := if i1l >= 12 then i1l else 12;
end realMax;

function realMin "Returns the minimum of the two Reals"
input Real il;
input Real i2;
output Real result;
algorithm
result := if 11 <= 12 then 11 else 12;
end realMin;

function reallt "Less than Real comparison"
input Real il;
input Real i2;
output Boolean result;
algorithm
result := (il < 1i2);
end reallt;

function realle "Less or equal Real comparison"
input Real il;
input Real i2;
output Boolean result;
algorithm
result := (il <= 12);
end realle;

function realEq "Real equality comparison"
input Real il;
input Real i2;
output Boolean result;

algorithm
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result := (il == 12);
end realEqg;

function realNe "Different than Real comparison"
input Real il;
input Real i2;
output Boolean result;
algorithm
result := (il <> 12);
end reallNe;

function realGe "Greater or equal Real comparison"
input Real il;
input Real i2;
output Boolean result;
algorithm
result := (i1l >= 12);
end realGe;

function realGt "Greater than Real comparison"
input Real il;
input Real 1i2;
output Boolean result;
algorithm
result := (il > 1i2);
end realGt;

function realInteger "Real to Integer conversion"
input Real 1i;
output Integer result;

algorithm
/* result := (Integer)i; */

end reallnteger;

function realString "Real to String conversion"

input Real 1i;

output String result;
algorithm

/* convert 'i' to String and assign it to the 'result' */;
end realString;

B.3.5 String Character Conversion Operations

The following builtin conversion operations between one character strings and integer ascii codes are
available:

function stringCharInt "Returns string character ascii code as integer"
input String ch;
output Integer i;

algorithm
/* return the ascii code of the string character */

end stringCharInt;

function intStringChar "Returns string char with the given ascii code"
input Integer i;
output String ch;

algorithm
/* return string character with the given ascii code */

end intStringChar;

B.3.6 String Operations

Two builtin operations for String are also available as operators according to the following table:

stringAppend +&
stringEqual ==&

The following builtin String operations are available:
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function stringInt "Transforms the numerical string value into an integer value"
input String s;
output Integer result;
algorithm
/* return the integer representing the string or fail if no such
integer exists */
end stringlInt;

function stringListStringChar "Explode the string to a list of string characters
"
input String s;
output list<String> listOfStringChars;
algorithm
/* make a list with all the string characters as l-char strings */
end stringlListStringChar;

function stringCharListString "From a list of string characters build a string"
input list<String> listOfStringChars;
output String s;

algorithm
/* make a string with all string characters in the list */

end stringCharListString;

function stringLength "Return the length of the string"
input String s;
output Integer result;

algorithm
/* return the length of the given string */

end stringlLength;

function stringGetStringChar "Return the string character from the given string
at the given index. The string indexing starts from 1."
input String s;
input Integer index;
output String ch;
algorithm
/* Return the string character from the given string at the given index.
The string indexing starts from 1. */
end stringGetStringChar;

function stringAppend "Return a new string with the first string appended to
the second string given"

input String sl;

input String s2;

output String result;
algorithm

/* Return a new string with the first string appended to second string given */
end stringAppend;

function stringUpdateStringChar "Return the string given by replacing the string
char at the given index with the given string char"
input String s;
input String ch;
input Integer index;
output String result;
algorithm
/* Return the string given by replacing the string char at the given index
with the given string char. The string indexing starts from 1. */
end stringUpdateStringChar;

function stringEqual "Compares two strings"
input String sl;
input String s2;
output Boolean result;
algorithm
/* true if sl==s2, false otherwise. */
end stringEqual;

function stringCompare "Compares two strings"
input String sl;
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input String s2;

output Integer result;
algorithm

/* result = strcmp(sl, s2); using the C language strcmp */
end stringCompare;

B.3.7 List Operations

The following builtin list operations are available. The operations are polymorphic since they operate on
lists of any element type. The replaceable type variable TypeVar is inferred from the input argument

types.

function listAppend "Appends two lists and returns the result"
replaceable type TypeVar subtypeof Any;
input list<TypeVar> 11;
input list<TypeVar> 12;
output list<TypeVar> result;
algorithm
/* append 11 to 12 and return the result as a new list */
end listAppend;

function listReverse "Reverse the order of elements in the list"
replaceable type TypeVar subtypeof Any;
input list<TypeVar> lst;
output list<TypeVar> result;
algorithm
/* reverse the order in lst and return the result as a new list */
end listReverse;

function listLength "Return the length of the list"
replaceable type TypeVar subtypeof Any;
input list<TypeVar> lst;
output Integer result;
algorithm
/* count the elements in the list and return the result */
end listLength;

function listMember "Verify if an element is part of the list"
replaceable type TypeVar subtypeof Any;
input TypeVar element;
input list<TypeVar> lst;
output Boolean result;
algorithm
/* return true if the element belongs to the list, false otherwise */
end listMember;

function listGet "Return the element of the list at the given index.
The index starts from 1."
replaceable type TypeVar subtypeof Any;
input list<TypeVar> lst;
input Integer index;
output TypeVar result;
algorithm
/* return the element of the list at the index position. */
end listGet;

function listDelete "Return a new list without the element at the
given index. The index starts from 1."
replaceable type TypeVar subtypeof Any;
input list<TypeVar> lst;
input Integer index;
output list<TypeVar> result;
algorithm
/* Return a new list without the element at the given index.
The index starts from 1. */
end listDelete;
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B.3.8 Array Operations

The arrayGet function is equivalent to the array indexing operator:
arrayGet (arr, index) <=> arr[index]

The standard Modelica £i11 function is equivalent to arrayCreate:
newarr = fill (v, n); <=> newarr = arrayCreate(v, n);

The following builtin array operations are available:

function arrayLength "Returns the length of the array"
replaceable type TypeVar subtypeof Any;

input TypeVar[:] arr;
output Integer result;
algorithm

/* Returns the length of the array */
end arrayLength;

function arrayGet "Returns the element of the array at the given index.

The index starts at 1. "
replaceable type TypeVar subtypeof Any;
input TypeVar[:] arr;
input Integer index;
output TypeVar result;

algorithm
result := arr[index];
end arrayGet;

function arrayList "Returns the elements of the array as a list"
replaceable type TypeVar subtypeof Any;

input TypeVar[:] arr;
output list<TypeVar> result;
algorithm

/* return the elements of the array as a list */
end arrayList;

function listArray "Returns the elements of the list as an array"
replaceable type TypeVar subtypeof Any;
input list<TypeVar> lst;
output TypeVar[:] result;
algorithm
/* return the elements of the list as an array */
end listArray;
function arrayUpdate "Updates the array in place with a new element at
the given index. The index starts at 1."
replaceable type TypeVar subtypeof Any;
input TypeVar([:] arr;
input Integer index;
input TypeVar element;

output TypeVar[:] result;
algorithm
arr[index] := element;

end arrayUpdate;

function arrayCreate "Creates an array of specifed size with all
the elements intialized with specified element"
replaceable type TypeVar subtypeof Any;
input Integer size;
input TypeVar element;
output TypeVar[:] result;
algorithm
/* create an array of specified size with all
elements intialized to eleement*/
end arrayCreate;

function arrayCopy "Create a copy of the specifed array"
replaceable type TypeVar subtypeof Any;
input TypeVar([:] arrInput;
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output TypeVar[:] arrOutput;
algorithm

/* create a new array identical with the input and return it as output */
end arrayCopy;

function arrayAdd "Add an element at the end of the array"
replaceable type TypeVar subtypeof Any;

input TypeVar([:] arrInput;

input TypeVar element;

output TypeVar[:] arrOutput;
algorithm

/* create a new array identical with the input add the element
at the end and return it as output */
end arrayAdd;

B.3.9 If expressions

The if exp function below is equivalent to if expressions: 1f cond then expl else exp2;.

function if exp "select one of the inputs depending on the condtion"
replaceable type TypeVar subtypeof Any;
input Boolean condition;
input TypeVar input;
input TypeVar input2;
output TypeVar outputl;
algorithm
outputl := if condition then inputl else input2;
end if exp;

B.3.10 Logical Variables
Note: Logical variables is an extension that may not be supported in future versions of MetaModelica.

Logical variables are specified with the keyword 1var. For example:: 1var<String> declares a logical
variable that points to a String type element. Logical variables, as well as ordinary local variables,
become unbounded when backtracking occurs and their values are set back to the value they had before
the call that exited with failure. The builtin functions handling logical variables are described below:

function lvarNew "Create a new logical variable"
replaceable type TypeVar subtypeof Any;
output lvar<TypeVar> outputl;
algorithm
/* create a new logical variable and return it */
end lvarNew;

function lvarSet "Set a value in the logical variable"
replaceable type TypeVar subtypeof Any;
input lvar<TypeVar> logicalVariable;
input TypeVar valueOfLogicalVariable;
algorithm
/* set the value of the logical variable */
end lvarSet;

function lvarGet "Get the value from a logical variable"
replaceable type TypeVar subtypeof Any;
input lvar<TypeVar> logicalVariable;
output Option (TypeVar) valueOfLogicaVariable;
algorithm
/* return SOME (value) or NONE if logicalVariable was not set. */
end lvarGet;

B.3.11 Miscellaneous Operations

The following are a few miscellaneous operations

function clock "Returns the current time as a real number"
output Real outputl;
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algorithm
/* returns the current time represented as a real number */
end clock;

function print "Prints the string given as parameter"
input String s;

algorithm
/* prints the string s. */

end print;

function tick "Returns a unique integer value"
output Integer i;
algorithm
/* returns a unique integer value, different from previous values returned
by tick during this execution. */
end tick;

end MetaModelica;
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Appendix C

Complete Small Language Specifications

This appendix contains several small language specifications, both interpretive and translational.

C.1 The Complete Interpretive Semantics for PAM

The complete semantics of the PAM language as earlier described in Section 2.5 follows below. The
functions have been sorted in a bottom-up fashion, definition-before-use, even though that is not
necessary in Modelica. Auxiliary utility functions and low level constructs appear first, whereas
statements appear last since they directly or indirectly refer to all the rest.

package Pam

"In this version the State is (environment, input stream, output stream).
However, the passed I/0 streams are not used and updated, instead the I/O
is done through operating system calls.

Input is done through the function read which just calls a C function
doing a call to scanf. This works well if no backtracking occurs,
as when print is used."

/* Parameterized abstract syntax for the PAM language */
type Ident = String;

uniontype BinOp
record ADD end ADD;
record SUB end SUB;
record MUL end MUL;
record DIV end DIV;
end BinOp;

uniontype RelOp
record EQ end EQ;
record GT end GT;
record LT end LT;
record LE end LE;
record GE end GE;
record NE end NE;

end RelOp;

uniontype Exp
record INT Integer int; end INT;
record IDENT Ident ident; end IDENT;
record BINARY Exp expl; BinOp binOp; Exp exp2; end BINARY;
record RELATION Exp expl; RelOp relOp; Exp exp2; end RELATION;
end Exp;

type IdentList = list<Ident>;
uniontype Stmt

record ASSIGN Ident ident; Exp exp; end ASSIGN; // Id := Exp

record IF Exp exp; Stmt stmtl; Stmt stmt2; end IF; // if Exp then Stmt..
record WHILE Exp exp; Stmt stmt; end WHILE; // while Exp do Stmt
record TODO Exp exp; Stmt stmt; end TODO; // to Exp do Stmt...

record READ IdentList identList; end READ; // read idl,id2, ...

record WRITE IdentList identList; end WRITE; // write idl,id2, ..
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record SEQ Stmt stmtl; Stmt stmt2; end SEQ; // Stmtl; Stmt2
record SKIP end SKIP; // ; empty stmt
end Stmt;

/* Types needed for modeling static and dynamic semantics */

/* Variable binding and environment/state type */

type VarBnd tuple<Ident,Value>;
type Env list<VarBnd>;
type Stream = list<Integer>;

type State = tuple<Env,Stream,Stream>
"Environment, input stream, output stream";

uniontype Value "Value type needed for evaluated results"
record INTval Integer intval; end INTval;
record BOOLval Boolean boolval; end BOOLval;

end Value;

C.1.1 Statement evaluation
/*************** Statement evaluation **************/

function evalStmt
"Statement evaluation: map the current state into a new state"
input State inState;
input Stmt inStmt;
output State outState;
algorithm
outState :=
matchcontinue (inState, inStmt)
local
Value vl1;
Env env,env2;
State state,statel,state2,state3;
Stream istream,istream2,ostream,ostream?2;
Ident id; Exp el,comp;
Stmt sl,s2,stmtl,stmt2;
Integer nl,v2;
IdentList rest;

case (env,ASSIGN (id,el)) // Assignment
equation
vl = eval (env, el);
env2 = update(env, id, vl); then env2;
case (statel as (env,istream,ostream), IF(comp,sl,s2)) // if true
equation
BOOLval (true) = eval (env, comp);
state?2 = evalStmt (statel, sl); then state?2;
case (statel as (env,istream,ostream), IF (comp,sl,s2)) // if false
equation
BOOLval (false) = eval (env, comp);
state?2 = evalStmt (statel, s2); then state2;
case (state,WHILE (comp,sl)) // while
equation

state2 = evalStmt (state, IF(comp,SEQ(sl,WHILE (comp,sl)),SKIP()));
then state2;

case (state as (env,istream,ostream), TODO (el,sl)) // to el do sl
equation
INTval (nl) = eval (env, el);
state2 = repeatEval (state, nl, sl); then state2;
case (state,READ({})) then state; // read ()
case (state as (env,istream,ostream), READ(id :: rest)) // read idil, ..

equation
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(istream2,v2) = inputlItem(istream);
env2 = update(env, id, INTval(v2));
state2 = evalStmt ((env2,istream2,ostream), READ(rest)); then state2;
case (state, WRITE({})) then state; // write {}
case (state as (env,istream,ostream), WRITE(id :: rest)) // write idl, ..
equation
INTval (v2) = lookup(env, id);
ostream?2 = outputlItem(ostream,v2);
state2 = evalStmt ((env,istream,ostream?2), WRITE (rest)); then state2;
case (state,SEQ(stmtl,stmt2)) // stmtl ; stmt2
equation
state?2 = evalStmt (state, stmtl);
state3 = evalStmt (state2, stmt2); then state3;
case (state,SKIP()) then state; // ; empty statement
end matchcontinue;
end evalStmt;
C.1.2 Expression Evaluation
/*************** Expression evaluation **************/
function eval "Evaluation of expressions in the current environment"
input Env inEnv;
input Exp inExp;
output Value outValue;
algorithm
outValue :=
matchcontinue (inEnv, inExp)
local
Integer v,vl,v2,v3;
Env env;
Ident id;
Exp el,e2;
BinOp binop;
RelOp relop;
case ( ,INT(v)) then INTval (v); // Integer constant v
case (env, IDENT (id))
equation
failure (v = lookup (env,id));
error ("Undefined identifier", id); // If id not declared,
then v;
case (env, IDENT (id))
equation
v = lookup (env, id) ; // Value of identifier id
then v;
case (env,BINARY (el,binop,e2)) equation // exprl binop expr2
INTval (vl) = eval (env, el);
INTval (v2) = eval (env, e2);
v3 = applyBinop (binop, vl1, v2); then INTval (v3);
case (env,RELATION (el,relop,e2)) // exprl relop expr2
local Boolean v3; equation
INTval (vl) = eval (env, el);
INTval (v2) = eval (env, e2);

v3 = applyRelop (relop, vl1, v2); then BOOLval (v3);
end matchcontinue;
end eval;

C.1.3 Arithmetic and Relational Operators
[FrFIAHAx KKK HkxKkxkKkHk* Arithmetic and relational operators ***xx*xkkxkxkkx/

function applyBinop

"Apply a binary arithmetic operator to constant integer arguments"



146 Fritzson, Pop Meta-Programming and Language Modeling with MetaModelica 1.0

input BinOp op;

input Integer argl;

input Integer arg?2;

output Integer outlInteger;
algorithm

outInteger :=

matchcontinue (op,argl,arg2)

local Integer x,Yy;

case (ADD(),x,y) then x + y;
case (SUB(),x,y) then x - y;
case (MUL(),x,y) then x*y;

case (DIV(),x,y) then x/y;
end matchcontinue;
end applyBinop;

function applyRelop "Apply a relation operator, returning a boolean value"

input RelOp op;

input Integer argl;

input Integer arg2;

output Boolean outBoolean;
algorithm

outBoolean :=

matchcontinue (op,argl,arg2)

local Integer x,y;

case (GT(),x,y) then (x > y);

case (LT(),x,y) then (x < y);
case (LE(),x,y) then (x <= y);
case (EQ(),x,y) then (x == y);
case (NE(),x,y) then (x <> y);
case (GE(),x,y) then (x >= y);
)
e

’

end applyRelop;

C.1.4 Auxiliary Utility Functions

/***************** Aqullary Utlllty funCthl’lS ******************/

function lookup "lookup returns the value associated with an identifier.

If no association is present, lookup will fail."
input Env env;
input Ident id;
output Value outValue;
algorithm
outValue :=
matchcontinue (env, id)
local Ident id2,id; Value value; Env rest;

case ((id2,value) :: rest, id) then
if id==&id2 then value // id first in list
else lookup (rest, id); // id is hopefully in rest of list
end matchcontinue;
end lookup;
function update "update returns an updated environment with a new

(id, value) association"
input Env env;
input Ident id;
input Value value;
output Env outEnv;
algorithm
outEnv := (id,value) :: env;
end update;

function repeatEval '"repeatedly evaluate stmt n times"
input State state;
input Integer n;
input Stmt stmt;
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output State outState;

algorithm
outState :=
if n <= 0 then state /* n <= 0 */
else repeatEval (evalStmt (state, stmt), n-1, stmt); /* eval n times */

end repeatEval;

function error "Print error messages strl and str2, and fail"
input Ident strl;
input Ident str2;

algorithm
print ("Error - ");
print(strl); print(" ");
print (str2); print("\n");
fail();

end error;

function inputItem "Read an integer item from the input stream"
input Stream istream;
output Stream istream?2;
output Integer i;
algorithm
print ("input: ");
i := Input.read();
print ("\n");
istream? := istream;
end inputlItem;

function outputItem "Write an integer item on the output stream"
input Stream ostream;
input Integer i;
output Stream ostream?2;
protected
String s;
algorithm
s := intString(i);
print(s);
ostream? := ostream;
end outputltem;

C.2 Complete PAMDECL Interpretive Specification

The complete PAMDECL interpretive specifiation is presented below. The packages/files are shown in
the following order, starting with the more interesting semantics packages, ending with the lexer,
parsing, and Makefile files.

e Main

e ScanParse

e Absyn
e Env

e Eval

e lexer.l

e Dparser.y

e scanparse.c
e  Makefile

C.21 PAMDECL Main Package

The main package implements the read-eval-print function as the function evalprog, which accepts the
initial environment initial containing only true and false exported from package Eval.
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The main package of the PamDecl evaluator calls ScanParse to read and parse text from the
standard input, and Eval to evaluate and print the results.

package Main

import ScanParse;
import Eval;

function main
input StringLst inStringLst;
type StringLst = list<String>;
protected
Absyn.Prog ast;
algorithm
ast := ScanParse.scanparse();
ast := Eval.evalprog(ast);
//?? should really call mainprogram recursively to have a loop
end main;

end Main;

C.2.2 PAMDECL ScanParse

The ScanParse package contains only one function scanparse, which is an external function
implemented in C to scan and parse text written in the PamDecl language.

package ScanParse
import Absyn;

function scanparse
output Absyn.Prog outProg;

external "C"
end scanparse;

end ScanParse;

C.2.3 PAMDECL Absyn

The Absyn package specifies the abstract syntax used by the rest of the specification, i.e., the other
packages.

package Absyn "Package for abstract syntax of PamDecl"

uniontype BinOp
record ADD end ADD;
record SUB end SUB;
record MUL end MUL;
record DIV end DIV;
end BinOp;

uniontype UnOp
record NEG end NEG;
end UnOp;

uniontype RelOp
record LT end LT;
record LE end LE;
record GT end GT;
record GE end GE;
record NE end NE;
record EQ end EQ;

end RelOp;
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type Ident = String;

uniontype Expr
record INTCONST Integer int; end INTCONST;
record REALCONST Real real; end REALCONST;
record BINARY Expr expl; BinOp binOp; Expr exp2; end BINARY;
record UNARY UnOp unOp; Expr exp; end UNARY;
record RELATION Expr expl; RelOp relOp; Expr exp2; end RELATION;
record VARIABLE Ident ident; end VARIABLE;

end Expr;

type StmtList = list<Stmt>;

uniontype Stmt
record ASSIGN Ident ident; Expr expr; end ASSIGN;
record WRITE Expr expr; end WRITE;
record NOOP end NOOP;
record IF Expr expr; StmtList stmtListl; StmtList stmtlList2; end IF;
record WHILE Expr expr; StmtList stmtList; end WHILE;
end Stmt;

type StmtList = list<Stmt>;

uniontype Decl
record NAMEDECL Ident identl; Ident ident2; end NAMEDECL;
end Decl;

type DeclList = list<Decl>;

uniontype Prog
record PROG Decllist declList; StmtList stmtList; end PROG;
end Prog;

end Absyn;

C.24 PAMDECL Env

The Env package contains functions and types for describing and handling environments in a declarative
way, including building environments and performing lookup on environments.

package Env "Package for Environment types and functions of PamDecl"
type Ident = String;

uniontype Value "Three types of values can be handled by the semantics"
record INTVAL Integer int; end INTVAL;
record REALVAL Real real; end REALVAL;
record BOOLVAL Boolean boolean; end BOOLVAL;

end Value;

uniontype Value2 '"Values for real-integer type lattice conversions"
record INTVAL2 Integer intl; Integer int2; end INTVAL2;
record REALVAL2 Real reall; Real real2; end REALVALZ2;

end Value?2;

uniontype Type "Three kinds of types can be declared"
record INTTYPE end INTTYPE;
record REALTYPE end REALTYPE;
record BOOLTYPE end BOOLTYPE;

end Type;

uniontype Bind "Type for associating identifer, type, and value"
record BIND Ident id; Type ty; Value val; end BIND;
end Bind;

type Env = list<Bind>;
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// Initial environment of predefined constants false and true
constant Bind initial = list(
BIND(("false",BOOLTYPE () ,BOOLVAL (false))),
BIND ( ("true",BOOLTYPE () ,BOOLVAL (true))));

function lookup "lookup returns the value associated with an identifier.
If no association is present, lookup will fail."
input Env inEnv;
input Ident inIdent;
output Value outValue;
algorithm
outValue:=
matchcontinue (inEnv,inIdent)
local
Ident id2,id;
Value value; Env rest;

case (BIND(id2, ,value) :: rest, id) then
if id==&id2 then value // id first in list
else lookup (rest,id); // id is hopefully in rest of list
end matchcontinue;
end lookup;
function lookuptype "lookuptype returns the type associated with an identifier.

If no association is present, lookuptype will fail."

input Env inEnv;
input Ident inIdent;
output Type outType;
algorithm
outType:=
matchcontinue (inEnv, inIdent)
local
Ident id2,id;
Type ty; Env rest;

case (BIND(id2,ty, ) :: rest, id) then
if id==&id2 then ty // id first in list
else lookuptype (rest,id); // 1d is hopefully in rest of list

end matchcontinue;
end lookuptype;

function update "update returns an updated environment containing a
typed variable-type-value association BIND(id, type,value)"
input Env env;
input Ident id;
input Type ty;
input Value value;
output Env outEnv;
algorithm
outEnv := BIND((id, ty,value) :: env)
end update;

end Env;

C.2.5 PAMDECL Eval

The Eval package contains the interpretive semantic cases, collected in functions, for all the constructs in
PAMDECL, including expressions, statements, and declarations.

package Eval

import Absyn;
import Env;

function evalprog "EVALUTATING A PROGRAM means to evaluate the list of
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statements, with an initial environment containing just standard defs."

input Absyn.Prog inProg;
algorithm
matchcontinue (inProg)
local
list<Env.Bind> envl,env2,env3;
list<Absyn.Decl> decls;
list<Absyn.Stmt> stmts;
case (Absyn.PROG (decls,stmts))

equation
envl = Env.initial ();
env?2 = evalDeclList (envl, decls);
env3 = evalStmtList (env2, stmts);
then ();

end matchcontinue;
end evalprog;

/* Evaluation of statements */

function evalStmt "Evaluate a single statement. Pass

input Env.Env inEnv;
input Absyn.Stmt inStmt;
output Env.Env outEnv;
algorithm
outEnv:=
matchcontinue (inEnv,inStmt)
local
type Env BindLst = list<Env.Bind>;
type Absyn StmtLst = list<Absyn.Stmt>;
Env.Value v,v2;
Env.Type ty;
Env_BindLst envl,env,env2;
String id;
Absyn.Expr e;
Absyn StmtLst c,a,ss;
case (eHv,Absyn.ASSIGN(id,e))
equation
v = evalExpr (env, e);
ty = Env.lookuptype (env, id);
v2 = promote (v, ty);

environment forward."

envl = Env.update(env, id, ty, v2); then envl;

case (env,Absyn.ASSIGN (id,e))
equation
v = evalExpr (env, e);

print ("Error: assignment mismatch or variable missing\n");

case (env,Absyn.WRITE (e))

equation
v = evalExpr (env, e);
printvValue (v); then env;
case (env,Absyn.NOOP()) then env;
case (env,Absyn.IF(e,c, ))
equation
Env.BOOLVAL (true) = evalExpr (env, e);
envl = evalStmtList (env, c); then envl;
case (env,Absyn.IF(e, ,a))
equation
Env.BOOLVAL (false) = evalExpr (env, e);
envl = evalStmtList (env, a); then envl;
case (env,Absyn.WHILE (e,ss))
equation
Env.BOOLVAL (true) = evalExpr (env, e);

envl = evalStmtList (env, ss);

env2 = evalStmt (envl, Absyn.WHILE (e,ss));

case (env,Absyn.WHILE (e, ss))

then env?2;

then fail():;
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equation
Env.BOOLVAL (false) = evalExpr (env, e); then env;
case (env,Absyn.IF (e, ,a))
equation
Env.BOOLVAL (false) = evalExpr (env, e);
envl = evalStmtList (env, a); then envl;
case (env,Absyn.WHILE (e, ss))
equation
Env.BOOLVAL (true) = evalExpr (env, e);
envl = evalStmtList (env, ss);
env2 = evalStmt (envl, Absyn.WHILE (e,ss)); then env2;
case (env,Absyn.WHILE (e,ss))
equation
Env.BOOLVAL (false) = evalExpr(env, e); then env;

end matchcontinue;
end evalStmt;

function evalStmtList "Evaluate a list of statements in an environment.
Pass environment forward"
input Env.Env inEnv;
input Absyn.StmtList inStmtList;
output Env.Env outEnv;
algorithm
outEnv:=
matchcontinue (inEnv,inStmtList)
local
list<Env.Bind> env,envl,env2;
Absyn.Stmt s;
list<Absyn.Stmt> ss;

case (env, {}) then env;
case (env,s :: Ss)
equation
envl = evalStmt (env, s);
env2 = evalStmtList (envl, ss); then env2;

end matchcontinue;
end evalStmtList;

/* Evaluation of Declarations */

function evalDecl "Evaluate a single declaration. Pass environment forward."
input Env.Env inEnv;
input Absyn.Decl inDecl;
output Env.Env outEnv;
algorithm
outEnv:=
matchcontinue (inEnv, inDecl)
local
list<Env.Bind> env2,env;
String var;
case (env,Absyn.NAMEDECL (var,"integer"))

equation
env2 = Env.update (env, var, Env.INTTYPE(), Env.INTVAL(0)); then env2;
case (env,Absyn.NAMEDECL (var,"real"))
equation

env2 = Env.update (env, var, Env.REALTYPE (), Env.REALVAL(0.0));

then env2;

case (env,Absyn.NAMEDECL (var, "boolean"))

equation
env2 = Env.update (env, var, Env.BOOLTYPE (), Env.BOOLVAL(false));

then env2;

end matchcontinue;
end evalDecl;

function evalDeclList "Evaluate a list of declarations,
extending the environment."
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input Env.Env inEnv;
input Absyn.DeclList inDeclList;
output Env.Env outEnv;
algorithm
outEnv:=
matchcontinue (inEnv, inDeclList)
local
list<Env.Bind> env,envl,env2;
Absyn.Decl s;
list<Absyn.Decl> ss;

case (env, {}) then env;
case (env,s :: Ss)
equation
envl = evalDecl (env, s);
env2 = evalDeclList (envl, ss); then env2;

end matchcontinue;
end evalDeclList;

function evalExpr "Evaluate a single expression in an environment. Return
the new value. Expressions do not change environments."
input Env.Env inEnv;
input Absyn.Expr inExpr;
output Env.Value outValue;
algorithm
outValue:=
matchcontinue (inEnv, inExpr)
local
type Env BindLst = list<Env.Bind>;
Env_BindLst env;
Integer v,cl,c2,v3;
Env.Value vl1,v2;
Absyn.Expr el,e2;
Absyn.BinOp binop;
Absyn.UnOp unop;
Absyn.RelOp relop;
String id;
case (env,Absyn.INTCONST (v)) then Env.INTVAL(v);
case (env,Absyn.REALCONST (v))
local Real v; then Env.REALVAL (V) ;

case (env,Absyn.BINARY (el,binop,e2)) "Binary operators"
equation
vl = evalExpr (env, el);
v2 = evalExpr (env, e2);
Env.INTVAL2 (cl,c2) = binaryLub(vl, v2);

v3 = applyIntBinary(binop, cl, c2); then Env.INTVAL (v3);
case (env,Absyn.BINARY (el,binop,e2))
local Real cl,c2,v3;

equation
vl = evalExpr (env, el);
v2 = evalExpr (env, e2);
Env.REALVAL2 (cl,c2) = binaryLub(vl, v2);
v3 = applyRealBinary(binop, cl, c2); then Env.REALVAL (v3);
case ( ,Absyn.BINARY( , , ))
equation
print ("Error: binary operator applied to invalid type(s)\n");
then fail();
case (env,Absyn.UNARY (unop,el)) // Unary operators
local Integer vl,v2;
equation
Env.INTVAL (vl) = evalExpr (env, el);

v2 = applyIntUnary (unop, vl1); then Env.INTVAL(v2);
case (env,Absyn.UNARY (unop,el))
local Real vl1,v2;
equation
Env.REALVAL (vl) = evalExpr (env, el);



154 Fritzson, Pop Meta-Programming and Language Modeling with MetaModelica 1.0

v2 = applyRealUnary (unop, vl); then Env.REALVAL(v2);
case ( ,Absyn.UNARY( , ))
equation
print ("Error: unary operator applied to invalid type\n");
then fail();
case (env,Absyn.RELATION (el,relop,e2)) // Relation operators"
local Boolean v3;
equation
vl = evalExpr (env, el);
v2 = evalExpr (env, e2);
Env.INTVAL2 (cl,c2) = binaryLub(vl, v2);
v3 = applyIntRelation(relop, cl, c2); then Env.BOOLVAL (v3);
case (env,Absyn.RELATION (el,relop,e2))
local
Real cl,c2;
Boolean v3;

equation
vl = evalExpr (env, el);
v2 = evalExpr (env, e2);
Env.REALVALZ2 (cl,c2) = binaryLub(vl, v2);
v3 = applyRealRelation(relop, cl, c2); then Env.BOOLVAL (v3);
case (_ ,Absyn.RELATION( , , ))
equation
print ("Error: relation operator applied to invalid type(s)\n");
then fail();
case (env,Absyn.VARIABLE (id)) // Variable lookup"
local Env.Value v;
equation

v = Env.lookup (env, id); then v;
case (env,Absyn.VARIABLE (id))
equation
failure (v = Env.lookup (env, id));
print ("Error: undefined variable (");
print (id) ;
print (")\n"); then fail();
end matchcontinue;
end evalExpr;

function binaryLub "Type lattice; int --> real"
input Env.Value inValuel;
input Env.Value inValue2;
output Env.Value2 outValue2;
algorithm
outValue2:=
matchcontinue (inValuel, inValue?2)
local
Integer vl1,v2;
Real cl,c2;
case (Env.INTVAL(vl),Env.INTVAL(v2)) then Env.INTVALZ (vl,v2);
case (Env.REALVAL(vl),Env.REALVAL(v2))
local Real vl1,v2; then Env.REALVALZ2 (vl1l,v2);
case (Env.INTVAL(vl),Env.REALVAL (v2))
local Real v2;
equation
cl = intReal (vl); then Env.REALVAL2 (cl,v2);
case (Env.REALVAL(vl),Env.INTVAL(v2))
local Real vl;
equation
c2 = intReal (v2); then Env.REALVAL2 (vl,c2);
end matchcontinue;
end binaryLub;

function promote "Promotion and type check"
input Env.Value inValue;
input Env.Type inType;
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output Env.Value outValue;
algorithm
outValue:=
matchcontinue (inValue, inType)
local
Integer v;
Real v2;
case (Env.INTVAL(v),Env.INTTYPE ()) then Env.INTVAL(V);
case (Env.REALVAL (v),Env.REALTYPE () )
local Real v; then Env.REALVAL(V);
case (Env.BOOLVAL (v),Env.BOOLTYPE () )
local Boolean v; then Env.BOOLVAL (V) ;
case (Env.INTVAL(v),Env.REALTYPE())
equation
v2 = intReal (v); then Env.REALVAL (v2);
end matchcontinue;
end promote;

/* Auxiliary functions for applying the binary operators */

function applyIntBinary "Apply integer binary operators"
input Absyn.BinOp inBinOpl;
input Integer inInteger2;
input Integer inlInteger3;
output Integer outlInteger;
algorithm
outInteger:=
matchcontinue (inBinOpl,inInteger2,inInteger3)
local Integer vl,v2;
case (Absyn.ADD(),vl,v2
case (Absyn.SUB(),vl,v2
case (Absyn.MUL(),vl,v2
case (Absyn.DIV(),vl,v2
end matchcontinue;
end applyIntBinary;

then v1 + v2;
then vl - v2;
then v1*v2;

)
)
)
) then v1/v2;

function applyRealBinary "Apply real binary operators"
input Absyn.BinOp inBinOpl;
input Real inReal2;
input Real inReal3;
output Real outReal;
algorithm
outReal:=
matchcontinue (inBinOpl, inReal?2, inReal3)
local Real vl1,v2;

case (Absyn.ADD(),vl,v2) then vl +. v2;
case (Absyn.SUB(),vl,v2) then vl -. v2;
case (Absyn.MUL(),vl,v2) then v1*.v2;
case (Absyn.DIV(),vl,v2) then vl/.v2;

end matchcontinue;
end applyRealBinary;

/* Auxiliary functions for applying the unary operators */

function applyIntUnary "Apply integer unary operators"
input Absyn.UnOp inUnOp;
input Integer inInteger;
output Integer outInteger;
algorithm
outInteger:=
matchcontinue (inUnOp, inInteger)
local Integer vl;
case (Absyn.NEG(),vl) then -vl;
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end matchcontinue;
end applyIntUnary;

function applyRealUnary "Apply unary real operators"
input Absyn.UnOp inUnOp;
input Real inReal;
output Real outReal;

algorithm
outReal:=
matchcontinue (inUnOp, inReal)
local Real vl1;
case (Absyn.NEG(),vl) then -.vl;

end matchcontinue;
end applyRealUnary;

*/

/* Auxiliary functions for applying the relational operators

function applyIntRelation "Apply integer relational operators"
input Absyn.RelOp inRelOpl;
input Integer inInteger2;
input Integer inlInteger3;
output Boolean outBoolean;

algorithm
outBoolean:=
matchcontinue (inRelOpl, inInteger2,inInteger3)
local Integer vl1,v2;
case (Absyn.LT(),vl,v2) then (vl < v2);
case (Absyn.LE(),vl,v2) then (vl <= v2);
case (Absyn.GT(),vl,v2) then (vl > v2);
case (Absyn.GE(),vl,v2) then (vl >= v2);
case (Absyn.NE(),vl,v2) then (vl <> v2);
case (Absyn.EQ(),vl,v2) then (vl == v2);
end matchcontinue;
end applyIntRelation;
function applyRealRelation "Apply real relational operators"

input Absyn.RelOp inRelOpl;
input Real inReal2;

input Real inReal3;

output Boolean outBoolean;

algorithm
outBoolean:=
matchcontinue (inRelOpl, inReal2, inReal3)
local Real vl1,v2;
case (Absyn.LT(),vl,v2) then (vl <. v2);
case (Absyn.LE(),vl,v2) then (vl <=. v2);
case (Absyn.GT(),vl,v2) then (vl >. v2);
case (Absyn.GE(),vl,v2) then (vl >=. ) ;
case (Absyn.NE(),vl,v2) then (vl <>. v2);
case (Absyn.EQ(),vl,v2) then (vl == ) ;
end matchcontinue;
end applyRealRelation;
/* Evaluate the ‘write’ statement */
function printValue "Evaluate the ‘write’ statement, i.e., print a value"

input Env.Value inValue;

algorithm

matchcontinue

local

(inValue)

String vstr;

Integer v;
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case (Env.INTVAL(v))
equation
vstr = intString(v);
print (vstr);
print ("\n"); then ();
case Env.REALVAL(v)
local Real v;
equation
vstr = realString(v);
print (vstr);
print ("\n"); then ();
case Env.BOOLVAL (true)
equation
print ("true\n"); then ();
case Env.BOOLVAL (false)
equation
print ("false\n"); then ();
end matchcontinue;
end printValue;

end Eval;

C.2.6 PAMDECL lexer.l

% {

#include <stdlib.h>
#include "parser.h"
#include "omc.h"
#include "yacclib.h"

#include "Absyn.h"

typedef void *omc t;
extern omc t yylval;

int absyn integer (char *s);
int absyn ident or keyword(char *s);

oe

}

digit [0-9]

digits {digit}+

letter [A-Za-z ]

intcon {digits}

dot " . "

sign [+-]

exponent ([eE] {sign}?{digits})

realcondot {digits}{dot}{digits}{exponent}?
realconexp {digits} ({dot}{digits}) ?{exponent}
realcon {realcondot} | {realconexp}

ident {letter} ({letter}|{digit})*

ws [ \t\n]

junk .I\n

" return T LPAREN;

"" return T RPAREN;

"y return T PLUS;

return T:MINUS;
return T TIMES;
return T DIVIDE;
return T ASSIGN;
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nen return T SEMICOLON;
nwen return T COLON;
e return T LT;

=" return T LE;
n>n return T GT;
n">=n return T GE;
"> return T NE;

n_mn return T_EQ;

{intcon} { return absyn integer (yytext);}

{realcon} { return absyn real (yytext);}

{ident} { return absyn ident or keyword(yytext); }
{ws}+ ;

{junk}+ return T GARBAGE;

oe
o

/* Make an Modelica integer from a C string representation (decimal),
box it for our abstract syntax, put in yylval and return constant token. */

int absyn integer (char *s)

{
yylval=(omc_t) Absyn INTCONST (mk icon(atoi(s)));
return T_CONST_INT;

}

/* Make an Modelica real from a C string representation,
box it for our abstract syntax, put in yylval and return constant token. */

int absyn real (char *s)

{
yylval=(omc t) Absyn REALCONST (mk rcon(atof(s)));
return T_CONST_REAL;

}

/* Make an Modelica Ident or a keyword token from a C string */

static struct keyword s
{

char *name;

int token;

}okwl] =

{
{"body", T BODY},
{"do", T DO},
{"else", T ELSE},
{"end", T END},
{"if", T IF},
{"program", T PROGRAM},
{"then", T THEN},
{"while", T WHILE},
{"write", T WRITE},

}i

int absyn ident or keyword(char *s)

{
int low = 0
int high =

(sizeof kw) / sizeof(struct keyword s) - 1;

while( low <= high ) {

int mid = (low + high) / 2;
int cmp = strcmp (kw[mid].name, yytext);
if( cmp == 0 )

{

return kw[mid].token;
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}
else if( cmp < 0 )
low = mid + 1;
else
high = mid - 1;
}
yylval = (omc_t) mk scon(s);
return T IDENT;

C.2.7 PAMDECL parser.y

%1

#include <stdio.h>
#include "yacclib.h"
#include "Absyn.h"

typedef void *omc t;
#define YYSTYPE omc t
extern omc_t absyntree;

oe

}

stoken T PROGRAM
$token T BODY
stoken T END
$token T IF
stoken T THEN
%token T ELSE
%token T WHILE
%token T DO

stoken T WRITE
stoken T ASSIGN
%token T SEMICOLON
stoken T COLON

stoken T CONST INT
%token T CONST REAL
stoken T CONST BOOL
%token T IDENT

%token T LPAREN T RPAREN
%nonassoc T LT T LE T GT T GE T NE T _EQ
%left T PLUS T MINUS

$left T TIMES T DIVIDE

%left T UMINUS

stoken T GARBAGE

oe
oe

program
: T PROGRAM decl list T BODY stmtList T END T PROGRAM
{ absyntree = Absyn PROG(S$2,S54); }
decl list
{ $$ = mk_nil();}
| decl decl list
{ $$ = mk_cons($1,382); }
decl

: T IDENT T COLON T IDENT T SEMICOLON
{ $$ = Absyn NAMEDECL ($1,$3);}



160 Fritzson, Pop

Meta-Programming and Language Modeling with MetaModelica 1.0

stmtList
{ $$ = mk_nil();}
| stmt stmtList
{ $$ = mk _cons($1,$2); }
stmt

simple stmt T SEMICOLON
| combined stmt

simple stmt
assign stmt
| write stmt
| noop stmt

combined stmt
if stmt
| while stmt

assign_stmt
T IDENT T ASSIGN expr
{ $$ = Absyn ASSIGN(S$1,$3);}
write stmt
T WRITE expr
{ $$ = Absyn WRITE(S$2);}

noop stmt

{ $$ = Absyn__NOOP; }

if stmt
T IF expr T THEN stmtList T ELSE stmtList T END T_IF
{ $$ = Absyn IF($2,%$4,$6); }
| T IF expr T THEN stmtList T END T_IF
{ $$ = Absyn_IF($2,$4,mk cons(Absyn NOOP,mk nil()));
while stmt
T WHILE expr T DO stmtList T END T WHILE
{ $$ = Absyn WHILE($2,%4); }
expr

T CONST INT
| T CONST REAL
| T CONST BOOL
| T LPAREN expr T RPAREN
{ $$ = 825}
| T IDENT
{ $$ = Absyn VARIABLE ($1);}
| expr bin
| expr un
| expr rel

expr T PLUS expr

{ $$ = Absyn BINARY($1, Absyn_ ADD, $3);}
| expr T MINUS expr

{ $$ = Absyn BINARY($1, Absyn_ SUB, $3);}
| expr T TIMES expr

{ $$ = Absyn BINARY($1, Absyn MUL,$3);}
| expr T DIVIDE expr

{ $$ = Absyn BINARY($1, Absyn DIV, $3);}

expr_un
T MINUS expr %prec T UMINUS

}
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{ $$ = Absyn UNARY (Absyn_ ADD, $2);}

expr rel
expr T LT expr
{ $$ = Absyn RELATION($1,Absyn LT, $3);}
| expr T LE expr
{ $$ = Absyn RELATION($1,Absyn LE,$3);}
| expr T GT expr
{ $$ = Absyn RELATION ($1,Absyn GT,$3);}
| expr T GE expr

{ $$ = Absyn RELATION($1,Absyn_GE,$3);}
| expr T NE expr

{ $$ = Absyn RELATION ($1,Absyn NE,$3);}
| expr T EQ expr

{ $$ = Absyn RELATION ($1,Absyn_EQ,$3);}

oe
oe

C.2.8 PAMDECL scanparse.c

/* Glue to call parser (and thus scanner) from Modelica */

#include <stdio.h>
#include "omc.h"

/* Provide error reporting function for yacc */

yyerror (char *s)
{
extern int yylineno;
fprintf (stderr, "Error: bad syntax on line %d.\n",yylineno) ;

}

/* The yacc parser will deposit the syntax tree here */
void *absyntree;

/* No init for this package */

void ScanParse 5finit (void) {}

/* The glue function */

OMC BEGIN LABEL (ScanParse scanparse)

{
if (yyparse() !=0)

fprintf (stderr, "Fatal: parsing failed!\n");
OMC TAILCALLK (omcFC) ;
}

omcAO=absyntree;
OMC TAILCALLK (omcSC) ;

}
OMC_END_LABEL

C.2.9 PAMDECL Makefile

# Makefile for building PAMDECL
#
# ??Note: LDFLAGS, CFLAGS are non-portable for some Unix systems
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# VARIABLES

SHELL = /bin/sh

LDLIBS = -lomc -11 # Order is essential; we want libomc main, not 1libl1l!
LDFLAGS = -L$ (OMCRUNTIME) /lib/plain/

CC = gcc

CFLAGS = -I$(OMCRUNTIME)/include/plain/ -g -I..

# EVERYTHING
all: pamdecl

# EXECUTABLE

COMMONOBJS=yacclib.o
VSLOBJS=main.o lexer.o parser.o scanparse.o absyn.o env.o eval.o

pamdecl: $(VSLOBJS) $ (COMMONOBJS)
$(CC) $(LDFLAGS) $(VSLOBJS) $ (COMMONOBJS) $(LDLIBS) -o pamdecl

# MAIN ROUTINE WRITTEN IN Modelica NOW
main.o: main.c
main.c main.h: main.om

mmc —C main.om

# YACCLIB

yacclib.o: vyacclib.c
$(CC) $(CFLAGS) -c -o yacclib.o yacclib.c

# LEXER
lexer.o: lexer.c parser.h absyn.h
lexer.c: lexer.l
lex -t lexer.l >lexer.c
# PARSER

parser.o: parser.c absyn.h
parser.c parser.h: parser.y
yacc —-d parser.y
mv y.tab.c parser.c
mv y.tab.h parser.h

# INTERFACE TO SCANNER/PARSER (Modelica CALLING C)

scanparse.o: scanparse.c absyn.h
# ABSTRACT SYNTAX

absyn.o: absyn.c
absyn.c absyn.h: absyn.om
mmc —c absyn.om

# ENVIRONMENTS

env.o: env.c

env.c env.h: env.om
mmc —-C env.om

# EVALUATION

eval.o: eval.c

eval.c eval.h: eval.om absyn.h env.h
mmc —-c eval.om
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# AUX

clean:
$ (RM) pamdecl $(COMMONOBJS) $(VSLOBJS) main.c main.h lexer.c parser.c pa
rser.h absyn.c absyn.h env.c env.h eval.c eval.h *~

C.3 The Complete PAM Translational Specification

The following files are needed for building the PAM translator: Absyn.mo, Trans.mo, Mcode.mo,
Emit.mo, lexer.l, gram.y, Main.mo, Parse.mo, parse.c, yacclib.c, yacclib.h and
makefile.

Theses files for MetaModelica 1.0 can be found in http://openmodelica.org/
metamodelica/exercises/.

The executable is built by typing:

>> make pamtrans

C.3.1 lexer.l

% {

#include "gram.h"
#include "yacclib.h"
#include "omc.h"
#include "Absyn.h"

typedef void *omc t;
extern omc_t yylval;

int absyn integer(char *s);
int absyn ident or keyword(char *s);

oe

}

whitespace [ \t\nl+

letter [a-zA-7Z]

ident {letter} ({letter}|{digit})*
digit [0-9]

digits {digit}+

icon {digits}

/* Lex style lexical syntax of tokens in the PAM language */

oe
oe

{whitespace} ;

{ident} return absyn ident or keyword(yytext); /* T_IDENT */
{digits} return absyn integer (yytext); /* T INTCONST */
"e=" return T ASSIGN;

nyn return T_ADD;

n-mw return T SUB;

"an return T MUL;

m/m return T DIV;

" return T LPAREN;

" return T RPAREN;

e return T_LT;

=" return T LE;

n"=n return T EQ;

"> return T NE;

n">=n return T GE;

n">n return T GT;

", return T SEMIC;

o
o

/* Make an Modelica integer from a C string representation (decimal),
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box it for our abstract syntax, put in yylval and return constant token. */

int absyn integer (char *s)

{
yylval=(omc_t) Absyn INT(mk icon(atoi(s)));
return T_INTCONST;

}

/* Make an Modelica Ident or a keyword token from a C string */
/* Reserved words: if,then,else,endif,while,do,end, to,read,write */

static struct keyword s
{

char *name;

int token;

}okw[] =

{
{"do", T DO},
{"else", T ELSE},
{"end", T END},
{"if", T IF},
{"read", T READ},
{"then", T THEN},
{"while", T WHILE},
{"write", T WRITE},

}i

int absyn ident or keyword(char *s)
{
int low = 0;
int high = (sizeof kw) / sizeof (struct keyword s)

while( low <= high ) {

int mid = (low + high) / 2;
int cmp = strcmp (kw[mid].name, yytext);
if( cmp == 0 )

{
return kw[mid].token;
}
else if( cmp < 0 )
low = mid + 1;
else
high = mid - 1;
}
yylval = (omc_t) mk scon(s);
return T IDENT;
}
gram.y
%1
finclude <stdio.h>
#include "yacclib.h"
#include "omc.h"
#include "Absyn.h"

typedef void *omc t;
#define YYSTYPE omc_t

extern omc t absyntree;

oe

}

stoken T READ
stoken T WRITE
stoken T ASSIGN
stoken T IF
stoken T THEN
stoken T ENDIF
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%token T ELSE
stoken T TO
$token T DO
stoken T END
stoken T WHILE
stoken T LPAREN
stoken T RPAREN
stoken T IDENT
%token T INTCONST
stoken T EQ
stoken T LE
$token T LT
stoken T GT
stoken T GE
stoken T NE
stoken T ADD
stoken T SUB
stoken T MUL
stoken T DIV
$token T SEMIC

oe
oe

/* Yacc BNF grammar of the PAM language */

program : series
{ absyntree = $1; }
series : statement
{ $$ = Absyn_ SEQ($1, Absyn SKIP); }
| statement series
{ $$ = Absyn_SEQ(S$1, $2); }

statement :  input statement T SEMIC
{ 88 = 81; }
| output statement T SEMIC
{ 88 = 81; }
| assignment statement T SEMIC
{ 88 = 81; }
| conditional statement
{ 88 = 81; }
| definite loop
{ 88 = 81; }
| while loop
{ $$ =817 }
input statement : T READ variable list

{ $$ = Absyn READ(S$2); }

output statement : T WRITE variable list
{ $$ = Absyn WRITE($2); }

variable list : variable
{ $$ = mk cons ($1, mk nil()); }
| variable variable list
{ $$ = mk cons($1, $2); }

assignment statement : variable T ASSIGN expression
{ $$ = Absyn ASSIGN(S$1, $3); }

conditional statement : T IF comparison T THEN series T ENDIF
{ $$ = Absyn IF($2, $4, Absyn_ SKIP); }
| T _IF comparison T THEN series
T ELSE series T ENDIF
{ $$ = Absyn_IF($2, $4, $6); }

definite loop : T _TO expression T DO series T END
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{ $$ = Absyn TODO($2, $4); }

while loop : T WHILE comparison T DO series T END
{ $$ = Absyn WHILE($2, $4); }

expression : term
{ $$ = $1; }
| expression weak operator term
{ $$ = Absyn__ BINARY ($1, $2, $3); }

term : element
{ $$ = 817 }
| term strong operator element
{ $$ = Absyn BINARY ($1, $2, $3); }

element : constant
{ 88 = 81; }
| variable
{ $$ = Absyn IDENT($1); }
| T LPAREN expression T RPAREN
{ $$ = $2; }

comparison : expression relation expression
{ $$ = Absyn RELATION(S$1, $2, $3); }

variable : T IDENT
{ $$ = $1; }
constant : T INTCONST
{ $$ = $1; }
relation : T EQ { $$ = Absyn_EQ;}
| T LE { $$ = Absyn_LE;}
| T_LT { $$ = Absyn__ LT;}
| T GT { $$ = Absyn_GT;}
| T GE { $$ = Absyn_ GE;}
| T NE { $$ = Absyn_ NE;}
weak operator : T ADD { $$ = Absyn ADD;}

| T_SUB { $$ = Absyn__SUB;}

strong operator : T MUL { $$ = Absyn MUL;}
| T_DIV { $$ = Absyn_ DIV;}

oe
oe

void yyerror (char *str) {

}

C.3.2 PAMTRANS Absyn.mo

package Absyn "Parameterized abstract syntax for the PAM language"
type Ident = String;

uniontype BinOp
record ADD end ADD;
record SUB end SUB;
record MUL end MUL;
record DIV end DIV;
end BinOp;

uniontype RelOp
record EQ end EQ;
record GT end GT;
record LT end LT;
record ILE end LE;
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end GE;
end NE;

record GE
record NE
end RelOp;

uniontype Exp

record INT Integer int; end INT;

record IDENT Ident id; end IDENT;

record BINARY Exp expl; BinOp op; Exp exp2; end BINARY;
record RELATION Exp expl; RelOp op; Exp exp2; end RELATION;

end Exp;

type IdentList = list<Ident>;

uniontype Stmt

record ASSIGN Ident id; Exp exp; end ASSIGN; // Id := Exp
record IF Exp exp; Stmt stmtl; Stmt stmt2; end IF; // if Exp then Stmt
record WHILE Exp exp; Stmt stmt; end WHILE; // while Exp do Stmt"
record TODO Exp exp; Stmt stmt; end TODO; // to Exp do Stmt..."
record READ IdentList idlist; end READ; // read idl,id2,..."
record WRITE IdentList idlist; end WRITE; // write idl,id2,.."
record SEQ Stmt stmtl; Stmt stmt2; end SEQ; // Stmtl; Stmt2"
record SKIP end SKIP; // ; empty stmt"

end Stmt;

end Absyn;

C.3.3 PAMTRANS Trans.mo

package Trans

import Absyn;
import Mcode;

function transProgram
type MCodelist =
input Absyn.Stmt progbody;
output MCodelist programcode;

protected
MCodeList codl;

algorithm
codl :=
programcode :=

end transProgram;

transStmt (progbody) ;

listAppend(codl,

"Translate a whole program"
list<Mcode.MCode>;

{Mcode .MHALT () }) ;

/*************** Statement translation **************/

function transStmt
input Absyn.Stmt inStmt;

"Statement translation"

output list<Mcode.MCode> outMCodelList;

algorithm
outMCodeList:=
matchcontinue
local

(inStmt)

list<Mcode.MCode> codl, cod2,slcod, compcod, cod3, s2cod,bodycod, tocod;

String id;
Absyn.Exp el,comp;
Mcode.MOperand 11,12,t1;

Absyn.Stmt sl,s2,stmtl,stmt2;

list<String> idListRest;

case Absyn.ASSIGN(id,el)

equation
codl = transExpr(el);
cod2 = listAppend(codl,

case Absyn.SKIP then {};

/* Assignment Statement translation:
map the current state into a new state */

{Mcode .MSTO (Mcode.I(id))} ); then cod2;

/* ; empty statement */
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case Absyn.IF (comp,sl,Absyn.SKIP) /* if comp then sl */
equation
slcod = transStmt (sl);
11 = genlabel();
compcod = transComparison (comp, 11);

cod3 = listAppend3 (compcod, slcod, {Mcode.MLABEL(11l)} ); then cod3;
case Absyn.IF (comp,sl,s2) /* if comp then sl else s2 */
equation

slcod = transStmt (sl);
s2cod = transStmt (s2);
11 = genlabel();
12 = genlabel();
compcod = transComparison (comp, 11);
cod3 = listAppend6 (
compcod, slcod,
{Mcode.MJMP (12) },
{Mcode .MLABEL (11) },

s2cod,
{Mcode .MLABEL (12)} ); then cod3;
case Absyn.WHILE (comp,sl) // while
equation

bodycod = transStmt (sl);
11 = genlabel();
12 = genlabel();
compcod = transComparison (comp, 12);
cod3 = listAppend5 (
{Mcode .MLABEL (11) },
compcod, bodycod,
{Mcode .MJMP (11) },

{Mcode.MLABEL (12)} ); then cod3;
case Absyn.TODO (el, sl) // to el do sl
equation

tocod = transExpr(el);

bodycod = transStmt (sl);

tl = gentemp () ;

11 = genlabel();

12 = genlabel();

cod3 = listAppendlO (
tocod,
{Mcode .MSTO (t1) },
{Mcode .MLABEL (11) },
{Mcode .MLOAD (t1) },
{Mcode.MB (Mcode .MSUB () ,Mcode.N (1)) },
{Mcode .MJ (Mcode .MJN, 12) },
{Mcode.MSTO (t1) },

bodycod,
{Mcode.MJMP (11) },
{Mcode .MLABEL (12)} ); then cod3;
case Absyn.READ({}) then {}; // read {}
case Absyn.READ(id :: idListRest) // read idl,id2, ...
equation
cod2 = transStmt (Absyn.READ (idListRest));
then Mcode.MGET (Mcode.I (id) :: cod2);
case Absyn.WRITE ({}) then {}; // write {}
case Absyn.WRITE (id :: idListRest) // write id1l,id2, ...
equation
cod2 = transStmt (Absyn.WRITE (idListRest)) ;
then Mcode.MPUT (Mcode.I (id) :: cod2);
case Absyn.SEQ (stmtl,stmt2) // stmtl ; stmt2

equation
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codl = transStmt (stmtl);
cod?2 = transStmt (stmt2);
end matchcontinue;

end transStmt;

function transExpr "Arithmetic expression translation"
input Absyn.Exp inExp;
output list<Mcode.MCode> outMCodelList;
algorithm
outMCodeList:=
matchcontinue (inExp)
local
Integer v;
String id;
list<Mcode.MCode> codl, cod3,cod2;
Mcode.MOperand operand2,tl,t2;
Mcode.MBinOp opcode;
Absyn.Exp el,e2;
Absyn.BinOp binop;

case Absyn.INT(v) then list (Mcode.MLOAD (Mcode.N(v))); // integer constant
case Absyn.IDENT (id) then list (Mcode.MLOAD (Mcode.I(id))); // identifier id
case Absyn.BINARY (el,binop,e2) " Arith binop: simple case, expr2 is just an
identifier or constant: exprl binop expr2 "
equation

codl = transExpr(el);

list (Mcode.MLOAD (operand?)) = transExpr(e2);

opcode = transBinop (binop) ; // expr2 simple

cod3 = listAppend(codl, list(Mcode.MB (opcode,operand?))); then cod3;

case Absyn.BINARY (el,binop,e2) "Arith binop: general case, expr2 is a more
complicated expr: exprl binop expr2"
equation
codl = transExpr(el);
cod2 = transExpr (e2);
opcode = transBinop (binop) ;
tl = gentemp () ;
t2 = gentemp () ;
cod3 = listAppend6(codl, // code for exprl

{Mcode .MSTO (t1) }, // store exprl

cod2, // code for expr2

{Mcode .MSTO (t2) }, // store expr2

(Mcode .MLOAD (tl) }, // load exprl value into Acc

{Mcode .MB (opcode, t2) } // Do arith operation

)i
then cod3;

end matchcontinue;
end transExpr;

function transBinop "Translate binary operator from Absyn to Mcode"
input Absyn.BinOp inBinop;
output Mcode.MBinOp outMBinop;
algorithm
outMBinop:=
matchcontinue (inBinop)
case Absyn.ADD() then Mcode.MADD() ;
case Absyn.SUB() then Mcode.MSUB() ;
case Absyn.MUL() then Mcode.MMULT () ;
case Absyn.DIV() then Mcode.MDIV() ;
end matchcontinue;
end transBinop;

function gentemp "Generate temporary"
output Mcode.MOperand outMOperand;
protected
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Integer no;
algorithm

no = tick();

outMOperand :=
end gentemp;

function listAppend3
input list<Type a>
input list<Type a>
input list<Type a>

Mcode.T (no) ;

11;
12;
13;

output list<Type a> 113;
replaceable type Type a subtypeof Any;

protected
list<Type a> 112;
algorithm -
112 := listAppend(ll, 12);
113 := listAppend (112, 13);

end listAppend3;

function listAppend5
input list<Type a>
input list<Type a>
input list<Type a>
input list<Type a>
input list<Type a>

11;
12;
13;
14;
15;

output list<Type a> 115;
replaceable type Type a subtypeof Any;

protected
list<Type a> 113;

algorithm
113 := listAppend3 (11, 12, 13);
115 := listAppend3 (113, 14, 15);

end listAppend5;

function listAppend6
input list<Type a>
input list<Type a>
input list<Type a>
input list<Type a>
input list<Type a>
input list<Type a>

11;
12;
13;
14;
15;
16;

output list<Type a> 116;

replaceable type Type a subtypeof Any;
protected

list<Type a> 113,146;

algorithm
113 := listAppend3 (11, 12, 13);
146 := listAppend3 (14, 15, 16);
116 := listAppend (113, 146);

end listAppend6;

function listAppendlO

input
input
input
input
input
input
input
input

list<Type a>
list<Type a>
list<Type a>
list<Type a>
list<Type a>
list<Type a>
list<Type a>
list<Type a>
input list<Type a>
input list<Type a>

11;
12;
13;
14;
15;
16;
17;
18;
19;
110;

output list<Type a> 1110;
replaceable type Type a subtypeof Any;
protected
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list<Type a> 115;

algorithm
115 := listAppend5(11, 12, 13, 14, 15);
1110 := listAppend6(115, 16, 17, 18, 19, 110);

end listAppendlO;

[FHRFI A KKK KKK KKK Hk* Comparison expression translation **xxxkkxkkkkrsk/

function transComparison "translation of a comparison: exprl relop expr2
Example call: transComparison (RELATION (INDENT (x), GT, INT(5)), L(10))"
input Absyn.Comparison inComparison;
input Mcode.MLab inMLab;
output list<Mcode.MCode> outMCodelist;
algorithm
outMCodeList :=
matchcontinue (inComparison,inMLab)
local
list<Mcode.MCode> codl, cod3, cod2;
Mcode.MOperand operand2,lab,tl;
Mcode.MCondJmp jmpop;
Absyn.Exp el,e2;
Absyn.RelOp relop;

Use a simple code pattern (the first case), when expr2 is a simple
identifier or constant:

code for exprl

SUB operand?2

conditional jump to lab

or a general code pattern (second case), which is needed when expr2
is more complicated than a simple identifier or constant:

code for exprl

STO templ

code for expr?2

SUB templ

conditional jump to lab

R I T SR T I S S N N S

/
case (Absyn.RELATION (el,relop,e2),lab) "Simple case, exprl relop expr2"
equation
codl = transExpr(el);
list (Mcode .MLOAD (operand2)) = transExpr(e2); // Only a load
jmpop = transRelop (relop);
cod3 = listAppend3(codl, {Mcode.MB (Mcode.MSUB(),operand?)},
{Mcode .MJ (jmpop, 1lab)} );
then cod3;

case (Absyn.RELATION (el,relop,e2),lab) // Complicated, exprl relop expr2
equation
codl = transExpr(el);
cod?2 transExpr (e2) ;
Jjmpop = transRelop (relop) ;
tl = gentemp () ;
cod3 = listAppend5 (codl, {Mcode.MSTO(tl)}, cod2,
{Mcode.MB (Mcode.MSUB () ,tl)}, {Mcode.MJ(jmpop,lab)} );
then cod3;
end matchcontinue;
end transComparison;

function transRelop "Translate comparison relation operator"
/* Note that for these relational operators, the selected jump
* instruction is logically opposite. For example, if equality to zero
* is true, we should should just continue, otherwise jump (MJNP)
*/
input Absyn.RelOp inRelop;
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output Mcode.MCondJmp outMCondJmp;

algorithm

outMCondJmp: =

matchcontinue (inRelop)
case Absyn.EQ() then
case Absyn.LE() then
case Absyn.LT () then
case Absyn.GT () then
case Absyn.GE() then
case Absyn.NE() then

end matchcontinue;

end transRelop;

C.3.4 PAMTRANS Mcode.mo

package Mcode

uniontype MBinOp

record
record
record
record

MADD
MSUB
MMULT
MDIV

end MBinOp;

end MADD;
end MSUB;

end MMULT;

end MDIV;

uniontype MCondJmp

record
record
record
record
record
record

MJNP
MJP
MJIN
MJINZ
MJPZ
MJZ

end MCondJmp;

end MJNP;
end MJP;
end MJN;
end MJNZ;
end MJPZ;
end MJZ;

uniontype MOperand
I Id id; end I;

record
record
record

N In
T 1In

end MOperand;

type MLab

= M

type MTemp = M
type MIdent =
type MIdTemp =

teger int;
teger int;

Operand;

Operand;

MOperand;
MOperand;

uniontype MCode

record
record
record
record
record
record
record
record
record

MB MBinOp mBinOp;
MJ MCondJdmp mCondJmp;

MJIMP
MLOAD
MSTO
MGET
MPUT
MLABE
MHALT

end MCode;

end Mcode;

Mcode
Mcode
Mcode
Mcode
Mcode
Mcode

.MJNP () ;
MJP () ;
.MJPZ () ;
.MJNZ () ;
MJIN () ;
MJZ () ;

end N;
end T;

// Label

// Temporary
// Identifier

!/
//
!/
//
!/
//

Jump
Jump
Jump
Jump
Jump
Jump

// Id or Temporary

Mlab mlab;

MIdTemp mIdTemp;
MIdTemp mIdTemp;

MIdent mIdent;
MIdent mIdent;

L MLab mLab;

end MHALT;

C.3.5 PAMTRANS Emit.mo

package Emit
/* Print out the Mcode in textual assembly format
this is not really part of the specification of PAM semantics,
* rather it is low-level code generation.

* Note:

MLab mLab;

end MJMP;
end MLOAD;
end MSTO;

end MGET;
end MPUT;

end MLABEL;

Moperand Moperand;
end MJ;

on
on
on
on
on
on

Negative
Positive
Positive
Negative
Negative
Zero

end MB; /*

/*

or Positive

or Zero
or Zero

Binary arith ops */
Conditional jumps */
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*/

import Mcode;

function emitAssembly "Print an Mcode instruction"
input list<Mcode.MCode> inMCodeList;
algorithm

matchcontinue (inMCodelist)
local
Mcode.MCode instr;
list<Mcode.MCode> rest;

case ({}) then ();
case (instr :: rest)
equation

emitInstr (instr);
emitAssembly (rest); then ();
end matchcontinue;
end emitAssembly;

function emitInstr
input Mcode.MCode inMCode;
algorithm

matchcontinue (inMCode)
local
String op;
Mcode .MBinOp mbinop;
Mcode .MOperand mopr,mlab;
Mcode.MCondJmp jmpop;
case (Mcode.MB (mbinop,mopr)) // Print an Mcode
equation
op = mbinopToStr (mbinop) ;
emitOpOperand (op, mopr); then ();
case (Mcode.MJ (jmpop,mlab))
equation
op = mijmpopToStr (jmpop) ;
emitOpOperand (op, mlab); then ();
case (Mcode.MJMP (mlab))
equation
emitOpOperand ("J", mlab); then ();
case (Mcode.MLOAD (mopr))
equation
emitOpOperand ("LOAD", mopr); then ();
case (Mcode.MSTO (mopr))
equation
emitOpOperand ("STO", mopr); then ();
case (Mcode.MGET (mopr))
equation
emitOpOperand ("GET", mopr); then ();
case (Mcode.MPUT (mopr))
equation
emitOpOperand ("PUT", mopr); then ();
case (Mcode.MLABEL (mlab))
equation
emitMoperand (mlab) ;
print ("\tLAB\n"); then ();
case (Mcode.MHALT ())
equation
print ("\tHALT\n"); then ();
end matchcontinue;
end emitInstr;

function emitOpOperand
input String opstr;
input Mcode.MOperand mopr;
algorithm
print ("\t");

instruction
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print (opstr);

print ("\t");
emitMoperand (mopr) ;
print ("\n");

end emitOpOperand;

function emitInt
input Integer i;
protected
String s;
algorithm
s := intString(i);
print(s);
end emitInt;

function emitMoperand
input Mcode.MOperand inMOperand;
algorithm

matchcontinue (inMOperand)
local
String id;
Integer number, labno, tempnr;
case (Mcode.I(id))
equation
print (id); then ();
case (Mcode.N (number))
equation
emitInt (number); then ();
case (Mcode.L (labno))
equation
print ("L");
emitInt (labno); then ();
case (Mcode.T (tempnr))
equation
print ("T");
emitInt (tempnr); then ();
end matchcontinue;
end emitMoperand;

function mbinopToStr
input Mcode.MBinOp inMBinOp;
output String outString;

algorithm
outString:=
matchcontinue (inMBinOp)
case (Mcode.MADD()) then "ADD";
case (Mcode.MSUB()) then "SUB";
case (Mcode.MMULT()) then "MULT";
case (Mcode.MDIV()) then "DIV";

end matchcontinue;
end mbinopToStr;

function mjmpopToStr
input Mcode.MCondJmp inMCondJmp;
output String outString;

algorithm

outString:=

matchcontinue (inMCondJmp)
case (Mcode.MJNP()) then "JNP";
case (Mcode.MJP()) then "JP";
case (Mcode.MJN()) then "JN";
case (Mcode.MJNZ()) then "JNZ";
case (Mcode.MJPZ()) then "JPZ";
case (Mcode.MJZ()) then "Jz";

end matchcontinue;
end mjmpopToStr;



175

end Emit;

C.3.6 PAMTRANS Main.mo

package Main
import Parse;
import Trans;
import Emit;

function main
"Parse and translate a PAM program into Mcode,
then emit it as textual assembly code."
protected
Absyn.Stmt program;
list<Mcode.MCode> mcode;

algorithm
program := Parse.parse();
mcode := Trans.transProgram(program) ;

Emit.emitAssembly (mcode) ;
end main;

end Main;

C.3.7 PAMTRANS Parse.mo

package Parse
import Absyn;

function parse
output Absyn.Stmt outStmt;

external "C" ;
end parse;

end Parse;

C.3.8 PAMTRANS parse.c

finclude <stdio.h>
#include <errno.h>
#include <string.h>
#include "omc.h"

#ifndef OMC INSPECTBOX
#define OMC INSPECTBOX (d,h
(

/)
(OMC_ISIMM((d)=(p))?20:(((h)=

(void*/OMC_GETHDR ((p))),0))

#define omc_prim deref imm(x) x
#endif

void Parse 5finit (void) {}
void *absyntree;
OMC BEGIN LABEL (Parse parse) {

void *a0O, *aOhdr;
OMC INSPECTBOX (a0, aOhdr, omcAO);

if ( aOhdr == OMC IMMEDIATE (OMC UNBOUNDHDR) )
OMC TAILCALLK (omcFC) ;
else {
if (yyparse()==0) {
omcAO = absyntree;

OMC TAILCALLK (omcSC) ;

}
else OMC TAILCALLK (omcFC) ;
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}
}
makefile
# Makefile for building translational version of PAM
#
# ??Note: LDFLAGS, CFLAGS are non-portable for some Unix systems

# VARIABLES

SHELL = /bin/sh

LDLIBS = -lomc -11 # Order is essential; we want libomc main, not 1libll!
LDFLAGS = -L$ (OMCRUNTIME)/lib/plain/

CC = gcc

CFLAGS = -I$(OMCRUNTIME)/include/plain/ -g -I..

MMC = $ (OMCRUNTIME) /bin/mmc

# EVERYTHING
all: pamtrans

# EXECUTABLE

COMMONOBJS=yacclib.o
VSLOBJS=main.o lexer.o gram.o parse.o absyn.o mcode.o trans.o emit.o

pamtrans: $(VSLOBJS) $ (COMMONOBRJS)
$(CC) $(LDFLAGS) $(VSLOBJS) $ (COMMONOBJS) $(LDLIBS) -o pamtrans

# MAIN ROUTINE WRITTEN IN Modelica NOW
main.o: main.c
main.c main.h: main.omc

$(MMC) -c main.omc

# YACCLIB

yacclib.o: vyacclib.c
$(CC) $(CFLAGS) -c -o yacclib.o yacclib.c

# LEXER
lexer.o: lexer.c gram.h absyn.h
lexer.c: lexer.l

lex -t lexer.l >lexer.c
# PARSER
gram.o: gram.c gram.h
gram.c gram.h: gram.y
yacc —-d gram.y
mv y.tab.c gram.c
mv y.tab.h gram.h
# INTERFACE TO SCANNER/PARSER (Modelica CALLING C)
parse.o: parse.c absyn.h
# ABSTRACT SYNTAX
absyn.o: absyn.c
absyn.c absyn.h: absyn.omc
$(MMC) -c absyn.omc

# TRANSLATION

trans.o: trans.c
trans.c trans.h: trans.omc absyn.h



177

$(MMC) —-c trans.omc
# EMISSION
emit.o: emit.c
emit.c emit.h: emit.omc
$(MMC) -c emit.omc
# INTERMEDIATE FORM
mcode.o: mcode.c
mcode.c mcode.h: mcode.omc
S (MMC) —c mcode.omc
# AUX
clean:

$ (RM) pamtrans $ (COMMONOBJS) $(VSLOBJS) main.c main.h lexer.c parser.c
parser.h absyn.c absyn.h env.c env.h eval.c eval.h *~#include <stdlib.h>
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Appendix D Exercises

D.1 Exercises — Introduction and Interpretive Semantics

D.1.1 Exercise 01_experiment — Types, Functions, Constants, Printing Values

In this exercise you will experiment with some MetaModelica language constructs:
e Types
e Constants
e Functions

Exercise: Write some functions in Functions.mo to display the complex constants defined in Types.mo.
Search for // your code here inMain.mo and Functions.mo

The solution is available in the file SOLUTION.txt and in Appendix E.1.

Hints:
e To build the project leave the input box empty when building the project.
e To run the application type "run" when building the project.

The files where you should add your code are Main.mo and Functions.mo, also shown below:
package Functions

// import Types;

function test

input String s;
output Integer x;

algorithm
x := matchcontinue s
case "one" then 1;
case "two" then 2;
case "three" then 3;
else 0;
end matchcontinue;
end test;

function factorial
input Integer inValue;
output Integer outValue;
algorithm
outValue := matchcontinue inValue
local Integer n;
case 0 then 1;
case n then n*factorial (n-1);
end matchcontinue;
end factorial;

// your code here!!
end Functions;
package Main

// import Types;
import Functions;
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function main
input list<String> arg;
algorithm

matchcontinue arg
case (n str:: )
local
Integer i, n;
String str, n_str;
equation
// factorial
print ("Factorial of " +& n_str +& " is: ");
n = stringlInt(n_ str);
i = Functions.factorial (n);
str = intString(i);
print(str);
// test function

print ("\nCalling Functions.test (\"one\"): "otg
intString (Functions.test ("one")));

print ("\nCalling Functions.test (\"two\"): "otg
intString (Functions.test ("two")));

print ("\nCalling Functions.test (\"three\"): " +&
intString (Functions.test ("three™)));

print ("\nCalling Functions.test (\"other\"): " +&
intString (Functions.test ("other")));

// your code here —-- uncomment these when you write the functions

// print Types.aliasConstant

// print ("\nTypes.aliasConstant: ");

// Functions.printAlias (Types.aliasConstant);

// print Types.optionAliasConstant
// print ("\nTypes.optionAliasConstant: ");
// Functions.printOptionType (Types.optionAliasConstant);

// print Types.optionAliasConstantNone
// print ("\nTypes.optionAliasConstantNone: ");
// Functions.printOptionType (Types.optionAliasConstantNone) ;

// print Types.tupleConstant
// print ("\nTypes.tupleConstant: ");
// Functions.printTupleType (Types.tupleConstant) ;

// print Types.listConstant

// print ("\nTypes.listConstant: {");

// Functions.printListType (Types.listConstant) ;
// print("i");

// print Types.oneRecord
// print ("\nTypes.oneRecord: ");

// Functions.printOneRecord (Types.oneRecord) ;

// print Types.select

// print ("\nTypes.select: ");
// Functions.printSelect (Types.select);
then ();

end matchcontinue;
end main;

end Main;

D.1.2 Exercise 02a_Exp1 - Adding New Features to a Small Language

In this exercise you will add new constructs to the Expl language by defining the evaluation semantics
(interpretive semantics) of these constructs in MetaModelica..
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Exercise: add the following constructs to the language

e A power operator
e A factorial operator
e Search for / your code here within expl.mo

Note: the parser/lexer packages are ready, you only have to uncomment some cases in parser.y.
A solution is available in the file SOLUTION.txt and in Appendix E.2.
Hints:

e To clean the project type "clean" when building the project.

e To build the project leave the input box empty when building the project.

e To run the calculator type "run" when building the project.

e Ifyou need to edit the input of the calculator edit the file called program. txt.

The following is the package Expl where you should add your code, also available in the file Exp1l.mo:

package Expl "file Expl.mo"
uniontype Exp

record INTconst
Integer integer;
end INTconst;

record ADDop
Exp expl;
Exp exp2;

end ADDop;

record SUBop
Exp expl;
Exp exp2;

end SUBop;

record MULop
Exp expl;
Exp exp2;

end MULop;

record DIVop
Exp expl;
Exp exp2;

end DIVop;

record NEGop
Exp exp;
end NEGop;

// your code here
// add 2 new records called FACop and POWop

end Exp;

public function eval "Abstract syntax of the language Expl:
Evaluation semantics of Expl"
input Exp inExp;
output Integer outInteger;
algorithm
outInteger:=
matchcontinue (inExp)
local
Integer ival,vl,v2;
Exp el,e2,e;
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case (INTconst (integer = ival))

"eval of an integer node is the integer itself" then ival;

case (ADDop (expl = el,exp2 = e2))

"Evaluation of an addition node PLUSop is v3,

if v3 is the result of

adding the evaluated results of its children el and e2

Subtraction, multiplication, division operators have similar specs."

equation
vl = eval (el);
then vl + eval(e2);
case (SUBop(expl = el,exp2 = e2))
equation
vl = eval (el);
v2 = eval(e2); then vl - v2;
case (MULop (expl = el,exp2 e2))
equation
vl = eval (el);
v2 = eval (e2); then v1*v2;
case (DIVop(expl = el,exp2 = e2))
equation
vl = eval (el);
v2 = eval (e2); then v1/v2;
case (NEGop(exp = e))
equation
vl = eval(e); then -vl;
// your code here

// add evaluation handlers for the new operators

end matchcontinue;
end eval;

// your code here
// add a factorial function

end Expl;

5 {

#include <stdio.h>
#include "yacclib.h"
#include "rml.h"
finclude "expl.h"

#define YYSTYPE rml t

typedef void *rml t;
extern rml t absyntree;

oe

}

stoken T INTCONST

%token T LPAREN T RPAREN
stoken T ADD

stoken T SUB

stoken T MUL

stoken T DIV

%token T GARBAGE

stoken T ERR

stoken T POW
$token T FACTORIAL

oe
oe

/* Yacc BNF Syntax of the expression language Expl

program
expression
{ absyntree = $1; }

*/
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expression i term
| expression T ADD term
{ $$ = mk box2 (expl ADDop 3dBOX2,$1,$3);}
| expression T SUB term
{ $$ = mk_box2 (expl SUBop 3dBOX2,$1,$3);}

term : u_element
| term T MUL u element
{ $$ = mk _box2(expl MULop 3dBOX2,$1,$3);}
| term T DIV u element
{ $$ = mk _box2 (expl DIVop 3dBOX2,$1,$3);}

u_element : element
| T SUB element
{ $$ = mk boxl (expl NEGop 3dBOX1,$2);}
/* uncomment here to have factorial and power operators
| T FACTORIAL element
{ $$ = mk boxl(expl FACop 3dBOX1,$2);}
| element T POW u element
{ $$ = mk _box2 (expl POWop 3dBOX2,$1,$3);}
*/

element : T INTCONST
| T LPAREN expression T RPAREN

{8s = $2;}

D.1.3 Exercise 02b_Exp2 — Adding New Features to a Small Language

In this exercise you will explore a different way to model the Expl language using different Exp trees.
Explore the Exp2.mo file and compare it with the Exp1l.mo file.

Homework:

e Implement the assignments from 02a_Exp1l within 02b_Exp2. Note that you will have to add the
new operators to the lexer and parser.

Hints:

e To clean the project type "clean" when building the project.

e To build the project leave the input box empty when building the project.

e To run the calculator type "run" when building the project.

e Ifyou need to edit the input of the calculator edit the file called program.txt

A solution is available in Appendix E.3.

The following package, available in Exp2.mo, should be modified and extended:

package Exp2 "file Exp2.mo"
uniontype Exp

record INT
Integer integer;
end INT;

record BINARY
Exp expl;
BinOp binOp2;
Exp exp3;

end BINARY;

record UNARY
UnOp unOp;
Exp exp;
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end UNARY;
end Exp;

public

uniontype BinOp
record ADD end ADD;
record SUB end SUB;
record MUL end MUL;
record DIV end DIV;

end BinOp;

public

uniontype UnOp
record NEG end NEG;

end UnOp;

public function eval
input Exp inExp;
output Integer outInteger;
algorithm
outInteger:=
matchcontinue (inExp)
local
Integer ival,vl,v2,v3;
Exp el,e2,e;
BinOp binop;
UnOp unop;
case (INT (integer ival)) then ival;
case (BINARY (expl = el,binOp2 = binop,exp3 = e2))

equation
/*
vl = eval (el);
v2 = eval (e2);
v3 = applyBinop (binop, vl1, v2);

*/
then applyBinop (binop, eval(el), eval(e2));
case (UNARY (unOp = unop,exp = e))

equation
/*
vl = eval(e);
v2 = applyUnop (unop, vl1);

*/
then applyUnop (unop, eval(e));
end matchcontinue;
end eval;

protected function applyBinop
input BinOp inBinOpl;
input Integer inInteger2;
input Integer inInteger3;
output Integer outlInteger;
algorithm
outInteger:=
matchcontinue (inBinOpl,inInteger2,inInteger3)
local Integer vl,v2;
case (ADD(),vl,v2) then vl1+v2;
case (SUB(),vl,v2) then v1-v2;
case (MUL(),vl,v2) then v1*v2;
case (DIV(),vl,v2) then vl/v2;
end matchcontinue;
end applyBinop;

protected function applyUnop
input UnOp inUnOp;
input Integer inInteger;
output Integer outlInteger;
algorithm
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outInteger:=
matchcontinue (inUnOp, inInteger)
local Integer v;
case (NEG(),v) then -v;
end matchcontinue;
end applyUnop;

end Exp2;

D.1.4 Exercise 03_Assignment — Printing AST and Environments
In this exercise you will add new functions for printing abstract syntax tress and environments:

e The assignment statements present in the current program in the Assignment language before the
actual evaluation.

e The environment after it was augmented with the assignments

e Search for // your code here within Assignment .mo.
A solution is available in the file SOLUTION.txt and in Appendix E.4.
Hints:

e To clean the project type "clean" when building the project.

e To build the project leave the input box empty when building the project.

e To run the calculator type "run" when building the project.

e Ifyou need to edit the input of the calculator edit the file called program.txt

The following is the package Assignment.mo where you should insert your code:

package Assignment "Assignment.mo"
type ExpLst = list<Exp>;

uniontype Program "Abstract syntax for the Assignments language"
record PROGRAM
ExpLst expLst;
Exp exp;
end PROGRAM;
end Program;

uniontype Exp

record INT
Integer integer;
end INT;

record BINARY
Exp expl;
BinOp binOp2;
Exp exp3;

end BINARY;

record UNARY
UnOp unOp;
Exp exp;

end UNARY;

record ASSIGN
Ident ident;
Exp exp;

end ASSIGN;

record IDENT
Ident ident;
end IDENT;
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end Exp;

public

uniontype BinOp
record ADD end ADD;
record SUB end SUB;
record MUL end MUL;
record DIV end DIV;

end BinOp;

public
uniontype UnOp
record NEG end NEG;

end UnOp;

public
type Ident = String;

public
type Value = Integer "Values stored in environments";

public
type VarBnd = tuple<Ident,Value> "Bindings and environments";

public
type Env = list<VarBnd>;

protected function lookup
input Env inEnv;
input Ident inIdent;
output Value outValue;
algorithm
outValue:=
matchcontinue (inEnv, inIdent)
local
Ident id2,id;
Value value;
Env rest;
case ((id2,value) :: ,id)
"lookup returns the value associated with an identifier.
If no association is present, lookup will fail."

equation

equality(id = id2); then value;
case ((id2, ) :: rest,id)

equation
failure(equality(id = 1d2));
value = lookup(rest, id); then value;

end matchcontinue;
end lookup;

/* lookup function using if expression
* doesn't work in this MetaModelica version
* because both then part and else part are evaluated
* disregarding the condition
*/
/*
function lookup
input Env inEnv;
input Ident inIdent;
output Value outlInteger;
algorithm
outInteger:=
matchcontinue (inEnv,inIdent)
local Ident id2,id; Value value; Env rest;
case ( (id2,value) :: rest, id)
then if id ==& i1d2 then value else lookup (rest, id);
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end matchcontinue;
end lookup;
*/

protected function lookupextend
input Env inEnv;
input Ident inIdent;
output Env outEnv;
output Value outValue;
algorithm
(outEnv, outValue) :=
matchcontinue (inEnv,inIdent)
local
Env env;
Ident id;
Value value;
case (env,id)

equation
failure(v = lookup(env, id)); then ((id,0) :: env,0);
case (env, id)
equation
value = lookup(env, id); then (env,value);

end matchcontinue;
end lookupextend;

protected function update
input Env inEnv;
input Ident inIdent;
input Value inValue;
output Env outEnv;
algorithm
outEnv:=
matchcontinue (inEnv, inIdent, inValue)
local
Env env;
Ident id;
Value value;
case (env,id,value) then (id,value) :: env;
end matchcontinue;
end update;

protected function applyBinop
input BinOp inBinOpl;
input Integer inInteger2;
input Integer inInteger3;
output Integer outlInteger;
algorithm
outlInteger:=
matchcontinue (inBinOpl,inInteger2,inInteger3)
local Value vl1,v2;

case (ADD(),vl,v2) then vl1+v2;
case (SUB(),vl,v2) then v1-v2;
case (MUL(),vl,v2) then v1*v2;
case (DIV(),vl,v2) then vl1/v2;

end matchcontinue;
end applyBinop;

protected function applyUnop
input UnOp inUnOp;
input Integer inInteger;
output Integer outlInteger;
algorithm
outInteger:=
matchcontinue (inUnOp, inInteger)
local Value v;
case (NEG(),v) then -v;
end matchcontinue;
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end applyUnop;

protected function eval
input Env inEnv;
input Exp inExp;
output Env outEnv;
output Integer outlInteger;
algorithm
(outEnv,outInteger) :=
matchcontinue (inEnv,inExp)
local
Env env,env2,env3,envl;
Value ival,value,vl,v2,v3;
Ident s,id;
Exp exp,el,e2,e;
BinOp binop;
UnOp unop;
case (env, INT (integer = ival)) then (env,ival);
/* eval of an identifier node will lookup the identifier and return a
value if present; otherwise insert a binding to zero, and return zero. */
case (env, IDENT (ident = id))
equation
(env2,value) = lookupextend(env, id);
then (env2,value);
/* eval of an assignment node returns the updated environment and the
assigned value. */
case (env,ASSIGN (ident = id,exp = exp))

equation
(env2,value) = eval (env, exp);
env3 = update(env2, id, value);

then (env3,value);
/* eval of a node el,ADD,e2 , etc. in an environment env */
case (envl,BINARY (expl = el,binOp2 = binop,exp3 = e2))

equation
(env2,vl) = eval (envl, el);
(env3,v2) = eval(env2, e2);

v3 = applyBinop (binop, vl1, v2);

then (env3,v3);

case (envl,UNARY (unOp = unop,exp = e))

equation
(env2,vl) = eval(envl, e);
v2 = applyUnop (unop, vl1);

then (env2,v2);

end matchcontinue;
end eval;

protected function evals
input Env inEnv;
input ExpLst inExpLst;
output Env outEnv;

algorithm
outEnv:=
matchcontinue (inEnv, inExpLst)
local
Env e,env2,env3,env;
Value v;
Ident s;
Exp exp;
ExpLst expl;
case (e, {}) then e;
// the environment stay the same if there are no expressions
case (env,exp :: expl)

// the head expression is evaluated in the current environment
// generating a new environment in which the rest of the expression
// list is evaluated. the last environment is returned
equation
(env2,v) = eval (env, exp);



188 Fritzson, Pop Meta-Programming and Language Modeling with MetaModelica 1.0

env3 = evals(env2, expl);
then env3;
end matchcontinue;
end evals;

public function evalprogram
input Program inProgram;
output Integer outlInteger;
algorithm
outInteger:=
matchcontinue (inProgram)
local
ExpLst assignments 1, assignments;
Env env2;
Value value;
Exp exp;
case (PROGRAM (expLst = assignments,exp = exp))
equation
assignments 1 = listReverse (assignments);
// your code here -> print assignments 1 and exp
// print ("The assignments: ");
// printAssignments (assignments 1) ;
// print ("The expression: ");
printAssignments ({exp}) ;
env2 = evals({}, assignments 1);
// your code here -> print env2
// print ("The environment: ");
// printEnvironment (env2) ;
(_,value) = eval(env2, exp);
then value;
end matchcontinue;
end evalprogram;

// your code here

end Assignment;

D.1.5 Exercise 04a_AssignTwoType — Adding a New Type to a Language

In this exercise you will:
e Add anew String type which can hold only integers as strings to the current Exp node

e Add cases to evaluate expressions and assignments of type "2" + 1 + "1" + 1.0 in the eval
function

e Search for // your code here within AssignTwoType.mo.
Optional exercise:
e Change the code to allow the use of identifiers before actual declaration

Example: a program in the AssignTwoType language of the form:

a :=b +1
b :=3
a+tb

should return 7 instead of 4 as it returns now .

NOTE: the parser/lexer are ready, you only have to uncomment some grammar rules in parser.y
The solution is available in the file SOLUTION.txt and in Appendix E.5.

Hints:
e To clean the project type "clean" when building the project.
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e To build the project leave the input box empty when building the project.
e To run the calculator type "run" when building the project.
e If you need to edit the input of the calculator edit the file called program.txt

You should insert your code as marked below:

package AssignTwoType "file AssignTwoType.mo"
type ExpLst = list<Exp>;

uniontype Program "Abstract syntax for the Assigntwotype language"
record PROGRAM
ExpLst expLst;
Exp exp;
end PROGRAM;
end Program;

uniontype Exp
record INT
Integer integer;
end INT;

record REAL
Real real;
end REAL;

// your code here
// add a record called STRING

record BINARY
Exp expl;
BinOp binOp2;
Exp exp3;

end BINARY;

record UNARY
UnOp unOp;
Exp exp;

end UNARY;

record ASSIGN
Ident ident;
Exp exp;

end ASSIGN;

record IDENT
Ident ident;
end IDENT;

end Exp;

public

uniontype BinOp
record ADD end ADD;
record SUB end SUB;
record MUL end MUL;
record DIV end DIV;

end BinOp;

public

uniontype UnOp
record NEG end NEG;

end UnOp;

public
type Ident = String;
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public
uniontype Value "Values stored in environments"
record INTval
Integer integer;
end INTval;

record REALval
Real real;
end REALval;
end Value;

public
type VarBnd = tuple<Ident,Value> "Bindings and environments";

public
type Env = list<VarBnd>;

public
uniontype Ty2 "Ty2 is an auxiliary datatype used to handle types during
evaluation"

record INT2
Integer integerl;
Integer integer2;
end INT2;

record REAL2
Real reall;
Real real?2;

end REALZ2;

end Ty2;

protected function printvalue
input Value inValue;
algorithm

matchcontinue (inValue)
local
Ident x 1;
Integer x;
case (INTval (integer = x))
equation
x 1 = intString(x);
print(x_1); then ();
case (REALval (real = x))
local Real x;
equation
x 1 = realString(x);
print (x_1); then ();
end matchcontinue;
end printvalue;

public function evalprogram
input Program inProgram;
algorithm

matchcontinue (inProgram)

local
ExpLst assignments 1, assignments;
Env env2;
Value value;
Exp exp;

case (PROGRAM (expLst = assignments,exp = exp))
equation

assignments 1 = listReverse (assignments);
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env2 = evals({}, assignments 1);
(_,value) = eval(env2, exp);
printvalue (value); then ();
end matchcontinue;
end evalprogram;

protected function evals
input Env inEnv;
input ExpLst inExpLst;
output Env outEnv;

algorithm
outEnv:=
matchcontinue (inEnv, inExpLst)
local
Env e,env2,env3,env;
Exp exp;
ExpLst expl;
case (e,{}) then e;
case (env,exp :: expl)
equation
(env2, ) = eval(env, exp);
env3 =_evals(env2, expl); then env3;

end matchcontinue;
end evals;

protected function eval
input Env inEnv;
input Exp inExp;
output Env outEnv;
output Value outValue;
algorithm
(outEnv,outValue) :=
matchcontinue (inEnv, inExp)
local
Env env,env2,envl;
Integer ival,x,y,z;
Real rval;
String sval;
Value value,vl,v2;
Ident id;
Exp el,e2,e,exp;
BinOp binop;
UnOp unop;
case (env,INT(integer = ival)) then (env,INTval (ival));
case (env,REAL(real = rval)) then (env,REALval (rval));
// your code here
// case (env, STRING(...)) ...
case (env, IDENT (ident = id)) "variable id"

equation
(env2,value) = lookupextend(env, 1id); then (env2,value);
case (env,BINARY (expl = el,binOp2 = binop,exp3 = e2)) "int binop int"
equation
(envl,vl) = eval(env, el);

(env2,v2) = eval (env, e2);
INT2 (integerl = x,integer2 = y) = typelub(vl, v2);
z = applyIntBinop (binop, x, Vv):

then (env2,INTval(z));

case (env,BINARY (expl = el,binOp2 = binop,exp3 = e2)) "int/real binop
int/real"
local Real x,vy,z;
equation
(envl,vl) = eval(env, el);
(env2,v2) = eval (env, e2);
REALZ2 (reall = x,real2 = y) = typelLub(vl, v2);

z = applyRealBinop (binop, x, y);
then (env2,REALval(z));
case (env,UNARY (unOp = unop,exp = e)) "int unop exp"
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equation
(envl, INTval (integer = x)) = eval(env, e);
y = applyIntUnop (unop, Xx);

then (envl,INTval(y));

case (env,UNARY (unOp = unop,exp = e)) "real unop exp"
local Real x,y;
equation
(envl,REALval (real = x)) = eval(env, e);

y = applyRealUnop (unop, Xx);
then (envl,REALval(y));

case (env,ASSIGN (ident = id,exp = exp)) "eval of an assignment node returns
the updated environment and
the assigned value id := exp"
equation
(envl,value) eval (env, exp);

env2 = update (
then (env2,value
end matchcontinue;
end eval;

envl, id, wvalue);
) ;

protected function typelLub
input Value inValuel;
input Value inValue2;
output Ty2 outTy2;
algorithm
outTy2:=
matchcontinue (inValuel, inValue?2)
local
Integer x,y;
Real x2,vy2;
case (INTval (integer = x),INTval (integer = y)) then INT2(x,V);
case (INTval (integer = x),REALval (real = y))
local Real y;
equation
x2 = intReal (x); then REAL2 (x2,V);
case (REALval (real x),INTval (integer = y))
local Real x;
equation
y2 = intReal (y); then REAL2 (x,Vv2);
case (REALval (real = x),REALval (real = vy))
local Real x,y; then REAL2 (x,VY);
end matchcontinue;
end typelub;

I~

protected function applyIntBinop
input BinOp inBinOpl;
input Integer inInteger2;
input Integer inInteger3;
output Integer outlInteger;
algorithm
outInteger:=
matchcontinue (inBinOpl,inInteger2,inInteger3)
local Integer x,y;
case (ADD(),x,y) then x + y;
case (SUB(),x,y) then x - y;
case (MUL(),x,y) then x*y;
case (DIV(),x,y) then x/y;
end matchcontinue;
end applyIntBinop;

protected function applyRealBinop
input BinOp inBinOpl;
input Real inReal?2;
input Real inReal3;
output Real outReal;
algorithm
outReal:=
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matchcontinue (inBinOpl,inReal?2, inReal3)
local Real x,y;

case (ADD(),x,y) then x +. y;
case (SUB(),x,y) then x -. y;
case (MUL(),x,y) then x*.y;
case (DIV(),x,y) then x/.y;

end matchcontinue;
end applyRealBinop;

protected function applyIntUnop
input UnOp inUnOp;
input Integer inInteger;
output Integer outInteger;
algorithm
outInteger:=
matchcontinue (inUnOp, inInteger)
local Integer x;
case (NEG(),x) then -x;
end matchcontinue;
end applyIntUnop;

protected function applyRealUnop
input UnOp inUnOp;
input Real inReal;
output Real outReal;
algorithm
outReal:=
matchcontinue (inUnOp, inReal)
local Real x;
case (NEG(),x) then -.x;
end matchcontinue;
end applyRealUnop;

protected function lookup
input Env inEnv;
input Ident inIdent;
output Value outValue;
algorithm
outValue:=
matchcontinue (inEnv, inIdent)
local
Ident id2,id;
Value value;
Env rest;

case ((id2,value) :: ,id) "lookup returns the value associated with an

identifier.

If no association is present, lookup will fail.

first pair of the list, and value
is returned."
equation
equality(id = id2); then value;

case ((id2, ) :: rest,id) "id is not found in the first pair of the list,

and lookup will
recursively search the rest of the list.

equation
failure (equality(id = 1d2));

value = lookup(rest, id); then value;

end matchcontinue;
end lookup;

protected function lookupextend
input Env inEnv;
input Ident inIdent;
output Env outEnv;
output Value outValue;
algorithm

value is returned.

Identifier id is found in the



194 Fritzson, Pop Meta-Programming and Language Modeling with MetaModelica 1.0

(outEnv,outValue) :=
matchcontinue (inEnv, inIdent)
local
Value value;
Env env;
Ident id;
case (env,id) "Return value of id in env. If id not present, add id and
return 0"

equation
failure(v = lookup(env, id));
value = INTval(0); then ((id,value) :: env,value);
case (env, id)
equation
value = lookup(env, id); then (env,value);

end matchcontinue;
end lookupextend;

protected function update
input Env inEnv;
input Ident inIdent;
input Value inValue;
output Env outEnv;
algorithm
outEnv:=
matchcontinue (inEnv, inIdent, inValue)
local
Env env;
Ident id;
Value value;
case (env,id,value) then (id,value) :: env;
end matchcontinue;
end update;

end AssignTwoType;

D.1.6 Exercise 04b_ModAssigntwotype — Modularized Specification

In this exercise you will explore a different way to structure your code within different packages.
The code from 04a_assigntwotype is now split over 4 packages. Otherwise the exercise is the same.
See Appendix E.6 for a solution.

D.2 Exercises — Translational Semantics

D.2.1 Exercise 09_pamtrans — Small Translational Semantics

Additional example exercise that translates the Pam language with declarations to machine code, i.e. a
translational semantics specification of a compiler rather than an interpreter as in the previous exercises.
See Appendix E.10 for a solution.

Hints:
e To clean the project type "clean" when building the project.
e To build the project leave the input box empty when building the project.
e To run the calculator type "run" when building the project.
e If you need to edit the input of the pamTrans translator edit the file called program.txt
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D.2.2 Exercise 10_Petrol — Large Translational Semantics

Additional example exercise showing a translational semantics for a Pascal-like language called Petrol,
essentially a subset of Pascal extended with pointer arithmetics. This gives a compiler from Petrol to C.
See Appendix E.11 for a solution.

Hints:
e To clean the project type "clean" when building the project.
e To build the project leave the input box empty when building the project.
e To run the calculator type "run" when building the project.

e If you need to edit the input of the Petrol translator edit the Makefile.run target. Right now the
Makefile.run target calls the petrol compiler with testd/big.d as input. There are additional
example programs in testd and testp directories.

D.3 Exercises — Advanced

D.3.1 Exercise 05_advanced — Polymorphic Types and Higher Order
Functions

In this exercise you will experiment with MetaModelica:

e Polymorphic types
e Constants
e Higher order functions

Exercises:

1. Write a polymorphic function that orders a list of any type (Integer, String, Real is enough). The
function has as input a list and a compare function between the objects of that list. Also write the
comparison functions for Integers, Strings and Reals. Test your function on the Types.intList

2. Write a polymorphic map function that applies a function over a list and returns a new list with the
result. Write three functions that transform from:

- Integer to Real

- Integer to String

- Real to String

Use your map function and the two transformation functions to transform the Types.intList to a list of
reals and a list of string, then apply the ordering function from point 1.

3. Write a polymorphic map function that applies a print function over a list (of Strings) and prints the it.
Use the transformer functions from Real->String and Integer->String from point 2 to transform the Real
list or the Integer list to a String list for printing.

A solution is available in the file SOLUTION.txt and in Appendix E.7.

Hints:
e To clean the project type "clean" when building the project.
e To build the project leave the input box empty when building the project.
e To run the application type "run" when building the project.
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Appendix E

Solutions to Exercises

E.1 Solution 01_experiment — Types, Functions, Constants, Printing

Values
The solution: add these functions to Functions.mo for printing.

// an alias for the Real type
// type Alias = Real;
// constant Alias aliasConstant = 1.0;
function printAlias

input Types.Alias aliasVariable;
algorithm

print (realString(aliasVariable)) ;
end printAlias;

// an option type which can be SOME (Alias) or NONE
// type OptionType = Option<Alias>;

// constant OptionType optionAliasConstant = SOME (aliasConstant) ;

function printOptionType
input Types.OptionType oVar;
algorithm
:= matchcontinue (oVar)
local Types.Alias alias;
case NONE ()
equation
print ("NONE") ;
then ();
case SOME (alias)
equation
printAlias (alias);
then ();
end matchcontinue;
end printOptionType;

// a tuple type with 3 elements
// type TupleType = tuple<String, Alias, OptionType>;

// constant TupleType tupleConstant = ("a tuple element",

// optionAliasConstant);
function printTupleType
input Types.TupleType tupleVar;
algorithm
:= matchcontinue (tupleVar)
local
Types.Alias alias;
Types.OptionType optionAlias;
String str;
case ((str, alias, optionAlias))
equation
print (" (");
print ("\"" +& str +& "\"");
print (", ");
printAlias (alias);
print ("I ") 7
printOptionType (optionAlias);
print (")");

aliasConstant,
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then ();
end matchcontinue;
end printTupleType;

// a list type

// type ListType = list<TupleType>;

// constant ListType listConstant =

// {tupleConstant, ("another element", 2.0, NONE) };

function printListType
input Types.ListType listVar;
algorithm
:= matchcontinue (listVar)
local
Types.TupleType element;
Types.ListType rest;

String str;
case ({}) then ();
case (element::{})
equation
printTupleType (element) ;
then ();
case (element::rest)
equation
printTupleType (element) ;
print (", ");
printListType (rest);
then ();

end matchcontinue;
end printListType;

// complex record types

// record OneRecord

// String k;

// Alias z;

// end OneRecord;

// constant OneRecord oneRecord = OneRecord("first element", 3.0);

function printOneRecord
input Types.OneRecord oneRecordVar;
algorithm
:= matchcontinue (oneRecordVar)
local
String cmpl;
Types.Alias cmp2;
case (Types.OneRecord(cmpl, cmp2))
equation
print ("OneRecord (") ;
print ("\"" +& cmpl +& "\"");
print (", ");
printAlias (cmp2) ;
print(")");
then ();
end matchcontinue;
end printOneRecord;

// complex uniontypes
//uniontype Select

// record FirstAlternative
// String x1;

// String x2;

// end FirstAlternative;
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// record SecondAlternative

// Select x1;

// Select x2;

// end SecondAlternative;
//

// record ThirdAlternative
// Select next;

// end ThirdAlternative;
//end Select;

//constant Select select =

// ThirdAlternative (

// SecondAlternative (

// FirstAlternative ("one", "First"),

// FirstAlternative ("two", "Second"))):;

function printSelect
input Types.Select selectVar;
algorithm
:= matchcontinue (selectVar)
local
String cmpl, cmp2;
case (Types.FirstAlternative (cmpl, cmp2))

equation
print ("FirstAlternative (") ;
print ("\"" +& cmpl +& "\"");
print (", ");
print ("\"" +& cmp2 +& "\"");
print (")");
then ();
case (Types.SecondAlternative (cmpl, cmp2))
local
Types.Select cmpl, cmp2;
equation

print ("SecondAlternative (") ;
printSelect (cmpl) ;

print (", ");
printSelect (cmp2) ;
print (") ");
then ();
case (Types.ThirdAlternative (cmpl))
local
Types.Select cmpl;
equation

print ("ThirdAlternative (") ;
printSelect (cmpl) ;
print (")");
then ();
end matchcontinue;
end printSelect;

E.2 Solution 02a_Exp1 - Adding New Features to a Small Language
The following changes are needed:
e parser.y file changes:
Locate the uncomment here section and remove the comment to make the comment active.
e Expl.mo file changes:
// Expl.Exp type addition:
record FACOp

Exp exp;
end FACop;
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record POWop
Exp expl;
Exp exp2;

end POWop;

// Expl.eval function addition:

case (FACop(exp = e))
equation
vl = eval (e);
v2 = fac(vl);
then v2;
case (POWop (expl = el, exp2 = e2))
local
Integer v3;
equation
vl = eval (el);
v2 eval (e2);
v3 = reallInt (intReal(vl) *~. intReal (v2));
then v3;

// Expl.fac new function:

function fac
input Integer i;
output Integer o;

algorithm
o := matchcontinue (1)
case (0) then 1;
case (n)

local Integer n;
then n*fac(n-1);
end matchcontinue;
end fac;

E.3 Solution 02b_Exp2 — Adding New Features to a Small Language

No solution available — analogous to the solution of 02b_Exp2..

E.4 Solution 03_Assignment — Printing AST and Environment

The solution: Add the following functions to Assignments.mo and call them within the function
evalprogram:

function printAssignments
input ExpLst assignList;
algorithm
:= matchcontinue (assignList)
local ExpLst expLst; Exp exp;
case ({}) then (); // if nothing is in the list don't print anything
case (exp::{})
equation
printExp (exp) ;
print ("\n");
then ();
case (exp::explst)
equation
printExp (exp) ;
print (", ");
printAssignments (expLst) ;
then ();
end matchcontinue;
end printAssignments;
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function printExp
input Exp exp;
algorithm
_ := matchcontinue (exp)
local
Integer 1i;
Exp expl, exp2, exp;
Ident id;
case (INT (1))
equation print (intString(i));
then ();
case (BINARY (expl, op, exp2))
local BinOp op;
equation
printExp (expl) ;
printBinaryOp (op) ;
printExp (exp2) ;
then ();
case (UNARY (op, exp))
local UnOp op;
equation
printUnaryOp (op) ;
printExp (exp) ;
then ();
case (ASSIGN (id, exp))
equation
print (id) ;
print (" = ");
printExp (exp) ;
then ();
case (IDENT (id))
equation print (id);
then ();
end matchcontinue;
end printExp;

function printBinaryOp
input BinOp op;

algorithm
:= matchcontinue (op)
case (ADD()) equation print ("+"); then ();
case (SUB()) equation print("-"); then ();
case (MUL()) equation print("*"); then ();
case (DIV()) equation print("/"); then ();
end matchcontinue;
end printBinaryOp;
function printUnaryOp
input UnOp op;
algorithm
_ := matchcontinue (op)
case (NEG()) equation print("-"); then ();

end matchcontinue;
end printUnaryOp;

// your code here

function printEnvironment
input Env varBndList;
algorithm
:= matchcontinue (varBndList)
local
Ident id;
Value val;
Env varBndLstRest;
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case ({}) then (); // if nothing is in the list don't print anything
case ((id, wval)::{})
equation
print (id);
print (" = ");
print (intString(val));
print ("\n");
then ();
case ((id, wval) ::varBndLstRest)
equation
print (id) ;
print(" = ");
print (intString(val));
print (", ");
printEnvironment (varBndLstRest) ;
then ();
end matchcontinue;
end printEnvironment;

E.5 Solution 04a_AssignTwoType — Adding a New Type to a
Language

The solution includes the following changes in the file AssignTwoType .mo:

Exp type additions:

record STRING
String str;
end STRING;

function eval additions:

case (env,STRING(str = sval))
equation
z = stringInt(sval);

then (env,INTval(z));

E.6 Solution 04b_ModAssignTwoType — Modularized Specification

Apply similar changes as in the previous exercise. A modularized AssignTwoType is available in the
files Absyn.mo, Eval.mo, Main.mo, Parse.mo.

E.7 Solution 05_advanced — Polymorphic Types and Higher Order
Functions

The solution is shown below:

function comparelnt
input Integer il;
input Integer i2;
output Boolean b;

algorithm
b := i1 < i2;

end comparelnt;

function compareReal
input Real rl;
input Real r2;
output Boolean b;

algorithm
b = rl <. r2;

end compareReal;

function compareString
input String sl;
input String s2;
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output Boolean b;
algorithm
b := matchcontinue (sl, s2)
local Integer z;
case (sl, s2)

equation
0 = string compare(sl, s2);
then false;
case (sl, s2)
equation
z = string compare(sl, s2);
true = (z < 0);

then true;
case (sl, s2)
equation
z = string compare(sl, s2);
false = (z < 0);
then false;
end matchcontinue;
end compareString;

function quicksort
input list<Type a> inList;
input list<Type a> accList;

input FuncType comparator;
output list<Type a> outList;
public

replaceable type Type a subtypeof Any;
function FuncType

input Type a ell;

input Type a el2;

output Boolean cmp;
end FuncType;

algorithm
outList := matchcontinue (inList, acclList, comparator)
local
list<Type a> 1, smaller, greater, acc, 1lstl, 1st2, 1st3;
Type a x;
case (T}, acc, _) then acc;
case (x::1, acc, comparator)
equation
(smaller, greater) = partition (x, 1, comparator);
1stl = quicksort (greater, acc, comparator);
1st2 = x::1stl;
1st3 = quicksort (smaller, 1lst2, comparator);
then 1st3;

end matchcontinue;
end quicksort;

function partition
input Type a inList;
input 1list<Type a> acclList;
input FuncType comparator;
output list<Type a> outListl;
output list<Type a> outList2;
public
replaceable type Type a subtypeof Any;
function FuncType
input Type a ell;
input Type a el2;
output Boolean cmp;
end FuncType;
algorithm
(outListl,outList2) := matchcontinue (inlList, acclList, comparator)
local
Type a x, y;
list<Type a> 1, smaller, greater;
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//function FuncType

// input Type a ell;

// input Type a el2;

// output Boolean cmp;

//end FuncType;

FuncType comparator;
case (x, nil, ) then (nil, nil);
case (x, y::1, comparator)

equation

(smaller, greater) = partition (x, 1, comparator);

true = comparator(y, x);
then (y::smaller, greater);
case (x, y::1, comparator)

equation
(smaller, greater) = partition (x, 1, comparator);
false = comparator(y, x);

then (smaller, y::greater);
end matchcontinue;
end partition;

function orderList
input 1list<Type a> inList;
input FuncType comparator;
output list<Type a> outList;
public
replaceable type Type a subtypeof Any;
function FuncType
input Type a ell;
input Type a el2;
output Boolean cmp;
end FuncType;

algorithm
outList := matchcontinue (inlList, comparator)
local list<Type a> lst, lstResult;
case ({}, _) then {};
case (lst, comparator)
equation
lstResult = quicksort(lst, {}, comparator);

then lstResult;
end matchcontinue;
end orderlList;

// transformer functions
function transformInt2Real
input Integer i;
output Real r;
algorithm
r := intReal (i) ;
end transformInt2Real;

function transformInt2String
input Integer i;
output String s;

algorithm
s := intString(i);

end transformInt2String;

function transformReal2String
input Real r;
output String s;

algorithm
s := realString(r);

end transformReal2String;

// mapping functions
function mapl
input 1list<Type a> inList;



204 Fritzson, Pop Meta-Programming and Language Modeling with MetaModelica 1.0

input FuncType f;
output list<Type b> outList;
public
replaceable type Type a subtypeof Any;
replaceable type Type b subtypeof Any;
function FuncType
input Type a elln;
output Type b elOut;
end FuncType;
algorithm
outList := matchcontinue (inList, f)
local
list<Type b> lst;
list<Type a> rest;

Type a x;
Type_ b y;
case ({},_ ) then {};
case (x::rest, f)
equation
y = £(x);

lst = mapl (rest, f);
then y::1st;
end matchcontinue;
end mapl;

function map0
input list<Type a> inList;
input FuncType f;
output list<Type a> outList;
public
replaceable type Type a subtypeof Any;
function FuncType
input Type a elln;
end FuncType;
algorithm
outList := matchcontinue (inList, f)
local
list<Type a> rest;
Type a x;
case ({}, ) then ();
case (x::rest, f)
equation
£(x);
map0 (rest, f);
then ();
end matchcontinue;
end map0;

function printElement
input String str;
algorithm
print (str);
print ("™ ");
end printElement;

E.8 Solution 07_pam — A small Language
The solution is available in the files Input.mo, Main.mo, Parse.mo, Pam.mo, gram.y, lexer.l and in
Appendix C.1.

E.9 Solution 08_pamdecl — Pam with Declarations

The solution is available in the files Absyn.mo, Eval.mo, Env.mo, Main.mo, ScanParse.mo, gram.y and

in Appendix C.2.



205

E.10 Solution 09 _pamtrans — Small Translational Semantics

The solution is available in the files Absyn.mo, Emit.mo, Main.mo, Mcode.mo, Parse.mo, Trans.mo,
gram.y, lexer.l and in Appendix C.3.

E.11 Solution 10_Petrol — Large Translational Semantics

The solution is available in the files Absyn.mo, FCEmit.mo, FCode.mo, Flatten.mo, Main.mo, Parse.mo,
Static.mo, TCode.mo, Types.mo, Parser.y, lexer.c.
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