User Documentation for CVODE v5.3.0
(SUNDIALS v5.3.0)

Alan C. Hindmarsh and Radu Serban
Center for Applied Scientific Computing
Lawrence Livermore National Laboratory

Daniel R. Reynolds
Department of Mathematics
Southern Methodist University

May 21, 2020

agials

<
S

Vo)

UCRL-SM-208108



DISCLAIMER

This document was prepared as an account of work sponsored by an agency of the United States
government. Neither the United States government nor Lawrence Livermore National Security, LLC,
nor any of their employees makes any warranty, expressed or implied, or assumes any legal liability or
responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or
process disclosed, or represents that its use would not infringe privately owned rights. Reference herein
to any specific commercial product, process, or service by trade name, trademark, manufacturer, or
otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by
the United States government or Lawrence Livermore National Security, LLC. The views and opinions
of authors expressed herein do not necessarily state or reflect those of the United States government
or Lawrence Livermore National Security, LLC, and shall not be used for advertising or product
endorsement purposes.

This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore
National Laboratory under Contract DE-AC52-07NA27344.

Approved for public release; further dissemination unlimited



Contents

List of Tables
List of Figures

1 Introduction

1.1 Historical Background . . . . . . . . ... ..
1.2 Changes from previous versions . . . . . . . . . ... L Lo
1.3 Reading this User Guide . . . . . . . . . . . . e
1.4 SUNDIALS Release License . . . . . . . . . . . 0 ittt
1.4.1 BSD 3-Clause License . . . . . . . . . . . . e
1.4.2 Additional Notice . . . . . . . . . . . . . e
1.4.3 SUNDIALS Release Numbers . . . . . . . . . . . .. .. ... .. ... .....
Mathematical Considerations
2.1 IVPsolution . . . . . . . . e
2.2 IVPs with constraints . . . . . . . .. .. L L
2.3 Preconditioning . . . . . ...
2.4 BDF stability limit detection . . . . . . . . .. . Lo Lo
2.5 Rootfinding . . . . . . . ..
Code Organization
3.1 SUNDIALS organization . . . . . . . . . . . . i
3.2 CVODE organization . . . . . . . . . . . .
Using CVODE for C Applications
4.1 Access to library and header files . . . . . . . .. .. oo oL
4.2 Data Types . . . . . o o e e e
4.2.1 Floating point types . . . . . . . . ..
4.2.2 Integer types used for indexing . . . . . . .. .. L oL oL
4.3 Header files . . . . . . . . e e
4.4 A skeleton of the user’s main program . . . . . . . . . . . ...
4.5 User-callable functions . . . . . . . . . .. Lo
4.5.1 CVODE initialization and deallocation functions . . . . . ... ... ... ...
4.5.2 CVODE tolerance specification functions . . . . . .. ... ... . ... ....
4.5.3 Linear solver interface functions . . . . . . . .. ... oL oL
4.5.4 Nonlinear solver interface function . . . . . .. ... .. ... ... ...
4.5.5 Rootfinding initialization function . . . . . . . ... .. ... Lo
4.5.6 Projection initialization function . . . . . . .. ... ... L.
4.5.7 CVODE solver function . . . . . .. . ... . ..
4.5.8 Optional input functions . . . . . . .. ... Lo Lo
4.5.8.1 Main solver optional input functions . . . . . ... . ... ... ...
4.5.8.2  Linear solver interface optional input functions . . . . . . . ... ...
4.5.8.3 Rootfinding optional input functions . . . . . . . ... ... ...

iii

ix

xi

15
16
16
16
17

19
19
23
24
25
26

27
27
28



4.5.8.4 Projection optional input functions . . . .. ... .. ... ... 60

4.5.9 Interpolated output function . . . . . . .. .. Lo Lo 62
4.5.10 Optional output functions . . . . . . . . ... ... o 62
4.5.10.1 SUNDIALS version information . . .. ... .. ... ... ...... 64

4.5.10.2 Main solver optional output functions . . . . . .. .. ... ... ... 64

4.5.10.3 Rootfinding optional output functions . . . . . . . .. ... ... ... 71

4.5.10.4 Projection optional output functions . . . . . .. ... 71

4.5.10.5 c¢vLS linear solver interface optional output functions . . . .. .. .. 72

4.5.10.6 Diagonal linear solver interface optional output functions . . . . . . . 77

4.5.11 CVODE reinitialization function . . . . . .. . ... .. ... ... ... ... 78

4.6 User-supplied functions . . . . . . . . .. Lo 79
4.6.1 ODEright-hand side . . . . . . . .. ... 79
4.6.2 Error message handler function . . . . . . .. ... oL oL oL 80
4.6.3 Monitor function . . . . . . . ... 80
4.6.4 Error weight function . . . . . ... L L oo 81
4.6.5 Rootfinding function . . . . . . . ... oL oo 81
4.6.6 Projection function . . . . . . . ... L 81
4.6.7 Jacobian construction (matrix-based linear solvers) . . . . . ... ... ... .. 82
4.6.8 Linear system construction (matrix-based linear solvers) . . . . . .. ... ... 84
4.6.9 Jacobian-vector product (matrix-free linear solvers) . . . ... .. ... .... 85
4.6.10 Jacobian-vector product setup (matrix-free linear solvers) . . . . . .. .. ... 85
4.6.11 Preconditioner solve (iterative linear solvers) . . . . ... ... ... ... ... 86
4.6.12 Preconditioner setup (iterative linear solvers) . . . . . .. ... ... ... ... 87

4.7 Preconditioner modules . . . . . ... 88
4.7.1 A serial banded preconditioner module . . . . . . . ... .. ... ... ... 88
4.7.2 A parallel band-block-diagonal preconditioner module . . . . . ... ... ... 90

5 Using CVODE for Fortran Applications 97
5.1 CVODE Fortran 2003 Interface Module . . . . . .. .. .. ... ... .. ... .... 97
5.1.1 SUNDIALS Fortran 2003 Interface Modules . . . . . . . ... ... ... .... 97
5.1.2 DataTypes . . . . . . . L 98
5.1.3 Notable Fortran/C usage differences . . . . . .. ... ... .. ... .. 99
5.1.3.1 Creating generic SUNDIALS objects . . . . . . . .. .. .. ... .... 99

5.1.3.2 Arrays and pointers . . . . . . . . .. ... 100

5.1.3.3 Passing procedure pointers and user data . . . . . . .. ... ... .. 100

5.1.3.4 Passing NULL to optional parameters . . . . . . . ... ... ..... 101

5.1.3.5  Working with N.Vector arrays . . . . . ... ... ... ... ..... 101

5.1.3.6  Providing file pointers . . . . . . . . ... L oL 102

5.1.4 TImportant notes on portability . . . . . . .. ... ... .. L. 103

5.2 FCVODE, an Interface Module for FORTRAN Applications . . . . . . ... ... ... 103
5.2.1 Important note on portability . . . . . . .. ... o oo 103
5.2.2 Fortran Data Types . . . . . . . . . . 103
5.2.3 FCVODE routines . . . . . . . . . . 104
5.2.4 Usage of the FCVODE interface module . . . . . . . ... ... ... ...... 105
5.2.5  FCVODE optional input and output . . . . . . ... ... .. ... ... .... 114
5.2.6  Usage of the FCVROOT interface to rootfinding . . . . . ... ... ... ... 116
5.2.7 Usage of the FCVBP interface to CVBANDPRE . . . . . ... ... ... ... 117
5.2.8 Usage of the FCVBBD interface to CVBBDPRE . . . . . ... ... ... ... 118

iv



6 Description of the NVECTOR module 121

6.1

6.2
6.3

6.4

6.5

6.6

6.7

6.8

6.9

6.10

6.11

6.12

6.13

6.14

6.15

6.16

The NVECTOR API . . . . . . . . e e e e 121
6.1.1 NVECTOR core functions . . . . . . . . . . . . . . . ... . .. ... ..... 121
6.1.2 NVECTOR fused functions . . . . . . .. . . ... .. ... .. ... ...... 128
6.1.3 NVECTOR vector array functions . . . . . . ... ... ... ... .. ..... 129
6.1.4 NVECTOR local reduction functions . . . . . . ... ... ... ... ...... 132
6.1.5 NVECTOR utility functions . . . . . . .. .. ... .. .. ... .... 135
6.1.6 NVECTOR identifiers . . . . . . . . . . . . . .. .. .. 137
6.1.7 The generic NVECTOR module implementation . . . ... .. ... ...... 137
6.1.8 Implementing a custom NVECTOR . . . ... ... ... ... ... ...... 140

6.1.8.1 Support for complex-valued vectors . . . .. ... ... ... ..... 140
NVECTOR functions used by CVODE . . . . . . ... ... ... ... .. ....... 141
The NVECTOR_SERIAL implementation . . . . . . .. ... ... ... .. ...... 143
6.3.1 NVECTOR_SERIAL accessor macros . . . . . . . . . v v v v v v v v .. 143
6.3.2 NVECTOR_SERIAL functions . . . . . . .. . . .. ... ... ... ...... 144
6.3.3 NVECTOR_SERIAL Fortran interfaces . . . . .. ... .. .. ... ...... 147
The NVECTOR_PARALLEL implementation . . . . . . . . ... ... ... ...... 148
6.4.1 NVECTOR_PARALLEL accessor macroS . . . . . . . . . v v v v .. 148
6.4.2 NVECTOR_PARALLEL functions . . . . . . . . . ... . . ... .. ...... 149
6.4.3 NVECTOR_PARALLEL Fortran interfaces . . . . .. ... ... ... ..... 153
The NVECTOR_OPENMP implementation . . . . .. .. ... ... ... ....... 153
6.5.1 NVECTOR_OPENMP accessor macroS . . . . . . . . v v v v v v v v 154
6.5.2 NVECTOR_OPENMP functions . . . . ... ... ... .. ... ........ 154
6.5.3 NVECTOR_OPENMP Fortran interfaces . . . .. .. ... ... ... ..... 158
The NVECTOR_PTHREADS implementation . . . . ... ... ... ......... 159
6.6.1 NVECTOR_PTHREADS accessor macros . . . . . . . . . . v v v o .. 159
6.6.2 NVECTOR_PTHREADS functions . . . . . . . . . ... . . ... .. ...... 160
6.6.3 NVECTOR_PTHREADS Fortran interfaces . . . . . . . .. ... ... ..... 164
The NVECTOR_PARHYP implementation . . .. ... ... ... .. ... ..... 164
6.7.1 NVECTOR_PARHYP functions . . ... ... .. ... .. ... ........ 165
The NVECTOR_PETSC implementation . . . . . .. ... ... ... ......... 168
6.8.1 NVECTOR_PETSC functions . . . . . . . . . . . . . ... .. .... 168
The NVECTOR_CUDA implementation . . . . . . . ... .. ... ... ........ 171
6.9.1 NVECTOR_CUDA functions . . . . . . . . . . . . . .. . ... ..... 172
6.9.2 The SUNCudaExecPolicy Class . . . . . .. . . ... ... ... ... 176
The NVECTOR_RAJA implementation . . . . . ... ... ... ... ... ..... 177
6.10.1 NVECTOR_RAJA functions . . . . . ... . ... ... .. ... .. ...... 178
The NVECTOR_-OPENMPDEYV implementation . . . . . .. ... .. ... ...... 181
6.11.1 NVECTOR_.OPENMPDEYV accessor macros . . . . . . . . . . . . oo . .. 181
6.11.2 NVECTOR_OPENMPDEYV functions . . ... ... ... ... ... ...... 182
The NVECTOR_TRILINOS implementation . . ... ... ... ... ... ...... 185
6.12.1 NVECTOR_TRILINOS functions . . . . . . . . . . .. . . . ... .. ...... 186
The NVECTOR_-MANYVECTOR implementation . . . .. ... ... ... ...... 187
6.13.1 NVECTOR.MANYVECTOR structure . . .. ... ... ... ... ...... 187
6.13.2 NVECTOR_.MANYVECTOR functions . . .. ... ... ... ... ...... 187
The NVECTOR-MPIMANYVECTOR implementation . . . ... .. ... ...... 191
6.14.1 NVECTOR_MPIMANYVECTOR structure . . . . . ... ... ... ...... 192
6.14.2 NVECTOR_.MPIMANYVECTOR functions . . . . . .. ... ... ....... 192
The NVECTOR_MPIPLUSX implementation . . . . . . ... ... .. ... ...... 196
6.15.1 NVECTOR_MPIPLUSX structure . . . . . . . . . .. . . . . ... . ...... 196
6.15.2 NVECTOR_MPIPLUSX functions . . . . . . . . . .. . . . . ... .. ..... 196
NVECTOR Examples . . . . . . .. 0o i e e e e e e 198



7 Description of the SUNMatrix module 203

7.1 The SUNMatrix API . . . . . . . . . . e 203
7.1.1 SUNMatrix core functions . . . . . . . . . ... 203
7.1.2  SUNMatrix utility functions . . . . . . . . ... ... oo 205
7.1.3 SUNMatrix return codes . . . . . . . . . . . o o e e 206
7.1.4 SUNMatrix identifiers . . . . . . . . . . .. L 207
7.1.5  Compatibility of SUNMatrix modules . . . . . . ... ... ... ... ..... 207
7.1.6  The generic SUNMatrix module implementation . . . . ... ... ... .... 207
7.1.7 Implementing a custom SUNMatrix . . . ... ... .. ... .. .. ..... 209

7.2 SUNMatrix functions used by CVODE . . . . . . .. . ... o L. 209

7.3 The SUNMatrix_Dense implementation . . . . . ... ... ... ... ... ...... 210
7.3.1 SUNMatrix_Dense accessor macros . . . . . . .« . . v v v v v i v i 210
7.3.2 SUNMatrix_Dense functions . . . . . . . .. . .. ... L oL 211
7.3.3 SUNMatrix_Dense Fortran interfaces . . . . . . . . .. . .. ... ... ..... 213

7.4 The SUNMatrix_Band implementation . . . . . . . .. ... ... ... .. .. ..... 213
7.4.1 SUNMatrix_Band accessor macros . . . . . . .. .. .. . ... ... 214
7.4.2 SUNMatrix_Band functions . . . . . . . . .. ... .. ... .. .. .. ..... 217
7.4.3 SUNMatrix_Band Fortran interfaces . . . . . . . .. ... ... ... ...... 219

7.5 The SUNMatrix_Sparse implementation . . . . . .. .. ... .. ... ... ..... 220
7.5.1 SUNMatrix_Sparse accessor MacCroS . . . . « v« v v v v v v v e e e e e e e e 221
7.5.2 SUNMatrix_Sparse functions . . . . . . . . . . .. ... ... .. ... ... 223
7.5.3 SUNMatrix_Sparse Fortran interfaces . . . . . . .. ... .. ... ... .... 226

7.6 The SUNMatrix SLUNRIloc implementation . . . . . . . ... ... ... ... ..... 227
7.6.1 SUNMatrix SLUNRIoc functions . . . . . . . ... ... ... .. ........ 227

7.7 The SUNMatrix_cuSparse implementation . . . . . . . ... ... ... ... ...... 229
7.7.1 SUNMatrix_cuSparse functions . . . . . . . . . . . ... ... ... .. ..... 229
7.7.2 SUNMatrix_cuSparse Usage Notes . . . . . . . ... . ... ... ..... 234

8 Description of the SUNLinearSolver module 235

8.1 The SUNLinearSolver APT . . . . . . . . . . . . 236
8.1.1 SUNLinearSolver core functions . . . . . . . . .. .. ... ... ........ 236
8.1.2 SUNLinearSolver set functions . . . . . . . . . . .. ... ... ... ...... 239
8.1.3 SUNLinearSolver get functions . . . . . . . . . ... ... ... ... ... .. 240
8.1.4 Functions provided by SUNDIALS packages . . . . . . . . . . ... ... ..... 241
8.1.5 SUNLinearSolver return codes . . . . . . . . . . . v v v v v v i v 242
8.1.6 The generic SUNLinearSolver module . . . . . .. . .. .. ... ... ..... 243

8.2 Compatibility of SUNLinearSolver modules . . . . . . . .. ... ... ... ...... 244

8.3 Implementing a custom SUNLinearSolver module . . . .. .. ... ... ....... 245
8.3.1 Imtended use cases . . . . . . . . . ... e 246

8.4 CVODE SUNLinearSolver interface . . . . . . . . .. . ... ... ... ... .... 247
8.4.1 Lagged matrix information . . . . ... ... ... oL 248
8.4.2 Tterative linear solver tolerance . . . . . . . . . .. ... .. .. ... ... ... 248

8.5 The SUNLinearSolver_Dense implementation . . . . . ... .. ... ... ... .... 249
8.5.1 SUNLinearSolver_Dense description . . . . . . . . . . ... .. ... ...... 249
8.5.2 SUNLinearSolver_Dense functions . . . . ... ... ... ... ... ...... 250
8.5.3 SUNLinearSolver_Dense Fortran interfaces . . . . . . .. .. ... .. ... ... 250
8.5.4 SUNLinearSolver_Dense content . . . . . . . . .. ... .. ... ........ 251

8.6 The SUNLinearSolver_Band implementation . . . . . . . .. ... ... ... ... ... 252
8.6.1 SUNLinearSolver_Band description . . . . . . . ... ... ... ... ...... 252
8.6.2 SUNLinearSolver_Band functions . . . . . . .. .. ... ... .......... 252
8.6.3 SUNLinearSolver_Band Fortran interfaces . . . . . .. ... . ... ... .... 253
8.6.4 SUNLinearSolver Band content . . . . . . . .. ... .. ... ... .. ..... 254

8.7 The SUNLinearSolver_LapackDense implementation . . . . .. ... .. ... ..... 254
8.7.1 SUNLinearSolver_LapackDense description . . . . . . ... ... ... ..... 255

vi



8.8

8.9

8.10

8.11

8.12

8.13

8.14

8.15

8.16

8.17

8.18

8.7.2 SUNLinearSolver_LapackDense functions . . . . ... ... ... ........ 255

8.7.3 SUNLinearSolver_LapackDense Fortran interfaces . . . . . . ... .. ... ... 256
8.7.4 SUNLinearSolver_LapackDense content . . . . . . .. ... .. ......... 256
The SUNLinearSolver_LapackBand implementation . . . . . . . .. ... ... ... .. 256
8.8.1 SUNLinearSolver_LapackBand description . . . . . . . ... ... ... .. ... 257
8.8.2 SUNLinearSolver_LapackBand functions . . . . . . .. ... ... ... ..... 257
8.8.3 SUNLinearSolver_LapackBand Fortran interfaces . . . . . . ... .. ... ... 258
8.8.4 SUNLinearSolver_LapackBand content . . . . . . .. ... ... ... .. .... 259
The SUNLinearSolver KLU implementation . . . . . . ... ... ... ... ...... 259
8.9.1 SUNLinearSolver KLU description . . . . . . . ... ... ... ... ...... 259
8.9.2 SUNLinearSolver KLU functions . . . . . . . . ... ... ... ... ...... 260
8.9.3 SUNLinearSolver KLU Fortran interfaces . . . . ... ... ... .. ... ... 262
8.9.4 SUNLinearSolver KLU content . . . . . . . .. ... ... ... ... ..... 265
The SUNLinearSolver_SuperLUDIST implementation . . . . . . .. .. ... ... ... 265
8.10.1 SUNLinearSolver _SuperLUDIST description . . . . . . . .. ... ... ... .. 265
8.10.2 SUNLinearSolver _SuperLUDIST functions . . . . . . . . .. ... ... . .... 266
8.10.3 SUNLinearSolver _SuperLUDIST content . . . . . . . . ... .. ... ...... 269
The SUNLinearSolver SuperLUMT implementation . . . . . . . .. ... ... ... .. 269
8.11.1 SUNLinearSolver _SuperLUMT description . . . . . . . ... ... ... ..... 270
8.11.2 SUNLinearSolver _SuperLUMT functions . . . . . . . . ... ... ... ..... 270
8.11.3 SUNLinearSolver_SuperLUMT Fortran interfaces . . . . . . . . ... ... ... 271
8.11.4 SUNLinearSolver_SuperLUMT content . . . . . . . . . ... ... ... ..... 273
The SUNLinearSolver_cuSolverSp_batchQR implementation . . . . . . . .. .. .. .. 273
8.12.1 SUNLinearSolver_cuSolverSp_batchQR description . . . . . .. ... ... ... 274
8.12.2 SUNLinearSolver_cuSolverSp_batchQR functions . . . . .. ... .. ... ... 274
8.12.3 SUNLinearSolver_cuSolverSp_batchQR. content . . . . . . ... ... ... ... 275
The SUNLinearSolver SPGMR implementation . . . . . .. ... ... ... ..... 276
8.13.1 SUNLinearSolver SPGMR description . . . . . . .. ... ... ... ...... 276
8.13.2 SUNLinearSolver SPGMR functions . . . . . . . ... ... ... ... ..... 276
8.13.3 SUNLinearSolver SPGMR Fortran interfaces . . . . . ... .. ... ... ... 279
8.13.4 SUNLinearSolver SPGMR content . . . . . .. ... ... ... ... ...... 282
The SUNLinearSolver SPFGMR, implementation . . . . . ... .. .. ... ...... 283
8.14.1 SUNLinearSolver SPFGMR description . . . . . . . . ... ... ... ..... 283
8.14.2 SUNLinearSolver SPFGMR functions . . . . . ... ... ... ... ...... 284
8.14.3 SUNLinearSolver SPFGMR Fortran interfaces . . . . ... ... ... ... .. 286
8.14.4 SUNLinearSolver SPFGMR content . . . . . . .. ... ... ... .. ..... 289
The SUNLinearSolver SPBCGS implementation. . . . . . . . ... ... ... ..... 291
8.15.1 SUNLinearSolver SPBCGS description . . . . . . . . .. .. ... ... ..... 291
8.15.2 SUNLinearSolver SPBCGS functions . . . . . . .. . .. .. ... ... .... 291
8.15.3 SUNLinearSolver SPBCGS Fortran interfaces . . . . . . .. ... .. ... ... 294
8.15.4 SUNLinearSolver SPBCGS content . . . . . . . . . . ... ... ... ...... 296
The SUNLinearSolver SPTFQMR implementation . . . . .. ... ... ... ..... 297
8.16.1 SUNLinearSolver SPTFQMR description . . . . .. ... ... ... ... ... 297
8.16.2 SUNLinearSolver SPTFQMR functions . . . . . ... ... ... ... ..... 297
8.16.3 SUNLinearSolver SPTFQMR Fortran interfaces. . . . . . . .. ... ... ... 300
8.16.4 SUNLinearSolver SPTFQMR content . . . . . .. ... .. ... ... ..... 302
The SUNLinearSolver PCG implementation . . . . . . ... ... ... ... ...... 303
8.17.1 SUNLinearSolver PCG description . . . . . . . ... . ... ... ... ..... 303
8.17.2 SUNLinearSolver PCG functions . . . . . ... ... ... ... ... ...... 304
8.17.3 SUNLinearSolver PCG Fortran interfaces . . . . . .. ... .. ... ... ... 307
8.17.4 SUNLinearSolver PCG content . . . . . . . . . ... ... ... ... ...... 309
SUNLinearSolver Examples . . . . . . . .. .. . 310

vii



9 Description of the SUNNonlinearSolver module 311

9.1 The SUNNonlinearSolver APT . . . . . . . . . .. .. .. . 311
9.1.1 SUNNonlinearSolver core functions . . . . . . . . . .. ... ... ... ... 311

9.1.2 SUNNonlinearSolver set functions . . . . . . . ... ... ... ... ...... 313

9.1.3 SUNNonlinearSolver get functions . . . . . . ... ... .. ... ... ... 315

9.1.4 Functions provided by SUNDIALS integrators . . . . ... ... ... ..... 316

9.1.5 SUNNonlinearSolver return codes . . . . . . . . .. . .. ... ... ... .. 318

9.1.6  The generic SUNNonlinearSolver module . . . . . .. ... ... ... ..... 318

9.1.7 Usage with sensitivity enabled integrators . . . . . . .. .. ... ... ... .. 319

9.1.8 Implementing a Custom SUNNonlinearSolver Module . . . . . ... ... ... 321

9.2 CVODE SUNNonlinearSolver interface . . . . . . . . . . .. ... .. ... .. ..... 322
9.3 The SUNNonlinearSolver_ Newton implementation . . . .. .. ... ... ... .... 323
9.3.1 SUNNonlinearSolver Newton description . . . . . . . . ... ... ... ... .. 323

9.3.2 SUNNonlinearSolver_Newton functions . . . . . . . .. ... . ... ... .... 324

9.3.3 SUNNonlinearSolver Newton Fortran interfaces . . . . . . . .. ... .. .. .. 326

9.3.4 SUNNonlinearSolver_Newton content . . . . . . . . . . . .. ... ........ 326

9.4 The SUNNonlinearSolver_FixedPoint implementation . . . . . . . ... ... ... ... 327
9.4.1 SUNNonlinearSolver_FixedPoint description . . . . . . . .. ... .. ... ... 327

9.4.2 SUNNonlinearSolver_FixedPoint functions . . . . . .. .. ... ... ... ... 328

9.4.3 SUNNonlinearSolver_FixedPoint Fortran interfaces . . . . . . . ... ... ... 329

9.4.4 SUNNonlinearSolver_FixedPoint content . . . . . . .. ... ... ... ..... 331

9.5 The SUNNonlinearSolver_PetscSNES implementation . . . . . . . ... ... ... ... 332
9.5.1 SUNNonlinearSolver_PetscSNES description . . . . . . . .. ... ... ... .. 332

9.5.2 SUNNonlinearSolver_PetscSNES functions . . . . . . . ... .. ... ... ... 333

9.5.3 SUNNonlinearSolver_PetscSNES content . . . . . . ... ... ... ... .... 334

A SUNDIALS Package Installation Procedure 337
A.1 CMake-based installation . . . . . .. .. . ... .. Lo 338
A.1.1 Configuring, building, and installing on Unix-like systems . . . . . ... .. .. 338

A.1.2 Configuration options (Unix/Linux) . . . . . ... ... ... ... ....... 340

A.1.3 Configuration examples . . . . . . . . ..o L 348

A.1.4 Working with external Libraries . . . . . ... ... .. ... ... ...... 348

A.1.5 Testing the build and installation . . . . . . . . . ... ... ... .. ... 351

A.2 Building and Running Examples . . . . . . . ... .. o o 351
A.3 Configuring, building, and installing on Windows . . . . . . . . ... ... ... .... 351
A4 Installed libraries and exported header files . . . . . . ... ... .. .. ........ 352

B CVODE Constants 359
B.1 CVODE input constants . . . . . . . . . . . . .. . 359
B.2 CVODE output constants . . . . . . . .. .. ... 359

C SUNDIALS Release History 363
Bibliography 365
Index 369

viii



List of Tables

4.1
4.2
4.3

5.1
5.2
5.3
5.4

6.1
6.2

7.1
7.2
7.3
7.4

8.1
8.2

8.3
9.1
Al

C1

SUNDIALS linear solver interfaces and vector implementations that can be used for each. 37

Optional inputs for CVODE and CVLS . . . . . . . . . . . . o vttt e 47
Optional outputs from CVODE, CVLS, and CVDIAG . . . . . . . . v v v v v v v v o 63
Summary of Fortran 2003 interfaces for shared SUNDIALS modules. . . . . . ... ... 98
C/Fortran 2003 Equivalent Types . . . . . . . . .« oo v i it i 99
Keys for setting FCVODE optional inputs . . . . . . . . . ... ... ... ... ... .. 114
Description of the FCVODE optional output arrays IOUT and ROUT . . . . . . .. .. .. 115
Vector Identifications associated with vector kernels supplied with SUNDIALS. . . . . . 137
List of vector functions usage by CVODE code modules . . . . . .. .. ... .. .... 142
Description of the SUNMatrix returncodes . . . . . . . . . . . . . . ... ... ..... 206
Identifiers associated with matrix kernels supplied with SUNDIALS. . . . . . .. .. .. 207
SUNDIALS matrix interfaces and vector implementations that can be used for each. . . 207
List of matrix functions usage by CVODE code modules . . . . . .. .. ... ... ... 209
Description of the SUNLinearSolver error codes . . . . . . . . . . . .. ... ... 242
SUNDIALS matrix-based linear solvers and matrix implementations that can be used for

each. . . . . L e 245
List of linear solver function usage in the cvLs interface . . . . . . ... .. ... ... 248
Description of the SUNNonlinearSolver returncodes. . . . . . . . . . . .. .. .. .. 318
SUNDIALS libraries and header files . . . . . . . . . .. .. ... .. ... ........ 353
Release History . . . . . . . . o . e 363

ix






List of Figures

3.1
3.2
3.3

7.1
7.2

Al
A2

High-level diagram of the SUNDIALS suite. . . . . . . . . . . . . . ... ... ...... 27
Directory structure of the SUNDIALS source tree. . . . . . . ... ... ... ...... 28
Overall structure diagram of the CVODE package . . . . . . ... .. ... ... .... 29
Diagram of the storage for a SUNMATRIX_BAND object . . . . . .. .. ... ...... 215
Diagram of the storage for a compressed-sparse-column matrix . . . . .. ... .. .. 222
Initial ccmake configuration screen . . . . . . ... Lo Lo 339
Changing the instdir . . . . . . . . . . . e 340

xi






Chapter 1

Introduction

CVODE is part of a software family called SUNDIALS: SUite of Nonlinear and DIfferential/ALgebraic
equation Solvers [31]. This suite consists of CVODE, ARKODE, KINSOL, and IDA, and variants of these
with sensitivity analysis capabilities.

1.1 Historical Background

FORTRAN solvers for ODE initial value problems are widespread and heavily used. Two solvers that
have been written at LLNL in the past are VODE [8] and VODPK [11]. VODE is a general purpose solver
that includes methods for both stiff and nonstiff systems, and in the stiff case uses direct methods
(full or banded) for the solution of the linear systems that arise at each implicit step. Externally,
VODE is very similar to the well known solver LSODE [42]. VODPK is a variant of VODE that uses
a preconditioned Krylov (iterative) method, namely GMRES, for the solution of the linear systems.
VODPK is a powerful tool for large stiff systems because it combines established methods for stiff
integration, nonlinear iteration, and Krylov (linear) iteration with a problem-specific treatment of
the dominant source of stiffness, in the form of the user-supplied preconditioner matrix [9]. The
capabilities of both VODE and VODPK have been combined in the C-language package CVODE [16].

At present, CVODE may utilize a variety of Krylov methods provided in SUNDIALS that can be used
in conjuction with Newton iteration: these include the GMRES (Generalized Minimal RESidual) [45],
FGMRES (Flexible Generalized Minimum RESidual) [44], Bi-CGStab (Bi-Conjugate Gradient Stabi-
lized) [47], TFQMR (Transpose-Free Quasi-Minimal Residual) [24], and PCG (Preconditioned Con-
jugate Gradient) [26] linear iterative methods. As Krylov methods, these require almost no matrix
storage for solving the Newton equations as compared to direct methods. However, the algorithms
allow for a user-supplied preconditioner matrix, and for most problems preconditioning is essential for
an efficient solution. For very large stiff ODE systems, the Krylov methods are preferable over direct
linear solver methods, and are often the only feasible choice. Among the Krylov methods in SUNDIALS,
we recommend GMRES as the best overall choice. However, users are encouraged to compare all op-
tions, especially if encountering convergence failures with GMRES. Bi-CGStab and TFQMR have an
advantage in storage requirements, in that the number of workspace vectors they require is fixed, while
that number for GMRES depends on the desired Krylov subspace size. FGMRES has an advantage
in that it is designed to support preconditioners that vary between iterations (e.g. iterative methods).
PCG exhibits rapid convergence and minimal workspace vectors, but only works for symmetric linear
systems.

In the process of translating the VODE and VODPK algorithms into C, the overall CVODE organi-
zation has been changed considerably. One key feature of the CVODE organization is that the linear
system solvers comprise a layer of code modules that is separated from the integration algorithm,
allowing for easy modification and expansion of the linear solver array. A second key feature is a
separate module devoted to vector operations; this facilitated the extension to multiprosessor envi-
ronments with minimal impacts on the rest of the solver, resulting in PVODE [14], the parallel variant
of CVODE.



2 Introduction

Around 2002, the functionality of CVODE and PVODE were combined into one single code, simply
called cvODE. Development of this version of CVODE was concurrent with a redesign of the vector
operations module across the SUNDIALS suite. The key feature of the NVECTOR module is that it is
written in terms of abstract vector operations with the actual vector kernels attached by a particular
implementation (such as serial or parallel) of NVECTOR. This allows writing the SUNDIALS solvers in a
manner independent of the actual NVECTOR implementation (which can be user-supplied), as well as
allowing more than one NVECTOR module linked into an executable file. SUNDIALS (and thus CVODE)
is supplied with six different NVECTOR implementations: serial, MPI-parallel, and both OpenMP and
Pthreads thread-parallel NVECTOR implementations, a Hypre parallel implementation, and a PETSc
implementation.

There are several motivations for choosing the C language for CVODE. First, a general movement
away from FORTRAN and toward C in scientific computing was apparent. Second, the pointer, struc-
ture, and dynamic memory allocation features in C are extremely useful in software of this complexity,
with the great variety of method options offered. Finally, we prefer C over C++ for CVODE because of
the wider availability of C compilers, the potentially greater efficiency of C, and the greater ease of
interfacing the solver to applications written in extended FORTRAN.

1.2 Changes from previous versions

Changes in v5.3.0

Fixed a bug in the iterative linear solver modules where an error is not returned if the Atimes function
is NULL or, if preconditioning is enabled, the PSolve function is NULL.

Added specialized fused CUDA kernels to CVODE which may offer better performance on smaller
problems when using CVODE with the NVECTOR_CUDA module. See the optional input function
CVodeSetUseIntegratorFusedKernels for more information. As with other SUNDIALS CUDA features,
this capability is considered experimental and may change from version to version.

Added the ability to control the CUDA kernel launch parameters for the NVECTOR_CUDA and SUNMATRIX_CUSPARSE
modules. These modules remain experimental and are subject to change from version to version. In
addition, the NVECTOR_CUDA kernels were rewritten to be more flexible. Most users should see equiva-
lent performance or some improvement, but a select few may observe minor performance degradation
with the default settings. Users are encouraged to contact the SUNDIALS team about any perfomance
changes that they notice.

Added new capabilities for monitoring the solve phase in the SUNNONLINSOL_NEWTON and SUN-
NONLINSOL_FIXEDPOINT modules, and the SUNDIALS iterative linear solver modules. SUNDIALS must
be built with the CMake option SUNDIALS BUILD WITH MONITORING to use these capabilties.

Added a new function, CVodeSetMonitorFn, that takes a user-function to be called by CVODE
after every nst succesfully completed time-steps. This is intended to provide a way of monitoring the
CVODE statistics throughout the simulation.

Added a new function CVodeGetLinSolveStats to get the CVODE linear solver statistics as a
group.

Added the optional function CVodeSetJacTimesRhsFn to specify an alternative right-hand side
function for computing Jacobian-vector products with the internal difference quotient approximation.

Added support for integrating IVPs with constraints using BDF methods and projecting the
solution onto the constraint manifold with a user defined projection function. This implementation is
accompanied by additions to user documentation and CVODE examples. See §2.2 for more information.

Changes in v5.2.0

Fixed a build system bug related to the Fortran 2003 interfaces when using the IBM XL com-
piler. When building the Fortran 2003 interfaces with an XL compiler it is recommended to set
CMAKE_Fortran_COMPILER to £2003, x1£2003, or x1£2003_r.

Fixed a linkage bug affecting Windows users that stemmed from dllimport/dllexport attributes
missing on some SUNDIALS API functions.



1.2 Changes from previous versions 3

Added a new SUNMatrix implementation, SUNMATRIX_CUSPARSE, that interfaces to the sparse ma-
trix implementation from the NVIDIA cuSPARSE library. In addition, the SUNLINSOL_CUSOLVER_BATCHQR
linear solver has been updated to use this matrix, therefore, users of this module will need to update
their code. These modules are still considered to be experimental, thus they are subject to breaking
changes even in minor releases.

The function CVodeSetLinearSolutionScaling was added to enable or disable the scaling applied
to linear system solutions with matrix-based linear solvers to account for a lagged value of 7 in the
linear system matrix I — «J. Scaling is enabled by default when using a matrix-based linear solver
with BDF methods.

Changes in v5.1.0

Fixed a build system bug related to finding LAPACK/BLAS.

Fixed a build system bug related to checking if the KLU library works.

Fixed a build system bug related to finding PETSc when using the CMake variables PETSC_INCLUDES
and PETSC_LIBRARIES instead of PETSC_DIR.

Added a new build system option, CUDA_ARCH, that can be used to specify the CUDA architecture
to compile for.

Added two utility functions, SUNDIALSFileOpen and SUNDIALSFileClose for creating/destroying
file pointers that are useful when using the Fortran 2003 interfaces.

Added support for constant damping to the SUNNonlinearSolver FixedPoint module when using
Anderson acceleration. See Section 9.4.1 and the SUNNonlinSolSetDamping FixedPoint function for
more details.

Changes in v5.0.0
Build system changes

e Increased the minimum required CMake version to 3.5 for most SUNDIALS configurations, and
3.10 when CUDA or OpenMP with device offloading are enabled.

e The CMake option BLAS_ENABLE and the variable BLAS_LIBRARIES have been removed to simplify
builds as SUNDIALS packages do not use BLAS directly. For third party libraries that require
linking to BLAS, the path to the BLAS library should be included in the _-LIBRARIES variable
for the third party library e.g., SUPERLUDIST_LIBRARIES when enabling SuperLU_DIST.

e Fixed a bug in the build system that prevented the NVECTOR_PTHREADS module from being
built.

NVECTOR module changes

e Two new functions were added to aid in creating custom NVECTOR objects. The constructor
N_VNewEmpty allocates an “empty” generic NVECTOR with the object’s content pointer and the
function pointers in the operations structure initialized to NULL. When used in the constructor
for custom objects this function will ease the introduction of any new optional operations to the
NVECTOR API by ensuring only required operations need to be set. Additionally, the function
N_VCopyOps(w, v) has been added to copy the operation function pointers between vector ob-
jects. When used in clone routines for custom vector objects these functions also will ease the
introduction of any new optional operations to the NVECTOR API by ensuring all operations are
copied when cloning objects. See §6.1.5 for more details.

e Two new NVECTOR implementations, NVECTOR_-MANYVECTOR and NVECTOR_MPIMANYVECTOR,
have been created to support flexible partitioning of solution data among different processing
elements (e.g., CPU 4+ GPU) or for multi-physics problems that couple distinct MPI-based sim-
ulations together. This implementation is accompanied by additions to user documentation and
SUNDIALS examples. See §6.13 and §6.14 for more details.



4 Introduction

e One new required vector operation and ten new optional vector operations have been added to
the NVECTOR API. The new required operation, N_-VGetLength, returns the global length of an
N_Vector. The optional operations have been added to support the new
NVECTOR_MPIMANYVECTOR implementation. The operation N_VGetCommunicator must be im-
plemented by subvectors that are combined to create an NVECTOR_MPIMANYVECTOR, but is not
used outside of this context. The remaining nine operations are optional local reduction oper-
ations intended to eliminate unnecessary latency when performing vector reduction operations
(norms, etc.) on distributed memory systems. The optional local reduction vector operations
are N_VDotProdLocal, N_VMaxNormLocal, N_VMinLocal, N_VL1NormLocal, N_VWSqrSumLocal,
N_VWSqrSumMaskLocal, N_VInvTestLocal, N_VConstrMaskLocal, and N_VMinQuotientLocal.
If an NVECTOR implementation defines any of the local operations as NULL, then the NVEC-
TOR_MPIMANYVECTOR will call standard NVECTOR operations to complete the computation.
See §6.1.4 for more details.

e An additional NVECTOR implementation, NVECTOR_MPIPLUSX, has been created to support
the MPI4+X paradigm where X is a type of on-node parallelism (e.g., OpenMP, CUDA). The
implementation is accompanied by additions to user documentation and SUNDIALS examples.
See §6.15 for more details.

e The * MPICuda and *_MPIRaja functions have been removed from the NVECTOR_CUDA and
NVECTOR_RAJA implementations respectively. Accordingly, the nvector mpicuda.h,
nvector mpiraja.h, libsundials nvecmpicuda.lib, and 1ibsundials _nvecmpicudaraja.lib
files have been removed. Users should use the NVECTOR_MPIPLUSX module coupled in conjunc-
tion with the NVECTOR_CUDA or NVECTOR_RAJA modules to replace the functionality. The
necessary changes are minimal and should require few code modifications. See the programs
in examples/ida/mpicuda and examples/ida/mpiraja for examples of how to use the NVEC-
TOR_MPIPLUSX module with the NVECTOR_CUDA and NVECTOR_RAJA modules respectively.

e Fixed a memory leak in the NVECTOR_PETSC module clone function.

e Made performance improvements to the NVECTOR_CUDA module. Users who utilize a non-default
stream should no longer see default stream synchronizations after memory transfers.

e Added a new constructor to the NVECTOR_CUDA module that allows a user to provide custom
allocate and free functions for the vector data array and internal reduction buffer. See §6.9.1
for more details.

e Added new Fortran 2003 interfaces for most NVECTOR modules. See Chapter 6 for more details
on how to use the interfaces.

e Added three new NVECTOR utility functions, FN_VGetVecAtIndexVectorArray,
FN_VSetVecAtIndexVectorArray, and FN_VNewVectorArray, for working with N_Vector arrays
when using the Fortran 2003 interfaces. See §6.1.5 for more details.

SUNMatrix module changes

e Two new functions were added to aid in creating custom SUNMATRIX objects. The constructor
SUNMatNewEmpty allocates an “empty” generic SUNMATRIX with the object’s content pointer and
the function pointers in the operations structure initialized to NULL. When used in the constructor
for custom objects this function will ease the introduction of any new optional operations to the
SUNMATRIX API by ensuring only required operations need to be set. Additionally, the function
SUNMatCopyOps (A, B) has been added to copy the operation function pointers between matrix
objects. When used in clone routines for custom matrix objects these functions also will ease the
introduction of any new optional operations to the SUNMATRIX API by ensuring all operations
are copied when cloning objects. See §7.1.2 for more details.



1.2 Changes from previous versions 5

e A new operation, SUNMatMatvecSetup, was added to the SUNMATRIX API to perform any setup
necessary for computing a matrix-vector product. This operation is useful for SUNMATRIX imple-
mentations which need to prepare the matrix itself, or communication structures before perform-
ing the matrix-vector product. Users who have implemented custom SUNMATRIX modules will
need to at least update their code to set the corresponding ops structure member, matvecsetup,
to NULL. See §7.1.1 for more details.

e The generic SUNMATRIX API now defines error codes to be returned by SUNMATRIX operations.
Operations which return an integer flag indiciating success/failure may return different values
than previously. See §7.1.3 for more details.

e A new SUNMATRIX (and SUNLINSOL) implementation was added to facilitate the use of the
SuperLU_DIST library with SUNDIALS. See §7.6 for more details.

e Added new Fortran 2003 interfaces for most SUNMATRIX modules. See Chapter 7 for more details
on how to use the interfaces.

SUNLinearSolver module changes

e A new function was added to aid in creating custom SUNLINSOL objects. The constructor
SUNLinSolNewEmpty allocates an “empty” generic SUNLINSOL with the object’s content pointer
and the function pointers in the operations structure initialized to NULL. When used in the
constructor for custom objects this function will ease the introduction of any new optional
operations to the SUNLINSOL API by ensuring only required operations need to be set. See §8.3
for more details.

e The return type of the SUNLINSOL API function SUNLinSolLastFlag has changed from long
int to sunindextype to be consistent with the type used to store row indices in dense and
banded linear solver modules.

e Added a new optional operation to the SUNLINSOL API, SUNLinSolGetID, that returns a
SUNLinearSolver_ID for identifying the linear solver module.

e The SUNLINSOL API has been updated to make the initialize and setup functions optional.

e A new SUNLINSOL (and SUNMATRIX) implementation was added to facilitate the use of the
SuperLU_DIST library with SUNDIALS. See §8.10 for more details.

e Added a new SUNLINSOL implementation, SUNLinearSolver_cuSolverSp_batchQR, which lever-
ages the NVIDIA cuSOLVER sparse batched QR method for efficiently solving block diagonal
linear systems on NVIDIA GPUs. See §8.12 for more details.

e Added three new accessor functions to the SUNLINSOL_KLU module, SUNLinSol _KLUGetSymbolic,
SUNLinSol_KLUGetNumeric, and SUNLinSol_KLUGetCommon, to provide user access to the under-
lying KLU solver structures. See §8.9.2 for more details.

e Added new Fortran 2003 interfaces for most SUNLINSOL modules. See Chapter 8 for more details
on how to use the interfaces.

SUNNonlinearSolver module changes

e A new function was added to aid in creating custom SUNNONLINSOL objects. The constructor
SUNNonlinSolNewEmpty allocates an “empty” generic SUNNONLINSOL with the object’s content
pointer and the function pointers in the operations structure initialized to NULL. When used in
the constructor for custom objects this function will ease the introduction of any new optional
operations to the SUNNONLINSOL API by ensuring only required operations need to be set. See
§9.1.8 for more details.



Introduction

To facilitate the use of user supplied nonlinear solver convergence test functions the
SUNNonlinSolSetConvTestFn function in the SUNNONLINSOL API has been updated to take a
void* data pointer as input. The supplied data pointer will be passed to the nonlinear solver
convergence test function on each call.

The inputs values passed to the first two inputs of the SUNNonlinSolSolve function in the SUN-
NONLINSOL have been changed to be the predicted state and the initial guess for the correction to
that state. Additionally, the definitions of SUNNonlinSolLSetupFn and SUNNonlinSolLSolveFn
in the SUNNONLINSOL API have been updated to remove unused input parameters. For more in-
formation on the nonlinear system formulation see §9.2 and for more details on the API functions
see Chapter 9.

Added a new SUNNONLINSOL implementation, SUNNONLINSOL_PETSCSNES, which interfaces to
the PETSc SNES nonlinear solver API. See §9.5 for more details.

Added new Fortran 2003 interfaces for most SUNNONLINSOL modules. See Chapter 9 for more
details on how to use the interfaces.

CVODE changes

Fixed a bug in the CVODE constraint handling where the step size could be set below the
minimum step size.

Fixed a bug in the CVODE nonlinear solver interface where the norm of the accumulated correc-
tion was not updated when using a non-default convergence test function.

Fixed a memeory leak in FCVODE when not using the default nonlinear solver.

Removed extraneous calls to N_VMin for simulations where the scalar valued absolute tolerance,
or all entries of the vector-valued absolute tolerance array, are strictly positive. In this scenario,
CVODE will remove at least one global reduction per time step.

The CVLS interface has been updated to only zero the Jacobian matrix before calling a user-
supplied Jacobian evaluation function when the attached linear solver has type
SUNLINEARSOLVER_DIRECT.

A new linear solver interface function CVLsLinSysFn was added as an alternative method for
evaluating the linear system M =1 — ~J.

Added two new functions, CVodeGetCurrentGamma and CVodeGetCurrentState, which may be
useful to users who choose to provide their own nonlinear solver implementations.

The cvODE Fortran 2003 interface was completely redone to be more sustainable and to allow
users to write more idiomatic Fortran. See Chapter 5 for more details.

Changes in v4.1.0

An additional NVECTOR implementation was added for the Tpetra vector from the Trilinos library
to facilitate interoperability between SUNDIALS and Trilinos. This implementation is accompanied by
additions to user documentation and SUNDIALS examples.

A bug was fixed where a nonlinear solver object could be freed twice in some use cases.

The EXAMPLES_ENABLE_RAJA CMake option has been removed. The option EXAMPLES_ENABLE_CUDA
enables all examples that use CUDA including the RAJA examples with a CUDA back end (if the
RAJA NVECTOR is enabled).

The implementation header file cvode_impl.h is no longer installed. This means users who are
directly manipulating the CVodeMem structure will need to update their code to use CVODE’s public

APIL.

Python is no longer required to run make test and make test_install.



1.2 Changes from previous versions 7

Changes in v4.0.2

Added information on how to contribute to SUNDIALS and a contributing agreement.
Moved definitions of DLS and SPILS backwards compatibility functions to a source file. The
symbols are now included in the CVODE library, 1ibsundials_cvode.

Changes in v4.0.1

No changes were made in this release.

Changes in v4.0.0

CVODE’s previous direct and iterative linear solver interfaces, CvDLS and CVSPILS, have been merged
into a single unified linear solver interface, CVLS, to support any valid SUNLINSOL module. This
includes the “DIRECT” and “ITERATIVE” types as well as the new “MATRIX_ITERATIVE” type.
Details regarding how CVLS utilizes linear solvers of each type as well as discussion regarding intended
use cases for user-supplied SUNLINSOL implementations are included in Chapter 8. All CVODE example
programs and the standalone linear solver examples have been updated to use the unified linear solver
interface.

The unified interface for the new CcvLS module is very similar to the previous CvDLS and CVSPILS
interfaces. To minimize challenges in user migration to the new names, the previous C and FORTRAN
routine names may still be used; these will be deprecated in future releases, so we recommend that
users migrate to the new names soon. Additionally, we note that FORTRAN users, however, may need
to enlarge their iout array of optional integer outputs, and update the indices that they query for
certain linear-solver-related statistics.

The names of all constructor routines for SUNDIALS-provided SUNLINSOL implementations have
been updated to follow the naming convention SUNLinSol_* where * is the name of the linear solver.
The new names are SUNLinSol Band, SUNLinSol Dense, SUNLinSol KLU, SUNLinSol LapackBand,
SUNLinSol_LapackDense, SUNLinSol _PCG, SUNLinSol_SPBCGS, SUNLinSol_SPFGMR, SUNLinSol_SPGMR,
SUNLinSol_SPTFQMR, and SUNLinSol_SuperLUMT. Solver-specific “set” routine names have been simi-
larly standardized. To minimize challenges in user migration to the new names, the previous routine
names may still be used; these will be deprecated in future releases, so we recommend that users mi-
grate to the new names soon. All CVODE example programs and the standalone linear solver examples
have been updated to use the new naming convention.

The SUNBandMatrix constructor has been simplified to remove the storage upper bandwidth ar-
gument.

SUNDIALS integrators have been updated to utilize generic nonlinear solver modules defined through
the SUNNONLINSOL API. This API will ease the addition of new nonlinear solver options and allow for
external or user-supplied nonlinear solvers. The SUNNONLINSOL API and SUNDIALS provided modules
are described in Chapter 9 and follow the same object oriented design and implementation used by
the NVECTOR, SUNMATRIX, and SUNLINSOL modules. Currently two SUNNONLINSOL implementations
are provided, SUNNONLINSOL_NEWTON and SUNNONLINSOL_FIXEDPOINT. These replicate the previ-
ous integrator specific implementations of a Newton iteration and a fixed-point iteration (previously
referred to as a functional iteration), respectively. Note the SUNNONLINSOL_FIXEDPOINT module can
optionally utilize Anderson’s method to accelerate convergence. Example programs using each of these
nonlinear solver modules in a standalone manner have been added and all CVODE example programs
have been updated to use generic SUNNONLINSOL modules.

With the introduction of SUNNONLINSOL modules, the input parameter iter to CVodeCreate
has been removed along with the function CVodeSetIterType and the constants CV_NEWTON and
CV_FUNCTIONAL. Similarly, the ITMETH parameter has been removed from the Fortran interface func-
tion FCVMALLOC. Instead of specifying the nonlinear iteration type when creating the CVODE memory
structure, CVODE uses the SUNNONLINSOL_NEWTON module implementation of a Newton iteration by
default. For details on using a non-default or user-supplied nonlinear solver see Chapter 4. CVODE
functions for setting the nonlinear solver options (e.g., CVodeSetMaxNonlinIters) or getting nonlinear



8 Introduction

solver statistics (e.g., CVodeGetNumNonlinSolvIters) remain unchanged and internally call generic
SUNNONLINSOL functions as needed.

Three fused vector operations and seven vector array operations have been added to the NVEC-
TOR API. These optional operations are disabled by default and may be activated by calling vector
specific routines after creating an NVECTOR (see Chapter 6 for more details). The new operations are
intended to increase data reuse in vector operations, reduce parallel communication on distributed
memory systems, and lower the number of kernel launches on systems with accelerators. The fused op-
erations are N_VLinearCombination, N_.VScaleAddMulti, and N_VDotProdMulti and the vector array
operations are N_VLinearCombinationVectorArray, N_-VScaleVectorArray, N_.VConstVectorArray,
N_VWrmsNormVectorArray, N_-VWrmsNormMaskVectorArray, N_VScaleAddMultiVectorArray, and
N_VLinearCombinationVectorArray. If an NVECTOR implementation defines any of these operations
as NULL, then standard NVECTOR operations will automatically be called as necessary to complete the
computation.

Multiple updates to NVECTOR_CUDA were made:

e Changed N_VGetLength_Cuda to return the global vector length instead of the local vector length.

e Added N_VGetLocalLength Cuda to return the local vector length.

e Added N_VGetMPIComm _Cuda to return the MPI communicator used.

e Removed the accessor functions in the namespace suncudavec.

e Changed the N_VMake_Cuda function to take a host data pointer and a device data pointer instead
of an N_VectorContent_Cuda object.

e Added the ability to set the cudaStream_t used for execution of the NVECTOR_CUDA kernels.
See the function N_VSetCudaStreams_Cuda.

e Added N_VNewManaged Cuda, N_VMakeManaged Cuda, and N_VIsManagedMemory_Cuda functions
to accommodate using managed memory with the NVECTOR_CUDA.

Multiple changes to NVECTOR_RAJA were made:
e Changed N_VGetLength_Raja to return the global vector length instead of the local vector length.
e Added N_VGetLocallLength Raja to return the local vector length.
e Added N_VGetMPIComm Raja to return the MPI communicator used.
e Removed the accessor functions in the namespace suncudavec.
A new NVECTOR implementation for leveraging OpenMP 4.5+ device offloading has been added,
NVECTOR_OPENMPDEV. See §6.11 for more details.
Two changes were made in the CVODE/CVODES/ARKODE initial step size algorithm:
1. Fixed an efficiency bug where an extra call to the right hand side function was made.

2. Changed the behavior of the algorithm if the max-iterations case is hit. Before the algorithm
would exit with the step size calculated on the penultimate iteration. Now it will exit with the
step size calculated on the final iteration.

A FORTRAN 2003 interface to CVODE has been added along with FORTRAN 2003 interfaces to the
following shared SUNDIALS modules:

e SUNNONLINSOL_FIXEDPOINT and SUNNONLINSOL_NEWTON nonlinear solver modules

e SUNLINSOL_DENSE, SUNLINSOL_BAND, SUNLINSOL_KLU, SUNLINSOL_PCG, SUNLINSOL_SPBCGS, SUN-
LINSOL_SPFGMR, SUNLINSOL_SPGMR, and SUNLINSOL_SPTFQMR linear solver modules

e NVECTOR_SERIAL, NVECTOR_PTHREADS, and NVECTOR_OPENMP vector modules



1.2 Changes from previous versions 9

Changes in v3.2.1

The changes in this minor release include the following:

e Fixed a bug in the CUDA NVECTOR where the N_VInvTest operation could write beyond the
allocated vector data.

e Fixed library installation path for multiarch systems. This fix changes the default library instal-
lation path to CMAKE_INSTALL _PREFIX/CMAKE_INSTALL_LIBDIR from CMAKE_INSTALL_PREFIX/1lib.
CMAKE_INSTALL_LIBDIR is automatically set, but is available as a CMake option that can modi-
fied.

Changes in v3.2.0

Support for optional inequality constraints on individual components of the solution vector has been
added to cvODE and CVODES. See Chapter 2 and the description of CVodeSetConstraints in §4.5.8.1
for more details. Use of CVodeSetConstraints requires the NVECTOR operations N_MinQuotient,
N_VConstrMask, and N_VCompare that were not previously required by CVODE and CVODES.

Fixed a problem with setting sunindextype which would occur with some compilers (e.g. arm-
clang) that did not define __STDC_VERSION__.

Added hybrid MPI/CUDA and MPI/RAJA vectors to allow use of more than one MPI rank when
using a GPU system. The vectors assume one GPU device per MPI rank.

Changed the name of the RAJA NVECTOR library to libsundials nveccudaraja.lib from
libsundials nvecraja.lib to better reflect that we only support CUDA as a backend for RAJA cur-
rently.

Several changes were made to the build system:
e CMake 3.1.3 is now the minimum required CMake version.

e Deprecate the behavior of the SUNDIALS_INDEX_TYPE CMake option and added the
SUNDIALS_INDEX_SIZE CMake option to select the sunindextype integer size.

e The native CMake FindMPI module is now used to locate an MPI installation.

e If MPI is enabled and MPI compiler wrappers are not set, the build system will check if
CMAKE <language>_COMPILER can compile MPI programs before trying to locate and use an
MPI installation.

e The previous options for setting MPI compiler wrappers and the executable for running MPI
programs have been have been depreated. The new options that align with those used in native
CMake FindMPI module are MPI_C_COMPILER, MPI_CXX_COMPILER, MPI Fortran COMPILER, and
MPIEXEC_EXECUTABLE.

e When a Fortran name-mangling scheme is needed (e.g., LAPACK_ENABLE is ON) the build system
will infer the scheme from the Fortran compiler. If a Fortran compiler is not available or the in-
ferred or default scheme needs to be overridden, the advanced options SUNDIALS_F77_FUNC_CASE
and SUNDIALS_F77 _FUNC_UNDERSCORES can be used to manually set the name-mangling scheme
and bypass trying to infer the scheme.

e Parts of the main CMakeLists.txt file were moved to new files in the src and example directories
to make the CMake configuration file structure more modular.



10

Introduction

Changes in v3.1.2

The changes in this minor release include the following:

Updated the minimum required version of CMake to 2.8.12 and enabled using rpath by default
to locate shared libraries on OSX.

Fixed Windows specific problem where sunindextype was not correctly defined when using
64-bit integers for the SUNDIALS index type. On Windows sunindextype is now defined as the
MSVC basic type __int64.

Added sparse SUNMatrix “Reallocate” routine to allow specification of the nonzero storage.

Updated the KLU SUNLinearSolver module to set constants for the two reinitialization types,
and fixed a bug in the full reinitialization approach where the sparse SUNMatrix pointer would
go out of scope on some architectures.

Updated the “ScaleAdd” and “ScaleAddI” implementations in the sparse SUNMatrix module
to more optimally handle the case where the target matrix contained sufficient storage for the
sum, but had the wrong sparsity pattern. The sum now occurs in-place, by performing the sum
backwards in the existing storage. However, it is still more efficient if the user-supplied Jacobian
routine allocates storage for the sum I 4+ ~vJ manually (with zero entries if needed).

Added the following examples from the usage notes page of the SUNDIALS website, and updated
them to work with SUNDIALS 3.x:

— cvDisc_dns.c, which demonstrates using CVODE with discontinuous solutions or RHS.

— cvRoberts_dns_negsol.c, which illustrates the use of the RHS function return value to
control unphysical negative concentrations.

Changed the LICENSE install path to instdir/include/sundials.

Changes in v3.1.1

The changes in this minor release include the following:

Fixed a minor bug in the cvSLdet routine, where a return was missing in the error check for
three inconsistent roots.

Fixed a potential memory leak in the SPGMR and SPFGMR linear solvers: if “Initialize” was
called multiple times then the solver memory was reallocated (without being freed).

Updated KLU SUNLINSOL module to use a typedef for the precision-specific solve function to
be used (to avoid compiler warnings).

Added missing typecasts for some (void#) pointers (again, to avoid compiler warnings).
Bugfix in sunmatrix_sparse.c where we had used int instead of sunindextype in one location.
Added missing #include <stdio.h> in NVECTOR and SUNMATRIX header files.

Fixed an indexing bug in the CUDA NVECTOR implementation of N_VWrmsNormMask and revised
the RAJA NVECTOR implementation of N_VWrmsNormMask to work with mask arrays using values
other than zero or one. Replaced double with realtype in the RAJA vector test functions.

Fixed compilation issue with GCC 7.3.0 and Fortran programs that do not require a SUNMATRIX
or SUNLINSOL module (e.g., iterative linear solvers or fixed-point iteration).

In addition to the changes above, minor corrections were also made to the example programs, build
system, and user documentation.



1.2 Changes from previous versions 11

Changes in v3.1.0

Added NVECTOR print functions that write vector data to a specified file (e.g., N.VPrintFile_Serial).
Added make test and make test_install options to the build system for testing SUNDIALS after
building with make and installing with make install respectively.

Changes in v3.0.0

All interfaces to matrix structures and linear solvers have been reworked, and all example programs
have been updated. The goal of the redesign of these interfaces was to provide more encapsulation
and ease in interfacing custom linear solvers and interoperability with linear solver libraries. Specific
changes include:

e Added generic SUNMATRIX module with three provided implementations: dense, banded and
sparse. These replicate previous SUNDIALS Dls and Sls matrix structures in a single object-
oriented API.

e Added example problems demonstrating use of generic SUNMATRIX modules.

e Added generic SUNLINEARSOLVER module with eleven provided implementations: dense,
banded, LAPACK dense, LAPACK band, KLU, SuperLU_MT, SPGMR, SPBCGS, SPTFQMR,
SPFGMR, PCG. These replicate previous SUNDIALS generic linear solvers in a single object-
oriented APIL.

e Added example problems demonstrating use of generic SUNLINEARSOLVER, modules.

e Expanded package-provided direct linear solver (Dls) interfaces and scaled, preconditioned, iter-
ative linear solver (Spils) interfaces to utilize generic SUNMATRIX and SUNLINEARSOLVER
objects.

e Removed package-specific, linear solver-specific, solver modules (e.g. CVDENSE, KINBAND,
IDAKLU, ARKSPGMR) since their functionality is entirely replicated by the generic Dls/Spils
interfaces and SUNLINEARSOLVER/SUNMATRIX modules. The exception is CVDIAG, a
diagonal approximate Jacobian solver available to CVODE and CVODES.

e Converted all SUNDIALS example problems to utilize new generic SUNMATRIX and SUNLIN-
EARSOLVER objects, along with updated Dls and Spils linear solver interfaces.

e Added Spils interface routines to ARKode, CVODE, CVODES, IDA and IDAS to allow spec-
ification of a user-provided ”JTSetup” routine. This change supports users who wish to set
up data structures for the user-provided Jacobian-times-vector (”JTimes”) routine, and where
the cost of one JTSetup setup per Newton iteration can be amortized between multiple JTimes
calls.

Two additional NVECTOR implementations were added — one for CUDA and one for RAJA vectors.
These vectors are supplied to provide very basic support for running on GPU architectures. Users are
advised that these vectors both move all data to the GPU device upon construction, and speedup will
only be realized if the user also conducts the right-hand-side function evaluation on the device. In
addition, these vectors assume the problem fits on one GPU. Further information about RAJA, users
are referred to th web site, https://software.llnl.gov/RAJA/. These additions are accompanied by
additions to various interface functions and to user documentation.

All indices for data structures were updated to a new sunindextype that can be configured to
be a 32- or 64-bit integer data index type. sunindextype is defined to be int32_t or int64_t when
portable types are supported, otherwise it is defined as int or long int. The Fortran interfaces
continue to use long int for indices, except for their sparse matrix interface that now uses the new
sunindextype. This new flexible capability for index types includes interfaces to PETSc, hypre,
SuperLU_MT, and KLU with either 32-bit or 64-bit capabilities depending how the user configures
SUNDIALS.



12 Introduction

To avoid potential namespace conflicts, the macros defining booleantype values TRUE and FALSE
have been changed to SUNTRUE and SUNFALSE respectively.

Temporary vectors were removed from preconditioner setup and solve routines for all packages. It
is assumed that all necessary data for user-provided preconditioner operations will be allocated and
stored in user-provided data structures.

The file include/sundials_fconfig.h was added. This file contains SUNDIALS type information
for use in Fortran programs.

Added functions SUNDIALSGetVersion and SUNDIALSGetVersionNumber to get SUNDIALS release
version information at runtime.

The build system was expanded to support many of the xSDK-compliant keys. The xSDK is
a movement in scientific software to provide a foundation for the rapid and efficient production of
high-quality, sustainable extreme-scale scientific applications. More information can be found at,
https://xsdk.info.

In addition, numerous changes were made to the build system. These include the addition of
separate BLAS_ENABLE and BLAS_LIBRARIES CMake variables, additional error checking during CMake
configuration, minor bug fixes, and renaming CMake options to enable/disable examples for greater
clarity and an added option to enable/disable Fortran 77 examples. These changes included changing
EXAMPLES_ENABLE to EXAMPLES_ENABLE C, changing CXX_ENABLE to EXAMPLES ENABLE_CXX, changing
F90_ENABLE to EXAMPLES ENABLE F90, and adding an EXAMPLES ENABLE_F77 option.

A bug fix was made in CVodeFree to call 1free unconditionally (if non-NULL).

Corrections and additions were made to the examples, to installation-related files, and to the user
documentation.

Changes in v2.9.0

Two additional NVECTOR implementations were added — one for Hypre (parallel) ParVector vectors,
and one for PETSc vectors. These additions are accompanied by additions to various interface functions
and to user documentation.

Each NVECTOR module now includes a function, N_VGetVectorID, that returns the NVECTOR
module name.

For each linear solver, the various solver performance counters are now initialized to 0 in both the
solver specification function and in solver 1init function. This ensures that these solver counters are
initialized upon linear solver instantiation as well as at the beginning of the problem solution.

In FCVODE, corrections were made to three Fortran interface functions. Missing Fortran interface
routines were added so that users can supply the sparse Jacobian routine when using sparse direct
solvers.

A memory leak was fixed in the banded preconditioner interface. In addition, updates were done
to return integers from linear solver and preconditioner ’free’ functions.

The Krylov linear solver Bi-CGstab was enhanced by removing a redundant dot product. Various
additions and corrections were made to the interfaces to the sparse solvers KLU and SuperLU_-MT,
including support for CSR format when using KLU.

New examples were added for use of the OpenMP vector and for use of sparse direct solvers from
Fortran.

Minor corrections and additions were made to the CVODE solver, to the Fortran interfaces, to the
examples, to installation-related files, and to the user documentation.

Changes in v2.8.0

Two major additions were made to the linear system solvers that are available for use with the CVODE
solver. First, in the serial case, an interface to the sparse direct solver KLU was added. Second,
an interface to SuperLU_MT, the multi-threaded version of SuperLU, was added as a thread-parallel
sparse direct solver option, to be used with the serial version of the NVECTOR module. As part of
these additions, a sparse matrix (CSC format) structure was added to CVODE.

Otherwise, only relatively minor modifications were made to the CVODE solver:



1.2 Changes from previous versions 13

In cvRootfind, a minor bug was corrected, where the input array rootdir was ignored, and a line
was added to break out of root-search loop if the initial interval size is below the tolerance ttol.

In CVLapackBand, the line smu = MIN(N-1,mu+ml) was changed to smu = mu + ml to correct an
illegal input error for DGBTRF/DGBTRS.

In order to eliminate or minimize the differences between the sources for private functions in CVODE
and CVODES, the names of 48 private functions were changed from CV** to cvx* and a few other
names were also changed.

Two minor bugs were fixed regarding the testing of input on the first call to CVode — one involving
tstop and one involving the initialization of *tret.

In order to avoid possible name conflicts, the mathematical macro and function names MIN, MAX,
SQR, RAbs, RSqrt, RExp, RPowerI, and RPowerR were changed to SUNMIN, SUNMAX, SUNSQR, SUNRabs,
SUNRsqrt, SUNRexp, SRpowerI, and SUNRpowerR, respectively. These names occur in both the solver
and in various example programs.

The example program cvAdvDiff diag p was added to illustrate the use of CVDiag in parallel.

In the FCVODE optional input routines FCVSETIIN and FCVSETRIN, the optional fourth argument
key_length was removed, with hardcoded key string lengths passed to all strncmp tests.

In all FCVODE examples, integer declarations were revised so that those which must match a C
type long int are declared INTEGER*8, and a comment was added about the type match. All other
integer declarations are just INTEGER. Corresponding minor corrections were made to the user guide.

Two new NVECTOR modules have been added for thread-parallel computing environments — one
for OpenMP, denoted NVECTOR_OPENMP, and one for Pthreads, denoted NVECTOR_PTHREADS.

With this version of SUNDIALS, support and documentation of the Autotools mode of installation
is being dropped, in favor of the CMake mode, which is considered more widely portable.

Changes in v2.7.0

One significant design change was made with this release: The problem size and its relatives, band-
width parameters, related internal indices, pivot arrays, and the optional output lsflag have all
been changed from type int to type long int, except for the problem size and bandwidths in user
calls to routines specifying BLAS/LAPACK routines for the dense/band linear solvers. The func-
tion NewIntArray is replaced by a pair NewIntArray/NewLintArray, for int and long int arrays,
respectively.

A large number of minor errors have been fixed. Among these are the following: In CVSetTqBDF,
the logic was changed to avoid a divide by zero. After the solver memory is created, it is set to zero
before being filled. In each linear solver interface function, the linear solver memory is freed on an error
return, and the **Free function now includes a line setting to NULL the main memory pointer to the
linear solver memory. In the rootfinding functions CVRcheck1/CVRcheck2, when an exact zero is found,
the array glo of g values at the left endpoint is adjusted, instead of shifting the ¢ location tlo slightly.
In the installation files, we modified the treatment of the macro SUNDIALS _USE_GENERIC_MATH,
so that the parameter GENERIC_MATH_LIB is either defined (with no value) or not defined.

Changes in v2.6.0

Two new features were added in this release: (a) a new linear solver module, based on BLAS and
LAPACK for both dense and banded matrices, and (b) an option to specify which direction of zero-
crossing is to be monitored while performing rootfinding.

The user interface has been further refined. Some of the API changes involve: (a) a reorganization
of all linear solver modules into two families (besides the existing family of scaled preconditioned
iterative linear solvers, the direct solvers, including the new LAPACK-based ones, were also organized
into a direct family); (b) maintaining a single pointer to user data, optionally specified through a
Set-type function; and (c) a general streamlining of the preconditioner modules distributed with the
solver.



14 Introduction

Changes in v2.5.0

The main changes in this release involve a rearrangement of the entire SUNDIALS source tree (see §3.1).
At the user interface level, the main impact is in the mechanism of including SUNDIALS header files
which must now include the relative path (e.g. #include <cvode/cvode.h>). Additional changes
were made to the build system: all exported header files are now installed in separate subdirectories
of the instaltion include directory.

The functions in the generic dense linear solver (sundials_dense and sundials_smalldense) were
modified to work for rectangular m xn matrices (m < n), while the factorization and solution functions
were renamed to DenseGETRF/denGETRF and DenseGETRS/denGETRS, respectively. The factorization
and solution functions in the generic band linear solver were renamed BandGBTRF and BandGBTRS,
respectively.

Changes in v2.4.0

CVSPBCG and CVSPTFQM