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Chapter 1

TLMSimulator Co-Simulation
Framework

A general framework for composite modeling and co-simulations has previously
been designed [9]. The design goals for the simulation part of the framework
were portability, simplicity to incorporate new simulation tools, and computa-
tional efficiency. These goals were realized by defining the following concepts and
interfaces:

External interface. A named point on a mechanical object where position
and velocity can be evaluated and reaction load (force and moment) applied. To
guarantee numerical stability when utilising different numerical solvers in the co-
simulation, only interfaces based on the transmission line modelling method, see
Section 2, are currently supported.

Simulation manager. The central simulation engine. It is a stand alone
program that reads an XML definition of the coupled simulation. It then starts
external model simulations and provides the communication bridge between the
running simulations. The external models only communicate with the simulation
manager which acts as a broker marshalling information between the external
models. Simulation manager sees every external model as a black box having one
or several external interfaces. The information is then forwarded between external
interfaces belonging to different external models. Additionally the simulation
manager opens a network port for monitoring all communicated data.

Interface plug-in. A small C++ library having a single abstract class repre-
senting external interface for a specific simulation tool. The interface plug-in can
be seen by an external model simulator as an external load that depends on posi-
tion, velocity and time. The implementation of the plug-in handles the necessary
communications with the simulation manager. It also handles necessary coor-
dinate system transformations into the global composite model inertial system.
All positions and velocities are transformed from the external-model (simulation-
tool specific) inertial system to the global composite model inertial system. All
reaction loads are translated back into the local inertial system. This constant
transformation is stored in the composite model and sent to the corresponding
interface plug-in on simulation start up.

External model simulator. Any simulation program that has incorporated
the interface plug-in as a part of its model. A small script that takes the gen-
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4 CHAPTER 1. TLMSIMULATOR CO-SIMULATION FRAMEWORK

eral parameters as input and starts the specific simulation tool is an additional
requirement. This intermediate step is necessary since the simulation manager
needs a common way to start all the components and each tool might have some
specific start procedures.

1.1 Graphical User Interface

The TLMSimulator in itself provides no graphical user interface. Simulations are
started by command line calls to the simulation manager. However, graphical
user interface exists both in SKF BEAST and OpenModelica Connection Editor
(OMEdit) [17].

1.2 Requirements on External Model Simulators

External models are associated with specialised simulation tools. Even though
many simulation tools have interfaces to external functions, the interfaces differ
between tools. Therefore it is first necessary that a software developer who is
familiar with the particular tool architecture, designs and implements the external
interface for each tool. That is, to create a tool specific wrapper for the interface
plug-in of the simulation framework.

The following functionality is required from all simulation tools that implement
the interface plug-in and want to participate in co-simulation:

• Possibility to start simulation externally or in batch mode. The developer
of the tool specific interface must provide a start up program. This is used
by the simulation manager to set-up global simulation parameters, that is,
start time, end time, and max time step for each co-simulation participant.
Regarding the maximum time step length: The current co-simulation com-
munication protocol is based on the transmission line modelling method, see
Section 2 for details. This method requires a certain communication time
control, i.e., time steps need to be within a physically motivated limit.

• Possibility to integrate the interface plug-in into the tool specific adaptor.
Note that the tool independent part of the plug-in is implemented in C++.
Some tools require external functions to be implemented in, e.g., C or For-
tran. In such cases the C++ code can be invoked from a C or Fortran
function.

• Ability to deliver position, orientation and velocity of a point to the interface
plug-in and receive the reaction load (force and moment) to be applied at
this point.

• Ability to send information about the taken solver steps to the interface.
This is important for variable time step solvers. Data is send from one
co-simulation party to the other when a time step is completed, that is, if
the solver, after many iterations, decided what step it will take next. This
information needs to be send to the TLMPlugin.
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• Correct handling of shutdown signals coming from the tool specific wrapper.
In some cases the simulation manager needs to take down the simulation tool
in a controlled way. This can be achieved by a tool specific API (Application
Programming Interface) call or simply handling of exit signals.

Additionally, it is desirable that the simulation tool can provide access to the
model parameters, so that they can be modified from the composite model. Fur-
thermore, it is useful if the simulation tool can export any surface geometry
(graphics) for 3D visualisation in the composite model environment. Surface
geometry is not required for correct composite modelling but beneficial for visual
model verification.

Most of the commonly used simulation tools offer some kind of external connec-
tion either through inter process communication (IPC), e.g., network sockets or
remote procedure calls, or an application programming interface (API). Both op-
tions are acceptable for implementation of the interface plug-in as long as they
fulfill the requirements above. The main focus of this work is on transient simu-
lations of mechanical systems. Simulation tools that are of interest for this work
are pure mechanical system and multi physics tools. All of the tools that have
been considered for integration into the co-simulation framework comply with the
requirements, some of the tools are shown in Table 1.1. Interface plug-ins for
SKF’s BEAST, SKF’s Orpheus, MSC.ADAMS, Matlab/Simulink, and Modelica
have successfully been implemented and tested.

Table 1.1: List of potential simulators considered for TLM co-simulation. Possible
implementation and type of the interface plug-in are also shown.

Simulator Implementation Interface

BEAST C++ TLM enabled control points
(SKF in-house) implementation (coordinate-systems)

MSC.ADAMS C wrapper DLL General force with
(dynamic link library) sub-routine call

Matlab/Simulink C wrapper S-function interface

Modelica C or Fortran wrapper External function interface

Simpack Fortran wrapper SIMPACK User routine

1.3 External Model startup

The requirements on the external model simulators, that is, the simulation tools
that are supposed to participate in a co-simulation are defined above, see Sec-
tion 1.2. One requirement specifies that the simulation tool should be executable
in batch mode, this is, the simulation manager should be able to start the simu-
lation tool and pass certain parameters to the program.

The developer of the simulation tool specific adapter (TLMPlugin) should pro-
vide a start-up program/script that accepts the following command line parame-
ters:
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• Model - the name of the sub-model as presented in the composite model
definition. This name typically corresponds to the component specific input
file name.

• FromTime - start time for the simulation.

• ToTime - end time for the simulation.

• Step - maximum time step allowed for the simulation. This depends on the
minimum TLM delay associated with one of the TLM links connected to
the sub-model.

• Server:port - name of the host machine running TLM manager application
and the TCP/IP port where TLM server is listening. This information is
required for TLM-plugin initialization. It is provided by the TLM manager
as the last argument to the start script.

A sample OpenModelica Linux start-up script could look like this:

#!/bin/sh

# OpenModelica TLM start-up script

# Start with 6 arguments:

# 1 XModelName (XModel directory)

# 2 start-time

# 3 end-time

# 4 max-time-step

# 5 server-name:port

# 6 model-file

OpenModelicaPath=/opt/OpenModelica

TLMModelicaPath=/opt/OpenModelica/TLMPlugin/Modelica

OMC_Cmd="${OpenModelicaPath}/bin/omc"

TLMCONFIGFILE=tlm.config

LD_LIBRARY_PATH=${OpenModelicaLibPath}/lib

echo Writing caseID $1 and server name $5 to file $TLMCONFIGFILE

echo $1 > $TLMCONFIGFILE

echo $5 >> $TLMCONFIGFILE

echo $2 >> $TLMCONFIGFILE

echo $3 >> $TLMCONFIGFILE

echo $4 >> $TLMCONFIGFILE

MOSFILE=$1.mos

MODELNAME=‘basename $6 .mo‘

INTERVAL_STR="($3-$2)/($4)"

INTERVAL_STR="scale=8;${INTERVAL_STR/e/*10^}"

INTERVALS=‘echo $INTERVAL_STR | bc‘

echo Writing $MOSFILE

echo // Autogenerated modelica script for TLM cosimulation > $MOSFILE

echo "setEnvironmentVar( \"MODELICAUSERCFLAGS\", \\

\"-I${TLMModelicaPath} \\

-L${TLMModelicaPath}/${ABI}\");" >> $MOSFILE

echo "loadModel(Modelica);" >> $MOSFILE

echo "loadFile(\"${TLMModelicaPath}/TLM.mo\");" >> $MOSFILE

echo "loadFile(\"$6\");" >> $MOSFILE

echo "getErrorString();" >> $MOSFILE

echo "checkModel($MODELNAME);" >> $MOSFILE

echo "getErrorString();" >> $MOSFILE

echo "translateModel($MODELNAME);" >> $MOSFILE

echo "getErrorString();" >> $MOSFILE

echo "simulate($MODELNAME, startTime=$2, \\

stopTime=$3, \\
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numberOfIntervals=$INTERVALS, \\

method=\"dassl\", \\

outputFormat=\"plt\");" >> $MOSFILE

echo "getErrorString();" >> $MOSFILE

echo Starting OpenModelica with: $OMC_Cmd $MOSFILE

$OMC_Cmd $1.mos > $1.simlog

A sample OpenModelica Windows batch start-up script could look like this:

echo off

REM OpenModelica TLM start-up script

REM Start with 6 arguments:

REM 1 XModelName (XModel directory)

REM 2 start-time

REM 3 end-time

REM 4 max-time-step

REM 5 server-name:port

REM 6 model-file

set OpenModelicaPath=C:/OpenModelica1.8.1

set OMC_Cmd=%OpenModelicaPath%/bin/omc.exe

set TLMCONFIGFILE=tlm.config

cd %1

echo Writing caseID %1 and server name %5 to file %TLMCONFIGFILE%

echo %1 > %TLMCONFIGFILE%

echo %5 >> %TLMCONFIGFILE%

echo %2 >> %TLMCONFIGFILE%

echo %3 >> %TLMCONFIGFILE%

echo %4 >> %TLMCONFIGFILE%

set MOSFILE=%1.mos

for /F %%I in ("%6") do set MODELNAME=%%~nI

for /F %%I in ("%Mofile%") do set MODELNAME_WITH_MO=%%I

calc (%3-%2)/%4

call result.bat

set INTERVALS=%res%

echo Writing %MOSFILE%

echo // Autogenerated modelica script for TLM cosimulation > %MOSFILE%

echo setEnvironmentVar("MODELICAUSERLFLAGS", \\

"-L/c/OpenModelica/sources/TLMPlugin/Modelica/WINDOWS32"); >> %MOSFILE%

echo loadModel(Modelica); >> %MOSFILE%

echo loadFile("%6"); >> %MOSFILE%

echo checkModel(%MODELNAME%); >> %MOSFILE%

echo simulate(%MODELNAME%, startTime=%2, stopTime=%3, \\

numberOfIntervals=%INTERVALS%, \\

tolerance=0.000001, \\

method="euler", \\

outputFormat="plt", \\

variableFilter="x"); >> %MOSFILE%

echo Starting OpenModelica with: %OMC_Cmd% %MOSFILE%

%OMC_Cmd% %1.mos > %1.simlog

Note that the above approach requires that the Modelica TLMPlugin reads the
file “$TLMCONFIGFILE” in order to get the TLM parameters.

1.4 Co-Simulation

A composite model simulation environment has been created that is based on the
previously defined co-simulation framework. The system design of the environ-
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ment is shown in Figure 1.1. The environment provides:

• Generality, due to the general framework that allows for integration of many
different simulation tools.

• A generic method of co-simulation based on a composite model.

• A general method of external model execution, i.e., all simulation tools
involved are executed. Generality is achieved by a platform independent
start up command that takes care of possible actions, i.e., remote login, file
transfer, or set up of a parallel simulation environment.

• Communication and data transfer between the different external models.

• Data monitoring for analysis and post processing.

• Controlled simulation termination where all external models are taken down
in a correct way. This includes error handling due to external model failure
or network problems.

Composite
Model

Output
Data

Simulation
Manager

Simulator

CMS
pre- & post-
processor

Figure 1.1: The system design for the composite model simulation environment.

In addition to the simulation manager a composite model simulator is included
in the design that can start and monitor the composite model simulation. The
simulation manager has been designed to act as a network server that allows
several clients to connect and monitor the data flow between the interconnected
external model simulators. The simulator can connect to this port. All data
received by the simulation manager from the external model simulators is passed
on to the simulator that stores results in the composite model output file. This
client server architecture has some advantages over an integrated solution where
the simulation manager is part of the simulator:

• The simulator and simulation manager can run on different machines, this
is useful, for instance, if the simulation start up must be performed on a
machine other than the user’s local machine.

• Other processes can connect to the simulation manager’s monitoring port.
This allows, for instance, to visually monitor the co-simulation.

The simulation-manager manages start up of the different simulation tools (ex-
ternal model simulators) and communication between these tools, as defined by
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the simulation framework, see Figure 1.2. Each simulation tool implements the
interface plug-in that handles the necessary communication with the simulation
manager. The manager keeps an internal interconnection table for all connected
external interfaces and forwards all received packages accordingly.

Sim. Manager

Start
Start

Simulink

Modelica

MSC.ADAMS

Start TLM data

 TLM data

 TLM data

time step, position, velocity

Force, torque

 TLM data
 TLM data

Start
Start

Start

 TLM data

Force, torque

time step, position, velocity

Modelica

Interface plugin

Interface plugin

Interface plugin

Interface plugin

Plugin wrapper

BEAST

BEAST

Interface plugin

Interface plugin

Plugin wrapper

Plugin wrapper

Plugin wrapper

Plugin wrapper

Plugin wrapper

Figure 1.2: The simulation manager handles start up and communication between the
tool specific simulators.

Simulation results can be analysed in the post-processing applications, i.e.,
a two dimensional plotting program and a three dimensional visualisation tool,
i.e., the composite model editor (CME). Data animation of system dynamics is
possible to a limited extent based on the data that is exchanged in the external
interfaces.

1.5 Composite Model XML Files

The TLM default implementation contains a XML composite model reader, that
can be used by the simulation manager to read the composite model from an XML
file.

A composite model contains the following XML nodes:

Model is the top composite model node that contains a list of SubModels and
Connections.

SubModels is the node that contains the list of all SubModel nodes.

SubModel is used for the external models. There is a SubModel node for each
external model that participates in the co-simulation. It defines a sub-model
name used in the composite model and the start method and the simulation
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tool specific model files that needed to run the simulation. Each SubModel

node also contains a list of InterfacePoint nodes.

InterfacePoint nodes are used to specify the TLM interfaces of each external
model, that is, each SubModel. It defines the name of a certain interface in
the external model.

Parameter nodes specify SubModel parameters which can be changed prior to
simulation. It defines the name of a certain interface in the external model.

Connections is the node that contains the list of all Connection nodes.

Connection nodes define connections between two connected InterfacePoints,
that is, a connection between two TLM interfaces. TLM parameters are
specified for each connection.

SimulationParams node defines global composite model simulation parameters.
Total simulation start time, end time, and network port are defined in this
node.

Here a sample composite model XML file for a Modelica with Beast co-simulation:

<?xml version="1.0" encoding="ISO-8859-1"?>

<!-- The root node is the composite model -->

<Model Name="Pendulum">

<!-- List of connected sub-models -->

<SubModels>

<!-- Each sub-model defines an external simulation model,

the following is an Modelica model that is started with

the StartTLMModelica command and the model file shaft1.mo -->

<SubModel Name="shaft1"

StartCommand="StartTLMModelica"

ExactStep="0"

ModelFile="shaft1.mo">

<!-- TLM interface points for SubModel shaft1.

For each interface one can define position and

orientation vectors. These are mainly useful for

3D modeling. Orientation is defined as three angles

aroung x, y, and z axis "x,y,z" in radians. Angle321

defines rotation order 321 (z,y,x) of the three angles.

Position and orientation is defined with respect to the

external models inertial system. -->

<InterfacePoint Name="tlm"

Position="0,-0.1,0"

Angle321="0,0,0"/>

</SubModel>

<!-- SubModel brg1. This is a BEAST model. Also for sub-models

one can define position and orientation vectors. These are

useful for translations between the different models.

Position and orientation is defined with respect to the composite

models global inertial system. -->

<SubModel Name="brg1"

StartCommand="StartTLMBeast"

ExactStep="0"

ModelFile="dgbb"

Position="0,0,0"

Angle321="1.5708,0,0">
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<!-- TLM interface points for SubModel brg1 -->

<InterfacePoint Name="bIR‘cs1"/>

<InterfacePoint Name="bER‘cs1"/>

</SubModel>

<!-- SubModel shaft2. This is another Modelica model. -->

<SubModel Name="shaft2"

StartCommand="StartTLMModelica"

ExactStep="0"

ModelFile="shaft2.mo">

<!-- TLM interface points for SubModel C -->

<InterfacePoint Name="tlm"/>

</SubModel>

</SubModels>

<!-- List of TLM connections -->

<Connections>

<!-- For each connections individual TLM parameters are defined.

Note, that the maximum step size must be smaller than the

shortest delay of all TLM connections for a single simulation

tool. This is taken care of by the tlmmanager. -->

<Connection From="shaft1.tlm" To="brg1.bER‘cs1"

Delay="1e-3" Zf="1e4" Zfr="1e2" alpha="0.2"/>

<!-- Each connections defines which interface of which models are

connected.

In these interfaces forces are exchanged, see TLM definition. -->

<Connection From="shaft2.tlm" To="brg1.bIR‘cs1"

Delay="1e-3" Zf="1e4" Zfr="1e2" alpha="0.2"/>

</Connections>

<!-- "Global" parameters for the co-simulation.

Typically the overall simulation time is defined here.

This information is propageted to all simulation tools.

Note, some additional parameters for network port and

timeout can be defined here as well. But it is recommended

to not define this "system dependent settings" here.

Use some system setup instead that can be given or read by

the tlmmanager. -->

<SimulationParams StartTime="0.0"

StopTime="1.0"/>

</Model>
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Chapter 2

TLM background theory

The method that is used to enable interaction between dynamic models in the
composite model simulation is transmission line modelling (TLM) [1] [5] [2] [11].
TLM uses physically motivated time delays to separate the components in time
and enable efficient co-simulation. Only TLM connections between two external
interfaces are currently supported by the composite model simulation environment
because the TLM method gives numerical stability.

The TLM (Transmission Line Modeling) method, also called Bilateral Delay
Line Method [1], exploites the fact that all physical interactions in nature have
finite propagation speed.

Figure 2.1: Delay line with the passing wave variables c1 and c2 and velocity variables
v1 and v2.

A basic one-dimensional transmission line is shown in Figure 2.1. For the
mechanical case the line is basically an ideal elastic medium with force waves c1

and c2 going between its ends. The input disturbances are velocities v1 and v2

and the forces from the transmission line F1 and F2.
Note that the springs in our implementation are assumed to be isotropic. That

is no cross-term waves are generated when working in 2D and 3D. See [5] for
further discussions.

If the line delay is set to TTLM and its impedance to ZF then the govering
equations are:

c1(t) = F2(t− TTLM ) + ZF v2(t− TTLM )
c2(t) = F1(t− TTLM ) + ZF v1(t− TTLM )

F1(t) = ZF v1(t) + c1(t)
F2(t) = ZF v2(t) + c2(t)

(2.1)

The equations show that the two simulation systems are decoupled with the delay

13
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time TTLM . Simulation framework can utilize this decoupling to enable efficient
communications during co-simulation.

Representing the TLM connection with a simple model of a steel beam, the
stiffness coefficient can be computed as (see [5]):

k =
EA

L0
(2.2)

where E is Young’s modulus, A is the cross section area and L0 the length of the
beam.

The impedance ZF has a relation to the spring constant k, ZF = kTTLM . The
impedance factor can then be formulated as a function of the area and length of
the steel rod according to

ZF =
EATTLM

L0
(2.3)

Figure 2.2: Estimating the rotational stiffness.

To get the stiffness and impedance for the rotational degrees of freedom one
can use the already computed stiffness k. If the arrangement depicted in Figure
2.2 is assumed, then:

kφ =
M

δφ
= 2

(k/2)δφ(L0/2)2

δφ
=
kL2

0

4
(2.4)

and the impedance for the rotation:

ZFR =
1

4
ZFL

2
0 (2.5)

The time constant TTLM can be computed using the speed of sound for the
medium:

TTLM =
L0

vmedium
(2.6)

It can be shown that the TLM element also introduces a (parasitic mass) that
can be viewed to be outside the simulated system [5]. The total mass for the
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combined systems must therefore also include the parasitic mass of the TLM
element in order to make, e.g., the energy conservation formulas correct. This
mass depends on the impedance factor and the time delay factor

mp = ZFTTLM (2.7)

This implies that if the impedance factor ZF is increased, the parasitic mass
will increase if the synchronization delay TTLM is not decreased. If the parasitic
mass is large it may influence the system behavior and can not be neglected. Note,
that for the simple beam case when TLM parameters are computed according to
Equations 2.3 and 2.6 the parasitic mass is equivalent to the mass of the beam
(ρAL0, where ρ is the material density).

For practical purposes (see [13]) one can use the parameters of a material cube
with an edge given by characteristic distance L0. Equations 2.2 and 2.4 can then
be used to compute the translational and rotational stiffnesses:

k =
EL2

0
L0

= EL0

kφ =
kL2

0
4 =

EL3
0

4

(2.8)

To give a concrete example, let us assume that connection medium is steel and
the characteristic length is L0 = 0.1. Steel has Young’s modulus E = 210GPa
and the speed of sound in steel is vsteel = 5180m/s. The TLM parameters then
can be computed:

TTLM = L0/vsteel ≈ 2 ∗ 10−5

ZF = EL0TTLM ≈ 2 ∗ 105

ZFR = 1
4ZFL

2
0 ≈ 500

(2.9)

Calculations like these give approximate values of the stiffness and the time
delay of the TLM element. This gives a background for selecting the TLM line
delay and impedance parameters. In cases when required TTLM becomes a limiting
factor, while the TLM link stiffness is much higher than the stiffnesses used in the
sub-models, a lower stiffness and larger TTLM may be considered.

The elastic medium that is modelled with the TLM element introduces oscil-
lation frequencies (standing waves) given by:

fTLM,i =
i

2 TTLM
, i = 1, 2, 3, ... (2.10)

The basic TLM model has no damping which can result in unwanted vibra-
tions during simulation. In [5] a low pass filtering of the TLM charateristics is
recommended:

cfiltered(t) = cfiltered(t− T ) α+ c(t) (1− α) (2.11)

The filtering is controlled by a damping constant α. The recommended value
according to [5] is 0.2.
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Chapter 3

TLMManager System Design

The TLMManager is responsible for managing the TLM based co-simulation. The
main component used in the TLMManager is an instance of ManagerCommHan-
dler that takes a composite model as input.

//! Constructor.

ManagerCommHandler(CompositeModel& Model):

MessageQueue(),

Comm(Model.GetComponentsNum(),

Model.GetSimParams().GetPort()),

TheModel(Model),

MonitorConnected(false),

CommMode(CoSimulationMode),

monitorInterfaceMap(),

monitorMapLock(),

runningMode(StartUpMode),

exceptionMsg(""),

exceptionLock()

{

};

A CompositeModel instance can be generated in different ways. The default
TLM co-simulation implementation contains an XML composite model reader,
see also Figure 3.1. For details about the XML composite model description see
Section 1.5.

The CompositeModelReader parses the XML composite model file and initial-
izes CompositeModel and SimulationParams data structures, that is, set-up co-
simulation parameters. Simulation parameters define global co-simulation set-
tings, e.g., start and end time. Composite model parameters define the co-
simulation components (simulation models) and their interconnection.

The ManagerCommHandler is then started, that is, the Run() function is in-
voked. This function initialized the different threads that are used during the
co-simulation:

// Run method executes all the protocols in the right order:

// Startup, Check then Simulate

void ManagerCommHandler::Run(CommunicationMode CommMode_In) {

CommMode = CommMode_In;

pthread_attr_t attr;

pthread_attr_init(&attr);

pthread_attr_setscope(&attr, PTHREAD_SCOPE_SYSTEM);

pthread_t reader, writer;

// Start the minitoring thread

17
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pthread_t monitor;

if(CommMode == CoSimulationMode) {

pthread_create(&monitor, &attr, thread_MonitorThreadRun, (void*)this);

}

// start the reader & writer threads

pthread_create(&reader, &attr, thread_ReaderThreadRun, (void*)this);

pthread_create(&writer, &attr, thread_WriterThreadRun, (void*)this);

// Wait until all threads are finished.

if(CommMode == CoSimulationMode) {

pthread_join(monitor, NULL);

}

pthread_join(reader, NULL);

pthread_join(writer, NULL);

}

Note, that all communication between the co-simulation participants (simula-
tors with models) is going through the TLM manager. This communication is
handled by the threads that are started in the Run() function. The following
threads are started:

The reader thread initialized the co-simulation, processes incoming messages,
and creates messages to be sent. This threads first task is to run the Run-
StartupProtocol() that starts all the simulation tools that are participating
in the co-simulation and runs the initiation protocol. After that the thread
goes into message passing mode. Messages from one co-simulation partici-
pant to another are taken by the reader thread and marshaled to the receiver,
that is, they are converted into outgoing messages.

The writer thread processes all outgoing messages. It loops through the queue
of outgoing messages and distributes them to the correct receivers.

The monitor thread copies and forwards all outgoing messages to any con-
nected monitoring process. This can be used to monitor the co-simulation.
If no monitoring process is connected no copying and forwarding will take
place.

The ManagerCommHandler collaborates with different classes to handle co-
simulation start-up and communication, see also Figure 3.2. TLMManagerComm
is responsible for all socket communications on the TLMManager side. The
TLMMessageQueue handles the queue for outgoing messages.

3.0.1 Co-Simulation Start-up

During co-simulation start-up the TLMManager starts the different co-simulation
components (external models) and then waits until all components have registered
themselves. This is done with a simple initialization protocol.

First the components are started using TLMComponentProxy::StartComponent(...).
This is done using the OS specific execution method, for instance, with fork() and
execlp(...) on Linux:

execlp( StartCommand.c_str(), StartCommand.c_str(),

Name.c_str(),
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startTime.c_str(),

endTime.c_str(),

strMaxStep.c_str(),

serverName.c_str(),

ModelName.c_str(),

NULL );

The start command is the start-up script that must be provided for each specific
simulation tool. It takes a couple of parameters as specified in the composite model
XML file:

Name of the component as specified in the composite model XML file.

Start time of the simulation in seconds, typically 0.

End time of the simulation in seconds.

Max step for the solver to take. This is a limit set by the TLM interfaces of the
specific component. The solver is not allowed to take larger steps.

Server name is typically the hostname or IP address that the TLMManager is
running on and the port number that it is using. For instance 163.157.1.23:1111.

Model name of the simulation model. Typically the input file needed to start
the external model simulation.

3.0.2 External Model Initialization

After external model start-up, the TLMManager waits until all external models
have registered themselves. This is performed in ManagerCommHandler::RunStartupProtocol().
Here an outline of the code:

void ManagerCommHandler::RunStartupProtocol() {

...

// Start the external components forming "coupled simulation"

TheModel.StartComponents();

// Setup timer

tTM_Info tInfo;

TM_Init(&tInfo);

TM_Start(&tInfo);

while( (numToRegister > 0) ||

( numCheckModel < TheModel.GetComponentsNum()) ) {

...

// Check all the registered components if they send

// interface registration messages.

for(int iSock = TheModel.GetComponentsNum() - 1; iSock >= 0 ; --iSock) {

...

TLMMessage* message = MessageQueue.GetReadSlot();

message->SocketHandle = hdl;

TLMCommUtil::ReceiveMessage(*message);

if(message->Header.MessageType == TLMMessageTypeConst::TLM_CHECK_MODEL) {

// This component is done with registration. It’s will wait for others

TLMErrorLog::Log(string("Component ") + comp.GetName() + " is ready to simulation");;

comp.SetReadyToSim();

numCheckModel++;

}
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else if(message->Header.MessageType == TLMMessageTypeConst::TLM_REG_PARAMETER) {

TLMErrorLog::Log(string("Component ") + comp.GetName() + " registers parameter");

Comm.AddActiveSocket(hdl);

ProcessRegParameterMessage(iSock, *message);

MessageQueue.PutWriteSlot(message);

}

else {

TLMErrorLog::Log(string("Component ") + comp.GetName() + " registers interface");;

Comm.AddActiveSocket(hdl); // expect more messages

ProcessRegInterfaceMessage(iSock, *message);

MessageQueue.PutWriteSlot(message);

}

}

// Check if a new connection is waiting to be accepted.

if((numToRegister > 0) && Comm.HasData(acceptSocket)) {

int hdl = Comm.AcceptComponentConnections();

TLMMessage* message = MessageQueue.GetReadSlot();

message->SocketHandle = hdl;

if( !TLMCommUtil::ReceiveMessage(*message) ){

TLMErrorLog::FatalError("Failed to get message, exiting");

abort();

}

ProcessRegComponentMessage(*message);

MessageQueue.PutWriteSlot(message);

numToRegister --;

if(numToRegister == 0)

TLMErrorLog::Log("All expected components are registered");

Comm.AddActiveSocket(hdl);

}

if(numToRegister) // still more connections expected

Comm.AddActiveSocket(acceptSocket);

}

}

The above method has three main tasks. First, it checks for new connections from
any external model. Second, it checks if already registered components need to
register any parameters. Finally, it checks if already registered components need
to register any TLM interfaces.

The initialization protocol looks the following way:

1. An external model send a TLMMessageTypeConst::TLM REG COMPONENT
message to the TLMManager.

2. The TLMManager answers with the same message but also sets the data
size of the message to 0.

3. The external model send an interface registration message (TLMMessageType-
Const::TLM REG INTERFACE).

4. The manager answers with the same message head and adds the connection
parameters as stored in the composite model XML file to the data section
of the message.
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5. The external model repeats the interface registration for all its external
(TLM) interfaces.

6. The external model send a parameter registration message (TLMMessageType-
Const::TLM REG PARAMETER).

7. The manager answers with the same message head and adds the default
parameter value as stored in the composite model XML file to the data
section of the message.

8. The external model repeats the parameter registration for all its model
parameters.

9. Finally the external model sends a TLMMessageTypeConst::TLM CHECK MODEL
that tells that it is ready to simulate.

10. The TLMManager puts the component into ready for simulation mode.
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SimulationParams

- TimeStart
- TimeEnd
- Port
- MonitorPort
- Timeout

+ SimulationParams()
+ Set()
+ GetPort()
+ SetPort()
+ GetMonitorPort()
+ SetMonitorPort()
+ GetStartTimeStr()
+ SetStartTimeStr()
+ GetEndTimeStr()
+ SetEndTimeStr()
+ GetServerName()
+ GetTimeout()

CompositeModel

- Components
- ComponentParameters
- Interfaces
- Connections
- SimParams

+ CompositeModel()
+ ~CompositeModel()
+ RegisterTLMComponentProxy()
+ RegisterComponentParameterProxy()
+ RegisterTLMInterfaceProxy()
+ GetTLMComponentProxy()
+ GetComponentParameterProxy()
+ GetTLMInterfaceProxy()
+ GetComponentsNum()
+ GetComponentParametersNum()
+ GetInterfacesNum()
+ GetTLMComponentID()
+ GetComponentParameterID()
+ GetTLMInterfaceID()
+ RegisterTLMConnection()
+ GetTLMConnection()
+ StartComponents()
+ GetSimParams()
+ CheckProxyComm()
+ Print()

CompositeModelReader

- TheModel

+ CompositeModelReader()
+ ReadModel()
- ReadComponents()
- ReadTLMInterfaceNodes()
- ReadComponentParameters()
- ReadSimParams()
- FindChildByName()
- FindAttributeByName()
- ReadTLMConnectionNode()

SimParams

TheModel

Figure 3.1: UML collaboration diagram of the CompositeModelReader class. The Com-
positeModelReader initialized the CompositeModel data structure.
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ManagerCommHandler

- MessageQueue
- Comm
- TheModel
- CommMode
- monitorInterfaceMap
- monitorMapLock
- runningMode

+ ManagerCommHanler()
+ Run()
+ RunStartupProtocol()
+ ProcessRegComponentMessage()
+ ProcessRegParameterMessage()
+ ProcessRegInterfaceMessage()
+ ReaderThreadRun()
+ WriterThreadRun()
+ MarschalMessage()
+ MonitorThreadRun()
+ getRunState()
+ thread ReaderRhreadRun()
+ thread WriterThreadRun()
+ thread MonitorThreadRun()
- SetupInterfaeConnectionMessage()
- SetupInterfaceRequestMessage()
- UnpackAndStoreTimeData()
- ProcessInterfaceMonitoringMessage()
- ForwardToMonitor()
- Terminate()

TLMManagerComm

- CurFDSet
- ContactSockets
- ClientSockets
- ActiveSockets
- StartupMode
- ServerPort
- NumClients

+ TLMManagerComm()
+ CreateServerSocket()
+ SelectReadSocket()
+ HasData()
+ ClearActiveSockets()
+ AddActiveSocket()
+ DropActiveSocket()
+ SwichToRunningMode()
+ AcceptComponentConnections()
+ closeAll()
+ GetServerPort()

TLMMessageQueue

- SendBufLock
- SendBuffers
- FreeBufLock
- FreeBuffers
- SenderWait
- Terminated

+ TLMMessageQueue()
+ ˜TLMMessageQueue()
+ GetReadSlot()
+ PutWriteSlot()
+ GetWriteSlot()
+ ReleaseSlot()
+ Terminate()

CompositeModel

- Components
+ ComponentParameters
- Interfaces
- Connections
- SimParams

+ CompositeModel()
+ ~CompositeModel()
+ RegisterTLMComponentProxy()
+ RegisterComponentParameterProxy()
+ RegisterTLMInterfaceProxy()
+ GetTLMComponentProxy()
+ GetComponentParameterProxy()
+ GetTLMInterfaceProxy()
+ GetComponentsNum()
+ GetComponentParametersNum()
+ GetInterfacesNum()
+ GetTLMComponentID()
+ GetComponentParameterID()
+ GetTLMInterfaceID()
+ RegisterTLMConnection()
+ GetTLMConnection()
+ StartComponents()
+ GetSimParams()
+ CheckProxyComm()
+ Print()

SimulationParams

- TimeStart
- TimeEnd
- Port
- MonitorPort
- TimeOut

+ SimulationParams()
+ Set()
+ GetPort()
+ SetPort()
+ GetMonitorPort()
+ SetMonitorPort()
+ SetStartTimeStr()
+ SetEndTimeStr()
+ GetServerName()
+ GetTimeout()

TheModel

Comm

MessageQueue

SimParams

Figure 3.2: ManagerCommHandler collaboration and class diagram.
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Chapter 4

Simulink TLM Plugin

The Matlab/Simulink TLMPlugin implementation is based on a Matlab S-function
interface. There are blocks for 3D force interfaces, 1D signal input interfaces and
1D signal output interfaces.

/*

* tlmforce.c: Based on ’C’ template for a level 2 S-function.

*

* -------------------------------------------------------------------------

* | See matlabroot/simulink/src/sfuntmpl_doc.c for a more detailed template |

* -------------------------------------------------------------------------

*

* Copyright 1990-2000 The MathWorks, Inc.

* $Revision$

*/

TLM delay is set in the initialization of the S-Function interface function mdlIni-
tializeSampleTimes(...).

/* Function: mdlInitializeSampleTimes =========================================

* Abstract:

* This function is used to specify the sample time(s) for your

* S-function. You must register the same number of sample times as

* specified in ssSetNumSampleTimes.

*/

static void mdlInitializeSampleTimes(SimStruct *S)

{

double sTime, eTime, timeStep;

TLM_InterfaceReg::GetInstance(false)->GetSimParameters(sTime, eTime, timeStep);

// true or false in GetInstance(...) enables/disables debug output

TLMErrorLog::Log("Set sample time to " + ToStr(timeStep));

/* Set TLM delay here! */

ssSetSampleTime(S, 0, CONTINUOUS_SAMPLE_TIME);

ssSetOffsetTime(S, 0, 0.0);

/* Set TLM delay here! */

ssSetSampleTime(S, 1, timeStep);

ssSetOffsetTime(S, 1, 0.0);

}

Note, that the first call to TLM InterfaceReg::GetInstance(...) initialized the
TLM plugin, that is, it reads the TLM configuration parameters form the config
file.
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Communication with Simulink is based on the C structure SimStruct. Ini-
tially we need to setup the size (of the data that we want to communicate in the
structure. This is done in the S-Function interface function mdlInitializeSizes(...).

/* Function: mdlInitializeSizes ===============================================

* Abstract:

* The sizes information is used by Simulink to determine the S-function

* block’s characteristics (number of inputs, outputs, states, etc.).

*/

static void mdlInitializeSizes(SimStruct *S)

{

/* See sfuntmpl_doc.c for more details on the macros below */

...

/* input ports are: */

/* position[3] Interface position data */

/* orientation[3x3] Interface rotation matrix */

/* speed[3] Interface translational velocity */

/* ang_speed[3] Interface angular velocity */

if (!ssSetNumInputPorts(S, 4)) return;

/* Set size of input arrays */

ssSetInputPortWidth(S, 0, 3);

ssSetInputPortWidth(S, 1, 9);

ssSetInputPortWidth(S, 2, 3);

ssSetInputPortWidth(S, 3, 3);

...

/* output ports are: */

/* force[3] Output force */

/* moment[3] Output moment */

if (!ssSetNumOutputPorts(S, 4)) return;

ssSetOutputPortWidth(S, 0, 3);

ssSetOutputPortWidth(S, 1, 3);

ssSetOutputPortWidth(S, 2, 3);

ssSetOutputPortWidth(S, 3, 9);

}

The force calculation in the TLM interface takes place in the S-Function interface
function mdlOutputs(...). This function is called by Simuink for a given time in-
stance. The motion of the interface can be extracted from the SimStruct structure
that has been setup before, see mdlInitializeSizes above. The resulting load (force
and moment) is stored in the same structure.

/* Function: mdlOutputs =======================================================

* Abstract:

* In this function, you compute the outputs of your S-function

* block. Generally outputs are placed in the output vector, ssGetY(S).

*/

static void mdlOutputs(SimStruct *S, int_T tid)

{

/* inputs: */

/* position[3] Interface position data */

/* orientation[3x3] Interface rotation matrix */

/* speed[3] Interface translational velocity */

/* ang_speed[3] Interface angular velocity */

double *R = (double*)ssGetInputPortSignal(S,0);

double *A = (double*)ssGetInputPortSignal(S,1);

double *vR = (double*)ssGetInputPortSignal(S,2);

double *Omega = (double*)ssGetInputPortSignal(S,3);
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const char* name = ssGetPath(S);

real_T time = ssGetT(S);

int ifID = TLM_InterfaceReg::GetInstance()->GetInterfaceID(name);

/* output */

double force[6];

TLMTimeData3D CurTimeData;

if( ifID >= 0 ) {

TLM_InterfaceReg::GetInstance()->GetPlugin()->GetForce3D(ifID,

time,

R,

A,

vR,

Omega,

force);

/* Get Position and Orientation */

TLM_InterfaceReg::GetInstance()->GetPlugin()->GetTimeData3D(ifID,

time,

CurTimeData);

}

else {

/* Not connected */

for( int i=0 ; i<6 ; i++ ) {

force[i] = 0.0;

}

}

/* ------- store the result ------- */

/* Force & Moment */

real_T *f = ssGetOutputPortRealSignal(S,0);

real_T *m = ssGetOutputPortRealSignal(S,1);

for( int i=0 ; i<3 ; i++ ){

f[i] = force[i];

m[i] = force[i+3];

}

/* Position & Orientation */

real_T *R_TLM = ssGetOutputPortRealSignal(S,2);

real_T *A_TLM = ssGetOutputPortRealSignal(S,3);

for( int i=0 ; i<3 ; i++ ){

R_TLM[i] = CurTimeData.Position[i];

A_TLM[i] = CurTimeData.RotMatrix[i];

A_TLM[i+3] = CurTimeData.RotMatrix[i+3];

A_TLM[i+6] = CurTimeData.RotMatrix[i+6];

}

}

TLMPlugin::SetMotion3D(...) is called when we want to update the states
for a “final” integration step. In the S-Function interface this is handled in the
function mdlUpdate(...). This triggers the communication with the connected
simulation tools in order to propagate the states.

/* Function: mdlUpdate ======================================================

* Abstract:

* This function is called once for every major integration time step.

* Discrete states are typically updated here, but this function is useful

* for performing any tasks that should only take place once per
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* integration step.

*/

static void mdlUpdate(SimStruct *S, int_T tid)

{

if( ssIsSampleHit(S, 1, tid) ){

double *R = (double*)ssGetInputPortSignal(S,0);

double *A = (double*)ssGetInputPortSignal(S,1);

double *vR = (double*)ssGetInputPortSignal(S,2);

double *Omega = (double*)ssGetInputPortSignal(S,3);

const char* name = ssGetPath(S);

real_T time = ssGetT(S);

int ifID = TLM_InterfaceReg::GetInstance()->GetInterfaceID(name);

if( ifID >= 0 ){

// Send data to the Plugin

TLM_InterfaceReg::GetInstance()->GetPlugin()->SetMotion3D(ifID,

time,

R,

A,

vR,

Omega);

}

}

}

The code for signal interfaces use the same functions as above. However, it calls
GetValueSignal() instead of GetForce3D() and SetValueSignal() instead of
SetMotion3D().
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MSC.Adams TLM Plugin

Important note:
The current version of the co-simulation environment does not propagate delay
time (maximum time step) from the composite model to the MSC.ADAMS models
automatically. Instead these values must be set in the Adams Command File
(.acf). See Section 9.3 for details.

MSC.Adams supports a C subroutine application programming interface (API)
that can be integrated with your C/C++ code. It it is based on some C header
files, for instance:

// portability header from ADAMS

#include "userPortName.h"

// C-callable subroutines from ADAMS

#include "utilCcallable.h"

The MSC.Adams TLMplugin implementation is based on the Adams GFOSUB
subroutine. This subroutine can be called from a general force element in Adams.

// File gfo_wrapper.c

//

// GFOSUB ADAMS/Solver user subroutine interface implementation

//

// GFOSUB - is an interfacec function for general 6-component force tensor

// that is 3-component force & 3-component torque.

//

// id - id of this external function

// time - current time. Note that adaptive step solver is used in ADAMS

// Unsuccessful steps are possible. TIMGET function can be used to check

// is the last call was a final RHS call.

// par - parameters to the function - for GFOSUB expected:

// a marker, i.e. one parameter

// nPar - number of parameters - should be 1 or 2. If second parameter exists, there will be debug output.

// dflag - true if Jacobian calculation is in progress, i.e. small change of inputs

// For TLM purposes such calls can be made much faster since TLM force

// is dependent only on time and not on the states.

// iflag - (init flag) true if solver is only after dependencies between vars

// We need to make sysary calls to the motion variables that TLM is dependent on.

// result - array of 6 elements with the resulting force

VOID_FUNCTION GFOSUB(int *id, REAL *time, REAL *par, int *nPar, BOOL *dflag, BOOL *iflag, REAL *result){

...

}
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The c sysary function lets a user-written subroutine read information from
ADAMS. Here we need it to get the displacement and velocity.

// c_sysary(char *fncnam, int *ipar, int nsize, REAL *states, int *nstate,

// BOOL *errflg);

// Input:

// fncnam - name of the function, "DISP" for displacement

// ipar, nsize - list of markers and the number of markers

// DISP requires 1 to 3 markers where the distance is measured

// to marker 1 origin from marker 2 (reference)

// in coordinate system of marker 3 (basis) Setting markers

// 2 and 3 to "0" gives global inertia system as reference.

// Markers 2 & 3 are optional.

// For our case we use the marker submitted to GFOSUB in parameters

// and ground.

// Output:

// states, nstate - variable values and the number of variable returned

// For "DISP" 6 variables giving position and orientation are returned

// The orientation is given by Psi, Theta, Phi (ADAMS/Solver Euler angles)

// c_rcnvrt(char *sys1, REAL *coord1, char *sys2, REAL *coord2, int *istat);

// can be used to convert those to Euler parameters by specifying

// sys1 = ’EULER’ and sys2 = ’EULPAR’ or directly to rotation matrix

// (columnwise) by specifying sys2 = ’COSINES’.

// errflg - returns TRUE on error.

// Get displacement

c_sysary ("DISP", markers, 3, disp, &ns, &errflg);

// Convert the angles from ADAMS "standard" Euler to rotation matrix (9-components)

c_rcnvrt("EULER",disp+3,"COSINES",rot,&errflg);

// Get velocity

c_sysary ("VEL",markers,4,vel,&ns,&errflg);

Adams also supports unit scales. This is useful since we assume SI units in the
TLM interface. Thus, we can convert into the correct unit.

// Units scaling. See gtunts in ADAMS manual

BOOL existsUnits;

double scales[4];

#define UNIT_SCALE_TIME 0

#define UNIT_SCALE_LENGTH 1

#define UNIT_SCALE_FORCE 2

#define UNIT_SCALE_MASS 3

char units[3 * 4];

// gtunts retunes the unit scales to MKS as used in the model

c_gtunts(&existsUnits, scales, units);

if(existsUnits ) {

// Scale transitional measures with length units + speeds with time units

if(scales[UNIT_SCALE_LENGTH] != 1.0) {

disp[0] *= scales[UNIT_SCALE_LENGTH];

disp[1] *= scales[UNIT_SCALE_LENGTH];

disp[2] *= scales[UNIT_SCALE_LENGTH];

vel[0] *= scales[UNIT_SCALE_LENGTH];

vel[1] *= scales[UNIT_SCALE_LENGTH];

vel[2] *= scales[UNIT_SCALE_LENGTH];

}

if(scales[UNIT_SCALE_TIME] != 1.0) {

for( i = 0; i < 6; ++i) {

vel[i] /= scales[UNIT_SCALE_TIME];

}

}

}
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Finally we can call calc tlm force(...) that invokes both, SetMotion3D(...) and
GetForce3D(...) in the TLM interface. In order to handle “final” or “converged”
solver steps we invoke the Adams function c timget(...) that returns the last
converged time step. This information is passed on to the TLM interface for the
correct TLM parameter communication with the connected simulation tools, that
is, data is send for converged steps only.

// TIMGET returns simulation time at the end of the last successful step

c_timget(&lastConvergedTime);

calc_tlm_force(*iflag, // init flag. No result is needed.

*dflag, // If set, it is derivatives calculation.

// Time stands still.

dbgOut, // should we print debug messages?

markers[0], // The calling marker ID

*time, // Current simulation time

lastConvergedTime, // Last converged time

disp, // Marker position data

rot, // Marker rotation matrix

vel, // Marker translational velocity

vel + 3, // Marker angular velocity

result); // Output 6-component force

The calculated load (force and moment) response needs to be converted back
to Adams units.

if(existsUnits ) {

// Scale force & torque

if(scales[UNIT_SCALE_FORCE] != 1.0) {

for( i = 0; i < 6; ++i) {

result[i] /= scales[UNIT_SCALE_FORCE];

}

if(scales[UNIT_SCALE_LENGTH] != 1.0) {

result[3] /= scales[UNIT_SCALE_LENGTH];

result[4] /= scales[UNIT_SCALE_LENGTH];

result[5] /= scales[UNIT_SCALE_LENGTH];

}

}

}

};

In the ADAMS TLM plugin implementation we keep track of the last converged
time step in order to send data only if needed, that is, when we have a converged
step. This is implemented in the TLM force::GetForce(...) function that is in-
voked by calc tlm force(...), see File tlmforce.c in the TLMSimulator/ADAMS
directory.

What happens is that we always store the motion data of the last time step
that ADAMS invoked calc tlm force(...) for. For each step we check if the last
step was a converged step (based on the information we got from the ADAMS
solver and the data that we stored). If it was a converged step we send the data
that we have cached, that is, the last time step.

void TLM_force::GetForce(bool derCalc,

int markerID,

double lastConvergedTime,

MarkerMotionData& param,

double* force) {

if(getMode() == 0) {

// init has been called for all



32 CHAPTER 5. MSC.ADAMS TLM PLUGIN

setMode();

SwitchToRunMode();

}

MarkerID& mID = MarkerIDmap[markerID];

int interfaceID = mID.ID; // interface force ID in TLM manager

MarkerMotionData& lastParam = LastMarkerMotion[mID.index];

if(!derCalc) { // if it’s a normal call (not Jacobian)

if( (lastParam.Time >= 0 ) // there’s data

&& (lastParam.Time != param.Time ) //not a repeated call

) {

if(lastConvergedTime == lastParam.Time) { // that was a converged step

map<int, MarkerID>::iterator it;

for(it = MarkerIDmap.begin(); it != MarkerIDmap.end();++it) {

int curID = it->second.ID;

int index = it->second.index;

MarkerMotionData& toSend = LastMarkerMotion[index];

Plugin->SetMotion3D(curID, // Send data to the Plugin

toSend.Time,

toSend.Position,

toSend.Orientation,

toSend.Speed,

toSend.Ang_speed);

// invalidate time to avoid resend

toSend.Time = param.Time;

}

}

}

lastParam = param; // store the current motion data

}

// Call the plugin to get reaction force

Plugin->GetForce3D(interfaceID,

param.Time,

param.Position,

param.Orientation,

param.Speed,

param.Ang_speed,

force);

}
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BEAST TLM Plugin

BEAST integrates the TLM plugin directly into the source code. Any coordinate
system in BEAST has an TLM-enable flag to turn this coordinate system into a
TLM interface.

class CtlPoint : public NamedCoordSystem , public MBSTreeComponent {

...

//! The TLM activation flag.

int tlmEnabledFlg;

public:

// Check for tlmEnabled CtlPoint

bool isTLMEnaled(){ return tlmEnabledFlg != 0; }

...

};

The BEAST TLM co-simulation part is based on two C++ classes:

TLMInterfaceHandler takes care of creating and initializing all additional
components for the TLM co-simulation, this is, a global (cB) coordinate
system, necessary connection instances, and the necessary TLMTies.

TLMTie A TLMTie is created for each TLM interface, that is, for each TLM en-
abled coordinate system. It ties the interface to a global coordinate system
for correct motion computation. The TLMTie functions as the communica-
tion port between the actual TLM interface in the co-simulation manager.

6.1 The TLMInterfaceHandler

The TLMInterfaceHander stores a list of all TLM-enabled coordinate systems
in the Beast model. In the initial phase of the co-simulation it creates all nec-
essary TLMTies for the communication with the TLM manager. This includes
creation of a global control point that is needed for the TLMTie and creation of
all necessary cBBodyConnections.
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void TLMInterfaceHandler::EnableTLMCtlPoint(CtlPoint* ctl)

{

TLMTie* tie=0;

ModelcBBodyConnection* connection=0;

// Now, everything seems fine.

// Let’s create the global ctl-point needed for the tie

if( globalCtl == 0 ){

assert(topModel!=0);

doRegister = false;

globalCtl = new FixedCtlPoint(topModel, "ctTLMglobal" );

assert(globalCtl!=0);

doRegister = true;

}

// Create the connection if needed

Connection* tlmConn = 0;

if( topModel->ConnectionExistQ("cB:"+body->get_FName()) ){

tlmConn = topModel->GetConnectionPtr("cB:"+body->get_FName());

}

else {

connection = new ModelcBBodyConnection(topModel, body);

assert(connection!=0);

tlmConn = connection;

}

int idx = tlmConn->Get_ListSize(TIE_category)+1;

// Now create the TLM tie

tie = new TLMTie(tlmConn,

"TLM" + ToStr(idx),

globalCtl,

ctl,

0, 0,

true);

}

6.2 The TLMTie

During the co-simulation the TLMTie is responsible for the communication with
the TLM co-simulation manager and takes care of force evaluation and motion
propagation in the TLM interface. There are three phases. First phase is the
preparation of the force evaluation. This is done in TLMTie::ComputeMasterBefore():

// Evaluate the data needed for the current time step.

void TLMTie::ComputeMasterBefore()

{

if (!NonZeroFlg) return;

assert(ModelMode != SlaveMode);

// Get the time data for the specified time

TLMlink->GetTimeData3D(ForceID, SimTime, CurTimeData);

}

TLMlink-¿GetTimeData3D(...) makes sure that force and moment data for
the current time step is available in the interface. If it is not yet available it waits
until the data has been received though the TLM manager from the connected
simulation tool.

Second phase is to evaluate force and moment and update the internal states
of the coordinate system. This happens in TLMTie::calcChildForceMoment(...):
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void TLMTie::calcChildForceMoment(const MotionVar& ctl2_M_ctl1_ctl1)

{

if (!NonZeroFlg) return;

// Get the motion.

ctl2_M_ctl1_ctl1.Get(ctl2_R_ctl1_ctl1,

ctl2_A_ctl1,

ctl2_vR_ctl1_ctl1_ctl1,

ctl2_Omega_ctl1_ctl1);

if(RHSFinalFlg) {

ctl2_M_ctl1_ctl1_Final = ctl2_M_ctl1_ctl1;

}

double forceOut[6];

// Note that the static function is used here.

// This is necessary since the force might be

// evaluated several times and on a slave.

TLMPlugin::GetForce3D(&ctl2_R_ctl1_ctl1(1),

&ctl2_A_ctl1(1,1),

&ctl2_vR_ctl1_ctl1_ctl1(1),

&ctl2_Omega_ctl1_ctl1(1),

CurTimeData,

Params,

forceOut);

// pc is equal ctl2 for now, i.e. ConLoc12 =1.0

pc_ctl1_ctl1 = ctl2_R_ctl1_ctl1;

double3 F_pc_ctl1_tmp(forceOut[0], forceOut[1],forceOut[2]);

double3 M_pc_ctl1_tmp(forceOut[3], forceOut[4],forceOut[5]);

// Transform to system ctl1.

M2_pc_ctl1 = M_pc_ctl1_tmp;

M2_ctl1_ctl1 = M_pc_ctl1_tmp + Cross(pc_ctl1_ctl1, F_pc_ctl1_tmp);

F2_ctl1 = F_pc_ctl1_tmp;

ctl2_P_ctl1 = F2_ctl1*ctl2_vR_ctl1_ctl1_ctl1 + M2_ctl1_ctl1*ctl2_Omega_ctl1_ctl1;

}

Note, that in a parallel BEAST simulation TLMTie::calcChildForceMoment(...)
is invoked on the slaves. Slaves do not have a TLMPlugin instance but use the
static TLMPlugin::GetForce3D(...) instead that requires the TLM parameters as
input. Time-data and TLM parameters are therefore send to all the slaves using
the standard packing mechanism.

The third phase is to send the necessary response to the TLM interface. This
is done for final/converged solver steps only. In BEAST we can check this the
RHSFinal flag:

void TLMTie::ComputeMasterAfter()

// Set the data - send out the force used in this Evaluate the data needed for the current time step.

{

if (!NonZeroFlg) return;

if(RHSFinalFlg) {

// Get the motion.

ctl2_M_ctl1_ctl1_Final.Get(ctl2_R_ctl1_ctl1,

ctl2_A_ctl1,

ctl2_vR_ctl1_ctl1_ctl1,

ctl2_Omega_ctl1_ctl1);

// Set it in TLM Plugin, socket communication might happen
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TLMlink->SetMotion3D(ForceID,

SimTime,

&ctl2_R_ctl1_ctl1(1),

&ctl2_A_ctl1(1,1),

&ctl2_vR_ctl1_ctl1_ctl1(1),

&ctl2_Omega_ctl1_ctl1(1));

}

}
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Modelica TLM Plugin

A Modelica TLM library has been implemented for the purpose of co-simulation.
The library consists of TLM functions, sensors and the TLM interface for 1D
and 3D modeling. In this report we will illustrate how to use the TLM interface
together with the Modelica Multi-Body Library. The Library has been tested and
verified in Wolfram SystemModeler, Dymola, and OpenModelica.

Figure 7.1: Modelica TLM Library

In this chapter we will describe the implementation of the TLM interface for
Modelica. The component of interest is the 3D TLM interface from the TLM
Modelica library. The 3D TLM component is the interface for co-simulation be-
tween Modelica multi-body models and external models. The design of the 3D
TLM interface is given in Figure: (7.2).

The main functions in the 3D multi-body TLM component are the C-functions
TLMSetMotion() and TLMGetMotion(). These two functions receive and send
the model-name, time, position, orientation, velocity and the angular-velocity
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Figure 7.2: 3D TLM Modelica component text view
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between a Modelica model and an external model. The TLMSetMotion() sends
the above mentioned variables between each sub-model within a user-defined TLM
Time Delay. The TLM Time Delay is defined in an XML file, which describes the
relationship between each Modelica sub-model.

The cut-force and cut-torque acting on the mechanical component the TLM com-
ponent is connected to is calculated based on the data received from the TLMGet-
Force() function. The force and torque calculation takes place in the C-functions.

On Figure: (7.3) a flow chart of the Modelica TLM interface co-simulation is
given. The first step in the TLM Modelica co-simulation is to split a model into
two or more sub-models (in cases where the co-simulation is undertaken within
two Modelica tools). A TLM interface component has to be connected to each
sub-model.

The second step is to prepare the files for the simulation. The first step in the
co-simulation process is to write an XML file. In the XML file the user defines
the TLM tie relationship between each sub-model that has to be included in the
co-simulation in Modelica. See Figure: (12.5) for an example of an XML file. The
XML file contains the model connection description, TLM Time Delay, physical
connection parameters, and the simulation time.

When the XML file has been created a simulation using the TLM Manager can
now be undertaken. When the user executes the TLM manager the TLM manager
executes the BAT file, which contains the information about the simulation, i.e.
simulation solver, variables to be saved in the result file, step time, numbers of
interval etc., and generates a MOS file needed for the Modelica Engine to start
a simulation. Based on the MOS file (which is generated for each sub-model)
a simulation is started. When the simulation is finished a result file is written,
currently a MAT file (the user can chose the type of result file from the simulation
in the BAT file). The result file can now be loaded into a Modelica GUI and an
analysis of the results can be undertaken.
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Figure 7.3: Modelica TLM co-simulation flow chart
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Functional Mock-up Interface TLM
Plugin

Functional Mock-up Interface (FMI) is a tool-independent standard for connecting
simulation tools [19]. One tool can export a model as a Functional Mockup Unit
(FMU), a ZIP package with the file extension FMU. This file is in turn loaded
by the master simulation tool, which can connect and simulate the model. An
FMU file contains a model description XML file called modelDescription.xml,
binaries for different platforms and other optional content. It is important that
the FMU contains a binary file for the platform where the master simulation tool
is executed.

There are two versions of the FMI standard: FMI for Co-Simulation and FMI
for Model Exchange. The main difference is that FMUs for Co-Simulation contain
their own built-in solvers, and only exchange data at predefined communication
points. FMUs for Model Exchange require a solver in the master simulation tool.

The TLM framework is able to simulate aggregated systems of connected sub-
models using asynchronous TLM communication. Input, output and bidirectional
interfaces are supported. Bidirectional interfaces can be either 1D or 3D. It is also
possible to specifiy physical domains such as mechanical, rotational or hydraulic.
Including FMUs in the TLM framework requires a wrapper. FMIWrapper is a
generic wrapper for connecting functional mockup units (FMUs) to the TLM
framework. It uses the FMI Library from Modelon [20] to load an FMU, and the
TLMPlugin for socket communication with the framework, see figure 8.1.

FMIWrapper

TLMPluginFMILibraryxmodel.fmu

TLMManager

TLMPlugin

Figure 8.1: FMIWrapper uses FMILibrary to import FMUs, and TLMPlugin for socket
communication.

Both FMI for co-simulation and FMI for model exchange are supported. Model
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exchange requires a solver in the wrapper executable. For this reason, the CVODE
and IDA solvers from the Sundials package are included.



Chapter 9

External MSC/Adams Models

9.1 Preparing the Model File

The TLM Plugin interface was implemented for ADAMS 2005. It has been tested
with C++ solvers only. It is installed with TLMSimulator and located in the bin
folder.

ADAMS simulation is performed in batch mode, therefore the solver data set
(adm file) needs to be generated. Before you can export the file from ADAMS/View
you need to introduce TLM Interfaces in your model. TLM interfaces in ADAMS
models are represented by GFORCE elements acting between a marker on the
action part and a marker on ground.

9.2 Modifying an ADAMS model step-by-step

The example is an ADAMS-BEAST co-simulation where one of the revolute joints
in an existing ADAMS model will be substituted with a BEAST bearing.

Start by locating a revolute joint to be replaced by the real bearing model.
Print out the information about the joint and about the markers it connects.
A typical information is presented in Figure 9.1. Write down the names of the
markers and their IDs. The markers will become TLM interfaces in the resulting
component. For the presented examples the names would be M4 for the shaft
interface and M10 for the housing interface.

The revolute joint should be excluded from the model, e.g., by using the object
activate/deactivate dialog as presented in Figure 9.2.

Next step is creating a reference marker on ground that will give the correct
orientation of the bearing. Use the Command Navigator - marker - create and
specify the orientation so that the Z-axis is the axis of rotation and gravity has
negative X direction. An example is presented in Figure 9.3. Write down the ID
of the newly created marker.

Next step is the creation of general forces representing the TLM connections.
Use the Command Navigator-force-create-direct-general force. The Figures 9.4
and 9.5 presents an example of the dialog.

The ADAMS solver dataset can now be exported via the export dialog as
shown in Figure 9.6. Note that ”Verify the model” check box is off. Verification
will result in an unsuccessful call to TLMManager that crashes the ADAMS/View.
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Object Name : .TestModel.Joint_Bearing

Object Type : Revolute Joint

Parent Type : Model

Adams ID : 1

Active : NO_OPINION

I Marker : .TestModel.Shaft.Marker_Joint_Shaft

J Marker : .TestModel.ground.Marker_Joint_Housing

Initial Conditions

Angular Displacement : NOT SET

Angular Velocity : NOT SET

Object Name : .TestModel.Shaft.Marker_Joint_Shaft

Object Type : Marker

Parent Type : Part

Adams ID : 4

Active : NO_OPINION

Local :

Location : -150.0, 150.0, 0.0 (mm, mm, mm)

Orientation : 0.0, 0.0, 0.0 (deg)

Global :

Location : -150.0, 150.0, 0.0 (mm, mm, mm)

Orientation : 0.0, 0.0, 0.0 (deg)

Object Name : .TestModel.ground.Marker_Joint_Housing

Object Type : Marker

Parent Type : Part

Adams ID : 10

Active : NO_OPINION

Local :

Location : -150.0, 150.0, 0.0 (mm, mm, mm)

Orientation : 0.0, 0.0, 0.0 (deg)

Global :

Location : -150.0, 150.0, 0.0 (mm, mm, mm)

Orientation : 0.0, 0.0, 0.0 (deg)

Figure 9.1: Information print-out for a Revolute Joint and its Markers

TLM co-simulation is sensitive to the consistence of the velocity initial con-
ditions. The simulation will start and run even if the initial velocities are not
consistent. However, high amplitude vibrarions in the TLM element with the
frequency of ωTLM as defined in Equation 2.10. Section 2 will show up in the
system. Therefore it is recommended to start the simulation with zero velocities
in all the components and simulate a smooth transition to the working velocities.
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Figure 9.2: Joint deactivation dialog

Figure 9.3: Create TLM reference marker dialog
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Figure 9.4: Create general force on shaft for TLM dialog
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Figure 9.5: Create general force on housing for TLM dialog

Figure 9.6: Create general force on housing for TLM dialog
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9.3 Preparing the Scripts

The next step is creation of an appropriate Adams Command File (.acf). The file
should start a transient simulation of your model.

Important note:
The current version of TLMSimulator does not propagate time-settings from the
composite model to the MSC.ADAMS models automatically. Therfore users need
to check that ”time” and ”endTime” correspond to the times in the composite
model. Check that the integrator parameter Hmax is set to be less than TLM
Delay/2 (use INTEGRATOR command).

An example ACF file is given in Figure 9.7.

Pendulum

Pendulum_out

INTEGRATOR/SI2, GSTIFF, ERROR=1.0E-6,

HMAX=0.25e-5, HINIT=1.0E-6, LIST

sim/dyn, end=1e-3, steps=10

stop

Figure 9.7: An example ACF (Adams Command File)

A startup script for running the ADAMS simulation needs to be created as
well. A default script is distributed with TLMSimulator. It is called StartTL-
MAdams.bat.

Note: The default StartTLMAdams.bat Windows script may need to be mod-
ified. Below is a short discussion of the script.

Figure 9.8 presents a template for the start script. The StartTLMAdams.bat

should first generate a file tlm.config that will contain the parameter send to it
by TLM manager. Only the line giving start command for ADAMS needs to be
changed. For instance, for ADAMS car the line should read:

set ADAMSSCRIPT=mdi acar ru-so

Finally, make the tlmadams.dll library is accessible for the ADAMS solver.
The simplest way is to copy the library file to your working directory.
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@echo off

rem If other parameters are used for ADAMS, change the next line

set ADAMSSCRIPT=mdi ru-s

rem ***************************************************************

rem Changes below should not be necessary

if not a%1==a goto startadams

echo This script is used by TLM manager to start ADAMS simulations

echo It should result in a call to the mdi script

echo for running a simulation according to the specified ACF file

exit 1

:startadams

echo Simulation directory is %1

cd %1

echo Starting an ADAMS simulation with input file: %6.acf

echo Make sure that:

echo time = %2

echo timeEnd = %3

echo MaxTimeStep "<"= %4

echo Writing server configuration to file tlm.config

echo %1 > tlm.config

echo %2 >> tlm.config

echo %3 >> tlm.config

echo %4 >> tlm.config

echo %5 >> tlm.config

echo Starting ADAMS

%ADAMSSCRIPT% %6 > %6.simlog

Figure 9.8: A template for the startadams.bat script
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Chapter 10

External Simulink Models

The TLM plugin has been implemented for Simulink. This section describes how
to use and install the plugin to be able to integrate Simulink models into composite
models and co-simulations.

10.1 TLM Simulink Library

A Simulink library exists that contains different Simulink blocks, see also Fig-
ure 10.1. The main block is the TLMForce block that is a Simulink S-Function
implementation of the TLM plugin. The TLMDriver and TLMInterface are sub-
systems that are used to connect SimMechanics components to the TLMForce.
Additionally, some useful Simulink blocks are collected in the TOOLS sub-system,
for instance, blocks for matrix transformations.

Figure 10.1: The Simulink TLM library for coupled simulations.

The (TLMForce) block takes four input variables: position (R), orientation ma-
trix (A), velocity (vR), and rotational velocity (Omega). TLM calculates output
force (F) and moment (M) from velocity and rotational velocity. From a TLM
point of view, the most important variables are vR and Omega.

Position and orientation are mainly used for graphics in the composite model
editor (CME) and for possible coordinate transformations. All input data must
be expressed relative the inertial coordinate system of the simulation model. All
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output data is expressed relative the inertial coordinate system of the simulation
model.

Position, velocities, force, and moment, are vectors of dimension three: [X Y
Z]. Whereas the orientation matrix is a vectors of dimension nine defining the 3x3
matrix A(row, column): [A(1,1) A(1,2) A(1,3) A(2,1) A(2,2) A(2,3) A(3,1) A(3,2)
A(3,3)]

10.2 Test Case: Pendulum

A pendulum with three TLM connected shafts has been implemented as a test
model, see Figure 10.2. Each shaft is modeled as a separate Simulink model using
SimMechanics.

Figure 10.2: Three shaft pendulum with TLM connections between the shafts and a
revolute joint connected to the ground.

The Simulink model of the three shaft pendulum has been implemented with
SimMechanics and the TLMInterface from the TLMLib, see also Section 10.1.
cGShaft is connected to the ground using a Revolute joint from the SimMechanics
library, see Figure 10.3(a). The other shafts (midShaft and endShaft) are based
on a Simulink model with a free body using a Six-DoF joint, see Figure 10.3(b).
All three shafts are connected in their TLM interfaces.

Each of the shafts has a mass of 3Kg, a length of 160mm, and a diameter of
40mm. Assuming that the characteristic length L0 is equal to the diameter of the
shaft we can calculate the TLM parameters for the model according to Section 2,
as follows:

TTLM = 0.04/5180 ≈ 8 ∗ 10−6

ZF = 210 ∗ 109 ∗ 0.04 ∗ 8 ∗ 10−6 ≈ 68000

ZFR = 1
4 ∗ 68000 ∗ 0.042 ≈ 30

(10.1)

The composite model describes how the shafts are connected and what TLM
parameters should be used in the different TLM connections. It is created using
the composite model Editor.

The pendulum model is simple and has all important characteristics to test the
TLM plugin:

• Multiple simulation models with single and multiple TLM interfaces and
connections.
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(a) SimMechanics shaft connected to ground with revolute
joint.

(b) Free SimMechanics shaft model.

Figure 10.3: Simulink SimMechanics models for the three shaft pendulum.

• Open (not connected) TLM interface in the endShaft.

• Translational displacement of the midShaft and endShaft.

• Rotational and translational motion.

Results from the co-simulation can be verified by plotting the movement of the
TLM interfaces.

0.0 2.0 4.0 6.0 8.0 10.0
−40.0

−20.0
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cGShaft‘ct1‘M[cG][cG]
midShaft‘ct1‘M[cG][cG]

(a) Moment in TLM connected coordinate
systems cGShaft-midShaft.
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midShaft‘ct2‘M[cG][cG]
endShaft‘ct1‘M[cG][cG]

(b) Moment in TLM connected coordinate
systems midShaft-endShaft.

Figure 10.4: The difference in Moment between the TLM connected coordinate systems
due to TLM delay.

Figure 10.4, for instance, shows the moments created in the TLM interfaces of
the connected Simulink models. One can nicely see the time delay in the connected
interfaces due to TLM delay.
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10.3 Installation

Generally the following steps need to be conducted for a correct installation of
the plugin:

1. Install the plugin files on your system.

2. Add the installation directory or directories to the Matlab Search Path.

3. Possibly adjust the StartTLMSimulink start-up script to your needs.

The Simulink TLM-plugin consists of three files:

• A tlmforce S-Function, or tlmforce.mex* file.

• A TLM library file, TLMLib.mdl.

• A start-up script, StartTLMSimulink

The start script is located in the bin directory in the TLMSimulator folder. The
tlmforce S-Function mex and the TLMLib.mdl files are placed in the bin/$ABI/Simulink
directory. There is a Linux and a MS-Windows version of the plugin available.

It is important that the TLMLib.mdl and tlmforce.mex* file are within the
Matlab Search Path. This can be achieved with the Select Path dialog that
can be opened from the File menu in the Matlab main window.

Changes to the StartTLMSimulink script are typically not necessary. Note
that there are two versions of the script, a MS Windows batch script and a c-
shells script for Linux/Unix systems. In case the system requires a special setup
for running Matlab/Simulink it is recommended to make changes to the script.
Below is the c-shell version of the script:

#!/bin/csh -f

setenv PATH ${PATH}:/home/alex/bin/matlab2006b/bin

set SIMCOMMAND="matlab -nosplash -nodesktop -nojvm -r"

#############################################################

#------ Changes below this line should not be needed ----

if("a$1" == "a") then

echo This script is used by TLM manager to start simulations

echo It should result in a call to matlab/simulink

exit 1

endif

cd $1

echo Starting a simulation with input file: $6

echo Make sure that:

echo time = $2

echo timeEnd = $3
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echo MaxTimeStep "<"= $4

echo Writing component name $1 and server name $5 to file tlm.config

echo $1 $5 > tlm.config

echo $2 $3 $4 >> tlm.config

echo Starting matlab/simulink

echo $SIMCOMMAND

echo Writing execution methods to runtlm.m

echo "$6;" > runtlm.m

if( "$4" != "0" ) then

echo "opts = simset(’MaxStep’, $4);" >> runtlm.m

echo "sim( ’$6’, [$2 $3], opts );" >> runtlm.m

else

echo "sim( ’$6’, [$2 $3] );" >> runtlm.m

endif

echo "save; quit force;" >> runtlm.m

exec $SIMCOMMAND runtlm > ${6}.simlog

10.4 Creating External Simulink Models

To enable an existing Simulink model for co-simulation is fairly simple:

1. Open the model and the TLM library TLMLib.mdl, see also Figure 10.1.

2. Drag the TLMForce (pure Simulink) or TLMInterface (SimMechanics) block
into the model.

3. Create the necessary connections to the TLM block, see also Section 10.1
for details about signal dimensions.

4. Send all signals of interest to the Matlab workspace or to a file.

Remember, that the TLM plugin requires velocities to calculate output force
and moment. Remember also, that all data must be expressed relative the global
inertial system. Necessary coordinate transformations should be implemented in
the Simulink model.

All external models are automatically executed on co-simulation start-up and
terminated when the simulation is finished. Data that is not written to a file is lost
when the simulation terminates. The Simulink plugin writes Matlab workspace
content to the file matlab.mat when the simulation is finished. All simulation data
that should be analyzed should either be written to a file during the simulation
or stored in the workspace. The latter can be achieved by using a Simulink
ToWorkspace sink, by logging signals, or by logging Simulink Scope data.

The next step is to create an external model from the TLM prepared Simulink
model. It is created using the composite model editor. The composite model
describes how different external models are connected and what TLM parameters
should be used in the different TLM connections. Creating external Simulink
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models is not different from creating any other external model. Only the correct
start-up method, i.e., StartTLMSimulink needs to be selected.

NOTE: Neither Simulink nor SimMechanics can export surface graphics for
visualization of the composite model. Graphics files, i.e., VRML or STL files,
can be created from a CAD tool or with the Virtual-Reality authoring tool of the
Matlab Virtual Reality toolbox.

Results from the co-simulation can be verified in CME by plotting the move-
ment of the TLM interfaces.
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External BEAST Models

The TLM-Plugin has been implemented for BEAST. This section describes how
to integrate BEAST models into composite models and co-simulations.

11.1 TLM Enabled BEAST models

A BEAST model needs to be “TLM enabled” to participate in a co-simulation.
The TLM-plugin has been integrated into the BEAST code and is thus always
available in BEAST models.

Control-points are the interfaces for TLM connections in BEAST. One can
enable any fixed and flexible control-point in BEAST for TLM connections. For
TLM connections it is, however, recommended to use control-points that are not
connected to a tie.

Any BEAST model that has at least one TLM enabled control-point can par-
ticipate in a co-simulation. To enable a control-point for TLM communication
one needs to set the TLMEnabledFlg for this control point in the following way:

• Right-click on the control point in the model-browser

• From the pop-up menu select Edit Variables... and then TLM

• In the dialog set the TLMEnabledFlg to Yes.

The BEAST model can then be saved and integrated into as an external model
into a composite model.

11.2 BEAST Startup Script

A startup script for running the BEAST simulation needs to be created as well.
A default script is distributed with the BEAST/CME installation. It is called
StartTLMBeast.bat.

Note: The default StartTLMBeast.bat Windows script needs to be checked.
This should probably be done together with a system administrator and a member
of the BEAST team. However below is a short discussion of the script for advanced
users.
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Figure 11.1 presents a template for the start script. The StartTLMBeast.bat

should first generate a file <CaseName>.tlm that will contain the parameter send
to it by TLM manager. Only the line giving start command for BEAST needs to
be changed.

@echo off

set BeastCmd="%BEAST%/bin/%ABI%/FORMAT-9.3/Beast_Serial"

echo execution directory is %1

cd %1

echo Starting a Beast simulation with input file: %6

echo Make sure that:

echo time = %2

echo timeEnd = %3

echo MaxTimeStep "<"= %4

echo Writing caseID %1 and server name %5 to file %6.tlm

echo %1 > %6.tlm

echo %5 >> %6.tlm

echo %2 >> %6.tlm

echo %3 >> %6.tlm

echo %4 >> %6.tlm

echo Starting beast

echo %BeastCmd% %6.in

%BeastCmd% %6.in > %6.simlog

Figure 11.1: A template for the startadams.bat script



Chapter 12

External Modelica Models

In this chapter a description of how to design and co-simulate Modelica models
with the TLM interface is given.

12.0.1 Build and link TLM Manager to a Modelica tool

The first step is to install the TLM manager. But please make sure you have
Microsoft Visual Studio installed and the MinGW compiler for OMC and WSM
(the MinGW compiler comes with OMC and WSM by default).

Depending on which Modelica tool you are using, do as follows:

In OpenModelica

Run the script InstallTlmForOmc.bat in MS DOS.

In Wolfram SystemModeler

Run the script InstallTlmForWsm.bat in MS DOS.

In Dymola

Run the script InstallTlmForDymola.bat in MS DOS.

The above mentioned script files are located in \TLMSimulator\Modelica.

Note: The default Windows TLM installation BAT script may need some modifi-
cations. The main issue is to modify the script file so the Modelica tool, Microsoft
Visual Studio and the TLMSimulator folder paths are correct. Furthermore, it
is important to add the TLMSimulator/bin folder path to the Windows System
Environment Path.

The installation script will set all the necessary paths in order to use the TLM
interface. Thereafter, a library is generated and copied to the Modelica tool instal-
lation folder (for Dymola) or to the resource folder located in the TLMSimulator
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folder for OMC and WSM). For Dymola a tlmforce.h file is copied to the instal-
lation folder and for OMC and WSM the tlmforce.h file is copied to the resource
folder. Next, the TLM Manager is compiled and built.

In order to run the installation script simple start a commando prompt with
administrator rights and execute the script.

Before running the TLM Manager please check the log after executing the instal-
lation script for any errors. If the installation was a success restart the computer
in order to update the System Environment paths.

12.1 How to create a model with a TLM interface

In this example we will split a model of a double pendulum and run a simulation
with the TLM interface. The first step is to split the full model of the double
pendulum and create two models, which are saved in two separate folders.

Figure 12.1: figuretext

In this example we will call the two new models ’DoublePendulum1’ and ’Dou-
blePendulum2’. At the end of each model (where the two models need to be
connected) a TLM component is connected from the TLM Modelica library.

Full model

Figure 12.2: figuretext
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Figure 12.3: Sub-model 1 of a double Pendulum

Sub-model 1 (DoublePendulum1)

Sub-model 2 (DoublePendulum2)

Figure 12.4: Sub-model 2 of a double Pendulum

When using the TLM interface in Modelica it is important to note that the TLM
connection has to be connected to a body! Therefore, if you compare DoublePen-
dulum2 with the full model, you can see that an extra body has been added. The
extra body (boxBody1) is half of the boxbody1 from the full model (half mass
and length). Furthermore, the boxBody1 from DoublePendulum1 is half (mass
and length) of the boxbody1 from the full model. It is important that the initial
conditions for the objects are correct, i.e. the boxbody1 from DoublePendulum2
will have an initial position (r 0[3] = 0.25,0,0) for the given example.

12.1.1 Prepare the XML composite model file for simulation

In the XML file we have to define how the models are connected and which
Modelica tool is used. Furthermore the simulation time is defined. The XML file
for the double pendulum:

Save the file to the top folder (\CompositeModels \DoublePendulum).



62 CHAPTER 12. EXTERNAL MODELICA MODELS

Figure 12.5: XML file for Modelica co-simulation



12.2. HOW TO START A TLM SIMULATION. 63

12.1.2 Set up simulation settings

The next step is to set up the simulation settings. For OpenModelica and Dymola
all the simulation settings have to be modified in a BAT script. The BAT script
is located in the bin folder: (\TLMSimulator\bin\).

• For openModelica the file is called: StartTLMModelica.bat.

• For Wolfram SystemModeler the file is called: StartTLMWSM.bat.

• For Dymola the file is called: StartTLMDymola.bat.

The first step is to modify the Modelica tool installation path so it matches the
user’s installation folder on his computer. Following, the simulation function
in the BAT script has to been updated. The function defines the simulations
settings, i.e. tolerance, number of intervals, solvers etc. When using Wolfram
SystemModeler the user doesn’t need to modify the simulation settings. Using
the Simulation Center, the user can follow the simulation ’live’.

12.2 How to start a TLM simulation.

To start a TLM simulation, follow these 5 steps (please note the paths below are
relative and needs to be fully specified according to the TLMSimulator installation
folder).

• Start a commando prompt.

• Go to your CompositeModels folder, e.i. cd /TLMSimulator/Composite-
Models/OmcOmcDoublePendulum/

• To start the simulation run the following: tlmmanager.exe doublePendu-
lum.xml

When the simulation is done the result files are located in the respective folders
where the models are saved. The MAT files can now be loaded into the respective
Modelica tools an analyzed.

The blue plots are from the total model and the red are from DoublePendulum2.
As can be seen, we have managed to carry out a parallel simulation with the
TLM interface, and the results are almost identical. If the user wants to obtain
better results, the ’Connection Form’ parameters can be modified in the XML
file to match the connection between the two TLM Modelica models even more
accurately.
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Figure 12.6: Co-simulation of double pendulum results



Chapter 13

Importing Functional Mock-up
Units

13.1 Setting up a simulation

The FMI wrapper is started by the StartTLMFMIWrapper startup script. This
script generates the tlm.config file and calls the FMIWrapper executable. The
executable takes the following arguments:

FMIWrapper <path> <fmufile> <solver> <debug>

Example:

FMIWrapper C:\temp\folder mymodel.fmu solver=CVODE -d

The last to arguments are optional. Available solvers are Euler, RungeKutta,
CVODE and IDA. Section 13.3 contains more details about the different solvers.
These can currently only be changed by modifying the startup script, i.e. not
from the graphical interface.

An FMU keep track of its variables by integer numbers called value references.
However, it does not provide any information about the mapping between its vari-
ables and the TLM interface. Hence, this information must be provided by the
user. A configuration file called fmi.config is used for this purpose, see listing
13.1.

Listing 13.1: A configuration file maps value references to TLM variables

substeps ,10

name ,tlm1

dimensions ,6

causality ,Bidirectional

domain ,Mechanical

position ,6,7,8

orientation ,136 ,139 ,142 ,137 ,140 ,143 ,138 ,141 ,144

speed ,9,10,11
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ang_speed ,145 ,146 ,147

force ,133 ,134 ,135 ,167 ,168 ,169

name ,tlm2

dimensions ,1

causality ,Bidirectional

domain ,Mechanical

position ,12

speed ,15

force ,136

name ,input1

dimensions ,1

causality ,Input

domain ,Signal

value ,16

name ,output1

dimensions ,1

causality ,Output

domain ,Signal

value ,17
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Listing 13.2: Value references for variables are obtained from modelDescription.xml

<ScalarVariable

name="fMITLMInterface3D1.t[1]"

valueReference="167"

variability="continuous"

causality="local">

<Real/>

</ScalarVariable >

As can be seen, data is stored in a comma-separated format. The first line
specifies the number of substeps used for FMI for Co-Simulation (see section
13.2). After this comes the port information. Each port is specified by name,
dimensions, causality and domain, followed by a list of variables depending on the
port type. The numbers after each variable are the value references. These can
be obtained by analyzing the modelDescription.xml file. Listing 13.2 shows an
example. The variable first torque component has the value reference 167. Hence,
this number should be inserted as number four on the ”force” line in fmi.config.
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13.2 FMI for Co-Simulation

With FMI for Co-Simulation the solver is embedded within the FMU. Variables
can only be exchanged at predefined communication points. Hence, it is not pos-
sible for the solver to obtain interpolated force variables during internal iteration
steps. Keeping the force constant during the entire communication interval may,
however, have a negative effect on numerical stability. For this reason it is pos-
sible to divide each communication interval into a fixed number of sub steps, as
defined in the fmi.config. In this way the forces can at least be updated in the
FMU at more fine-grained intervals. Pseudo-code for the simulation loop in the
wrapper is shown in listing 13.3. The real code also contains error handling, but
it has been excluded here to enhance readability.

Listing 13.3: Pseudo code for the simulation loop with FMI for co-simulation

while (tcur < tend) {

double hsub = hmax/nSubSteps;

for(size_t i=0; i<nSubSteps; ++i) {

x = fmu.get_real(x_vr ,3);

T = fmu.get_real(T_vr ,9);

v = fmu.get_real(v_vr ,3);

w = fmu.get_real(w_vr ,3);

f = TLMPlugin.GetForce(tcur ,x,T,v,w);

fmu.set_real(f_vr[j],6,f);

TLMPlugin.SetMotion(tcur ,x,T,v,w);

fmu.do_step(tcur ,hsub);

tcur+=hsub;

x = fmu.get_real(x_vr ,3);

T = fmu.get_real(T_vr ,9);

v = fmu.get_real(v_vr ,3);

w = fmu.get_real(w_vr ,3);

}

}

Note that it is necessary to read the motion variables from the FMU before
obtaining the force from the TLMPlugin. At the end of each major step it is
also necessary to call GetForce() before calling SetMotion(). The reason for
this is that SetMotion() requires updated input variables which are retreived by
GetForce().
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13.3 FMI for model exchange

With model exchange, the wrapper must provide a solver for the FMU. Three
solvers are available: explicit Euler, 4th order explicit Runge-Kutta, and the
CVODE and IDA solvers from Sundials [18]. Listing 13.4 shows pseudo code for
one major step (i.e. one communication interval) with the IDA solver. Note that
the solver is used with one step mode. This means that it takes one step at a time,
until its internal time exceeds the next communication interval. The CVODE
solver requires a callback function for obtaining derivatives of state variables (i.e.
”right-hand side”). The IDA solver requires a similar callback for obtaining the
residuals.

Listing 13.4: Pseudo code for the simulation loop with FMI for model exchange

double position [3], orientation [9], speed[3], ang_speed [3],

force [6];

x = fmu.get_real(x_vr ,3);

T = fmu.get_real(T_vr ,9);

v = fmu.get_real(v_vr ,3);

w = fmu.get_real(w_vr ,3);

f = TLMPlugin.GetForce(tcur ,x,T,v,w);

fmu.set_real(f_vr[j],6,f);

y = fmu.get_continuous_states ();

dy = fmu.get_derivatives ();

tcur += h;

while(tc < tcur){

IDASolve(mem , tcur , &tc, y, dy, IDA_ONE_STEP);

}

fmu.set_continuous_states(y);
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13.4 Example: Double Pendulum with Dymola and
OpenModelica

This section will explain how to build a meta model of a double pendulum using
FMUs exported from Dymola and OpenModelica. Figure 13.1 shows a sketch of
the model. The resulting meta model is found in the /MetaModels/FmuFmuPendulum
folder. One FMU for Co-simulation and one for Model Exchange will be used.
Both models use a custom Modelica library called FMILIB for the TLM interfaces.
This library is shipped together with the FMI wrapper.

Dymola

OpenModelica

Figure 13.1: A double pendulum is simulated using FMUs exported from Dymola and
OpenModelica

13.4.1 Preparing Dymola FMU of first part pendulum

The Dymola model consists of half the first pendulum and the fixed attachment to
the inertial system, see figure 13.2. It is normally advisable to decouple a model
at its weakest point, which in this case would be at the joint between the two
pendulum arms. In this case the model is decoupled in the middle of the first
pendulum only to demonstrate the possibilities. Force and torque variables must
be specified as input variables at the top level of the model, in order to get the
correct number of equations and variables. Hence, we need to add the equations
shown in listing 13.5.

Listing 13.5: Input variables must be specified on top level in the Modelica models

[...]

// Define FMI interface model

FMITLM.FMITLM_Interface_3D.FMITLMInterface3D

fMITLMInterface3D;

// Define input force and input torque

input Real f[3]( start = zeros (3));

input Real t[3]( start = zeros (3));

equation

// Assign force and torque in interface model with input

variables
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fMITLMInterface3D.f = f;

fMITLMInterface3D3D.t = t;

[...]

Figure 13.2: The first half of the first beam is modelled in Dymola

Now it is time to export the model so it can be used with the framework.

1. Transform the model to an FMU for co-simulation.
Use a suitable solver, for example CVODE.

2. Put the .fmu file in a new subfolder.

3. Create an empty text file called fmi.config in the same folder.

4. Specify number of substeps on the first line.
For example: ”substeps,10”

5. Open modelDescription.xml.
By opening the .fmu as a zip package.

6. Locate the TLM variables and write the value references in fmi.config.
The desired variables are position, orientation, velocity, angular velocity,
force and torque:
fMITLMInterface3D.r[x], fMITLMInterface3D.A[x,y],
fMITLMInterface3D.v[x], fMITLMInterface3D.w[x],
fMITLMInterface3D.f[x], fMITLMInterface3D.t[x]

7. Enter the value reference for each variable in fmi.config.
See section section 13.1 for more information.

13.4.2 Preparing OpenModelica FMU of second part of pendu-
lum

The OpenModelica model as shown in figure 13.3 consists of the second half of
the first beam and the second beam. The export process is exactly the same as
for Dymola, except that the FMU exported should be for model exchange.
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Figure 13.3: The second half of the first beam and the second beam are modelled in
OpenModelica

13.4.3 Building co-simulation system model

When both FMUs have been generated together with one fmi.config file each,
it is time to build the meta model.

1. Create a new meta model.
Either by hand or by using the graphical user interface.

2. Add the FMUs as sub-models.
Use StartTLMFmiWrapper as start command.

3. Fetch TLM interfaces.

4. Add a connection between the two models.
Default TLM parameters should work fine.

5. Make sure interfaces are aligned.

6. Choose solver for model exchange.
By editing StartTLMFmiWrapper.bat.
Use for example solver=CVODE or solver=IDA.

When done, the meta model XML file should look similar to listing 13.6. In
the graphical interface, the meta model should look like figure 13.4. The model
is now ready to be simulated!
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Listing 13.6: XML description of the complete meta model

<?xml version=’1.0’ encoding=’ISO -8859 -1’?>

<Model Name="doublePendulum">

<SubModels >

<SubModel Name="doublePendulum1"

ModelFile="doublePendulum1.fmu"

StartCommand="StartTLMFmiWrapper"

Position="0,0,0"

Angle321="0,0,0">

<InterfacePoint Name="tlm"

Position="0.25,0,0"

Angle321="0,0,0"/>

</SubModel >

<SubModel Name="doublePendulum2"

ModelFile="doublePendulum2.fmu"

StartCommand="StartTLMFmiWrapper"

Position="0.25,0,0"

Angle321="0,0,0">

<InterfacePoint Name="tlm"

Position="0,0,0"

Angle321="0,0,0"/>

</SubModel >

</SubModels >

<Connections >

<Connection From="doublePendulum1.tlm"

To="doublePendulum2.tlm"

Delay="1e-4"

Zf="10000"

Zfr="100"

alpha="0.2">

</Connection >

</Connections >

<SimulationParams ManagerPort="11113" StopTime="3"

StartTime="0"/>

</Model >
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Figure 13.4: Graphical view of the complete meta model
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