
OPENCPS DOCUMENT

1

Wrapper for Functional Mock-up Interface in TLM-based2

Asynchronous Co-Simulation3

Robert Braun, SICS East Swedish ICT4

2017-04-125

OPENCPS DOCUMENT Pages

1/11
Reference number Revision Author



OPENCPS DOCUMENT

1. Introduction6

Functional Mock-up Interface (FMI) is a tool-independent standard for connecting simulation tools7

[2]. One tool can export a model as a Functional Mockup Unit (FMU), a ZIP package with the file ex-8

tension FMU. This file is in turn loaded by the master simulation tool, which can connect and simulate9

the model. An FMU file contains a model description XML file called modelDescription.xml,10

binaries for different platforms and other optional content. It is important that the FMU contains a11

binary file for the platform where the master simulation tool is executed.12

There are two versions of the FMI standard: FMI for Co-Simulation and FMI for Model Exchange.13

The main difference is that FMUs for Co-Simulation contain their own built-in solvers, and only14

exchange data at predefined communication points. FMUs for Model Exchange require a solver in15

the master simulation tool.16

The TLM framework is able to simulate aggregated systems of connected sub-models using asyn-17

chronous TLM communication. Currently, only 3D multi-body mechanical sub-models are supported.18

Other physical domains, 1D connections and causal signal communication is intended to be imple-19

mented in the future. Including FMUs in the TLM framework requires a wrapper. FMIWrapper is20

a generic wrapper for connecting functional mockup units (FMUs) to the TLM framework. It uses21

the FMI Library from Modelon [1] to load an FMU, and the TLMPlugin for socket communication22

with the framework, see fig. 1.23

FMIWrapper

TLMPluginFMILibraryxmodel.fmu

TLMManager

TLMPlugin

Figure 1: FMIWrapper uses FMILibrary to import FMUs and TLMPlugin for socket communication.

Both FMI for co-simulation and FMI for model exchange are supported. Model exchange requires24

a solver in the wrapper executable. For this reason, two solvers from the Sundials package are25

included.26

OPENCPS DOCUMENT Pages

1/11
Reference number Revision Author



OPENCPS DOCUMENT

2. Setting up a simulation27

The FMI wrapper is started by the StartTLMFMIWrapper startup script. This script generates the28

tlm.config file and calls the FMIWrapper executable. The executable takes the following argu-29

ments:30

31

FMIWrapper <path> <fmufile> <solver> <debug>32

33

Example:34

35

FMIWrapper C:\temp\folder mymodel.fmu solver=CVODE -d36

37

The last to arguments are optional. Available solvers are Euler, RungeKutta, CVODE and38

IDA. Section 4 contains more details about the different solvers. These can currently only be changed39

by modifying the startup script, i.e. not from the graphical interface.40

An FMU keep track of its variables by integer numbers called value references. However,41

it does not provide any information about the mapping between its variables and the TLM interface.42

Hence, this information must be provided by the user. A configuration file called fmi.config is43

used for this purpose, see listing 1.44

Listing 1: A configuration file maps value references to TLM variables

substeps,10045

name,tlm146

position,6,7,847

orientation,136,139,142,137,140,143,138,141,14448

speed,9,10,1149

ang_speed,145,146,14750

force,133,134,135,167,168,16951

name,tlm252

position,12,13,1453

orientation,145,146,147,148,149,150,151,152,15354

speed,15,16,1755

ang_speed,154,155,15656

force,136,137,138,170,171,17257

OPENCPS DOCUMENT Pages

2/11
Reference number Revision Author



OPENCPS DOCUMENT

Listing 2: Value references for variables are obtained from modelDescription.xml
<ScalarVariable

name="fMITLMInterface3D1.t[1]"
valueReference="167"
variability="continuous"
causality="local"
>
<Real/>

</ScalarVariable>

As can be seen, data is stored in a comma-separated format. The first line specifies the number of58

substeps used for FMI for Co-Simulation (see section 3). After this comes the port information. Each59

port is specified by name, position, orientation, speed, angular speed and force, according to the TLM60

interfaces in the TLM framework. The numbers after each keyword are the value references. These61

can be obtained by analyzing the modelDescription.xml file. Listing 2 shows an example. The62

variable first torque component has the value reference 167. Hence, this number should be inserted63

as number four on the ”force” line in fmi.config.64

OPENCPS DOCUMENT Pages

3/11
Reference number Revision Author



OPENCPS DOCUMENT

3. FMI for Co-Simulation65

With FMI for Co-Simulation the solver is embedded within the FMU. Variables can only be exchanged66

at predefined communication points. Hence, it is not possible for the solver to obtain interpolated67

force variables during internal iteration steps. Keeping the force constant during the entire commu-68

nication interval may, however, have a negative effect on numerical stability. For this reason it is69

possible to divide each communication interval into a fixed number of sub steps, as defined in the70

fmi.config. In this way the forces can at least be updated in the FMU at more fine-grained71

intervals. Pseudo-code for the simulation loop in the wrapper is shown in listing 3. The real code72

also contains error handling, but it has been excluded here to enhance readability.73

Listing 3: Pseudo code for the simulation loop with FMI for co-simulation

while (tcur < tend) {74

double hsub = hmax/nSubSteps;75

for(size_t i=0; i<nSubSteps; ++i) {76

x = fmu.get_real(x_vr,3);77

T = fmu.get_real(T_vr,9);78

v = fmu.get_real(v_vr,3);79

w = fmu.get_real(w_vr,3);80

f = TLMPlugin.GetForce(tcur,x,T,v,w);81

fmu.set_real(f_vr[j],6,f);82

83

TLMPlugin.SetMotion(tcur,x,T,v,w);84

85

fmu.do_step(tcur,hsub);86

tcur+=hsub;87

88

x = fmu.get_real(x_vr,3);89

T = fmu.get_real(T_vr,9);90

v = fmu.get_real(v_vr,3);91

w = fmu.get_real(w_vr,3);92

}93

}94

Note that it is necessary to read the motion variables from the FMU before obtaining the force95

from the TLMPlugin. At the end of each major step it is also necessary to call GetForce() before96

calling SetMotion(). The reason for this is that SetMotion() requires updated input variables97

which are retreived by GetForce().98

OPENCPS DOCUMENT Pages

4/11
Reference number Revision Author



OPENCPS DOCUMENT

4. FMI for model exchange99

With model exchange, the wrapper must provide a solver for the FMU. Three solvers are available:100

explicit Euler, 4th order explicit Runge-Kutta, and the CVODE and IDA solvers from Sundials [3].101

Listing 4 shows pseudo code for one major step (i.e. one communication interval) with the IDA102

solver. Note that the solver is used with one step mode. This means that it takes one step at a103

time, until its internal time exceeds the next communication interval. The CVODE solver requires a104

callback function for obtaining derivatives of state variables (i.e. ”right-hand side”). The IDA solver105

requires a similar callback for obtaining the residuals.106

Listing 4: Pseudo code for the simulation loop with FMI for model exchange

double position[3],orientation[9],speed[3],ang_speed[3],force[6];107

108

x = fmu.get_real(x_vr,3);109

T = fmu.get_real(T_vr,9);110

v = fmu.get_real(v_vr,3);111

w = fmu.get_real(w_vr,3);112

f = TLMPlugin.GetForce(tcur,x,T,v,w);113

fmu.set_real(f_vr[j],6,f);114

115

y = fmu.get_continuous_states();116

dy = fmu.get_derivatives();117

118

tcur += h;119

120

while(tc < tcur){121

IDASolve(mem, tcur, &tc, y, dy, IDA_ONE_STEP);122

}123

124

fmu.set_continuous_states(y);125

OPENCPS DOCUMENT Pages

5/11
Reference number Revision Author



OPENCPS DOCUMENT

5. Example: Double Pendulum with Dymola and OpenModelica126

This section will explain how to build a meta model of a double pendulum using FMUs exported127

from Dymola and OpenModelica. Figure 2 shows a sketch of the model. The resulting meta model128

is found in the /MetaModels/FmuFmuPendulum folder. One FMU for Co-simulation and one129

for Model Exchange will be used. Both models use a custom Modelica library called FMILIB for the130

TLM interfaces. This library is shipped together with the FMI wrapper.131

Dymola

OpenModelica

Figure 2: A double pendulum is simulated using FMUs exported from Dymola and OpenModelica

5.1. Preparing Dymola FMU of first part pendulum132

The Dymola model consists of half the first pendulum and the fixed attachment to the inertial system,133

see figure fig. 3. It is normally advisable to decouple a model at its weakest point, which in this case134

would be at the joint between the two pendulum arms. In this case the model is decoupled in the135

middle of the first pendulum only to demonstrate the possibilities. Force and torque variables must136

be specified as input variables at the top level of the model, in order to get the correct number of137

equations and variables. Hence, we need to add the equations shown in listing 5.138

Listing 5: Input variables must be specified on top level in the Modelica models

[...]139

//Define FMI interface model140

FMITLM.FMITLM_Interface_3D.FMITLMInterface3D fMITLMInterface3D;141

142

//Define input force and input torque143

input Real f[3](start = zeros(3));144

input Real t[3](start = zeros(3));145

equation146

//Assign force and torque in interface model with input variables147

fMITLMInterface3D.f = f;148

fMITLMInterface3D3D.t = t;149

[...]150

OPENCPS DOCUMENT Pages

6/11
Reference number Revision Author



OPENCPS DOCUMENT

Figure 3: The first half of the first beam is modelled in Dymola

Now it is time to export the model so it can be used with the framework.151

1. Transform the model to an FMU for co-simulation.152

Use a suitable solver, for example CVODE.153

2. Put the .fmu file in a new subfolder.154

3. Create an empty text file called fmi.config in the same folder.155

4. Specify number of substeps on the first line.156

For example: ”substeps,10”157

5. Open modelDescription.xml.158

By opening the .fmu as a zip package.159

6. Locate the TLM variables and write the value references in fmi.config.160

The desired variables are position, orientation, velocity, angular velocity, force and torque:161

fMITLMInterface3D.r[x], fMITLMInterface3D.A[x,y],162

fMITLMInterface3D.v[x], fMITLMInterface3D.w[x],163

fMITLMInterface3D.f[x], fMITLMInterface3D.t[x]164

7. Enter the value reference for each variable in fmi.config.165

See section section 2 for more information.166

5.2. Preparing OpenModelica FMU of second part of pendulum167

The OpenModelica model as shown in fig. 4 consists of the second half of the first beam and the168

second beam. The export process is exaclty the same as for Dymola, except that the FMU exported169

should be for model exchange.170

OPENCPS DOCUMENT Pages

7/11
Reference number Revision Author



OPENCPS DOCUMENT

Figure 4: The second half of the first beam and the second beam are modelled in OpenModelica

5.3. Building co-simulation system model171

When both FMUs have been generated together with one fmi.config file each, it is time to build172

the meta model.173

1. Create a new meta model.174

Either by hand or by using the graphical user interface.175

2. Add the FMUs as sub-models.176

Use StartTLMFmiWrapper as start command.177

3. Fetch TLM interfaces.178

4. Add a connection between the two models.179

Default TLM parameters should work fine.180

5. Make sure interfaces are aligned.181

6. Choose solver for model exchange.182

By editing StartTLMFmiWrapper.bat.183

Use for example solver=CVODE or solver=IDA.184

When done, the meta model XML file should look similar to listing 6. In the graphical interface,185

the meta model should look like fig. 5. The model is now ready to be simulated!186

OPENCPS DOCUMENT Pages

8/11
Reference number Revision Author



OPENCPS DOCUMENT

Listing 6: XML description of the complete meta model

<?xml version=’1.0’ encoding=’ISO-8859-1’?>
<Model Name="doublePendulum">
<SubModels>

<SubModel Name="doublePendulum1"
ModelFile="doublePendulum1.fmu"
StartCommand="StartTLMFmiWrapper"
Position="0,0,0"
Angle321="0,0,0">

<InterfacePoint Name="tlm"
Position="0.25,0,0"
Angle321="0,0,0"/>

</SubModel>
<SubModel Name="doublePendulum2"

ModelFile="doublePendulum2.fmu"
StartCommand="StartTLMFmiWrapper"
Position="0.25,0,0"
Angle321="0,0,0">

<InterfacePoint Name="tlm"
Position="0,0,0"
Angle321="0,0,0"/>

</SubModel>
</SubModels>
<Connections>

<Connection From="doublePendulum1.tlm"
To="doublePendulum2.tlm"
Delay="1e-4"
Zf="10000"
Zfr="100"
alpha="0.2">

</Connection>
</Connections>
<SimulationParams ManagerPort="11113" StopTime="3" StartTime="0"/>

</Model>

OPENCPS DOCUMENT Pages

9/11
Reference number Revision Author



OPENCPS DOCUMENT

Figure 5: Graphical view of the complete meta model

OPENCPS DOCUMENT Pages

10/11
Reference number Revision Author



OPENCPS DOCUMENT

Bibliography187

[1] Modelon AB. Fmi library: part of jmodelica.org, 2014.188

[2] T. Blochwitz, M. Otter, M. Arnold, C. Bausch, C. Clauß, H. Elmqvist, A. Junghanns, J. Mauss,189

M. Monteiro, T. Neidhold, D. Neumerkel, H. Olsson, J.-V. Peetz, and S. Wolf. The Functional190

Mockup Interface for tool independent exchange of simulation models. In 8th International191

Modelica Conference 2011, Como, Italy, September 2009.192

[3] Alan C Hindmarsh, Peter N Brown, Keith E Grant, Steven L Lee, Radu Serban, Dan E Shumaker,193

and Carol S Woodward. SUNDIALS: Suite of nonlinear and differential/algebraic equation solvers.194

ACM Transactions on Mathematical Software (TOMS), 31(3):363–396, 2005.195

OPENCPS DOCUMENT Pages

11/11
Reference number Revision Author


