This model contains calculation procedures for flow coefficients (for more information, please check out AixLib.Fluid.Actuators.Valves.ExpansionValves.BaseClasses.PartialExpansionValve). The calculation procedures based on a polynomial approach and are presented below.
Actually, two polynomial approaches are implemented in this package.
To add further calculation procedures, just add its name in
AixLib.Fluid.Actuators.Valves.ExpansionValves.Utilities.Choices
and expand the if-structure
.
Reference | Formula | Refrigerants |
Validity Tcondensing
|
Validity Tevaporating
|
Validity Tsubcooling
|
---|---|---|---|---|---|
ShanweiEtAl2005 |
C = a1*A + a2*ρinlet + a3*ρoutlet
+ a4*Tsubcooling + a5*dclearance +
a6*(pinlet- poutlet)
|
R22, R407C, R410A
|
40 - 50 °C
|
0 - 10 °C
|
1.5 - 10 °C
|
Li2013 |
C = a1 + a2*opening + a3*opening^2 +
a4*opening*(Tsubcooling/Tcrit) +
a5*(Tsubcooling/Tcrit) +
a6*(Tsubcooling/Tcrit)^2
|
R22, R407C, R410A
|
30 - 50 °C
|
0 - 30 °C
|
1.5 - 15 °C
|
M. Shanwei, Z. Chuan, C. Jiangping and C. Zhiujiu. (2005): Experimental research on refrigerant mass flow coefficient of electronic expansion valve. In: Applied Thermal Engineering 25(14), S. 2351–2366
Li, W. (2013): Simplified modeling analysis ofmass flow characteristics in electronic expansion valve. In: Applied Thermal Engineering 53(1), S. 8–12