.AixLib.Fluid.Actuators.Valves.ExpansionValves.Utilities.FlowCoefficient.PolynomialFlowCoefficient

Information

This model contains calculation procedures for flow coefficients (for more information, please check out AixLib.Fluid.Actuators.Valves.ExpansionValves.BaseClasses.PartialExpansionValve). The calculation procedures based on a polynomial approach and are presented below.

Implemented approaches

Actually, two polynomial approaches are implemented in this package. To add further calculation procedures, just add its name in AixLib.Fluid.Actuators.Valves.ExpansionValves.Utilities.Choices and expand the if-structure.

"Polynomial approaches" border="1" cellspacing="0" cellpadding="2" style="border-collapse:collapse;">
Reference Formula Refrigerants Validity Tcondensing Validity Tevaporating Validity Tsubcooling
ShanweiEtAl2005 C = a1*A + a2*ρinlet + a3*ρoutlet + a4*Tsubcooling + a5*dclearance + a6*(pinlet- poutlet) R22, R407C, R410A 40 - 50 °C 0 - 10 °C 1.5 - 10 °C
Li2013 C = a1 + a2*opening + a3*opening^2 + a4*opening*(Tsubcooling/Tcrit) + a5*(Tsubcooling/Tcrit) + a6*(Tsubcooling/Tcrit)^2 R22, R407C, R410A 30 - 50 °C 0 - 30 °C 1.5 - 15 °C

References

M. Shanwei, Z. Chuan, C. Jiangping and C. Zhiujiu. (2005): Experimental research on refrigerant mass flow coefficient of electronic expansion valve. In: Applied Thermal Engineering 25(14), S. 2351–2366

Li, W. (2013): Simplified modeling analysis ofmass flow characteristics in electronic expansion valve. In: Applied Thermal Engineering 53(1), S. 8–12

Revisions


Generated at 2024-11-27T19:25:31Z by OpenModelicaOpenModelica 1.24.2 using GenerateDoc.mos