.AixLib.Fluid.Actuators.Valves.ExpansionValves.Utilities.FlowCoefficient.PowerFlowCoefficient

Information

This model contains calculation procedures for flow coefficients (for more information, please check out AixLib.Fluid.Actuators.Valves.ExpansionValves.BaseClasses.PartialExpansionValve). The calculation procedures based on a power approach and are presented below.

Implemented approaches

Actually, three power approaches are implemented in this package. To add further calculation procedures, just add its name in AixLib.Fluid.Actuators.Valves.ExpansionValves.Utilities.Choices and expand the if-structure.

"Power approaches" border="1" cellspacing="0" cellpadding="2" style="border-collapse:collapse;">
Reference Formula Refrigerants Validity Tcondensing Validity Tevaporating Validity Tsubcooling
ShanweiEtAl2005 C = a * a * (A/dclearance^2)^b1 * ((pinlet-poutlet)/pcrit)^b2 * (Tcrit/Tsubcooling)^b3 * (rhoinlet/rhooutlet)^b4 * (quality)^b5 R22, R407C, R410A 40 - 50 °C 0 - 10 °C 1.5 - 10 °C
ZhifangAndOu2008 C = a * ((pinlet-poutlet) * sqrt(A)/σinlet)^b1 * (dinlet*sqrt(ρinlet * pinlet)/μinlet)^b2 R134a 31 - 67.17 °C no information 0 - 20 °C
Li2013 C = a * (opening)^b1 * (Tsubcooling/Tcrit)^b2 R22, R407C, R410A 30 - 50 °C 0 - 30 °C 1.5 - 15 °C

References

M. Shanwei, Z. Chuan, C. Jiangping and C. Zhiujiu. (2005): Experimental research on refrigerant mass flow coefficient of electronic expansion valve. In: Applied Thermal Engineering 25(14), S. 2351–2366

X. Zhifang, S. Lin and O. Hongfei. (2008): Refrigerant flow characteristics of electronic expansion valve based on thermodynamic analysis and experiment. In: Applied Thermal Engineering 28(2), S. 2381–243

Li, W. (2013): Simplified modeling analysis ofmass flow characteristics in electronic expansion valve. In: Applied Thermal Engineering 53(1), S. 8–12

Revisions


Generated at 2024-11-27T19:25:31Z by OpenModelicaOpenModelica 1.24.2 using GenerateDoc.mos