This model contains calculation procedures for flow coefficients (for more information, please check out AixLib.Fluid.Actuators.Valves.ExpansionValves.BaseClasses.PartialExpansionValve). The calculation procedures based on a power approach and are presented below.
Actually, three power approaches are implemented in this package. To
add further calculation procedures, just add its name in
AixLib.Fluid.Actuators.Valves.ExpansionValves.Utilities.Choices
and expand the if-structure
.
Reference | Formula | Refrigerants |
Validity Tcondensing
|
Validity Tevaporating
|
Validity Tsubcooling
|
---|---|---|---|---|---|
ShanweiEtAl2005 |
C = a * a * (A/dclearance^2)^b1 *
((pinlet-poutlet)/pcrit)^b2
* (Tcrit/Tsubcooling)^b3 *
(rhoinlet/rhooutlet)^b4 *
(quality)^b5
|
R22, R407C, R410A
|
40 - 50 °C
|
0 - 10 °C
|
1.5 - 10 °C
|
ZhifangAndOu2008 |
C = a * ((pinlet-poutlet) *
sqrt(A)/σinlet)^b1 *
(dinlet*sqrt(ρinlet *
pinlet)/μinlet)^b2
|
R134a
|
31 - 67.17 °C
|
no information
|
0 - 20 °C
|
Li2013 |
C = a * (opening)^b1 *
(Tsubcooling/Tcrit)^b2
|
R22, R407C, R410A
|
30 - 50 °C
|
0 - 30 °C
|
1.5 - 15 °C
|
M. Shanwei, Z. Chuan, C. Jiangping and C. Zhiujiu. (2005): Experimental research on refrigerant mass flow coefficient of electronic expansion valve. In: Applied Thermal Engineering 25(14), S. 2351–2366
X. Zhifang, S. Lin and O. Hongfei. (2008): Refrigerant flow characteristics of electronic expansion valve based on thermodynamic analysis and experiment. In: Applied Thermal Engineering 28(2), S. 2381–243
Li, W. (2013): Simplified modeling analysis ofmass flow characteristics in electronic expansion valve. In: Applied Thermal Engineering 53(1), S. 8–12