This heat transfer model calculates the locally resolved heat flow through a thin membrane using the thermal conductivity λMembrane and the membrane thickness δMembrane .
heatPorts_a[i].Q̇ = (λMembrane ⁄ δMembrane ) (AMembrane ⁄ n ) (heatPorts_a[i].T - TMembrane[i] )
Analogue for the second surface of the membrane:
heatPorts_b[i].Q̇ = (λMembrane ⁄ δMembrane ) (AMembrane ⁄ n ) (heatPorts_b[i].T - TMembrane[i] )
If the energy dynamics are set to "Steady State" the membrane will not stroe any heat:
0 = heatPorts_b[i].Q̇ + heatPorts_a[i].Q̇
Otherwise the mebrane temperature will change with time.
mMembrane[i] cp,Membrane dTMembrane[i] = heatPorts_a[i].Q̇ + heatPorts_b[i].Q̇