.AixLib.Fluid.Movers.Compressors.UsersGuide.Approaches.MechanicEfficiency

Information

Generally, two kinds of calculation approaches can be identified: A polynomial and a power approach. A generic polynomial approach is presented below:

ηeng = corFact * sum(a[i]*P[i]^b[i] for i in 1:nT)

A generic power approach is presented below:

ηeng = corFact * a * product(P[i]^b[i] for i in 1:nT)

All engine efficiency models presented in this library are based on a literature review. Therefore, the variable corFact allows a correction of the engine efficiency if the general modelling approach presented in the litarature differs from ηeng = Q̇ref / Pel or from ηeng = Q̇refIse / Pel, respectively.

Common model variables

Calculation procedures presented in the litarture have some variables in commen and these variables are presented below:

"Inputs and outputs" border="1" cellspacing="0" cellpadding="2" style="border-collapse:collapse;">
Type Name Comment
input epsRef Ratio of the real and the ideal displacement volume
input VDis Displacement volume
input piPre Pressure ratio
input rotSpe Rotational speed
input staInl Thermodynamic state at compressor's inlet conditions
input staOut Thermodynamic state at compressor's out conditions
input TAmb Ambient temperature

Polynomial engine efficiency models

Actually, four polynomial approaches are implemented in this package. To add further calculation procedures, just add its name in AixLib.Fluid.Movers.Compressors.Utilities.Types and expand the if-structure defined in AixLib.Fluid.Movers.Compressors.Utilities.EngineEfficiency.PolynomialEngineEfficiency.

"Polynomial approaches" border="1" cellspacing="0" cellpadding="2" style="border-collapse:collapse;">
Reference Formula Refrigerants Validity ncompressor Validity Πpressure
JahningEtAl2000 ηeng = a1 + a2*exp(pInl)^b2 Generic model Generic model Generic model
DurprezEtAl2007 ηeng = a1 + a2*π + a3*π^2 + a4*π^3 + a5*π^4 + a6*π^5 + a7*π^6 Generic model Generic model Generic model
KinarbEtAl2010 ηeng = a1 + a2*π + a3*π^2 Generic model Generic model Generic model
Engelpracht2017 ηeng = a1 + a2*π + a3*π^2 + a4*n*π + a5*n^2 + a6*π^2*n + a7*π*n^2 + a8*n^3 + a9*π^2n^2 + a10*π*π^3 + a11*n^4 Generic model 0 - 120 1 - 10

Power engine efficiency models

Actually, one power approache is implemented in this package. To add further calculation procedures, just add its name in AixLib.Fluid.Movers.Compressors.Utilities.Types and expand the if-structure defined in AixLib.Fluid.Movers.Compressors.Utilities.EngineEfficiency.PowerEngineEfficiency.

"Power approaches" border="1" cellspacing="0" cellpadding="2" style="border-collapse:collapse;">
Reference Formula Refrigerants Validity ncompressor Validity Πpressure
MendozaMirandaEtAl2016 ηeng = a1 * π^b1 * (nref/n)^b2 * (1/((TInl+TOutIse)/2-TOut))^b3 * (Mref/M)^b4 R134a,R450a,R1324yf,R1234ze(E) 0 - 50 1 - 6

Revisions


Generated at 2025-01-08T19:40:16Z by OpenModelicaOpenModelica 1.24.3 using GenerateDoc.mos