.AixLib.Fluid.Movers.Compressors.UsersGuide.Approaches.VolumetricEfficiency

Information

Generally, two kinds of calculation approaches can be identified: A polynomial and a power approach. A generic polynomial approach is presented below:

ηvol = corFact * sum(a[i]*P[i]^b[i] for i in 1:nT)

A generic power approach is presented below:

ηvol = corFact * a * product(P[i]^b[i] for i in 1:nT)

All volumetric efficiency models presented in this library are based on a literature review. Therefore, the variable corFact allows a correction of the volumetric efficiency if the general modelling approach presented in the litarature differs from ηvol = V̇ide / V̇rea.

Common model variables

Calculation procedures presented in the litarture have some variables in commen and these variables are presented below:

"Inputs and outputs" border="1" cellspacing="0" cellpadding="2" style="border-collapse:collapse;">
Type Name Comment
input epsRef Ratio of the real and the ideal displacement volume
input VDis Displacement volume
input piPre Pressure ratio
input rotSpe Rotational speed
input staInl Thermodynamic state at compressor's inlet conditions
input staOut Thermodynamic state at compressor's out conditions
input TAmb Ambient temperature

Polynomial volumetric efficiency models

Actually, four polynomial approaches are implemented in this package. To add further calculation procedures, just add its name in AixLib.Fluid.Movers.Compressors.Utilities.Types and expand the if-structure defined in AixLib.Fluid.Movers.Compressors.Utilities.VolumetricEfficiency.PolynomialVolumetricEfficiency.

"Polynomial approaches" border="1" cellspacing="0" cellpadding="2" style="border-collapse:collapse;">
Reference Formula Refrigerants Validity ncompressor Validity Πpressure
DarrAndCrawford1992 ηvol = a1 + a2*n - a3*epsRef*(ρinlIseinl-1) - a4*n*(ρinlIseinl-1) R134a 40 - 75 3 - 10
Karlsson2007 ηvol = a1*Tinl*π + a2*π + a3 + a4*Tinl + a5*n + a6*n^2 R407c No information No information
KinarbEtAl2010 ηvol = a1 + a2*π Generic model Generic model Generic model
ZhouEtAl2010 ηvol = 1 + a1 - a2*π^(1/κ) Generic model Generic model Generic model
Li2013 ηvol = ηvolRef * (a1 + a2*(n/nref) + a3*(n/nref)^2) R22,R134a 30 - 120 4 - 12
HongtaoLaughmannEtAl2017 ηvol = a1 + a2*(n/nref) + a3*(n/nref)^2 + a4*π + a5*(n/nref)*π + a6*(n/nref)^2*π + a7*π^2 + a8*(n/nref)*π^2 + a9*(n/nref)^2*π^2 + a10*pout + a11*(n/nref)*pout + a12*(n/nref)^2*pout - a13*pinl - a14*(n/nref)*pinl - a15*(n/nref)^2*pinl + a16*pinl*pout + a17*(n/nref)*pinl*pout + a18*(n/nref)^2*pinl*pout + a19*(n/nref)^3*pinl*pout + a20*(n/nref)^4*pinl*pout - a21*pinl^2 - a22*(n/nref)*pinl^2 - a23*(n/nref)^2*pinl^2 - a24*(n/nref)^3*pinl^2 - a25*(n/nref)^4*pinl^2 Generic model Generic model Generic model
Koerner2017 ηvol = a1*π^b1 R410a 50 - 120 1 - 10
Engelpracht2017 ηvol = a1 + a2*((π-c1)/c2) + a3*((Tinl-c3)/c4)*((π-c1)/c2) + a4*((Tinl-c3)/c4) + a5*((n-c5)/c6) + a6*((n-c5)/c6)^2 Generic model 0 - 120 1 - 10

Power volumetric efficiency models

Actually, one power approache is implemented in this package. To add further calculation procedures, just add its name in AixLib.Fluid.Movers.Compressors.Utilities.Types and expand the if-structure defined in AixLib.Fluid.Movers.Compressors.Utilities.VolumetricEfficiency.PowerVolumetricEfficiency.

"Power approaches" border="1" cellspacing="0" cellpadding="2" style="border-collapse:collapse;">
Reference Formula Refrigerants Validity ncompressor Validity Πpressure
MendozaMirandaEtAl2016 ηvol = a1 * π^b1 * (π^1.5*n^3*Vdis)^b2 * (Mref/M)^b3 R134a,R450a,R1324yf,R1234ze(E) 0 - 50 1 - 6

Revisions


Generated at 2025-01-08T19:40:16Z by OpenModelicaOpenModelica 1.24.3 using GenerateDoc.mos