This model contains a calculation procedure for volumetric efficiency models (for more information, please check out AixLib.Fluid.Movers.Compressors.BaseClasses.PartialCompression). The calculation procedures based on a polynomial approach are presented below.
Actually, eigtht polynomial approaches are implemented in this
package. To add further calculation procedures, just add its name in
AixLib.Fluid.Movers.Compressors.Utilities.Types
and expand the if-structure
.
Reference | Formula | Refrigerants |
Validity ncompressor
|
Validity Πpressure
|
---|---|---|---|---|
DarrAndCrawford1992 |
ηvol = a1 + a2*n -
a3*epsRef*(ρinlIse/ρinl-1) -
a4*n*(ρinlIse/ρinl-1)
|
R134a |
40 - 75
|
3 - 10
|
Karlsson2007 |
ηvol = a1*Tinl*π + a2*π + a3 +
a4*Tinl + a5*n + a6*n^2
|
R407c |
No information
|
No information
|
KinarbEtAl2010 |
ηvol = a1 + a2*π
|
Generic model |
Generic model
|
Generic model
|
ZhouEtAl2010 |
ηvol = 1 + a1 - a2*π^(1/κ)
|
Generic model |
Generic model
|
Generic model
|
Li2013 |
ηvol = ηvolRef * (a1 +
a2*(n/nref) + a3*(n/nref)^2)
|
R22,R134a |
30 - 120
|
4 - 12
|
HongtaoLaughmannEtAl2017 |
ηvol = a1 + a2*(n/nref) +
a3*(n/nref)^2 + a4*π + a5*(n/nref)*π +
a6*(n/nref)^2*π + a7*π^2 +
a8*(n/nref)*π^2 + a9*(n/nref)^2*π^2 +
a10*pout + a11*(n/nref)*pout
+ a12*(n/nref)^2*pout -
a13*pinl - a14*(n/nref)*pinl
- a15*(n/nref)^2*pinl +
a16*pinl*pout +
a17*(n/nref)*pinl*pout +
a18*(n/nref)^2*pinl*pout +
a19*(n/nref)^3*pinl*pout +
a20*(n/nref)^4*pinl*pout -
a21*pinl^2 -
a22*(n/nref)*pinl^2 -
a23*(n/nref)^2*pinl^2 -
a24*(n/nref)^3*pinl^2 -
a25*(n/nref)^4*pinl^2
|
Generic model |
Generic model
|
Generic model
|
Koerner2017 |
ηvol = a1*π^b1
|
R410a |
50 - 120
|
1 - 10
|
Engelpracht2017 |
ηvol = a1 + a2*((π-c1)/c2) +
a3*((Tinl-c3)/c4)*((π-c1)/c2) +
a4*((Tinl-c3)/c4) + a5*((n-c5)/c6) +
a6*((n-c5)/c6)^2
|
Generic model |
0 - 120
|
1 - 10
|
J.H. Darr and R.R. Crawford (1992): Modeling of an Automotive Air Conditioning Compressor Based on Experimental Data: ACRC Technical Report 14. Publisher: Air Conditioning and Refrigeration Center. College of Engineering. University of Illinois at Urbana-Champaign.
F. Karlsson (2007): Capacity Control of Residential Heat Pump Heating Systems. In: PhD thesis
R. Zhou, T. Zhang, J. Catano, J.T. Wen, G.J. Michna, Y. Peles, and M.K. Jensen, M. K. (2010): The steady-state modeling and optimization of a refrigeration system for high heat flux removal. In: Applied Thermal Engineering 30(16), S. 2347–2356
E. Kinab, D. Marchio, P. Rivière and A. Zoughaib (2010): Reversible heat pump model for seasonal performance optimization. In: Energy and Buildings 42(12), S. 2269–2280
W. Li (2013): Simplified steady-state modeling for variable speed compressor. In: Applied Thermal Engineering 50(1), S. 318–326
Q. Hongtao, C.R. Laughman, D.J. Burns and S.A. Bortoff, (2017): Dynamic Characteristics of an R-410A Multi-split Variable Refrigerant Flow Air-conditioning System. In: IEA Heat Pump Conference 2017
D. Körner (2017): Development of dynamic compression heat pump models to evaluate promising refrigerants considering legal regulations. Master Thesis
M. Engelpracht (2017): Development of modular and scalable simulation models for heat pumps and chillers considering various refrigerants. Master Thesis