This package provides a refrigerant model for R134a using a hybrid approach developed by Sangi et al.. The hybrid approach is implemented in AixLib.Media.Refrigerants.Interfaces.PartialHybridTwoPhaseMediumFormula and the refrigerant model is implemented by complete the template AixLib.Media.Refrigerants.Interfaces.TemplateHybridTwoPhaseMediumFormula .
The implemented coefficients are fitted to external data by
Engelpracht and are valid within the following range:
Parameter |
Minimum Value |
Maximum Value |
Pressure (p) in bar |
1 |
39.5 |
Temperature (T) in K |
233.15 |
370.15 |
The reference point is defined as 200 kJ/kg and 1 kJ/kg/K, respectively, for enthalpy and entropy for the saturated liquid at 273.15 K.
The model is validated by comparing results obtained from the example model AixLib.Media.Refrigerants.Examples.RefrigerantProperties to external data (e.g. obtained from measurements or external media libraries).
Tillner-Roth, R.; Baehr, H. D. (1994): An International Standard Formulation for the thermodynamic Properties of 1,1,1,2|Tetrafluoroethane (HFC|134a) for Temperatures from 170 K to 455 K and Pressures up to 70 MPa. In: Journal of physical and chemical reference data (23), S. 657–729. DOI: 10.1063/1.555958.
Huber, Marcia L.; Laesecke, Arno; Perkins, Richard A. (2003): Model for the Viscosity and Thermal Conductivity of Refrigerants, Including a New Correlation for the Viscosity of R134a. In: Ind. Eng. Chem. Res. 42 (13) , S. 3163–3178. DOI: 10.1021/ie0300880.
Perkins, R. A.; Laesecke, A.; Howley, J.; Ramires, M. L. V.; Gurova, A. N.; Cusco, L. (2000): Experimental thermal conductivity values for the IUPAC round-robin sample of 1,1,1,2-tetrafluoroethane (R134a). Gaithersburg, MD: National Institute of Standards and Technology.
Mulero, A.; Cachadiña, I.; Parra, M. I. (2012): Recommended Correlations for the Surface Tension of Common Fluids. In: Journal of physical and chemical reference data 41 (4), S. 43105. DOI: 10.1063/1.4768782.
Engelpracht, Mirko (2017): Development of modular and scalable simulation models for heat pumps and chillers considering various refrigerants. Master Thesis
Name | Description |
---|---|
SmoothTransition | Record that contains ranges to calculate a smooth transition between different regions |
f_Idg | Dimensionless Helmholtz energy (Ideal gas contribution alpha_0) |
f_Res | Dimensionless Helmholtz energy (Residual part alpha_r) |
t_fIdg_t | Short form for tau*(dalpha_0/dtau)_delta=const |
tt_fIdg_tt | Short form for tau*tau*(ddalpha_0/(dtau*dtau))_delta=const |
t_fRes_t | Short form for tau*(dalpha_r/dtau)_delta=const |
tt_fRes_tt | Short form for tau*tau*(ddalpha_r/(dtau*dtau))_delta=const |
d_fRes_d | Short form for delta*(dalpha_r/(ddelta))_tau=const |
dd_fRes_dd | Short form for delta*delta(ddalpha_r/(ddelta*delta))_tau=const |
td_fRes_td | Short form for tau*delta*(ddalpha_r/(dtau*ddelta)) |
ttt_fIdg_ttt | Short form for tau*tau*tau*(dddalpha_0/(dtau*dtau*dtau))_delta=const |
ttt_fRes_ttt | Short form for tau*tau*tau*(dddalpha_r/(dtau*dtau*dtau))_delta=const |
ddd_fRes_ddd | Short form for delta*delta*delta* (dddalpha_r/(ddelta*ddelta*ddelta))_tau=const |
tdd_fRes_tdd | Short form for tau*delta*delta*(dddalpha_r/(dtau*ddelta*ddelta)) |
ttd_fRes_ttd | Short form for tau*tau*delta*(dddalpha_r/(dtau*dtau*ddelta)) |
saturationPressure | Saturation pressure of refrigerant (Ancillary equation) |
saturationTemperature | Saturation temperature of refrigerant (Ancillary equation) |
bubbleDensity | Boiling curve specific density of refrigerant (Ancillary equation) |
dewDensity | Dew curve specific density of refrigerant (Ancillary equation) |
bubbleEnthalpy | Boiling curve specific enthalpy of refrigerant (Ancillary equation) |
dewEnthalpy | Dew curve specific enthalpy of refrigerant (Ancillary equation) |
bubbleEntropy | Boiling curve specific entropy of refrigerant (Ancillary equation) |
dewEntropy | Dew curve specific entropy of propane (Ancillary equation) |
temperature_ph | Calculates temperature as function of pressure and specific enthalpy |
temperature_ps | Calculates temperature as function of pressure and specific entroy |
density_pT | Computes density as a function of pressure and temperature |
dynamicViscosity | Calculates dynamic viscosity of refrigerant |
thermalConductivity | Calculates thermal conductivity of refrigerant |
surfaceTension | Surface tension in two phase region of refrigerant |