This package provides a refrigerant model for R290 using a hybrid approach developed by Sangi et al.. The hybrid approach is implemented in AixLib.Media.Refrigerants.Interfaces.PartialHybridTwoPhaseMediumRecord and the refrigerant model is implemented by complete the template AixLib.Media.Refrigerants.Interfaces.TemplateHybridTwoPhaseMediumRecord .
The implemented coefficients are fitted to external data by Sangi et
al. and are valid within the following range:
Parameter |
Minimum Value |
Maximum Value |
Pressure (p) in bar |
0.5 |
30 |
Temperature (T) in K |
263.15 |
343.15 |
Sangi et al. validated their model by comparing it to results obtained from the Helmholtz equation of state. They found out that relative error of the refrigerant model compared to HelmholtzMedia (Thorade and Saadat, 2012) is close to zero.
Thorade, Matthis; Saadat, Ali (2012): HelmholtzMedia - A fluid properties library. In: Proceedings of the 9th International Modelica Conference; September 3-5; 2012; Munich; Germany. Linköping University Electronic Press, S. 63–70.
Sangi, Roozbeh; Jahangiri, Pooyan; Klasing, Freerk; Streblow, Rita; Müller, Dirk (2014): A Medium Model for the Refrigerant Propane for Fast and Accurate Dynamic Simulations. In: The 10th International Modelica Conference. Lund, Sweden, March 10-12, 2014: Linköping University Electronic Press (Linköping Electronic Conference Proceedings), S. 1271–1275
Klasing,Freerk: A New Design for Direct Exchange Geothermal Heat Pumps - Modeling, Simulation and Exergy Analysis. Master thesis
Scalabrin, G.; Marchi, P.; Span, R. (2006): A Reference Multiparameter Viscosity Equation for Propane with an Optimized Functional Form. In: J. Phys. Chem. Ref. Data, Vol. 35, No. 3, S. 1415-1442
Name | Description |
---|---|
SmoothTransition | Record that contains ranges to calculate a smooth transition between different regions |
f_Idg | Dimensionless Helmholtz energy (Ideal gas contribution alpha_0) |
f_Res | Dimensionless Helmholtz energy (Residual part alpha_r) |
t_fIdg_t | Short form for tau*(dalpha_0/dtau)_delta=const |
tt_fIdg_tt | Short form for tau*tau*(ddalpha_0/(dtau*dtau))_delta=const |
t_fRes_t | Short form for tau*(dalpha_r/dtau)_delta=const |
tt_fRes_tt | Short form for tau*tau*(ddalpha_r/(dtau*dtau))_delta=const |
d_fRes_d | Short form for delta*(dalpha_r/(ddelta))_tau=const |
dd_fRes_dd | Short form for delta*delta(ddalpha_r/(ddelta*delta))_tau=const |
td_fRes_td | Short form for tau*delta*(ddalpha_r/(dtau*ddelta)) |
ttt_fIdg_ttt | Short form for tau*tau*tau*(dddalpha_0/(dtau*dtau*dtau))_delta=const |
ttt_fRes_ttt | Short form for tau*tau*tau*(dddalpha_r/(dtau*dtau*dtau))_delta=const |
ddd_fRes_ddd | Short form for delta*delta*delta* (dddalpha_r/(ddelta*ddelta*ddelta))_tau=const |
tdd_fRes_tdd | Short form for tau*delta*delta*(dddalpha_r/(dtau*ddelta*ddelta)) |
ttd_fRes_ttd | Short form for tau*tau*delta*(dddalpha_r/(dtau*dtau*ddelta)) |
saturationPressure | Saturation pressure of refrigerant (Ancillary equation) |
saturationTemperature | Saturation temperature of refrigerant (Ancillary equation) |
bubbleDensity | Boiling curve specific density of refrigerant (Ancillary equation) |
dewDensity | Dew curve specific density of refrigerant (Ancillary equation) |
bubbleEnthalpy | Boiling curve specific enthalpy of refrigerant (Ancillary equation) |
dewEnthalpy | Dew curve specific enthalpy of refrigerant (Ancillary equation) |
bubbleEntropy | Boiling curve specific entropy of refrigerant (Ancillary equation) |
dewEntropy | Dew curve specific entropy of propane (Ancillary equation) |
temperature_ph | Calculates temperature as function of pressure and specific enthalpy |
temperature_ps | Calculates temperature as function of pressure and specific entroy |
density_pT | Computes density as a function of pressure and temperature |
dynamicViscosity | Calculates dynamic viscosity of refrigerant |
thermalConductivity | Calculates thermal conductivity of refrigerant |
surfaceTension | Surface tension in two phase region of refrigerant |