// Nonlinear system of equations
// It depends on the following parameters:
// D5_a
// D5_b
// D5_c
// F_x
// F_y
// H_x
// Unknowns[14]:
// D7_z(start = 0)
// D7_c(start = 0)
// D7_b(start = 0)
// D7_y(start = 0)
// G_x(start = 0)
// D6_x(start = 0)
// D6_b(start = 0)
// D6_y(start = 0)
// G_y(start = 0)
// D7_x(start = 0)
// D7_a(start = 0)
// D6_a(start = 0)
// D6_c(start = 0)
// D6_z(start = 0)
algorithm // Torn part
equation // Residual equations
0 = D6_a*(G_y-D6_y)-D6_b*(G_x-D6_x);
0 = D6_c*(G_x-D6_x)+D6_a*D6_z;
0 = D6_a*D6_x+D6_b*D6_y+D6_c*D6_z;
0 = D5_a*D6_a+D5_b*D6_b+D5_c*D6_c;
0 = D6_a^2+D6_b^2+D6_c^2-1;
0 = D6_c*(F_x-D6_x)+D6_a*D6_z;
0 = D6_a*(F_y-D6_y)-D6_b*(F_x-D6_x);
0 = D7_a*(G_y-D7_y)-D7_b*(G_x-D7_x);
0 = D7_a*D7_y+D7_b*(H_x-D7_x);
0 = D6_a*D7_a+D6_b*D7_b+D6_c*D7_c;
0 = D7_a^2+D7_b^2+D7_c^2-1;
0 = D7_a*D7_x+D7_b*D7_y+D7_c*D7_z;
0 = D7_b*D7_z+D7_c*(G_y-D7_y);
0 = D7_c*D7_y-D7_b*D7_z;
// Analytic Jacobian was produced, but it is not listed here.
// To have it listed, set
// Advanced.OutputModelicaCodeWithJacobians = true
// before translation. May give much output,
// because common subexpression elimination is not activated.
// End of nonlinear system of equations
Generated at 2024-12-22T19:25:51Z
by OpenModelicaOpenModelica 1.24.3 using GenerateDoc.mos