// Nonlinear system of equations
// It depends on the following parameters:
// D5_a
// D5_b
// D5_c
// Pl1_a
// Pl1_b
// Pl1_c
// Unknowns[9]:
// D_z(start = 0)
// D4_x(start = 0)
// D4_y(start = 0)
// D_y(start = 0)
// D_x(start = 0)
// D4_c(start = 0)
// D4_b(start = 0)
// D4_a(start = 0)
// D4_z(start = 0)
algorithm // Torn part
equation // Residual equations
0 = D_x*Pl1_a+D_y*Pl1_b+D_z*Pl1_c;
0 = D4_a*(D_y-D4_y)-D4_b*(D_x-D4_x);
0 = D4_c*(D_x-D4_x)-D4_a*(D_z-D4_z);
0 = D4_a*D4_x+D4_b*D4_y+D4_c*D4_z;
0 = D4_a^2+D4_b^2+D4_c^2-1;
0 = D5_a*D4_a+D5_b*D4_b+D5_c*D4_c;
0 = D4_a*D4_z-D4_c*D4_x;
0 = D4_c*D4_y-D4_b*D4_z;
0 = D_x^2+D_y^2+D_z^2-4;
// Analytic Jacobian was produced, but it is not listed here.
// To have it listed, set
// Advanced.OutputModelicaCodeWithJacobians = true
// before translation. May give much output,
// because common subexpression elimination is not activated.
// End of nonlinear system of equations
Generated at 2024-12-22T19:25:51Z
by OpenModelicaOpenModelica 1.24.3 using GenerateDoc.mos