.Buildings.UsersGuide.ReleaseNotes.Version_1_6_build1

Information

Version 1.6 build 1 updates the Buildings library to the Modelica Standard Library 3.2.1 and to Modelica_StateGraph2 2.0.2.

This is the first version of the Buildings library that contains models from the IEA EBC Annex 60 library, a Modelica library for building and community energy systems that is collaboratively developed within the project "New generation computational tools for building and community energy systems based on the Modelica and Functional Mockup Interface standards", a project that is conducted under the Energy in Buildings and Communities Programme (EBC) of the International Energy Agency (IEA).

The following new components have been added to existing libraries:

Buildings.Fluid
Buildings.Fluid.Actuators.Valves.TwoWayTable Two way valve for which the opening characteristics is specified by a table.
Buildings.Utilities.Math
Buildings.Utilities.Math.Examples.Average Buildings.Utilities.Math.Examples.InverseXRegularized Buildings.Utilities.Math.Examples.Polynominal Buildings.Utilities.Math.Examples.PowerLinearized Buildings.Utilities.Math.Examples.QuadraticLinear Buildings.Utilities.Math.Examples.RegNonZeroPower Buildings.Utilities.Math.Examples.SmoothExponential Buildings.Utilities.Math.Functions.average Buildings.Utilities.Math.Functions.booleanReplicator Buildings.Utilities.Math.Functions.Examples.IsMonotonic Buildings.Utilities.Math.Functions.Examples.TrapezoidalIntegration Buildings.Utilities.Math.Functions.integerReplicator Buildings.Utilities.Math.InverseXRegularized Buildings.Utilities.Math.Polynominal Buildings.Utilities.Math.PowerLinearized Buildings.Utilities.Math.QuadraticLinear Buildings.Utilities.Math.RegNonZeroPower Buildings.Utilities.Math.SmoothExponential Buildings.Utilities.Math.TrapezoidalIntegration Various functions and blocks for mathematical operations.
Buildings.Utilities.Psychrometrics
Buildings.Utilities.Psychrometrics.Examples.SaturationPressureLiquid Buildings.Utilities.Psychrometrics.Examples.SaturationPressure Buildings.Utilities.Psychrometrics.Examples.SublimationPressureIce Buildings.Utilities.Psychrometrics.Functions.BaseClasses.der_saturationPressureLiquid Buildings.Utilities.Psychrometrics.Functions.BaseClasses.der_sublimationPressureIce Buildings.Utilities.Psychrometrics.Functions.BaseClasses.Examples.SaturationPressureDerivativeCheck Buildings.Utilities.Psychrometrics.Functions.Examples.SaturationPressure Buildings.Utilities.Psychrometrics.Functions.saturationPressureLiquid Buildings.Utilities.Psychrometrics.Functions.saturationPressure Buildings.Utilities.Psychrometrics.Functions.sublimationPressureIce Buildings.Utilities.Psychrometrics.SaturationPressureLiquid Buildings.Utilities.Psychrometrics.SaturationPressure Buildings.Utilities.Psychrometrics.SublimationPressureIce Various functions and blocks for psychrometric calculations.

The following existing components have been improved in a backward compatible way:

Buildings.Fluid
Buildings.Fluid.Interfaces.PartialTwoPortInterface
Buildings.Fluid.Interfaces.PartialFourPortInterface
Removed call to homotopy function in the computation of the connector variables as these are conditionally enabled variables and therefore must not be used in any equation. They are only for output reporting.
Buildings.Fluid.Actuators.Dampers.Exponential Improved documentation of the flow resistance.
Buildings.BoundaryConditions
Buildings.BoundaryConditions.WeatherData.ReaderTMY3
Added the option to use a constant, an input signal or the weather file as the source for the ceiling height, the total sky cover, the opaque sky cover, the dew point temperature, and the infrared horizontal radiation HInfHor.

The following existing components have been improved in a non-backward compatible way:

Buildings.Fluid
Buildings.Fluid.Movers.FlowMachinePolynomial Moved the model to the package Buildings.Obsolete, as this model is planned to be removed in future versions. The conversion script should update old instances of this model automatically in Dymola. Users should change their models to use a flow machine from the package Buildings.Fluid.Movers.
Buildings.Fluid.Storage.ExpansionVessel Simplified the model to have a constant pressure. The following non-backward compatible changes have been made.
  1. The parameter VTot was renamed to V_start.
  2. The following parameters were removed: VGas0, pMax, energyDynamics and massDynamics.
The conversion script should update old instances of this model automatically in Dymola.
Buildings.Fluid.Storage.StratifiedEnhancedInternalHex Revised the model as the old version required the porta of the heat exchanger to be located higher than portb. This makes sense if the heat exchanger is used to heat up the tank, but not if it is used to cool down a tank, such as in a cooling plant. The following parameters were changed:
  1. Changed hexTopHeight to hHex_a.
  2. Changed hexBotHeight to hHex_b.
  3. Changed topHexSeg to segHex_a, and made it protected as this is deduced from hHex_a.
  4. Changed botHexSeg to segHex_b, and made it protected as this is deduced from hHex_b.
The names of the following ports have been changed:
  1. Changed port_a1 to portHex_a.
  2. Changed port_b1 to portHex_b.
The conversion script should update old instances of this model automatically in Dymola for all of the above changes.

The following critical errors have been fixed (i.e., errors that can lead to wrong simulation results):

Buildings.Fluid
Buildings.Fluid.Geothermal.Boreholes.UTube Reimplemented the resistor network inside the borehole as the old implementation led to too slow a transient response. This change also led to the removal of the parameters B0 and B1 as the new implementation does not require them.

The following uncritical errors have been fixed (i.e., errors that do not lead to wrong simulation results, e.g., units are wrong or errors in documentation):

Buildings.Fluid
Buildings.Fluid.Geothermal.Boreholes.BaseClasses.HexInternalElement Corrected error in documentation which stated a wrong default value for the pipe spacing.
Buildings.Fluid.HeatExchangers.BaseClasses.ntu_epsilonZ() Added dummy argument to function call of Internal.solve to avoid a warning during model check in Dymola 2015.
Buildings.Fluid.HeatExchangers.DryEffectivenessNTU Changed assert statement to avoid comparing enumeration with an integer, which triggers a warning in Dymola 2015.
Buildings.ThermalZones.Detailed.Constructions.Examples.ExteriorWall
Buildings.ThermalZones.Detailed.Constructions.Examples.ExteriorWallWithWindow
Buildings.ThermalZones.Detailed.Constructions.Examples.ExteriorWallTwoWindows
Corrected wrong assignment of parameter in instance bouConExt(conMod=...) which was set to an interior instead of an exterior convection model.
Buildings.Utilities.Psychrometrics.Functions.TDewPoi_pW() Added dummy argument to function call of Internal.solve to avoid a warning during model check in Dymola 2015.

The followings issues have been fixed:

Buildings.Fluid
#196 Change capacity location in borehole grout.

Generated at 2024-03-28T19:15:55Z by OpenModelicaOpenModelica 1.22.3 using GenerateDoc.mos