.FuelCellLib.Basics.tp_dif

Information

tp_dif-Transport Phenomena


The following eq, shows the flux of gases depending of two phenomena: Stefan-Maxwell diffusion, and Knudsen diffusion.

The following eqs., shows the expression of binary diffusion coeffient and Knudsen diffusion coefficient equations. This is variable modeling hypothesis, and it could be simulated as a constant or a dependence on pore size equation.

The maximum water load in diffusion layer is shown next and it depends on the density of water and the solid and the volume of solid.

The pore volume is the blank space that doesn't fill of liquid water and solid volume.

This equation shown the flux of liquid water as a dependence on the gradient of water load.

The electronic current is shown like a ohm?s law. Ks parameter is the electronic conductivity of the solid.

Parameters

NameDefaultDescription
tau Tortuosity
Es Volumetric fraction of solid
da Thickness of transport phenomena [m]
T Operation temperature of active layer [K]
Dwl Surface diffusion coefficient of H2O, liquid phase [m2/s]
ks Electrical conducivity of the solid [S/m]
kp Constant protonic conducivity of the electrolyte [S/m]
ros Density of the solid [kg/m3]
roh2ol Density of water [kg/m3]
D1co Constant Knudsen diffusion coefficient for oxygen [m2/s]
D2co Constant Knudsen diffusion coefficient for steam water [m2/s]
rp Pore size of porous media [m]
D12o Constant binary diffusion coefficient [m2/s]
pAref Reference pressure to measure the binary diffusion coefficient [Pa]
Tref Reference temperature to measure the binary diffusion coefficient [K]
ModHyp2 Knudsen diffusion pore size dependence(0:Off,1:On)


References


Modelica Association, Modelica-A Unified Object-Oriented Languaje for Physical System Modeling, Tutorial. http://www.modelica.org/.

A.Urquia, S.Dormido, Mathematical and Computer Modelling of Dynamical Systems, vol.9, n?1, pp.65-90, (2002).

K.J.Astrom, H.Elmqvist, S.E.Mattsson, Evolution of continous-time modeling and simulation, The 12th ESM?98, (1998).

M.Ceraolo, C.Miulli, A.Pozio, Modeling static and dynamic behaviour of PEMFC on the basis of electro-chemical description, J. Power Sources 113 (2003).

A.Kumar, R.Reddy, Effect of channel dimensions and shapes in the flow-field distributor on performance of PEMFC, J. Power Sources 113 (2003).

W.D.Steinmann, P.Treffinger, Simulation of Fuel Cell Powered Drive Trains, Modelica WorkShop 2000 Procedings.

D.Bevers, M.W?hr, K.Yasuda, K.Oguro, Simulation of polymer electrolyte fuel cell electrode.J.Appl. Electrochem.27 (1997).

K.Broka, P.Ekdunge, Modelling the PEM fuel cell cathode, J.Appl. Electrochem.27 (1997).

J.Larminie, A.Dicks, Fuel Cell Systems Explained, Wiley 2000.

A.A.Kulikovsky, Fuel Cells 2001,1(2).

V.Gurau, H.Liu, S.Kakac,AIChE J.2000 46(10).

D.M.Bernardi, M.W.Verbrugge, J. electrochem. Soc. 139,9 (1992).

T.E.Springer, T.A.Zawodzinsky, J.Electrochem.Soc. 138 (1991).

S.Dutta, S.Shimpalee, J.Appl.Electrochem. (2000), 30(2).

D.B.Genevey, Thesis, F.V.P.I. (2001).

J. Larminie, A.Dicks, Fuel Cell System Explained, Wiley (2000).


Generated at 2024-11-26T19:26:15Z by OpenModelicaOpenModelica 1.24.2 using GenerateDoc.mos