.FuelCellLib.Basics.tp_mem

Information

tp_mem-Transport Phenomena


This equation shown the flux of liquid water as a dependence on the gradient of water load and electrosmotic drag. In the library , the electrosmotic drag is a opcional modeling hypothesis, selected by the parameter "ModHyp3" in membrane layer (MEM_LAYER) located in LAYER1D package.

This equation shown the flux of steam water in membrane, this depends on gradient of gas pressure.

Protonic flux depends on the gradient of electrolyte voltage multiply by the protonic conductivity and the electrolyte volume.

The maximum water load in membrane is shown next and it depends on the density of water and the membrane and the volume of electrolyte.

Electrosmotic drag coefficient is a empirical equation, this depends on the water load of the membrane and the lectrolyte pore. This coefficient shows the water flux and protonic flux ratio.

The pore volume is the blank space that doesn't fill the electrolyte

The proton conductivity is another variable modeling hypothesis in the library, called "ModHyp4" located in "MEM_LAYER" in the Layers1D package. The user select with "ModHyp4" a constant proton conductivity or a water load dependence equation of proton conductivity.

Parameters

NameDefaultDescription
tau Tortuosity
Ee Volumetric fraction of electrolyte
da Thickness of transport phenomena [m]
T Operation temperature of active layer [K]
D2 Constant Fick diffusion coefficient for steam water [m2/s]
Dwl Surface diffusion coefficient of H2O, liquid phase [m2/s]
ks Electrical conducivity of the solid [S/m]
rom Density of the electrolyte [kg/m3]
kpo Constant protonic conducivity of the electrolyte [S/m]
roh2ol Density of water [kg/m3]
posat Reference Saturation pressure [Pa]
Tosat Reference Saturation temperature [K]
Mm Molar mass of the electrolyte [kg/mol]
ModHyp3 Electro-Osmotic drag effect(0:Off,1:On)
ModHyp4 Electrolyte conductivity dependence(0:Off,1:On)


References


Modelica Association, Modelica-A Unified Object-Oriented Languaje for Physical System Modeling, Tutorial. http://www.modelica.org/.

A.Urquia, S.Dormido, Mathematical and Computer Modelling of Dynamical Systems, vol.9, n?1, pp.65-90, (2002).

K.J.Astrom, H.Elmqvist, S.E.Mattsson, Evolution of continous-time modeling and simulation, The 12th ESM?98, (1998).

M.Ceraolo, C.Miulli, A.Pozio, Modeling static and dynamic behaviour of PEMFC on the basis of electro-chemical description, J. Power Sources 113 (2003).

A.Kumar, R.Reddy, Effect of channel dimensions and shapes in the flow-field distributor on performance of PEMFC, J. Power Sources 113 (2003).

W.D.Steinmann, P.Treffinger, Simulation of Fuel Cell Powered Drive Trains, Modelica WorkShop 2000 Procedings.

D.Bevers, M.W?hr, K.Yasuda, K.Oguro, Simulation of polymer electrolyte fuel cell electrode.J.Appl. Electrochem.27 (1997).

K.Broka, P.Ekdunge, Modelling the PEM fuel cell cathode, J.Appl. Electrochem.27 (1997).

J.Larminie, A.Dicks, Fuel Cell Systems Explained, Wiley 2000.

A.A.Kulikovsky, Fuel Cells 2001,1(2).

V.Gurau, H.Liu, S.Kakac,AIChE J.2000 46(10).

D.M.Bernardi, M.W.Verbrugge, J. electrochem. Soc. 139,9 (1992).

T.E.Springer, T.A.Zawodzinsky, J.Electrochem.Soc. 138 (1991).

S.Dutta, S.Shimpalee, J.Appl.Electrochem. (2000), 30(2).

D.B.Genevey, Thesis, F.V.P.I. (2001).

J. Larminie, A.Dicks, Fuel Cell System Explained, Wiley (2000).


Generated at 2024-11-22T19:25:38Z by OpenModelicaOpenModelica 1.24.2 using GenerateDoc.mos