Name | Default | Description |
---|---|---|
T | 340 | Operation temperature of active layer [K] |
av | 1e-9 | Specific condensation surface [m2/m3] |
b | 0.001 | Material transfer coeficient [m/s] |
Es | 0.7 | Volumetric fraction of solid |
Ee | 0.2 | Volumetric fraction of electrolyte |
cdl | 1 | Electrical capacity of double layer [F] |
da | 1e-6 | Thickness of transport phenomena [m] |
tau | 5 | Tortuosity |
Dwl | 3.5e-9 | Surface diffusion coefficient of H2O, liquid phase [m2/s] |
ks | 1e4 | Electrical conducivity of the solid [S/m] |
kpo | 10e-2 | Constant protonic conducivity of the electrolyte [S/m] |
posat | 3169 | Reference Saturation pressure [Pa] |
Tosat | 298.16 | Reference Saturation temperature [K] |
rom | 2000 | Density of the electrolyte [kg/m3] |
ros | 4000 | Density of the solid [kg/m3] |
Mm | 1.1 | Molar mass of the electrolyte [kg/mol] |
roh2ol | 972 | Density of water [kg/m3] |
Aioref | 1.28 | Catalyst area and reference exchange current density [A/m3] |
poa | 100000 | Reference pressure for the current limit [Pa] |
B | 0.060 | Tafel slope [V] |
jlim | 2.40e3 | Limit current [A] |
D1co | 0.007853e-4 | Constant Knudsen diffusion coefficient for oxygen [m2/s] |
D2co | 0.01047e-4 | Constant Knudsen diffusion coefficient for steam water [m2/s] |
rp | 1e-10 | Pore size of porous media [m] |
D12o | 0.282e-4 | Constant binary diffusion coefficient [m2/s] |
pAref | 100000 | Reference pressure to measure the binary diffusion coefficient [Pa] |
Tref | 308.1 | Reference temperature to measure the binary diffusion coefficient [K] |
ModHyp1 | 0 | Psuedocapacitance dependence(0:Off,1:On) |
ModHyp2 | 0 | Knudsen diffusion pore size dependence(0:Off,1:On) |
ModHyp3 | 0 | Electro-Osmotic drag effect(0:Off,1:On) |
ModHyp4 | 1 | Electrolyte conductivity dependence(0:Off,1:On) |
n | 10 | Number of finite elements for active layer |
Modelica Association, Modelica-A Unified Object-Oriented Languaje for Physical System Modeling, Tutorial. http://www.modelica.org/.
A.Urquia, S.Dormido, Mathematical and Computer Modelling of Dynamical Systems, vol.9, n?1, pp.65-90, (2002).
K.J.Astrom, H.Elmqvist, S.E.Mattsson, Evolution of continous-time modeling and simulation, The 12th ESM?98, (1998).
M.Ceraolo, C.Miulli, A.Pozio, Modeling static and dynamic behaviour of PEMFC on the basis of electro-chemical description, J. Power Sources 113 (2003).
A.Kumar, R.Reddy, Effect of channel dimensions and shapes in the flow-field distributor on performance of PEMFC, J. Power Sources 113 (2003).
W.D.Steinmann, P.Treffinger, Simulation of Fuel Cell Powered Drive Trains, Modelica WorkShop 2000 Procedings.
D.Bevers, M.W?hr, K.Yasuda, K.Oguro, Simulation of polymer electrolyte fuel cell electrode.J.Appl. Electrochem.27 (1997).
K.Broka, P.Ekdunge, Modelling the PEM fuel cell cathode, J.Appl. Electrochem.27 (1997).
J.Larminie, A.Dicks, Fuel Cell Systems Explained, Wiley 2000.
A.A.Kulikovsky, Fuel Cells 2001,1(2).
V.Gurau, H.Liu, S.Kakac,AIChE J.2000 46(10).
D.M.Bernardi, M.W.Verbrugge, J. electrochem. Soc. 139,9 (1992).
T.E.Springer, T.A.Zawodzinsky, J.Electrochem.Soc. 138 (1991).
S.Dutta, S.Shimpalee, J.Appl.Electrochem. (2000), 30(2).
D.B.Genevey, Thesis, F.V.P.I. (2001).
J. Larminie, A.Dicks, Fuel Cell System Explained, Wiley (2000).