.FuelCellLib.Layer1D.dif_layer

Information

dif_Layer-Layer1D




This class represents the method of finite volumes to solve the one dimensional problem of the layer. Also in this class all parameter of transport phenomena and control volume of diffusion layer are defined. One of these parameters, "n" is the number of finite volumes of the layer. The simulation can become too slowed if the parameter "n" is very high. The selection of the variable modeling hypothesis is defined by the parameter:
"ModHyp2":Knudsen diffusion pore size dependence(0:Off,1:On)

Parameters

NameDefaultDescription
T340Operation temperature of diffusion layer [K]
av1e-9Specific condensation surface [m2/m3]
b0.001Material transfer coeficient [m/s]
Es0.7Volumetric fraction of solid
da1e-5Thickness of transport phenomena [m]
tau1Tortuosity
Dwl3.5e-9Surface diffusion coefficient of H2O, liquid phase [m2/s]
ks1e4Electrical conducivity of the solid [S/m]
kp20Constant protonic conducivity of the electrolyte [S/m]
posat3169Reference Saturation pressure [Pa]
Tosat298.16Reference Saturation temperature [K]
ros4000Density of the solid [kg/m3]
roh2ol972Density of water [kg/m3]
poa100000Reference pressure for the current limit [Pa]
D1co0.07853e-4Constant Knudsen diffusion coefficient for oxygen [m2/s]
D2co0.1047e-4Constant Knudsen diffusion coefficient for steam water [m2/s]
rp1e-10Pore size of porous media [m]
D12o0.282e-4Constant binary diffusion coefficient [m2/s]
pAref100000Reference pressure to measure the binary diffusion coefficient [Pa]
Tref308.1Reference temperature to measure the binary diffusion coefficient [K]
ModHyp20Knudsen diffusion pore size dependence(0:Off,1:On)
n20Number of finite elements for diffusion layer


References


Modelica Association, Modelica-A Unified Object-Oriented Languaje for Physical System Modeling, Tutorial. http://www.modelica.org/.

A.Urquia, S.Dormido, Mathematical and Computer Modelling of Dynamical Systems, vol.9, n?1, pp.65-90, (2002).

K.J.Astrom, H.Elmqvist, S.E.Mattsson, Evolution of continous-time modeling and simulation, The 12th ESM?98, (1998).

M.Ceraolo, C.Miulli, A.Pozio, Modeling static and dynamic behaviour of PEMFC on the basis of electro-chemical description, J. Power Sources 113 (2003).

A.Kumar, R.Reddy, Effect of channel dimensions and shapes in the flow-field distributor on performance of PEMFC, J. Power Sources 113 (2003).

W.D.Steinmann, P.Treffinger, Simulation of Fuel Cell Powered Drive Trains, Modelica WorkShop 2000 Procedings.

D.Bevers, M.W?hr, K.Yasuda, K.Oguro, Simulation of polymer electrolyte fuel cell electrode.J.Appl. Electrochem.27 (1997).

K.Broka, P.Ekdunge, Modelling the PEM fuel cell cathode, J.Appl. Electrochem.27 (1997).

J.Larminie, A.Dicks, Fuel Cell Systems Explained, Wiley 2000.

A.A.Kulikovsky, Fuel Cells 2001,1(2).

V.Gurau, H.Liu, S.Kakac,AIChE J.2000 46(10).

D.M.Bernardi, M.W.Verbrugge, J. electrochem. Soc. 139,9 (1992).

T.E.Springer, T.A.Zawodzinsky, J.Electrochem.Soc. 138 (1991).

S.Dutta, S.Shimpalee, J.Appl.Electrochem. (2000), 30(2).

D.B.Genevey, Thesis, F.V.P.I. (2001).

J. Larminie, A.Dicks, Fuel Cell System Explained, Wiley (2000).


Generated at 2024-12-03T19:25:34Z by OpenModelicaOpenModelica 1.24.2 using GenerateDoc.mos