.FuelCellLib.Layer1D.mem_layer

Information

mem_Layer-Layer1D




This class represents the method of finite volumes to solve the one dimensional problem of the layer. Also in this class all parameter of transport phenomena and control volume of membrane are defined. One of these parameters, "n" is the number of finite volumes of the layer. The simulation can become too slowed if the parameter "n" is very high. The selection of the variable modeling hypothesis is defined by the parameters:
"ModHyp3":Electro-Osmotic drag effect(0:Off,1:On)
"ModHyp4":Electrolyte conductivity dependence(0:Off,1:On)

Parameters

NameDefaultDescription
T340Operation temperature of membrane layer [K]
av1e-9Specific condensation surface [m2/m3]
b0.001Material transfer coeficient [m/s]
Ee0.72Volumetric fraction of electrolyte
da1e-5Thickness of transport phenomena [m]
tau1Tortuosity
D21e-6Constant Fick diffusion coefficient for steam water [m2/s]
Dwl1e-8Surface diffusion coefficient of H2O, liquid phase [m2/s]
ks1e4Electrical conducivity of the solid [S/m]
kpo1e-2Constant protonic conducivity of the electrolyte [S/m]
posat3169Reference Saturation pressure [Pa]
Tosat298.16Reference Saturation temperature [K]
rom2000Density of the electrolyte [kg/m3]
roh2ol972Density of water [kg/m3]
Mm1.1Molar mass of the electrolyte [kg/mol]
n10Number of finite elements for membrane layer
ModHyp30Electro-Osmotic drag effect(0:Off,1:On)
ModHyp41Electrolyte conductivity dependence(0:Off,1:On)


References


Modelica Association, Modelica-A Unified Object-Oriented Languaje for Physical System Modeling, Tutorial. http://www.modelica.org/.

A.Urquia, S.Dormido, Mathematical and Computer Modelling of Dynamical Systems, vol.9, n?1, pp.65-90, (2002).

K.J.Astrom, H.Elmqvist, S.E.Mattsson, Evolution of continous-time modeling and simulation, The 12th ESM?98, (1998).

M.Ceraolo, C.Miulli, A.Pozio, Modeling static and dynamic behaviour of PEMFC on the basis of electro-chemical description, J. Power Sources 113 (2003).

A.Kumar, R.Reddy, Effect of channel dimensions and shapes in the flow-field distributor on performance of PEMFC, J. Power Sources 113 (2003).

W.D.Steinmann, P.Treffinger, Simulation of Fuel Cell Powered Drive Trains, Modelica WorkShop 2000 Procedings.

D.Bevers, M.W?hr, K.Yasuda, K.Oguro, Simulation of polymer electrolyte fuel cell electrode.J.Appl. Electrochem.27 (1997).

K.Broka, P.Ekdunge, Modelling the PEM fuel cell cathode, J.Appl. Electrochem.27 (1997).

J.Larminie, A.Dicks, Fuel Cell Systems Explained, Wiley 2000.

A.A.Kulikovsky, Fuel Cells 2001,1(2).

V.Gurau, H.Liu, S.Kakac,AIChE J.2000 46(10).

D.M.Bernardi, M.W.Verbrugge, J. electrochem. Soc. 139,9 (1992).

T.E.Springer, T.A.Zawodzinsky, J.Electrochem.Soc. 138 (1991).

S.Dutta, S.Shimpalee, J.Appl.Electrochem. (2000), 30(2).

D.B.Genevey, Thesis, F.V.P.I. (2001).

J. Larminie, A.Dicks, Fuel Cell System Explained, Wiley (2000).


Generated at 2024-12-03T19:25:34Z by OpenModelicaOpenModelica 1.24.2 using GenerateDoc.mos