.FuelCellLib.casestudies.FC3Layer

Information

FC3Layer-Casestudies




This case study is formed by three layers fuel cell, Membrane layer, active layer and diffusion layer ("mem_layer", "act_layer"and "dif_layer" in "Layers1D" package), the terminals ("col_cat" and "col_mem" in "Basics" package) and a constant standard Modelica resistance.

The value of the standard Modelica resistance can be defined for a "pol_curve_FC3.mos" to simulate a polarization curve.
Before to simulate the polarization curve is necessary to translate the FuelCellLib.casestudies.FC3Layer.
The results are on a polarization" archive in the "casestudies" folder. The resistance can be substituted by another electric load as a standard Modelica class or one of "Basic" ---> "Loads" classes for a dynamic study of the FC3Layer.

On FC3Layer is necessary to define two main parameters:
"Eref": Theorical thermodynamic open circuit voltage and
"pH2": Hydrogen pressure in anode, to define the electro-chemical thermodynamic open circuit (see col_cat class).

Parameters

NameDefaultDescription
T340Operation temperature of the FC [K]
Eref1.1Theorical thermodynamic open circuit voltage [V]
pH2100000Hydrogen pressure in anode [Pa]


References


Modelica Association, Modelica-A Unified Object-Oriented Languaje for Physical System Modeling, Tutorial. http://www.modelica.org/.

A.Urquia, S.Dormido, Mathematical and Computer Modelling of Dynamical Systems, vol.9, n?1, pp.65-90, (2002).

K.J.Astrom, H.Elmqvist, S.E.Mattsson, Evolution of continous-time modeling and simulation, The 12th ESM?98, (1998).

M.Ceraolo, C.Miulli, A.Pozio, Modeling static and dynamic behaviour of PEMFC on the basis of electro-chemical description, J. Power Sources 113 (2003).

A.Kumar, R.Reddy, Effect of channel dimensions and shapes in the flow-field distributor on performance of PEMFC, J. Power Sources 113 (2003).

W.D.Steinmann, P.Treffinger, Simulation of Fuel Cell Powered Drive Trains, Modelica WorkShop 2000 Procedings.

D.Bevers, M.W?hr, K.Yasuda, K.Oguro, Simulation of polymer electrolyte fuel cell electrode.J.Appl. Electrochem.27 (1997).

K.Broka, P.Ekdunge, Modelling the PEM fuel cell cathode, J.Appl. Electrochem.27 (1997).

J.Larminie, A.Dicks, Fuel Cell Systems Explained, Wiley 2000.

A.A.Kulikovsky, Fuel Cells 2001,1(2).

V.Gurau, H.Liu, S.Kakac,AIChE J.2000 46(10).

D.M.Bernardi, M.W.Verbrugge, J. electrochem. Soc. 139,9 (1992).

T.E.Springer, T.A.Zawodzinsky, J.Electrochem.Soc. 138 (1991).

S.Dutta, S.Shimpalee, J.Appl.Electrochem. (2000), 30(2).

D.B.Genevey, Thesis, F.V.P.I. (2001).

J. Larminie, A.Dicks, Fuel Cell System Explained, Wiley (2000).


Generated at 2024-11-20T19:25:51Z by OpenModelicaOpenModelica 1.24.2 using GenerateDoc.mos