.IDEAS.Fluid.Geothermal.Borefields.BaseClasses.Boreholes.BaseClasses.Functions.multipoleFluidTemperature

Information

This model evaluates the fluid temperatures using the multipole method of Claesson and Hellstrom (2011).

References

J. Claesson and G. Hellstrom. Multipole method to calculate borehole thermal resistances in a borehole heat exchanger. HVAC&R Research, 17(6): 895-911, 2011.

Interface

function multipoleFluidTemperature
  extends Modelica.Icons.Function;
  input Integer nPip "Number of pipes";
  input Integer J "Number of multipoles";
  input Modelica.Units.SI.Position xPip[nPip] "x-Coordinates of pipes";
  input Modelica.Units.SI.Position yPip[nPip] "y-Coordinates of pipes";
  input Real QPip_flow[nPip](each unit = "W/m") "Heat flow in pipes";
  input Modelica.Units.SI.Temperature TBor "Average borehole wall temperature";
  input Modelica.Units.SI.Radius rBor "Borehole radius";
  input Modelica.Units.SI.Radius rPip[nPip] "Outter radius of pipes";
  input Modelica.Units.SI.ThermalConductivity kFil "Thermal conductivity of grouting material";
  input Modelica.Units.SI.ThermalConductivity kSoi "Thermal conductivity of soil material";
  input Real RFluPip[nPip](each unit = "(m.K)/W") "Fluid to pipe wall thermal resistances";
  input Real eps = 1.0e-5 "Iteration relative accuracy";
  input Integer it_max = 100 "Maximum number of iterations";
  output Modelica.Units.SI.Temperature TFlu[nPip] "Fluid temperature in pipes";
end multipoleFluidTemperature;

Revisions


Generated at 2025-01-21T19:25:52Z by OpenModelicaOpenModelica 1.24.3 using GenerateDoc.mos