.IDEAS.Fluid.Geothermal.Borefields.BaseClasses.Boreholes.BaseClasses.Functions.multipoleThermalResistances

Information

This model evaluates the delta-circuit borehole thermal resistances using the multipole method of Claesson and Hellstrom (2011).

References

J. Claesson and G. Hellstrom. Multipole method to calculate borehole thermal resistances in a borehole heat exchanger. HVAC&R Research, 17(6): 895-911, 2011.

Interface

function multipoleThermalResistances
  extends Modelica.Icons.Function;
  input Integer nPip "Number of pipes";
  input Integer J "Number of multipoles";
  input Modelica.Units.SI.Position xPip[nPip] "x-Coordinates of pipes";
  input Modelica.Units.SI.Position yPip[nPip] "y-Coordinates of pipes";
  input Modelica.Units.SI.Radius rBor "Borehole radius";
  input Modelica.Units.SI.Radius rPip[nPip] "Outter radius of pipes";
  input Modelica.Units.SI.ThermalConductivity kFil "Thermal conductivity of grouting material";
  input Modelica.Units.SI.ThermalConductivity kSoi "Thermal conductivity of soil material";
  input Real RFluPip[nPip](each unit = "(m.K)/W") "Fluid to pipe wall thermal resistances";
  input Modelica.Units.SI.Temperature TBor = 0 "Average borehole wall temperature";
  output Real RDelta[nPip, nPip](each unit = "(m.K)/W") "Delta-circuit thermal resistances";
  output Real R[nPip, nPip](each unit = "(m.K)/W") "Internal thermal resistances";
end multipoleThermalResistances;

Revisions


Generated at 2025-01-21T19:25:52Z by OpenModelicaOpenModelica 1.24.3 using GenerateDoc.mos