.Modelica.Electrical.Machines.BasicMachines.InductionMachines.IM_SlipRing

Information

Model of a three-phase induction machine with slipring rotor.
Resistance and stray inductance of stator and rotor are modeled directly in stator respectively rotor phases, then using space phasor transformation and a stator-fixed AirGap model. The machine models take the following loss effects into account:

Default values for machine's parameters (a realistic example) are:

number of pole pairs p 2
stator's moment of inertia 0.29kg.m2
rotor's moment of inertia 0.29kg.m2
nominal frequency fNominal 50Hz
nominal voltage per phase 100V RMS
nominal current per phase 100A RMS
nominal torque 161.4Nm
nominal speed 1440.45rpm
nominal mechanical output 24.346kW
efficiency 92.7%
power factor 0.875
stator resistance 0.03Ohm per phase at reference temperature
reference temperature TsRef 20°C
temperature coefficient alpha20s 01/K
rotor resistance 0.04Ohm per phase at reference temperature
reference temperature TrRef 20°C
temperature coefficient alpha20r 01/K
stator reactance Xs 3Ohm per phase
rotor reactance Xr 3Ohm per phase
total stray coefficient sigma 0.0667
turnsRatio 1effective ratio of stator and rotor current
stator operational temperature TsOperational 20°C
rotor operational temperature TrOperational 20°C
These values give the following inductances:
stator stray inductance per phase Xs * (1 - sqrt(1-sigma))/(2*pi*fNominal)
rotor stray inductance Xr * (1 - sqrt(1-sigma))/(2*pi*fNominal)
main field inductance per phase sqrt(Xs*Xr * (1-sigma))/(2*pi*f)

Parameter turnsRatio could be obtained from the following relationship at standstill with open rotor circuit at nominal voltage and nominal frequency,
using the locked-rotor voltage VR, no-load stator current I0 and powerfactor PF0:
turnsRatio * VR = Vs - (Rs + j Xs,sigma) I0


Generated at 2025-01-06T19:25:54Z by OpenModelicaOpenModelica 1.24.3 using GenerateDoc.mos