.Modelica.Fluid.Dissipation.Utilities.SharedDocumentation.PressureLoss.StraightPipe.dp_turbulent

Information

Calculation of pressure loss in a straight pipe for turbulent flow regime of single-phase fluid flow only considering surface roughness.

Restriction

This function shall be used within the restricted limits according to the referenced literature.

Geometry

straightPipe

Calculation

The pressure loss dp for straight pipes is determined by:

dp = lambda_FRI * (L/d_hyd) * (rho/2) * velocity^2

with

lambda_FRI as Darcy friction factor [-].
L as length of straight pipe [m],
d_hyd as hydraulic diameter of straight pipe [m],
rho as density of fluid [kg/m3],
velocity as mean velocity [m/s].

The Darcy friction factor lambda_FRI for a straight pipe in the turbulent regime can be calculated for a smooth surface (Blasius law) or a rough surface (Colebrook-White law).

Smooth surface (roughness = Modelica.Fluid.Dissipation.Utilities.Types.Roughness.Neglected) w.r.t. Blasius law in the turbulent regime according to [Idelchik 2006, p. 77, sec. 15]:

lambda_FRI = 0.3164*Re^(-0.25)

with

lambda_FRI as Darcy friction factor [-].
Re as Reynolds number [-].

Note that the Darcy friction factor lambda_FRI for smooth straight pipes in the turbulent regime is independent of the surface roughness K .

Rough surface (roughness = Modelica.Fluid.Dissipation.Utilities.Types.Roughness.Considered) w.r.t. Colebrook-White law in the turbulent regime according to [Miller 1984, p. 191, eq. 8.4]:

lambda_FRI = 0.25/{lg[k/(3.7*d_hyd) + 5.74/(Re)^0.9]}^2

with

d_hyd as hydraulic diameter [-],
k= K/d_hyd as relative roughness [-],
K as roughness (average height of surface asperities [m].
lambda_FRI as Darcy friction factor [-],
Re as Reynolds number [-].

Verification

The Darcy friction factor lambda_FRI in dependence of Reynolds number for different values of relative roughness k is shown in the figure below.

turbulent

Note that this pressure loss function shall not be used for the modelling outside of the turbulent flow regime at Re < 4e3 even though it could be used for that.

If the overall flow regime shall be modelled, the pressure loss function dp_overall can be used.

References

Idelchik,I.E.:
Handbook of hydraulic resistance. Jaico Publishing House, Mumbai, 3rd edition, 2006.
VDI:
VDI - Wärmeatlas: Berechnungsblätter für den Wärmeübergang. Springer Verlag, 9th edition, 2002.

Generated at 2024-12-25T19:25:50Z by OpenModelicaOpenModelica 1.24.3 using GenerateDoc.mos