.Modelica.Magnetic.FundamentalWave.Components.EddyCurrent

Information

The eddy current loss model with respect to fundamental wave effects is designed in accordance to FluxTubes.Basic.EddyCurrent.

eddycurrent.png
Fig. 1: equivalent models of eddy current losses
eddycurrent_electric.png

Due to the nature of eddy current losses, which can be represented by symmetric conductors in an equivalent electric circuit (Fig. 1), the respective number of phases m has to be taken into account. Assume that the m conductances of the equivalent circuit are G_c, the conductance for the eddy current loss model is determined by

GGc

where N is the number of turns of the symmetric electromagnetic coupling.

For such an m phase system the relationship between the voltage and current space phasors and the magnetic flux and magnetic potential difference phasor is

vPhi,
iV_m,

where v_k and i_k are the phase voltages and currents, respectively.

The dissipated loss power

lossPower

can be determined for the space phasor relationship of the voltage and current space phasor.

See also

FluxTubes.Basic.EddyCurrent


Generated at 2025-01-21T19:25:52Z by OpenModelicaOpenModelica 1.24.3 using GenerateDoc.mos