.Modelica.Math.FastFourierTransform

Information

This package provides functions to compute the Fast Fourier Transform (FFT).

For an example see Examples.RealFFT1 where the following signal is computed during simulation

y = 5 + 3*sin(2*pi*2) + 1.5*cos(2*pi*3)

the continuous-time signal y is sampled and the FFT is computed with a call to realFFT(f_max=4, f_resolution=0.2), resulting in:

References

Mark Borgerding (2010):
KissFFT, version 1.3.0. http://sourceforge.net/projects/kissfft/.
 
James W. Cooley, John W. Tukey (1965):
An algorithm for the machine calculation of complex Fourier series. Math. Comput. 19: 297-301. doi:10.2307/2003354.
 
Martin R. Kuhn, Martin Otter, Tim Giese (2015):
Model Based Specifications in Aircraft Systems Design. Modelica 2015 Conference, Versailles, France, pp. 491-500, Sept.23-25, 2015. Download from: http://www.ep.liu.se/ecp/118/053/ecp15118491.pdf

Contents

NameDescription
 ExamplesExamples demonstrating the usage of the Math.FastFourierTransform functions
 realFFTinfoPrint information about real FFT for given f_max and f_resolution
 realFFTsamplePointsReturn number of sample points for a real FFT
 realFFTReturn amplitude and phase vectors for a real FFT
 realFFTwriteToFileWrite real FFT computation to file
 InternalInternal library that should not be used directly by a user

Revisions

Date Description
Nov. 29, 2015 Initial version implemented by Martin R. Kuhn and Martin Otter (DLR Institute of System Dynamics and Control.

Generated at 2024-11-20T19:25:51Z by OpenModelicaOpenModelica 1.24.2 using GenerateDoc.mos