.Modelica.Media.IdealGases.Common.MixtureGasNasa.mixtureViscosityChung

Information

Equation to estimate the viscosity of gas mixtures at low pressures.
It is a simplification of an extension of the rigorous kinetic theory of Chapman and Enskog to determine the viscosity of multicomponent mixtures, at low pressures and with a factor to correct for molecule shape and polarity.

The input argument Kappa is a special correction for highly polar substances such as alcohols and acids.
Values of kappa for a few such materials:

Compound
Kappa
Compound
Kappa
Methanol
0.215
n-Pentanol
0.122
Ethanol
0.175
n-Hexanol
0.114
n-Propanol
0.143
n-Heptanol
0.109
i-Propanol
0.143
Acetic Acid
0.0916
n-Butanol
0.132
Water
0.076
i-Butanol
0.132

Chung, et al. (1984) suggest that for other alcohols not shown in the table:
    
    kappa = 0.0682 + 4.704*[(number of -OH groups)]/[molecular weight]

S.I. units relation for the debyes: 
                                                       1 debye = 3.162e-25 (J.m^3)^(1/2)

References

[1] THE PROPERTIES OF GASES AND LIQUIDS, Fifth Edition,
          Bruce E. Poling, John M. Prausnitz, John P. O'Connell.
[2] Chung, T.-H., M. Ajlan, L. L. Lee, and K. E. Starling: Ind. Eng. Chem. Res., 27: 671 (1988).
[3] Chung, T.-H., L. L. Lee, and K. E. Starling; Ing. Eng. Chem. Fundam., 23: 3 ()1984).

Interface

function mixtureViscosityChung
  extends Modelica.Icons.Function;
  input Temperature T "Temperature";
  input Temperature[nX] Tc "Critical temperatures";
  input MolarVolume[nX] Vcrit "Critical volumes (m3/mol)";
  input Real[nX] w "Acentric factors";
  input Real[nX] mu "Dipole moments (debyes)";
  input MolarMass[nX] MolecularWeights "Molecular weights (kg/mol)";
  input MoleFraction[nX] y "Molar Fractions";
  input Real[nX] kappa = zeros(nX) "Association Factors";
  output DynamicViscosity etaMixture "Mixture viscosity (Pa.s)";
end mixtureViscosityChung;

Generated at 2024-11-26T19:26:15Z by OpenModelicaOpenModelica 1.24.2 using GenerateDoc.mos