(eigvec, eigval) = eigenVectors(A);
Calculate the eigenvectors and optionally (onlyEigenvectors=false) the
eigenvalues of a state space system. The output eigenvectors
is a matrix with the same dimension as matrix ss.A.
Just like in Modelica.Math.Matrices.eigenValues,
if the i-th eigenvalue has an imaginary part, then eigenvectors
[:,i]
is the real and eigenvectors[:,i+1] is the imaginary part of the
eigenvector of the i-th eigenvalue.
The eigenvalues are returned as a complex vector eigenvalues
.
Modelica_LinearSystems2.StateSpace ss=Modelica_LinearSystems2.StateSpace( A=[-1,1;-1,-1], B=[1;1], C=[1,1], D=[0]); Real eigenvectors[2,2]; Complex eigenvalues[2]; algorithm (eigenvectors, eigenvalues) = eigenVectors(ss, true); // eigenvectors = [0.707, 0; 0, 0.707] // eigenvalues = {-1 + 1j, -1 - 1j} |0.707 | | 0.707 | i.e. v1 = | |, v2 = | | |0.707i| |-0.707i|
function eigenVectors extends Modelica.Icons.Function; import Modelica.ComplexMath.j; input Real A[:, size(A, 1)] "Real square matrix"; output Complex eigvec[size(A, 1), size(A, 2)] "Eigenvectors of the system"; output Complex eigval[size(A, 1)] = fill(Complex(0), size(A, 1)) "Eigenvalues of the system"; end eigenVectors;