(y, t, x)=DiscreteZerosAndPoles.Analysis.initialResponse(zp, tSpan, x0)
Function initialResponse calculates the time response of a state space system for given initial condition and zero inputs. The system is transformed a appropriate discrete state space system and, starting at x(t=0)=0 and y(t=0)=C*x0 + D*u0, the outputs y and x are calculated for each time step t=k*dt.
DiscreteZerosAndPoles.Analysis.initialResponse(x0, dzp, tSpan)
gives the same result as
DiscreteZerosAndPoles.Analysis.timeResponse(dzp, tSpan, response=Types.TimeResponse.Initial, x0=x0).
Modelica_LinearSystems2.DiscreteZerosAndPoles dzp=dzp=1/(p^2 + p + 1) dzp.Ts=0.1; Real tSpan= 0.4; Real x0[2] = {1,1}; Real y[5,1,1]; Real t[5]; Real x[5,1,1] algorithm (y,t,x):=Modelica_LinearSystems2.DiscreteZerosAndPoles.Analysis.initialResponse(x0,dzp,tSpan); // y[:,1,1 = {0.333333333333, 0.333333333333, -0.666666666667, 0.333333333333, 0.333333333333} // t={0, 0.1, 0.2, 0.3, 0.4} // x[:,1,1] = {1, 1, -2.0, 1.0, 1}
DiscreteZerosAndPoles.Analysis.timeResponse
encapsulated function initialResponse import Modelica; import Modelica_LinearSystems2; import Modelica_LinearSystems2.DiscreteZerosAndPoles; import Modelica_LinearSystems2.DiscreteStateSpace; input Real x0[:] = fill(0, 0) "Initial state vector"; extends Modelica_LinearSystems2.Internal.timeResponseMask_zp_discrete; end initialResponse;