.Modelica_LinearSystems2.StateSpace.Plot.step

Information

Syntax

StateSpace.Plot.step(ss);
   or
StateSpace.Plot.step(
  ss,
  dt,
  tSpan,
  x0,
  defaultDiagram=Modelica_LinearSystems2.Internal.DefaultDiagramTimeResponse(),
  device=Modelica_LinearSystems2.Utilities.Plot.Records.Device())

Description

This function plots the step responses of a state space system for each system corresponding to the transition matrix. It is based on timeResponse.

Example

  Modelica_LinearSystems2.StateSpace ss=Modelica_LinearSystems2.StateSpace(
    A=[-1.0,0.0,0.0; 0.0,-2.0,3.0; 0.0,-2.0,-3.0],
    B=[1.0; 1.0; 0.0],
    C=[0.0,1.0,1.0],
    D=[0.0])

algorithm
  Modelica_LinearSystems2.StateSpace.Plot.step(ss, tSpan=3)
// gives:

See also

impulse, ramp, initialResponse

Interface

encapsulated function step
  import Modelica;
  import Modelica_LinearSystems2;
  import Modelica_LinearSystems2.StateSpace;
  import Modelica_LinearSystems2.Utilities.Types.TimeResponse;
  input StateSpace ss "State space system";
  input Modelica.Units.SI.Time dt = 0 "Sample time";
  input Modelica.Units.SI.Time tSpan = 0 "Simulation time span";
  input Real x0[size(ss.A, 1)] = zeros(size(ss.A, 1)) "Initial state vector";
  input Boolean subPlots = true "True, if all subsystem time responses are plotted in one window with subplots" annotation(
    Dialog,
    choices(checkBox = true));
  extends Modelica_LinearSystems2.Internal.PartialPlotFunctionMIMO(defaultDiagram = Modelica_LinearSystems2.Internal.DefaultDiagramTimeResponse(heading = "Step response"));
  input TimeResponse response = TimeResponse.Step "type of time response";
end step;

Generated at 2024-11-26T19:26:15Z by OpenModelicaOpenModelica 1.24.2 using GenerateDoc.mos