This function initializes a Modelica model and then simulates the model until time instant "t_linearize". If t_linearize=0, no simulation takes place (only initialization). At the simulation stop time, the model is linearized in such a form that
Formally, the non-linear hybrid differential-algebraic equation system is therefore treated as the following ordinary equation system at time instant t_linearize:
der(x) = f(x,u) y = g(x,u)
Taylor series expansion (linearization) of this model around the simulation stop time t_linearize:
u0 = u(t_linearize) y0 = y(t_linearize) x0 = x(t_linearize)
and neglecting higher order terms results in the following system:
der(x0 + dx) = f(x0,u0) + der(f,x)*dx + der(f,u)*du y0 + dy = g(x0,u0) + der(g,x)*dx + der(g,u)*du
where der(f,x) is the partial derivative of f with respect to x, and the partial derivatives are computed at the linearization point t_linearize. Re-ordering of terms gives (note der(x0) = 0):
der(dx) = der(f,x)*dx + der(f,u)*du + f(x0,u0) dy = der(g,x)*dx + der(g,u)*du + (g(x0,u0) - y0)
or
der(dx) = A*dx + B*du + f0 dy = C*dx + D*du
This function returns the matrices A, B, C, D and assumes that the linearization point is a steady-state point of the simulation (i.e., f(x0,u0) = 0). Additionally, the full Modelica names of all inputs, outputs and states shall be returned if possible (default is to return empty name strings).
function linearize2 extends Modelica.Icons.Function; import Simulator = DymolaCommands.SimulatorAPI; input String modelName "Name of the Modelica model" annotation( Dialog(__Dymola_translatedModel)); input Modelica_LinearSystems2.Records.SetParameter modelParam[:] = fill(Modelica_LinearSystems2.Records.SetParameter(Name = "", Value = 0.0), 0) "Values of model parameters used for linearization"; input Modelica_LinearSystems2.Records.SimulationOptionsForLinearization simulationSetup = Modelica_LinearSystems2.Records.SimulationOptionsForLinearization() "Simulation options"; output Modelica_LinearSystems2.StateSpace ss = Modelica_LinearSystems2.StateSpace.Internal.read_dslin(fileName) "Linearized system as StateSpace object"; end linearize2;