.TILMedia.Internals.GasDiffusionCoefficients.binaryDiffCoeff_ij_Fuller

Information

Calculation of binary gas diffusion coefficients according to [Poling2020] and [Waermeatlas2013]: \\[ D_{i,j} = 0.00143 \frac{T^{1.75}}{p M_{i,j}^{\frac{1}{2}}\left(\nu_i^{\frac{1}{3}}+\nu_j^{\frac{1}{3}} \right)^{2}} \\] Here \\(D_{i,j}\\) is the binary diffusion coefficient (\\(\mathrm{cm^2/s}\\)) of species \\(i\\) and \\(j\\), \\(p\\) is the total pressure (bar), \\(T\\) is the temperature (K) and \\(\nu_{j}\\) and \\(\nu_{j}\\) are the atomic diffusion volumes of species \\(i\\) and \\(j\\). The values for \\(\nu_{j}\\) and \\(\nu_{j}\\) are tabulated in [Poling2020] and [Waermeatlas2013]. \\(M_{i,j}\\) is calculated with the molecular weights of species \\(i\\) and \\(j\\) in (\\(\mathrm{g/mol}\\)) \\[ M_{i,j} = 2\left[\left(\frac{1}{M_j}\right)+\left(\frac{1}{M_j}\right)\right]^{-1}. \\]

References

[Poling2020] Poling, Bruce E.; Prausnitz, John M.; O'Connell, John P. (2020): Properties of Gases and Liquids, Fifth Edition. Fifth edition. New York, N.Y.: McGraw-Hill Education; McGraw Hill (McGraw-Hill's AccessEngineering).
[Waermeatlas2013] Springer-Verlag GmbH (2013): VDI-Wärmeatlas. Berlin, Heidelberg: Springer Berlin Heidelberg.

Interface

function binaryDiffCoeff_ij_Fuller
  input Modelica.Units.SI.AbsolutePressure p "Pressure";
  input Modelica.Units.SI.Temperature T "Temperature";
  input Integer i "First component ID";
  input Integer j "Second component ID";
  input TILMedia.GasTypes.BaseGas gasType "Gas type";
  output Modelica.Units.SI.DiffusionCoefficient D_ij "Binary diffusion coefficient";
end binaryDiffCoeff_ij_Fuller;

Generated at 2024-11-22T19:25:38Z by OpenModelicaOpenModelica 1.24.2 using GenerateDoc.mos