Prediction of the critical heat flux using the EPRI correlation as presented in 1982 EPRI Parametric Study of CHF Data Vol. 1-3
"Outputs"
CHF_EPRI => Critical heat flux predicted by EPRI [kW/m^2]
CHF_EPRI_Avg => Average heat flux based on total heater power [kW/m^2]
L_EPRI => Location of CHF event [m]
x_EPRI_local => quality at location of predicted CHF [-]
"Inputs"
G => mass flux per subchannel [kg/m^2s]
A_heated => total heated area per heater element [m^2]
A_test => flow area per subchannel [m^2]
L_heated => heated length per heater element [m]
x_in => inlet quality [-]
h_fg => latent heat of vaporization [J/kg]
Pr => reduced pressure [-]
K_g => grid spacer pressure loss coefficient [-]. Set default K_g = 1.
cwall toggels cold wall effect correction factor -> 1/0 = on/off
nu toggels nonuniform heat flux effect correction factor -> 1/0 = on/off
toggle_vis => toggle visibility of the convergence plot. 'on'/'off'
function Biasi_quality input SIadd.MassFlux G "Mass flux"; input SI.Pressure p "Pressure"; input SI.Length L_B "Length of pipe in two phase region (boiling length)"; input SI.Length D_htd "Heated diameter"; input SI.SpecificEnthalpy h_lv "Latent heat of vaporization"; input SI.Length perimeter = Modelica.Constants.pi*D_htd "Wetted perimeter"; input SI.Length perimeter_htd = Modelica.Constants.pi*D_htd "Heated perimeter"; input SIadd.NonDim R_f = 1 "Radial peaking factor"; output SI.HeatFlux x_CHF "Critical heat flux prediction"; end Biasi_quality;