.TRANSFORM.HeatAndMassTransfer.ClosureRelations.HeatTransfer.Functions.TwoPhase.CHF.Biasi_quality

Information

Prediction of the critical heat flux using the EPRI correlation as presented in 1982 EPRI Parametric Study of CHF Data Vol. 1-3


"Outputs"

CHF_EPRI => Critical heat flux predicted by EPRI [kW/m^2]

CHF_EPRI_Avg => Average heat flux based on total heater power [kW/m^2]

L_EPRI => Location of CHF event [m]

x_EPRI_local => quality at location of predicted CHF [-]

"Inputs"

G => mass flux per subchannel [kg/m^2s]

A_heated => total heated area per heater element [m^2]

A_test => flow area per subchannel [m^2]

L_heated => heated length per heater element [m]

x_in => inlet quality [-]

h_fg => latent heat of vaporization [J/kg]

Pr => reduced pressure [-]

K_g => grid spacer pressure loss coefficient [-]. Set default K_g = 1.

cwall toggels cold wall effect correction factor -> 1/0 = on/off

nu toggels nonuniform heat flux effect correction factor -> 1/0 = on/off

toggle_vis => toggle visibility of the convergence plot. 'on'/'off'

Interface

function Biasi_quality
  input SIadd.MassFlux G "Mass flux";
  input SI.Pressure p "Pressure";
  input SI.Length L_B "Length of pipe in two phase region (boiling length)";
  input SI.Length D_htd "Heated diameter";
  input SI.SpecificEnthalpy h_lv "Latent heat of vaporization";
  input SI.Length perimeter = Modelica.Constants.pi*D_htd "Wetted perimeter";
  input SI.Length perimeter_htd = Modelica.Constants.pi*D_htd "Heated perimeter";
  input SIadd.NonDim R_f = 1 "Radial peaking factor";
  output SI.HeatFlux x_CHF "Critical heat flux prediction";
end Biasi_quality;

Generated at 2024-11-04T19:25:26Z by OpenModelicaOpenModelica 1.24.0 using GenerateDoc.mos