This model returns the coefficient D_abs using the equation:
D_abs = D_ab0*exp(-Ea/(R*T)^b)
If pre-defined data parameters are to be used then specify the row number of the desired substance(s).
Below is the definition associated with each entry of the dataTable:
Index |
Description |
D_ab0 [m2/s] |
Ea [J/mol] |
Source |
1 |
T2_LiFBeF2 |
9.30E-07 |
4.20E+04 |
1. Eq. 2.15, pg. 74 |
2 |
H2_304SS |
8.25E-07 |
4.97E+04 |
2 |
3 |
H2_316SS |
6.32E-07 |
4.78E+04 |
2 |
4 |
H2_YUS170 |
1.70E-07 |
3.76E+04 |
2 |
5 |
H2_Inconel600 |
1.36E-07 |
3.77E+04 |
2 |
6 |
H2_InconelX |
4.62E-08 |
3.68E+04 |
2 |
7 |
H2_Nichrom |
1.11E-07 |
3.72E+04 |
2 |
8 |
H2_Monel |
1.43E-07 |
3.44E+04 |
2 |
9 |
H2_Cu |
2.26E-07 |
2.93E+04 |
2 |
10 |
H2_Ni |
7.43E-07 |
4.41E+04 |
2 |
11 |
H2_gammaFe |
6.63E-07 |
4.49E+04 |
2 |
12 |
H2_Graphite |
9.00E-05 |
2.70E+05 |
3 |
13 |
H2_Aluminum |
2.00E-08 |
1.60E+04 |
3 |
14 |
H2_Vanadium |
3.00E-08 |
4.30E+03 |
3 |
15 |
H2_RAFM_Steels |
1.00E-07 |
1.32E+04 |
3 |
16 |
H2_Austenitic_StainlessSteel |
2.00E-07 |
4.93E+04 |
3 |
17 |
H2_Nickel |
7.00E-07 |
3.95E+04 |
3 |
18 |
H2_Copper |
1.00E-06 |
3.85E+04 |
3 |
19 |
H2_Zirconium |
8.00E-07 |
4.53E+04 |
3 |
20 |
H2_Molybdenum |
4.00E-08 |
2.23E+04 |
3 |
21 |
H2_Silver |
9.00E-07 |
3.01E+04 |
3 |
22 |
H2_Tungsten |
6.00E-04 |
1.03E+05 |
3 |
23 |
H2_Platinum |
6.00E-07 |
2.47E+04 |
3 |
24 |
H2_Gold |
5.60E-08 |
2.36E+04 |
3 |
25 |
H2_Beryllium |
3.00E-11 |
1.83E+04 |
3 |
26 |
Very Slow |
1e-15 |
0 |
- |
27 |
Very Fast |
1e15 |
0 |
- |
Source:
1. Stempien thesis
2. TANABE, T., YAMANISHI, Y., SAWADA, K., IMOTO, S., “Hydrogen Transport in Stainless Steels,” Journal of Nuclear Materials. 122 & 123, 1568–1572 (1984).
3. CAUSEY, R.A., KARNESKY, R.A., SAN MARCHI, C., 4.16 - Tritium Barriers and Tritium Diffusion in Fusion Reactors, in: Konings, R.J.M. (Ed.), “Comprehensive Nuclear Materials,” Elsevier, Oxford, 2012: pp. 511–549.