This model returns the coefficient kSs using the equation:
kSs = kS0*exp(-deltaH/(R*T)^b)
If pre-defined data parameters are to be used then specify the row number of the desired substance(s).
Below is the definition associated with each entry of the dataTable:
Index |
Description |
kS0 [mol/(m3.Pa^(0.5))] |
deltaH [J/mol] |
Source |
1 |
H2_304SS |
7.58E-01 |
1.57E+04 |
1 |
2 |
H2_316SS |
4.27E-01 |
1.39E+04 |
1 |
3 |
H2_YUS170 |
7.59E+00 |
2.67E+04 |
1 |
4 |
H2_Inconel600 |
1.98E+00 |
2.85E+04 |
1 |
5 |
H2_InconelX |
5.17E-01 |
1.75E+04 |
1 |
6 |
H2_Nichrom |
1.98E+00 |
2.31E+04 |
1 |
7 |
H2_Monel |
1.84E+00 |
1.72E+04 |
1 |
8 |
H2_Cu |
1.37E-01 |
3.12E+04 |
1 |
9 |
H2_Ni |
9.53E-01 |
1.07E+04 |
1 |
10 |
H2_gammaFe |
9.55E-01 |
2.67E+04 |
1 |
11 |
H2_Graphite |
1.90E-02 |
-1.92E+04 |
2 |
12 |
H2_Aluminum |
4.60E-02 |
3.97E+04 |
2 |
13 |
H2_Vanadium |
4.38E-01 |
-2.90E+04 |
2 |
14 |
H2_RAFM_Steels |
4.36E-01 |
2.86E+04 |
2 |
15 |
H2_Austenitic_StainlessSteel |
2.66E-01 |
6.90E+03 |
2 |
16 |
H2_Nickel |
5.64E-01 |
1.58E+04 |
2 |
17 |
H2_Copper |
7.92E-01 |
3.89E+04 |
2 |
18 |
H2_Zirconium |
3.40E+04 |
3.58E+04 |
2 |
19 |
H2_Molybdenum |
3.30E+00 |
3.74E+04 |
2 |
20 |
H2_Silver |
2.58E-01 |
5.67E+04 |
2 |
21 |
H2_Tungsten |
1.49E+00 |
1.01E+05 |
2 |
22 |
H2_Platinum |
2.07E-01 |
4.60E+04 |
2 |
23 |
H2_Gold |
7.79E+01 |
9.94E+04 |
2 |
24 |
H2_Beryllium_a |
1.89E-02 |
1.68E+04 |
2 |
25 |
H2_Beryllium_b |
5.90E+03 |
9.66E+04 |
2 |
26 |
Constant |
1 |
0 |
- |
Source:
1. TANABE, T., YAMANISHI, Y., SAWADA, K., IMOTO, S., “Hydrogen Transport in Stainless Steels,” Journal of Nuclear Materials. 122 & 123, 1568–1572 (1984).
2. CAUSEY, R.A., KARNESKY, R.A., SAN MARCHI, C., 4.16 - Tritium Barriers and Tritium Diffusion in Fusion Reactors, in: Konings, R.J.M. (Ed.), “Comprehensive Nuclear Materials,” Elsevier, Oxford, 2012: pp. 511–549.