.TransiEnt.Producer.Gas.BiogasPlant.HeatTransfer.ForcedConvection.NusseltInsideCSTR

Information

1. Purpose of model

Calculates the Nusselt number of an impeller driven flow inside a CSTR.

2. Level of detail, physical effects considered, and physical insight

(Description)

3. Limits of validity

(none)

4. Interfaces

(none)

5. Nomenclature

Nu := Nusselt number,

Pr := Prandtl number

D := Inner Diameter of CSTR

P := power of the stirrer

V := Volume of CSTR filled with medium

rho := density of fluid

eta := dynamic viscosity of fluid

eta_w := dynamic viscosity of fluid at the wall

6. Governing Equations

Nu := K * (pi/4)^(a/3) * (P*D^4*rho^2/V/eta^3)^(a/3) * Pr^b * (eta/eta_w)^c

7. Remarks for Usage

(none)

8. Validation

(no validation or testing necessary)

9. References

[1] Judat, H. and Sperling, R. (2005). Wärmeübergang im Rührkessel. In M. Kraume (Ed.) Mischen und Rühren (pp. 123-145), Wiley-Blackwell

10. Version History

Created by Philipp Jahneke (philipp.koziol@tuhh.de), Sep 2018

Interface

function NusseltInsideCSTR
  import Modelica.Constants.pi;
  extends TransiEnt.Basics.Icons.Function;
  input Modelica.Units.SI.ReynoldsNumber Re "Reynols number inside CSTR";
  input Modelica.Units.SI.PrandtlNumber Pr "Prandtl number of medium at its temperature";
  input Modelica.Units.SI.DynamicViscosity eta "viscosity of medium at its temperature";
  input Modelica.Units.SI.DynamicViscosity eta_w "viscosity of medium at wall temperature";
  input Real C1 "geometrical Coefficient in Nusselt-Equation";
  output Modelica.Units.SI.NusseltNumber Nu "Nusselt number inside CSTR";
  constant Real a = 2/3;
  constant Real b = 1/3;
  constant Real c = 0.14;
end NusseltInsideCSTR;

Generated at 2024-10-22T18:25:24Z by OpenModelicaOpenModelica 1.24.0 using GenerateDoc.mos