User Documentation for IDAS v4.4.0
(SUNDIALS v5.4.0)

Radu Serban, Cosmin Petra, Alan C. Hindmarsh,
Cody J. Balos, David J. Gardner, and Carol S. Woodward
Center for Applied Scientific Computing
Lawrence Livermore National Laboratory

1 Daniel R. Reynolds
Department of Mathematics
Southern Methodist University

September 23, 2020

aials

Q
S

Vo)

UCRL-SM-208112

DISCLAIMER

This document was prepared as an account of work sponsored by an agency of the United States
government. Neither the United States government nor Lawrence Livermore National Security, LLC,
nor any of their employees makes any warranty, expressed or implied, or assumes any legal liability or
responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or
process disclosed, or represents that its use would not infringe privately owned rights. Reference herein
to any specific commercial product, process, or service by trade name, trademark, manufacturer, or
otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by
the United States government or Lawrence Livermore National Security, LLC. The views and opinions
of authors expressed herein do not necessarily state or reflect those of the United States government
or Lawrence Livermore National Security, LLC, and shall not be used for advertising or product
endorsement purposes.

This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore
National Laboratory under Contract DE-AC52-07NA27344.

Approved for public release; further dissemination unlimited

CONTRIBUTORS

The SUNDIALS library has been developed over many years by a number of contributors. The cur-
rent SUNDIALS team consists of Cody J. Balos, David J. Gardner, Alan C. Hindmarsh, Daniel R.
Reynolds, and Carol S. Woodward. We thank Radu Serban for significant and critical past contribu-
tions.

Other contributors to SUNDIALS include: James Almgren-Bell, Lawrence E. Banks, Peter N. Brown,
George Byrne, Rujeko Chinomona, Scott D. Cohen, Aaron Collier, Keith E. Grant, Steven L. Lee,
Shelby L. Lockhart, John Loffeld, Daniel McGreer, Slaven Peles, Cosmin Petra, H. Hunter Schwartz,
Jean M. Sexton, Dan Shumaker, Steve G. Smith, Allan G. Taylor, Hilari C. Tiedeman, Chris White,
Ting Yan, and Ulrike M. Yang.

Contents

List of Tables

List of Figures

1

Introduction

1.1 Changes from previous versions
1.2 Reading this User Guide
1.3 SUNDIALS Release License 0ot e

Mathematical Considerations

2.1 TIVP solution e
2.2 Preconditioning L
2.3 Rootfinding
2.4 Pure quadrature integration oL
2.5 Forward sensitivity analysis L oo
2.6 Adjoint sensitivity analysis L
2.7 Second-order sensitivity analysis oL oL

Code Organization
3.1 SUNDIALS organization it e
3.2 IDAS organization

Using IDAS for IVP Solution

4.1 Access to library and header files
4.2 Data types L
4.3 Header files e
4.4 A skeleton of the user’s main program L.
4.5 User-callable functions L L
4.6 User-supplied functions L
4.7 Integration of pure quadrature equations
4.8 A parallel band-block-diagonal preconditioner module

Using IDAS for Forward Sensitivity Analysis

5.1 A skeleton of the user’s main program L L.
5.2 User-callable routines for forward sensitivity analysis
5.3 User-supplied routines for forward sensitivity analysis
5.4 Integration of quadrature equations depending on forward sensitivities
5.5 Note on using partial error control oL oo

Using IDAS for Adjoint Sensitivity Analysis

6.1 A skeleton of the user’s main program L L
6.2 User-callable functions for adjoint sensitivity analysis
6.3 User-supplied functions for adjoint sensitivity analysis

ix

xi

[\)

14

17
17
21
22
23
23
26
29

31
31
32

35
35
36
37
38
42
80
87
94

101
101
104
117
118
127

6.4 Using the band-block-diagonal preconditioner for backward problems

7 Using IDAS for Fortran Applications
7.1 IDAS Fortran 2003 Interface Module

8 IDAS Features for GPU Accelerated Computing
8.1 SUNDIALS GPU Programming Model
8.2 Steps for Using GPU Accelerated SUNDIALS

9 Description of the NVECTOR module
9.1 The NVECTOR API e
9.2 NVECTOR functions used by IDAS
9.3 The NVECTOR_SERIAL implementation
9.4 The NVECTOR_PARALLEL implementation
9.5 The NVECTOR_OPENMP implementation
9.6 The NVECTOR_PTHREADS implementation
9.7 The NVECTOR_PARHYP implementation
9.8 The NVECTOR_PETSC implementation
9.9 The NVECTOR_CUDA implementation
9.10 The NVECTOR_RAJA implementation
9.11 The NVECTOR_OPENMPDEYV implementation
9.12 The NVECTOR_TRILINOS implementation
9.13 The NVECTOR_MANYVECTOR implementation
9.14 The NVECTOR_MPIMANYVECTOR implementation
9.15 The NVECTOR_MPIPLUSX implementation
9.16 NVECTOR Examples

10 Description of the SUNMatrix module
10.1 The SUNMatrix APT
10.2 SUNMatrix functions used by IDAS
10.3 The SUNMatrix_Dense implementation
10.4 The SUNMatrix_Band implementation
10.5 The SUNMatrix_Sparse implementation
10.6 The SUNMatrix SLUNRIloc implementation
10.7 The SUNMatrix_cuSparse implementation

11 Description of the SUNLinearSolver module
11.1 The SUNLinearSolver API
11.2 Compatibility of SUNLinearSolver modules
11.3 Implementing a custom SUNLinearSolver module
11.4 IDAS SUNLinearSolver interface
11.5 The SUNLinearSolver_Dense implementation
11.6 The SUNLinearSolver_Band implementation
11.7 The SUNLinearSolver_LapackDense implementation
11.8 The SUNLinearSolver_LapackBand implementation
11.9 The SUNLinearSolver KLU implementation
11.10The SUNLinearSolver _SuperLUDIST implementation
11.11The SUNLinearSolver_SuperLUMT implementation
11.12The SUNLinearSolver_cuSolverSp_batchQR implementation
11.13The SUNLinearSolver SPGMR implementation
11.14The SUNLinearSolver SPFGMR, implementation
11.15The SUNLinearSolver SPBCGS implementation.
11.16The SUNLinearSolver SPTFQMR implementation
11.17The SUNLinearSolver_ PCG implementation
11.18SUNLinearSolver Examples e

vi

12 Description of the SUNNonlinearSolver module
12.1 The SUNNonlinearSolver APT

12.2 IDAS SUNNonlinearSolver interface

12.3 The SUNNonlinearSolver Newton implementation
12.4 The SUNNonlinearSolver_PetscSNES implementation

13 Description of the SUNMemory module
13.1 The SUNMemoryHelper APT

13.2 The SUNMemoryHelper_Cuda implementation

A SUNDIALS Package Installation Procedure

A.1 CMake-based installation

A.2 Building and Running Examples

A.3 Configuring, building, and installing on Windows

A.4 Installed libraries and exported header files

B IDAS Constants

B.1 IDAS input constants
B.2 IDAS output constants

C SUNDIALS Release History
Bibliography

Index

vii

371
371
382
386
391

395
395
399

401
402
415
415
416

423
423
423

427

429

433

List of Tables

4.1
4.2
4.3

5.1
5.2

7.1
7.2

8.1

9.1
9.2

10.1
10.2
10.3
10.4

11.1
11.2

11.3

12.1

SUNDIALS linear solver interfaces and vector implementations that can be used for each. 41

Optional inputs for IDAS and IDALS 0 v v vttt 51
Optional outputs from IDAS and IDALS v v v v it e e e 66
Forward sensitivity optional inputs L oo 111
Forward sensitivity optional outputs Lo 113
Summary of Fortran 2003 interfaces for shared SUNDIALS modules. 170
C/Fortran 2003 Equivalent Types o v v v i it i 171
List of SUNDIALS GPU Enabled Modules. 178
Vector Identifications associated with vector kernels supplied with SUNDIALS. 196
List of vector functions usage by IDAS code modules 261
Description of the SUNMatrix returncodes 266
Identifiers associated with matrix kernels supplied with SUNDIALS. 267
SUNDIALS matrix interfaces and vector implementations that can be used for each. . . 267
List of matrix functions usage by IDAS code modules 269
Description of the SUNLinearSolver error codes 302
SUNDIALS matrix-based linear solvers and matrix implementations that can be used for

each. . . . L e e 305
List of linear solver function usage in the IDALS interface 308
Description of the SUNNonlinearSolver return codes. 378
SUNDIALS libraries and header files 417
Release History o . o e 427

ix

List of Figures

2.1 Tllustration of the checkpointing algorithm for generation of the forward solution during

the integration of the adjoint system. 29
3.1 High-level diagram of the SUNDIALS suite. 31
3.2 Directory structure of the SUNDIALS source tree. 32
3.3 Overall structure diagram of the IDAS package 33
10.1 Diagram of the storage for a SUNMATRIX_BAND object 275
10.2 Diagram of the storage for a compressed-sparse-column matrix 282
A.1 Initial cemake configuration screeno oL oL 403
A.2 Changing the instdir e 404

xi

Chapter 1

Introduction

IDAS is part of a software family called suNDIALS: SUite of Nonlinear and DIfferential/ALgebraic
equation Solvers [33]. This suite consists of CVODE, ARKODE, KINSOL, and IDA, and variants of these
with sensitivity analysis capabilities, CVODES and IDAS.

IDAS is a general purpose solver for the initial value problem (IVP) for systems of differential-
algebraic equations (DAEs). The name IDAS stands for Implicit Differential-Algebraic solver with
Sensitivity capabilities. IDAS is an extension of the IDA solver within SUNDIALS, itself based on
DASPK [12, 13]; however, like all SUNDIALS solvers, IDAS is written in ANSI-standard C rather than
FORTRANT77. Tts most notable features are that, (1) in the solution of the underlying nonlinear system
at each time step, it offers a choice of Newton/direct methods and a choice of Inexact Newton/Krylov
(iterative) methods; (2) it is written in a data-independent manner in that it acts on generic vectors
and matrices without any assumptions on the underlying organization of the data; and (3) it provides
a flexible, extensible framework for sensitivity analysis, using either forward or adjoint methods. Thus
IDAS shares significant modules previously written within CASC at LLNL to support the ordinary
differential equation (ODE) solvers CVODE [34, 20] and PVODE [16, 17], the DAE solver 1DA [37] on
which IDAS is based, the sensitivity-enabled ODE solver CVODES [35, 51|, and also the nonlinear system
solver KINSOL [21].

At present, IDAS may utilize a variety of Krylov methods provided in SUNDIALS that can be used
in conjuction with Newton iteration: these include the GMRES (Generalized Minimal RESidual) [50],
FGMRES (Flexible Generalized Minimum RESidual) [49], Bi-CGStab (Bi-Conjugate Gradient Stabi-
lized) [53], TFQMR (Transpose-Free Quasi-Minimal Residual) [28], and PCG (Preconditioned Con-
jugate Gradient) [30] linear iterative methods. As Krylov methods, these require little matrix storage
for solving the Newton equations as compared to direct methods. However, the algorithms allow
for a user-supplied preconditioner matrix, and, for most problems, preconditioning is essential for an
efficient solution.

For very large DAE systems, the Krylov methods are preferable over direct linear solver methods,
and are often the only feasible choice. Among the Krylov methods in SUNDIALS, we recommend
GMRES as the best overall choice. However, users are encouraged to compare all options, especially
if encountering convergence failures with GMRES. Bi-CGFStab and TFQMR have an advantage
in storage requirements, in that the number of workspace vectors they require is fixed, while that
number for GMRES depends on the desired Krylov subspace size. FGMRES has an advantage in
that it is designed to support preconditioners that vary between iterations (e.g. iterative methods).
PCG exhibits rapid convergence and minimal workspace vectors, but only works for symmetric linear
systems.

IDAS is written with a functionality that is a superset of that of IDA. Sensitivity analysis capabili-
ties, both forward and adjoint, have been added to the main integrator. Enabling forward sensitivity
computations in IDAS will result in the code integrating the so-called sensitivity equations simultane-
ously with the original IVP, yielding both the solution and its sensitivity with respect to parameters
in the model. Adjoint sensitivity analysis, most useful when the gradients of relatively few functionals
of the solution with respect to many parameters are sought, involves integration of the original IVP

2 Introduction

forward in time followed by the integration of the so-called adjoint equations backward in time. IDAS
provides the infrastructure needed to integrate any final-condition ODE dependent on the solution of
the original IVP (in particular the adjoint system).

There are several motivations for choosing the C language for IDAS. First, a general movement away
from FORTRAN and toward C in scientific computing was apparent. Second, the pointer, structure,
and dynamic memory allocation features in C are extremely useful in software of this complexity,
with the great variety of method options offered. Finally, we prefer C over C++ for IDAS because of
the wider availability of C compilers, the potentially greater efficiency of C, and the greater ease of
interfacing the solver to applications written in extended FORTRAN.

1.1 Changes from previous versions

Changes in v4.4.0

Added the function IDASetLSNormFactor to specify the factor for converting between integrator
tolerances (WRMS norm) and linear solver tolerances (L2 norm) i.e., tol_L2 = nrmfac * tol_WRMS.

Added a new function IDAGetNonlinearSystemData which advanced users might find useful if
providing a custom SUNNonlinSolSysFn.

This change may cause an error in existing user code. The IDASolveF function for forward
integration with checkpointing is now subject to a restriction on the number of time steps allowed to
reach the output time. This is the same restriction applied to the IDASolve function. The default
maximum number of steps is 500, but this may be changed using the IDASetMaxNumSteps function.
This change fixes a bug that could cause an infinite loop in the IDASolveF function.

The expected behavior of SUNNonlinSolGetNumIters and SUNNonlinSolGetNumConvFails in the
SUNNONLINSOL API have been updated to specify that they should return the number of nonlinear
solver iterations and convergence failures in the most recent solve respectively rather than the cumu-
lative number of iterations and failures across all solves respectively. The API documentation and
SUNDIALS provided SUNNONLINSOL implementations have been updated accordingly. As before, the
cumulative number of nonlinear iterations may be retreived by calling IDAGetNumNonlinSolvIters, or
IDAGetSensNumNonlinSolvIters, the cumulative number of failures with IDAGetNumNonlinSolvConvFails
or IDAGetSensNumNonlinSolvConvFails, or both with IDAGetNonlinSolvStats or IDAGetSensNonlinSolvStats.

A new API, SUNMemoryHelper, was added to support GPU users who have complex memory
management needs such as using memory pools. This is paired with new constructors for the NVEC-
TOR_CUDA and NVECTOR_-RAJA modules that accept a SUNMemoryHelper object. Refer to sections
8.1,13.1, 9.9 and 9.10 for more information.

The NVECTOR_RAJA module has been updated to mirror the NVECTOR_CUDA module. Notably, the
update adds managed memory support to the NVECTOR_RAJA module. Users of the module will need
to update any calls to the N_VMake Raja function because that signature was changed. This module
remains experimental and is subject to change from version to version.

The NVECTOR_TRILINOS module has been updated to work with Trilinos 12.184. This update
changes the local ordinal type to always be an int.

Added support for CUDA v11.

Changes in v4.3.0

Fixed a bug in the iterative linear solver modules where an error is not returned if the Atimes function
is NULL or, if preconditioning is enabled, the PSolve function is NULL.
Added the ability to control the CUDA kernel launch parameters for the NVECTOR_CUDA and SUNMATRIX_CUSPARSE

modules. These modules remain experimental and are subject to change from version to version. In

addition, the NVECTOR_CUDA kernels were rewritten to be more flexible. Most users should see equiva-

lent performance or some improvement, but a select few may observe minor performance degradation

with the default settings. Users are encouraged to contact the SUNDIALS team about any perfomance

changes that they notice.

1.1 Changes from previous versions 3

Added new capabilities for monitoring the solve phase in the SUNNONLINSOL_NEWTON and SUN-
NONLINSOL_FIXEDPOINT modules, and the SUNDIALS iterative linear solver modules. SUNDIALS must
be built with the CMake option SUNDIALS_BUILD_WITH MONITORING to use these capabilties.

Added the optional functions IDASetJacTimesResFn and IDASetJacTimesResFnB to specify an
alternative residual function for computing Jacobian-vector products with the internal difference quo-
tient approximation.

Changes in v4.2.0

Fixed a build system bug related to the Fortran 2003 interfaces when using the IBM XL com-
piler. When building the Fortran 2003 interfaces with an XL compiler it is recommended to set
CMAKE_Fortran COMPILER to £2003, x1£2003, or x1£2003_r.

Fixed a linkage bug affecting Windows users that stemmed from dllimport/dllexport attributes
missing on some SUNDIALS API functions.

Fixed a memory leak from not deallocating the ato1SminO and atolQSminO arrays.

Added a new SUNMatrix implementation, SUNMATRIX_CUSPARSE, that interfaces to the sparse ma-
trix implementation from the NVIDIA cuSPARSE library. In addition, the SUNLINSOL_CUSOLVER_BATCHQR
linear solver has been updated to use this matrix, therefore, users of this module will need to update
their code. These modules are still considered to be experimental, thus they are subject to breaking
changes even in minor releases.

The functions IDASetLinearSolutionScaling and IDASetLinearSolutionScalingB were added
to enable or disable the scaling applied to linear system solutions with matrix-based linear solvers to
account for a lagged value of « in the linear system matrix %—Z + a%—‘;. Scaling is enabled by default
when using a matrix-based linear solver.

Changes in v4.1.0

Fixed a build system bug related to finding LAPACK/BLAS.

Fixed a build system bug related to checking if the KLU library works.

Added a new build system option, CUDA_ARCH, that can be used to specify the CUDA architecture
to compile for.

Fixed a build system bug related to finding PETSc when using the CMake variables PETSC_INCLUDES
and PETSC_LIBRARIES instead of PETSC_DIR.

Added two utility functions, SUNDIALSFileOpen and SUNDIALSFileClose for creating/destroying
file pointers that are useful when using the Fortran 2003 interfaces.

Changes in v4.0.0
Build system changes

e Increased the minimum required CMake version to 3.5 for most SUNDIALS configurations, and
3.10 when CUDA or OpenMP with device offloading are enabled.

e The CMake option BLAS_ENABLE and the variable BLAS_LIBRARIES have been removed to simplify
builds as SUNDIALS packages do not use BLAS directly. For third party libraries that require
linking to BLAS, the path to the BLAS library should be included in the _-LIBRARIES variable
for the third party library e.g., SUPERLUDIST_LIBRARIES when enabling SuperLU_DIST.

e Fixed a bug in the build system that prevented the NVECTOR_PTHREADS module from being
built.
NVECTOR module changes

e Two new functions were added to aid in creating custom NVECTOR objects. The constructor
N_VNewEmpty allocates an “empty” generic NVECTOR with the object’s content pointer and the
function pointers in the operations structure initialized to NULL. When used in the constructor

Introduction

for custom objects this function will ease the introduction of any new optional operations to the
NVECTOR API by ensuring only required operations need to be set. Additionally, the function
N_VCopyOps(w, v) has been added to copy the operation function pointers between vector ob-
jects. When used in clone routines for custom vector objects these functions also will ease the
introduction of any new optional operations to the NVECTOR API by ensuring all operations are
copied when cloning objects. See §9.1.6 for more details.

Two new NVECTOR implementations, NVECTOR-MANYVECTOR and NVECTOR_MPIMANYVECTOR,
have been created to support flexible partitioning of solution data among different processing
elements (e.g., CPU 4+ GPU) or for multi-physics problems that couple distinct MPI-based sim-
ulations together. This implementation is accompanied by additions to user documentation and
SUNDIALS examples. See §9.13 and §9.14 for more details.

One new required vector operation and ten new optional vector operations have been added to
the NVECTOR APIL. The new required operation, N_-VGetLength, returns the global length of an
N_Vector. The optional operations have been added to support the new
NVECTOR_MPIMANYVECTOR implementation. The operation N_VGetCommunicator must be im-
plemented by subvectors that are combined to create an NVECTOR_MPIMANYVECTOR, but is not
used outside of this context. The remaining nine operations are optional local reduction oper-
ations intended to eliminate unnecessary latency when performing vector reduction operations
(norms, etc.) on distributed memory systems. The optional local reduction vector operations
are N_VDotProdLocal, N_VMaxNormLocal, N_VMinLocal, N_VL1NormLocal, N_VWSqrSumLocal,
N_VWSqrSumMaskLocal, N_VInvTestLocal, N VConstrMaskLocal, and N_VMinQuotientLocal.
If an NVECTOR implementation defines any of the local operations as NULL, then the NVEC-
TOR_MPIMANYVECTOR will call standard NVECTOR operations to complete the computation.
See §9.1.4 for more details.

An additional NVECTOR implementation, NVECTOR_MPIPLUSX, has been created to support
the MPI4+X paradigm where X is a type of on-node parallelism (e.g., OpenMP, CUDA). The
implementation is accompanied by additions to user documentation and SUNDIALS examples.
See §9.15 for more details.

The *_MPICuda and * MPIRaja functions have been removed from the NVECTOR_CUDA and
NVECTOR_RAJA implementations respectively. Accordingly, the nvector mpicuda.h,

nvector mpiraja.h, libsundials nvecmpicuda.lib, and 1ibsundials nvecmpicudaraja.lib
files have been removed. Users should use the NVECTOR_MPIPLUSX module coupled in conjunc-
tion with the NVECTOR_CUDA or NVECTOR_RAJA modules to replace the functionality. The
necessary changes are minimal and should require few code modifications. See the programs
in examples/ida/mpicuda and examples/ida/mpiraja for examples of how to use the NVEC-
TOR_MPIPLUSX module with the NVECTOR_CUDA and NVECTOR_RAJA modules respectively.

Fixed a memory leak in the NVECTOR_PETSC module clone function.

Made performance improvements to the NVECTOR_CUDA module. Users who utilize a non-default
stream should no longer see default stream synchronizations after memory transfers.

Added a new constructor to the NVECTOR_CUDA module that allows a user to provide custom
allocate and free functions for the vector data array and internal reduction buffer. See §9.9.1
for more details.

Added new Fortran 2003 interfaces for most NVECTOR modules. See Chapter 9 for more details
on how to use the interfaces.

Added three new NVECTOR utility functions, FN_VGetVecAtIndexVectorArray,
FN_VSetVecAtIndexVectorArray, and FN_VNewVectorArray, for working with N_Vector arrays
when using the Fortran 2003 interfaces. See §9.1.6 for more details.

1.1 Changes from previous versions 5

SUNMatrix module changes

Two new functions were added to aid in creating custom SUNMATRIX objects. The constructor
SUNMatNewEmpty allocates an “empty” generic SUNMATRIX with the object’s content pointer and
the function pointers in the operations structure initialized to NULL. When used in the constructor
for custom objects this function will ease the introduction of any new optional operations to the
SUNMATRIX API by ensuring only required operations need to be set. Additionally, the function
SUNMatCopyOps (A, B) has been added to copy the operation function pointers between matrix
objects. When used in clone routines for custom matrix objects these functions also will ease the
introduction of any new optional operations to the SUNMATRIX API by ensuring all operations
are copied when cloning objects. See §10.1.2 for more details.

A new operation, SUNMatMatvecSetup, was added to the SUNMATRIX API to perform any setup
necessary for computing a matrix-vector product. This operation is useful for SUNMATRIX imple-
mentations which need to prepare the matrix itself, or communication structures before perform-
ing the matrix-vector product. Users who have implemented custom SUNMATRIX modules will
need to at least update their code to set the corresponding ops structure member, matvecsetup,
to NULL. See §10.1.1 for more details.

The generic SUNMATRIX API now defines error codes to be returned by SUNMATRIX operations.
Operations which return an integer flag indiciating success/failure may return different values
than previously. See §10.1.3 for more details.

A new SUNMATRIX (and SUNLINSOL) implementation was added to facilitate the use of the
SuperLU_DIST library with SUNDIALS. See §10.6 for more details.

Added new Fortran 2003 interfaces for most SUNMATRIX modules. See Chapter 10 for more
details on how to use the interfaces.

SUNLinearSolver module changes

A new function was added to aid in creating custom SUNLINSOL objects. The constructor
SUNLinSolNewEmpty allocates an “empty” generic SUNLINSOL with the object’s content pointer
and the function pointers in the operations structure initialized to NULL. When used in the
constructor for custom objects this function will ease the introduction of any new optional
operations to the SUNLINSOL API by ensuring only required operations need to be set. See §11.3
for more details.

The return type of the SUNLINSOL API function SUNLinSolLastFlag has changed from long
int to sunindextype to be consistent with the type used to store row indices in dense and
banded linear solver modules.

Added a new optional operation to the SUNLINSOL API, SUNLinSolGetID, that returns a
SUNLinearSolver_ID for identifying the linear solver module.

The sUNLINSOL API has been updated to make the initialize and setup functions optional.

A new SUNLINSOL (and SUNMATRIX) implementation was added to facilitate the use of the
SuperLU_DIST library with SUNDIALS. See §11.10 for more details.

Added a new SUNLINSOL implementation, SUNLinearSolver_cuSolverSp_batchQR, which lever-
ages the NVIDIA cuSOLVER sparse batched QR method for efficiently solving block diagonal
linear systems on NVIDIA GPUs. See §11.12 for more details.

Added three new accessor functions to the SUNLINSOL_KLU module, SUNLinSol KLUGetSymbolic,
SUNLinSol_KLUGetNumeric, and SUNLinSol_KLUGetCommon, to provide user access to the under-
lying KLU solver structures. See §11.9.2 for more details.

Added new Fortran 2003 interfaces for most SUNLINSOL modules. See Chapter 11 for more
details on how to use the interfaces.

6 Introduction

SUNNonlinearSolver module changes

e A new function was added to aid in creating custom SUNNONLINSOL objects. The constructor
SUNNonlinSolNewEmpty allocates an “empty” generic SUNNONLINSOL with the object’s content
pointer and the function pointers in the operations structure initialized to NULL. When used in
the constructor for custom objects this function will ease the introduction of any new optional
operations to the SUNNONLINSOL API by ensuring only required operations need to be set. See
§12.1.8 for more details.

e To facilitate the use of user supplied nonlinear solver convergence test functions the
SUNNonlinSolSetConvTestFn function in the SUNNONLINSOL API has been updated to take a
void* data pointer as input. The supplied data pointer will be passed to the nonlinear solver
convergence test function on each call.

e The inputs values passed to the first two inputs of the SUNNonlinSolSolve function in the SUN-
NONLINSOL have been changed to be the predicted state and the initial guess for the correction to
that state. Additionally, the definitions of SUNNonlinSolLSetupFn and SUNNonlinSolLSolveFn
in the SUNNONLINSOL API have been updated to remove unused input parameters. For more
information on the nonlinear system formulation see §12.2 and for more details on the API
functions see Chapter 12.

e Added a new SUNNONLINSOL implementation, SUNNONLINSOL_PETSCSNES, which interfaces to
the PETSc SNES nonlinear solver API. See §12.4 for more details.

e Added new Fortran 2003 interfaces for most SUNNONLINSOL modules. See Chapter 12 for more
details on how to use the interfaces.

IDAS changes

e A bug was fixed in the IDAS linear solver interface where an incorrect Jacobian-vector product
increment was used with iterative solvers other than SUNLINSOL_SPGMR and SUNLINSOL_SPFGMR.

e Fixed a bug where the IDASolveF function would not return a root in IDA_NORMAL_STEP mode
if the root occurred after the desired output time.

e Fixed a bug where the IDASolveF function would return the wrong flag under certrain cirum-
stances.

e Fixed a bug in IDAQuadReInitB where an incorrect memory structure was passed to IDAQuadReInit.

e Removed extraneous calls to N_-VMin for simulations where the scalar valued absolute tolerance,
or all entries of the vector-valued absolute tolerance array, are strictly positive. In this scenario,
IDAS will remove at least one global reduction per time step.

e The IDALS interface has been updated to only zero the Jacobian matrix before calling a user-
supplied Jacobian evaluation function when the attached linear solver has type
SUNLINEARSOLVER_DIRECT.

e Added the new functions, IDAGetCurentCj, IDAGetCurrentY, IDAGetCurrentYp,
IDAComputeCurrentY, IDAComputeCurrentYp, IDAGetCurrentYSens, IDAGetCurrentYpSens,
IDAComputeCurrentYSens, and IDAComputeCurrentYpSens, which may be useful to users who
choose to provide their own nonlinear solver implementations.

e Added a Fortran 2003 interface to IDAS. See Chapter 7 for more details.

1.1 Changes from previous versions 7

Changes in v3.1.0

An additional NVECTOR implementation was added for the Tpetra vector from the Trilinos library
to facilitate interoperability between SUNDIALS and Trilinos. This implementation is accompanied by
additions to user documentation and SUNDIALS examples.

A bug was fixed where a nonlinear solver object could be freed twice in some use cases.

The EXAMPLES_ENABLE_RAJA CMake option has been removed. The option EXAMPLES_ENABLE_CUDA
enables all examples that use CUDA including the RAJA examples with a CUDA back end (if the
RAJA NVECTOR is enabled).

The implementation header file idas_impl.h is no longer installed. This means users who are
directly manipulating the IDAMem structure will need to update their code to use IDAS’s public API.

Python is no longer required to run make test and make test_install.

Changes in v3.0.2

Added information on how to contribute to SUNDIALS and a contributing agreement.
Moved definitions of DLS and SPILS backwards compatibility functions to a source file. The
symbols are now included in the IDAS library, libsundials_idas.

Changes in v3.0.1

No changes were made in this release.

Changes in v3.0.0

IDAS’ previous direct and iterative linear solver interfaces, IDADLS and IDASPILS, have been merged
into a single unified linear solver interface, IDALS, to support any valid SUNLINSOL module. This
includes the “DIRECT” and “ITERATIVE” types as well as the new “MATRIX_ITERATIVE” type.
Details regarding how IDALS utilizes linear solvers of each type as well as discussion regarding intended
use cases for user-supplied SUNLINSOL implementations are included in Chapter 11. All IDAS example
programs and the standalone linear solver examples have been updated to use the unified linear solver
interface.

The unified interface for the new IDALS module is very similar to the previous IDADLS and IDASPILS
interfaces. To minimize challenges in user migration to the new names, the previous C routine names
may still be used; these will be deprecated in future releases, so we recommend that users migrate to
the new names soon.

The names of all constructor routines for SUNDIALS-provided SUNLINSOL implementations have
been updated to follow the naming convention SUNLinSol_* where * is the name of the linear solver.
The new names are SUNLinSol Band, SUNLinSol Dense, SUNLinSol KLU, SUNLinSol _LapackBand,
SUNLinSol_LapackDense, SUNLinSol_PCG, SUNLinSol_SPBCGS, SUNLinSol_SPFGMR, SUNLinSol_SPGMR,
SUNLinSol_SPTFQMR, and SUNLinSol_SuperLUMT. Solver-specific “set” routine names have been simi-
larly standardized. To minimize challenges in user migration to the new names, the previous routine
names may still be used; these will be deprecated in future releases, so we recommend that users mi-
grate to the new names soon. All IDAS example programs and the standalone linear solver examples
have been updated to use the new naming convention.

The SUNBandMatrix constructor has been simplified to remove the storage upper bandwidth ar-
gument.

SUNDIALS integrators have been updated to utilize generic nonlinear solver modules defined through
the SUNNONLINSOL API. This API will ease the addition of new nonlinear solver options and allow for
external or user-supplied nonlinear solvers. The SUNNONLINSOL API and SUNDIALS provided modules
are described in Chapter 12 and follow the same object oriented design and implementation used by
the NVECTOR, SUNMATRIX, and SUNLINSOL modules. Currently two SUNNONLINSOL implementations
are provided, SUNNONLINSOL_NEWTON and SUNNONLINSOL_FIXEDPOINT. These replicate the previ-
ous integrator specific implementations of a Newton iteration and a fixed-point iteration (previously
referred to as a functional iteration), respectively. Note the SUNNONLINSOL_FIXEDPOINT module can

8 Introduction

optionally utilize Anderson’s method to accelerate convergence. Example programs using each of these
nonlinear solver modules in a standalone manner have been added and all IDAS example programs
have been updated to use generic SUNNONLINSOL modules.

By default IDAS uses the SUNNONLINSOL_NEWTON module. Since IDAS previously only used an
internal implementation of a Newton iteration no changes are required to user programs and func-
tions for setting the nonlinear solver options (e.g., IDASetMaxNonlinIters) or getting nonlinear solver
statistics (e.g., IDAGetNumNonlinSolvIters) remain unchanged and internally call generic SUNNON-
LINSOL functions as needed. While SUNDIALS includes a fixed-point nonlinear solver module, it is not
currently supported in IDAS. For details on attaching a user-supplied nonlinear solver to IDAS see
Chapter 4, 5, and 6.

Three fused vector operations and seven vector array operations have been added to the NVEC-
TOR API. These optional operations are disabled by default and may be activated by calling vector
specific routines after creating an NVECTOR (see Chapter 9 for more details). The new operations are
intended to increase data reuse in vector operations, reduce parallel communication on distributed
memory systems, and lower the number of kernel launches on systems with accelerators. The fused op-
erations are N_VLinearCombination, N_.VScaleAddMulti, and N_VDotProdMulti and the vector array
operations are N_VLinearCombinationVectorArray, N_VScaleVectorArray, N_VConstVectorArray,
N_VWrmsNormVectorArray, N VWrmsNormMaskVectorArray, N VScaleAddMultiVectorArray, and
N_VLinearCombinationVectorArray. If an NVECTOR implementation defines any of these operations
as NULL, then standard NVECTOR operations will automatically be called as necessary to complete the
computation.

Multiple updates to NVECTOR_CUDA were made:
e Changed N_VGetLength_Cuda to return the global vector length instead of the local vector length.
e Added N_VGetLocalLength Cuda to return the local vector length.
e Added N_VGetMPIComm Cuda to return the MPI communicator used.
e Removed the accessor functions in the namespace suncudavec.

e Changed the N_VMake_Cuda function to take a host data pointer and a device data pointer instead
of an N_VectorContent_Cuda object.

e Added the ability to set the cudaStream_t used for execution of the NVECTOR_CUDA kernels.
See the function N_VSetCudaStreams_Cuda.

e Added N_VNewManaged Cuda, N_VMakeManaged Cuda, and N_VIsManagedMemory_Cuda functions
to accommodate using managed memory with the NVECTOR_CUDA.

Multiple changes to NVECTOR_RAJA were made:
e Changed N_VGetLength Raja to return the global vector length instead of the local vector length.
e Added N_VGetLocalLength Raja to return the local vector length.
e Added N_VGetMPIComm Raja to return the MPI communicator used.
e Removed the accessor functions in the namespace suncudavec.
A new NVECTOR implementation for leveraging OpenMP 4.5+ device offloading has been added,
NVECTOR_OPENMPDEV. See §9.11 for more details.
Changes in v2.2.1
The changes in this minor release include the following:

e Fixed a bug in the CUDA NVECTOR where the N_VInvTest operation could write beyond the
allocated vector data.

1.1 Changes from previous versions 9

e Fixed library installation path for multiarch systems. This fix changes the default library instal-
lation path to CMAKE_INSTALL_PREFIX/CMAKE_INSTALL_LIBDIR from CMAKE_INSTALL_PREFIX/1ib.
CMAKE_INSTALL_LIBDIR is automatically set, but is available as a CMake option that can modi-
fied.

Changes in v2.2.0

Fixed a bug in IDAS where the saved residual value used in the nonlinear solve for consistent initial
conditions was passed as temporary workspace and could be overwritten.

Fixed a thread-safety issue when using ajdoint sensitivity analysis.

Fixed a problem with setting sunindextype which would occur with some compilers (e.g. arm-
clang) that did not define __STDC_VERSION__.

Added hybrid MPI/CUDA and MPI/RAJA vectors to allow use of more than one MPI rank when
using a GPU system. The vectors assume one GPU device per MPI rank.

Changed the name of the RAJA NVECTOR library to libsundials _nveccudaraja.lib from
libsundials nvecraja.lib to better reflect that we only support CUDA as a backend for RAJA cur-
rently.

Several changes were made to the build system:
e CMake 3.1.3 is now the minimum required CMake version.

e Deprecate the behavior of the SUNDIALS_INDEX_TYPE CMake option and added the
SUNDIALS_INDEX_SIZE CMake option to select the sunindextype integer size.

e The native CMake FindMPI module is now used to locate an MPI installation.

e If MPI is enabled and MPI compiler wrappers are not set, the build system will check if
CMAKE <language>_COMPILER can compile MPI programs before trying to locate and use an
MPI installation.

e The previous options for setting MPI compiler wrappers and the executable for running MPI
programs have been have been depreated. The new options that align with those used in native
CMake FindMPI module are MPI_C_COMPILER, MPT_CXX_COMPILER, MPI Fortran COMPILER, and
MPIEXEC_EXECUTABLE.

e When a Fortran name-mangling scheme is needed (e.g., LAPACK_ENABLE is ON) the build system
will infer the scheme from the Fortran compiler. If a Fortran compiler is not available or the in-
ferred or default scheme needs to be overridden, the advanced options SUNDIALS_F77_FUNC_CASE
and SUNDIALS_F77 _FUNC_UNDERSCORES can be used to manually set the name-mangling scheme
and bypass trying to infer the scheme.

e Parts of the main CMakeLists.txt file were moved to new files in the src and example directories

to make the CMake configuration file structure more modular.

Changes in v2.1.2

The changes in this minor release include the following:

e Updated the minimum required version of CMake to 2.8.12 and enabled using rpath by default
to locate shared libraries on OSX.

10 Introduction

e Fixed Windows specific problem where sunindextype was not correctly defined when using
64-bit integers for the SUNDIALS index type. On Windows sunindextype is now defined as the
MSVC basic type __int64.

e Added sparse SUNMatrix “Reallocate” routine to allow specification of the nonzero storage.

e Updated the KLU SUNLINSOL module to set constants for the two reinitialization types, and
fixed a bug in the full reinitialization approach where the sparse SUNMatrix pointer would go
out of scope on some architectures.

e Updated the “ScaleAdd” and “ScaleAddI” implementations in the sparse SUNMatrix module
to more optimally handle the case where the target matrix contained sufficient storage for the
sum, but had the wrong sparsity pattern. The sum now occurs in-place, by performing the sum
backwards in the existing storage. However, it is still more efficient if the user-supplied Jacobian
routine allocates storage for the sum I + +J manually (with zero entries if needed).

e Changed the LICENSE install path to instdir/include/sundials.

Changes in v2.1.1

The changes in this minor release include the following;:

e Fixed a potential memory leak in the SPGMR and SPFGMR linear solvers: if “Initialize” was
called multiple times then the solver memory was reallocated (without being freed).

e Updated KLU SUNLinearSolver module to use a typedef for the precision-specific solve function
to be used (to avoid compiler warnings).

e Added missing typecasts for some (void#*) pointers (again, to avoid compiler warnings).

e Bugfix in sunmatrix_sparse.c where we had used int instead of sunindextype in one location.
e Added missing #include <stdio.h> in NVECTOR and SUNMATRIX header files.

e Added missing prototype for IDASpilsGetNumJTSetupEvals.

e Fixed an indexing bug in the CUDA NVECTOR implementation of N_VWrmsNormMask and revised
the RAJA NVECTOR implementation of N_VWrmsNormMask to work with mask arrays using values
other than zero or one. Replaced double with realtype in the RAJA vector test functions.

In addition to the changes above, minor corrections were also made to the example programs, build
system, and user documentation.

Changes in v2.1.0

Added NVECTOR print functions that write vector data to a specified file (e.g., N.VPrintFile_Serial).
Added make test and make test_install options to the build system for testing SUNDIALS after
building with make and installing with make install respectively.

Changes in v2.0.0

All interfaces to matrix structures and linear solvers have been reworked, and all example programs
have been updated. The goal of the redesign of these interfaces was to provide more encapsulation and
to ease interfacing of custom linear solvers and interoperability with linear solver libraries. Specific
changes include:

e Added generic SUNMATRIX module with three provided implementations: dense, banded and
sparse. These replicate previous SUNDIALS Dls and Sls matrix structures in a single object-
oriented APIL.

1.1 Changes from previous versions 11

e Added example problems demonstrating use of generic SUNMATRIX modules.

e Added generic SUNLinearSolver module with eleven provided implementations: SUNDIALS na-
tive dense, SUNDIALS native banded, LAPACK dense, LAPACK band, KLU, SuperLU_MT,
SPGMR, SPBCGS, SPTFQMR, SPFGMR, and PCG. These replicate previous SUNDIALS
generic linear solvers in a single object-oriented API.

e Added example problems demonstrating use of generic SUNLinearSolver modules.

e Expanded package-provided direct linear solver (Dls) interfaces and scaled, preconditioned, iter-
ative linear solver (Spils) interfaces to utilize generic SUNMATRIX and SUNLinearSolver objects.

e Removed package-specific, linear solver-specific, solver modules (e.g. CVDENSE, KINBAND, IDAKLU,
ARKSPGMR) since their functionality is entirely replicated by the generic Dls/Spils interfaces
and SUNLinearSolver/SUNMATRIX modules. The exception is CVDIAG, a diagonal approximate
Jacobian solver available to CVODE and CVODES.

e Converted all SUNDIALS example problems and files to utilize the new generic SUNMATRIX and
SUNLinearSolver objects, along with updated Dls and Spils linear solver interfaces.

e Added Spils interface routines to ARKODE, CVODE, CVODES, IDA, and IDAS to allow specification
of a user-provided ”JTSetup” routine. This change supports users who wish to set up data
structures for the user-provided Jacobian-times-vector (”JTimes”) routine, and where the cost
of one JTSetup setup per Newton iteration can be amortized between multiple JTimes calls.

Two additional NVECTOR implementations were added — one for CUDA and one for RAJA vectors.
These vectors are supplied to provide very basic support for running on GPU architectures. Users are
advised that these vectors both move all data to the GPU device upon construction, and speedup will
only be realized if the user also conducts the right-hand-side function evaluation on the device. In
addition, these vectors assume the problem fits on one GPU. Further information about RAJA, users
are referred to the web site, https://software.llnl.gov/RAJA/. These additions are accompanied by
additions to various interface functions and to user documentation.

All indices for data structures were updated to a new sunindextype that can be configured to
be a 32- or 64-bit integer data index type. sunindextype is defined to be int32_t or int64_t when
portable types are supported, otherwise it is defined as int or long int. The Fortran interfaces
continue to use long int for indices, except for their sparse matrix interface that now uses the new
sunindextype. This new flexible capability for index types includes interfaces to PETSc, hypre,
SuperLU_MT, and KLU with either 32-bit or 64-bit capabilities depending how the user configures
SUNDIALS.

To avoid potential namespace conflicts, the macros defining booleantype values TRUE and FALSE
have been changed to SUNTRUE and SUNFALSE respectively.

Temporary vectors were removed from preconditioner setup and solve routines for all packages. It
is assumed that all necessary data for user-provided preconditioner operations will be allocated and
stored in user-provided data structures.

The file include/sundials_fconfig.h was added. This file contains SUNDIALS type information
for use in Fortran programs.

The build system was expanded to support many of the xSDK-compliant keys. The xSDK is
a movement in scientific software to provide a foundation for the rapid and efficient production of
high-quality, sustainable extreme-scale scientific applications. More information can be found at,
https://xsdk.info.

Added functions SUNDIALSGetVersion and SUNDIALSGetVersionNumber to get SUNDIALS release
version information at runtime.

In addition, numerous changes were made to the build system. These include the addition of
separate BLAS_ENABLE and BLAS_LIBRARIES CMake variables, additional error checking during CMake
configuration, minor bug fixes, and renaming CMake options to enable/disable examples for greater
clarity and an added option to enable/disable Fortran 77 examples. These changes included changing

12 Introduction

EXAMPLES_ENABLE to EXAMPLES_ENABLE C, changing CXX_ENABLE to EXAMPLES ENABLE CXX, changing
F90_ENABLE to EXAMPLES ENABLE F90, and adding an EXAMPLES ENABLE F77 option.

A bug fix was done to add a missing prototype for IDASetMaxBacksIC in ida.h.

Corrections and additions were made to the examples, to installation-related files, and to the user
documentation.

Changes in v1.3.0

Two additional NVECTOR implementations were added — one for Hypre (parallel) ParVector vectors,
and one for PETSc vectors. These additions are accompanied by additions to various interface func-
tions and to user documentation.

Each NVECTOR module now includes a function, N_VGetVectorID, that returns the NVECTOR
module name.

An optional input function was added to set a maximum number of linesearch backtracks in
the initial condition calculation, and four user-callable functions were added to support the use of
LAPACK linear solvers in solving backward problems for adjoint sensitivity analysis.

For each linear solver, the various solver performance counters are now initialized to 0 in both the
solver specification function and in solver 1init function. This ensures that these solver counters are
initialized upon linear solver instantiation as well as at the beginning of the problem solution.

A bug in for-loop indices was fixed in IDAAckpntAllocVectors. A bug was fixed in the interpo-
lation functions used in solving backward problems.

A memory leak was fixed in the banded preconditioner interface. In addition, updates were done
to return integers from linear solver and preconditioner ’free’ functions.

In interpolation routines for backward problems, added logic to bypass sensitivity interpolation if
input sensitivity argument is NULL.

The Krylov linear solver Bi-CGstab was enhanced by removing a redundant dot product. Various
additions and corrections were made to the interfaces to the sparse solvers KLU and SuperLU_MT,
including support for CSR format when using KLU.

New examples were added for use of the OpenMP vector and for use of sparse direct solvers within
sensitivity integrations.

Minor corrections and additions were made to the IDAS solver, to the examples, to installation-
related files, and to the user documentation.

Changes in v1.2.0

Two major additions were made to the linear system solvers that are available for use with the 1DAS
solver. First, in the serial case, an interface to the sparse direct solver KLU was added. Second,
an interface to SuperLU_MT, the multi-threaded version of SuperLU, was added as a thread-parallel
sparse direct solver option, to be used with the serial version of the NVECTOR module. As part of
these additions, a sparse matrix (CSC format) structure was added to IDAS.

Otherwise, only relatively minor modifications were made to IDAS:

In IDARootfind, a minor bug was corrected, where the input array rootdir was ignored, and a
line was added to break out of root-search loop if the initial interval size is below the tolerance ttol.

In IDALapackBand, the line smu = MIN(N-1,mu+ml) was changed to smu = mu + ml to correct an
illegal input error for DGBTRF/DGBTRS.

An option was added in the case of Adjoint Sensitivity Analysis with dense or banded Jacobian:
With a call to IDAD1sSetDenseJacFnBS or IDADlsSetBandJacFnBS, the user can specify a user-
supplied Jacobian function of type IDAD1s***JacFnBS, for the case where the backward problem
depends on the forward sensitivities.

A minor bug was fixed regarding the testing of the input tstop on the first call to IDASolve.

For the Adjoint Sensitivity Analysis case in which the backward problem depends on the forward
sensitivities, options have been added to allow for user-supplied pset, psolve, and jtimes functions.

In order to avoid possible name conflicts, the mathematical macro and function names MIN, MAX,
SQR, RAbs, RSqrt, RExp, RPowerI, and RPowerR were changed to SUNMIN, SUNMAX, SUNSQR, SUNRabs,

1.2 Reading this User Guide 13

SUNRsqrt, SUNRexp, SRpowerI, and SUNRpowerR, respectively. These names occur in both the solver
and in various example programs.

In the User Guide, a paragraph was added in Section 6.2.1 on IDAAdjReInit, and a paragraph
was added in Section 6.2.9 on IDAGetAdjY.

Two new NVECTOR modules have been added for thread-parallel computing environments — one
for OpenMP, denoted NVECTOR_OPENMP, and one for Pthreads, denoted NVECTOR_PTHREADS.

With this version of SUNDIALS, support and documentation of the Autotools mode of installation
is being dropped, in favor of the CMake mode, which is considered more widely portable.

Changes in v1.1.0

One significant design change was made with this release: The problem size and its relatives, band-
width parameters, related internal indices, pivot arrays, and the optional output lsflag have all
been changed from type int to type long int, except for the problem size and bandwidths in user
calls to routines specifying BLAS/LAPACK routines for the dense/band linear solvers. The function
NewIntArray is replaced by a pair NewIntArray/NewLintArray, for int and long int arrays, re-
spectively. In a minor change to the user interface, the type of the index which in IDAS was changed
from long int to int.

Errors in the logic for the integration of backward problems were identified and fixed.

A large number of minor errors have been fixed. Among these are the following: A missing
vector pointer setting was added in IDASensLineSrch. In IDACompleteStep, conditionals around
lines loading a new column of three auxiliary divided difference arrays, for a possible order increase,
were fixed. After the solver memory is created, it is set to zero before being filled. In each linear solver
interface function, the linear solver memory is freed on an error return, and the **Free function now
includes a line setting to NULL the main memory pointer to the linear solver memory. A memory leak
was fixed in two of the IDASp***Free functions. In the rootfinding functions IDARcheck1/IDARcheck?2,
when an exact zero is found, the array glo of g values at the left endpoint is adjusted, instead of
shifting the ¢ location tlo slightly. In the installation files, we modified the treatment of the macro
SUNDIALS_USE_GENERIC_MATH, so that the parameter GENERIC_MATH_LIB is either defined
(with no value) or not defined.

1.2 Reading this User Guide

The structure of this document is as follows:

e In Chapter 2, we give short descriptions of the numerical methods implemented by IDAS for
the solution of initial value problems for systems of DAEs, continue with short descriptions of
preconditioning (§2.2) and rootfinding (§2.3), and then give an overview of the mathematical
aspects of sensitivity analysis, both forward (§2.5) and adjoint (§2.6).

e The following chapter describes the structure of the SUNDIALS suite of solvers (§3.1) and the
software organization of the IDAS solver (§3.2).

e Chapter 4 is the main usage document for IDAS for simulation applications. It includes a complete
description of the user interface for the integration of DAE initial value problems. Readers that
are not interested in using IDAS for sensitivity analysis can then skip the next two chapters.

e Chapter 5 describes the usage of IDAS for forward sensitivity analysis as an extension of its IVP
integration capabilities. We begin with a skeleton of the user main program, with emphasis
on the steps that are required in addition to those already described in Chapter 4. Following
that we provide detailed descriptions of the user-callable interface routines specific to forward
sensitivity analysis and of the additonal optional user-defined routines.

e Chapter 6 describes the usage of IDAS for adjoint sensitivity analysis. We begin by describing
the IDAS checkpointing implementation for interpolation of the original IVP solution during

14 Introduction

integration of the adjoint system backward in time, and with an overview of a user’s main
program. Following that we provide complete descriptions of the user-callable interface routines
for adjoint sensitivity analysis as well as descriptions of the required additional user-defined
routines.

e Chapter 9 gives a brief overview of the generic NVECTOR module shared amongst the various
components of SUNDIALS, as well as details on the NVECTOR implementations provided with
SUNDIALS.

e Chapter 10 gives a brief overview of the generic SUNMATRIX module shared among the vari-
ous components of SUNDIALS, and details on the SUNMATRIX implementations provided with
SUNDIALS: a dense implementation (§10.3), a banded implementation (§10.4) and a sparse im-
plementation (§10.5).

e Chapter 11 gives a brief overview of the generic SUNLINSOL module shared among the various
components of SUNDIALS. This chapter contains details on the SUNLINSOL implementations
provided with SUNDIALS. The chapter also contains details on the SUNLINSOL implementations
provided with SUNDIALS that interface with external linear solver libraries.

e Chapter 12 describes the SUNNONLINSOL API and nonlinear solver implementations shared
among the various components of SUNDIALS.

e Finally, in the appendices, we provide detailed instructions for the installation of IDAS, within
the structure of SUNDIALS (Appendix A), as well as a list of all the constants used for input to
and output from IDAS functions (Appendix B).

Finally, the reader should be aware of the following notational conventions in this user guide:
program listings and identifiers (such as IDAInit) within textual explanations appear in typewriter
type style; fields in C structures (such as content) appear in italics; and packages or modules, such
as IDALS, are written in all capitals. Usage and installation instructions that constitute important
warnings are marked with a triangular symbol in the margin.

1.3 SUNDIALS Release License

All SUNDIALS packages are released open source, under the BSD 3-Clause license. The only require-
ments of the license are preservation of copyright and a standard disclaimer of liability. The full text
of the license and an additional notice are provided below and may also be found in the LICENSE
and NOTICE files provided with all SUNDIALS packages.

If you are using SUNDIALS with any third party libraries linked in (e.g., LAPACK, KLU, Su-
perLU_MT, PETSc, or hypre), be sure to review the respective license of the package as that license
may have more restrictive terms than the SUNDIALS license. For example, if someone builds SUNDIALS
with a statically linked KLU, the build is subject to terms of the LGPL license (which is what KLU
is released with) and not the SUNDIALS BSD license anymore.

1.3.1 BSD 3-Clause License

Copyright (c) 2002-2019, Lawrence Livermore National Security and Southern Methodist University.
All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted
provided that the following conditions are met:

* Redistributions of source code must retain the above copyright notice, this list of conditions and
the following disclaimer.

* Redistributions in binary form must reproduce the above copyright notice, this list of conditions and

1.3 SUNDIALS Release License 15

the following disclaimer in the documentation and/or other materials provided with the distribution.

* Neither the name of the copyright holder nor the names of its contributors may be used to en-
dorse or promote products derived from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
“AS IS” AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTIC-
ULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EX-
EMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PRO-
CUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABIL-
ITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE
OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

1.3.2 Additional Notice

This work was produced under the auspices of the U.S. Department of Energy by Lawrence Livermore
National Laboratory under Contract DE-AC52-07NA27344.

This work was prepared as an account of work sponsored by an agency of the United States Govern-
ment. Neither the United States Government nor Lawrence Livermore National Security, LLC, nor
any of their employees makes any warranty, expressed or implied, or assumes any legal liability or
responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or
process disclosed, or represents that its use would not infringe privately owned rights.

Reference herein to any specific commercial product, process, or service by trade name, trademark,
manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation,
or favoring by the United States Government or Lawrence Livermore National Security, LLC.

The views and opinions of authors expressed herein do not necessarily state or reflect those of the
United States Government or Lawrence Livermore National Security, LLC, and shall not be used for
advertising or product endorsement purposes.

1.3.3 SUNDIALS Release Numbers

LLNL-CODE-667205 (ARKODE)
UCRL-CODE-155951 (CVODE)
UCRL-CODE-155950 (CVODES)
UCRL-CODE-155952 (IDA)
UCRL-CODE-237203 (IDAS)
LLNL-CODE-665877 (KINSOL)

Chapter 2

Mathematical Considerations

IDAS solves the initial-value problem (IVP) for a DAE system of the general form

F(t,y,9) =0, y(to) =vo, y(to) = 9o, (2.1)

where y, 9, and F are vectors in R, ¢ is the independent variable, § = dy/dt, and initial values yo,
Yo are given. (Often ¢ is time, but it certainly need not be.)
Additionally, if (2.1) depends on some parameters p € Rz, i.e.

F(t,y,9,p) =0

y(to) = o (p) ¥(to) =50(p) (2.2)

IDAS can also compute first order derivative information, performing either forward sensitivity analysis
or adjoint sensitivity analysis. In the first case, IDAS computes the sensitivities of the solution with
respect to the parameters p, while in the second case, IDAS computes the gradient of a derived function
with respect to the parameters p.

2.1 IVP solution

Prior to integrating a DAE initial-value problem, an important requirement is that the pair of vectors
yo and go are both initialized to satisfy the DAE residual F'(to, yo,90) = 0. For a class of problems that
includes so-called semi-explicit index-one systems, IDAS provides a routine that computes consistent
initial conditions from a user’s initial guess [13]. For this, the user must identify sub-vectors of y (not
necessarily contiguous), denoted yq and y,, which are its differential and algebraic parts, respectively,
such that F' depends on g4 but not on any components of g,. The assumption that the system is
“index one” means that for a given ¢ and yg4, the system F'(t,y,y) = 0 defines y, uniquely. In this
case, a solver within IDAS computes y, and ¥4 at t = tg, given y4 and an initial guess for y,. A second
available option with this solver also computes all of y(ty) given y(¢o); this is intended mainly for quasi-
steady-state problems, where ¢(tg) = 0 is given. In both cases, IDA solves the system F(to,yo, %) =0
for the unknown components of yy and 1, using Newton iteration augmented with a line search global
strategy. In doing this, it makes use of the existing machinery that is to be used for solving the linear
systems during the integration, in combination with certain tricks involving the step size (which is set
artificially for this calculation). For problems that do not fall into either of these categories, the user
is responsible for passing consistent values, or risks failure in the numerical integration.

The integration method used in IDAS is the variable-order, variable-coefficient BDF (Backward
Differentiation Formula), in fixed-leading-coefficient form [9]. The method order ranges from 1 to 5,
with the BDF of order ¢ given by the multistep formula

q
Z Qp iYn—i = hnyn , (23)
1=0

18 Mathematical Considerations

where y,, and ¥, are the computed approximations to y(t,) and y(t,), respectively, and the step size
is hy, =t —tn—1. The coefficients a, ; are uniquely determined by the order ¢, and the history of the
step sizes. The application of the BDF (2.3) to the DAE system (2.1) results in a nonlinear algebraic
system to be solved at each step:

q
Gw0=F<%wmhﬁ§:mm%4>—O. (2.4)

i=0

By default 1DAS solves (2.4) with a Newton iteration but IDAS also allows for user-defined nonlinear
solvers (see Chapter 12). Each Newton iteration requires the soution of a linear system of the form

where yy,(,n) is the m-th approximation to y,. Here J is some approximation to the system Jacobian

_oG_or, or (2.6)
dy Oy 9y
where o = ay, 0/hy. The scalar o changes whenever the step size or method order changes.

For the solution of the linear systems within the Newton iteration, IDAS provides several choices,
including the option of a user-supplied linear solver module (see Chapter 11). The linear solver
modules distributed with SUNDIALS are organized in two families, a direct family comprising direct
linear solvers for dense, banded, or sparse matrices and a spils family comprising scaled preconditioned
iterative (Krylov) linear solvers. The methods offered through these modules are as follows:

e dense direct solvers, using either an internal implementation or a BLAS/LAPACK implementa-
tion (serial or threaded vector modules only),

e band direct solvers, using either an internal implementation or a BLAS/LAPACK implementa-
tion (serial or threaded vector modules only),

e sparse direct solver interfaces, using either the KLU sparse solver library [22, 3], or the thread-
enabled SuperLU_MT sparse solver library [43, 24, 7] (serial or threaded vector modules only)
[Note that users will need to download and install the KLU or SUPERLUMT packages independent
of 1DAS],

e SPGMR, a scaled preconditioned GMRES (Generalized Minimal Residual method) solver with
or without restarts,

e SPFGMR, a scaled preconditioned FGMRES (Flexible Generalized Minimal Residual method)
solver with or without restarts,

e SPBCGS, a scaled preconditioned Bi-CGStab (Bi-Conjugate Gradient Stable method) solver,

e SPTFQMR, a scaled preconditioned TFQMR (Transpose-Free Quasi-Minimal Residual method)
solver, or

e PCG, a scaled preconditioned CG (Conjugate Gradient method) solver.

For large stiff systems, where direct methods are not feasible, the combination of a BDF integrator and
a preconditioned Krylov method yields a powerful tool because it combines established methods for
stiff integration, nonlinear iteration, and Krylov (linear) iteration with a problem-specific treatment
of the dominant source of stiffness, in the form of the user-supplied preconditioner matrix [11]. For
the spils linear solvers with 1DAS, preconditioning is allowed only on the left (see §2.2). Note that
the dense, band, and sparse direct linear solvers can only be used with serial and threaded vector
representations.

2.1 IVP solution 19

In the process of controlling errors at various levels, IDAS uses a weighted root-mean-square norm,
denoted || - |[wrwms, for all error-like quantities. The multiplicative weights used are based on the
current solution and on the relative and absolute tolerances input by the user, namely

W; = 1/[RTOL - |y;| + ATOL] . (2.7)

Because 1/W; represents a tolerance in the component y;, a vector whose norm is 1 is regarded as
“small.” For brevity, we will usually drop the subscript WRMS on norms in what follows.

In the case of a matrix-based linear solver, the default Newton iteration is a Modified Newton
iteration, in that the Jacobian J is fixed (and usually out of date) throughout the nonlinear iterations,
with a coefficient @ in place of a in J. However, in the case that a matrix-free iterative linear solver is
used, the default Newton iteration is an Inexact Newton iteration, in which J is applied in a matrix-
free manner, with matrix-vector products Jv obtained by either difference quotients or a user-supplied
routine. In this case, the linear residual JAy + G is nonzero but controlled. With the default Newton
iteration, the matrix J and preconditioner matrix P are updated as infrequently as possible to balance
the high costs of matrix operations against other costs. Specifically, this matrix update occurs when:

e starting the problem,
e the value @ at the last update is such that a/& < 3/5 or a/& > 5/3, or
e a non-fatal convergence failure occurred with an out-of-date J or P.

The above strategy balances the high cost of frequent matrix evaluations and preprocessing with
the slow convergence due to infrequent updates. To reduce storage costs on an update, Jacobian
information is always reevaluated from scratch.

The default stopping test for nonlinear solver iterations in IDAS ensures that the iteration error
Yn = Yn(m) is small relative to y itself. For this, we estimate the linear convergence rate at all iterations

m>1 as)
S\ 71
n=(5)"

where the 0, = Yn(m) — Yn(m—1) is the correction at iteration m = 1,2,.... The nonlinear solver
iteration is halted if R > 0.9. The convergence test at the m-th iteration is then

S| < 0.33, (2.8)

where S = R/(R—1) whenever m > 1 and R < 0.9. The user has the option of changing the constant
in the convergence test from its default value of 0.33. The quantity S is set to S = 20 initially and
whenever J or P is updated, and it is reset to S = 100 on a step with o # @. Note that at m = 1, the
convergence test (2.8) uses an old value for S. Therefore, at the first nonlinear solver iteration, we
make an additional test and stop the iteration if [|;] < 0.33 - 10=* (since such a &; is probably just
noise and therefore not appropriate for use in evaluating R). We allow only a small number (default
value 4) of nonlinear iterations. If convergence fails with J or P current, we are forced to reduce the
step size h,, and we replace h, by h,/4. The integration is halted after a preset number (default
value 10) of convergence failures. Both the maximum number of allowable nonlinear iterations and
the maximum number of nonlinear convergence failures can be changed by the user from their default
values.

When an iterative method is used to solve the linear system, to minimize the effect of linear
iteration errors on the nonlinear and local integration error controls, we require the preconditioned
linear residual to be small relative to the allowed error in the nonlinear iteration, i.e., | P~ (Jz+G)|| <
0.05 - 0.33. The safety factor 0.05 can be changed by the user.

When the Jacobian is stored using either dense or band SUNMATRIX objects, the Jacobian J defined
in (2.6) can be either supplied by the user or have IDAS compute one internally by difference quotients.
In the latter case, we use the approximation

Jij = [Fi(t,y + ojej, i+ acje;) — Fi(t,y,9)]/o;, with
oj = \mmaxﬂyﬂa ||, 1/W;} sign(hy;) ,

20 Mathematical Considerations

where U is the unit roundoff, h is the current step size, and W; is the error weight for the component
y; defined by (2.7). We note that with sparse and user-supplied SUNMATRIX objects, the Jacobian
must be supplied by a user routine.
In the case of an iterative linear solver, if a routine for Jv is not supplied, such products are
approximated by
Jv = [F(t.y + 0v,5+ aov) — F(t,y,)] /o,

where the increment o = 1/||v||. As an option, the user can specify a constant factor that is inserted
into this expression for o.

During the course of integrating the system, IDAS computes an estimate of the local truncation
error, LTE, at the n-th time step, and requires this to satisfy the inequality

|ILTE|wrms < 1.

Asymptotically, LTE varies as k97! at step size h and order g, as does the predictor-corrector difference
Ay = Yn — Yn(o)- Thus there is a constant C' such that

LTE = CA,, + O(h??),

and so the norm of LTE is estimated as |C| - ||A,||. In addition, IDAS requires that the error in the
associated polynomial interpolant over the current step be bounded by 1 in norm. The leading term
of the norm of this error is bounded by C||A,|| for another constant C. Thus the local error test in
IDAS is

max{|C], CH AW < 1. (2.9)

A user option is available by which the algebraic components of the error vector are omitted from the
test (2.9), if these have been so identified.

In 1DAS, the local error test is tightly coupled with the logic for selecting the step size and order.
First, there is an initial phase that is treated specially; for the first few steps, the step size is doubled
and the order raised (from its initial value of 1) on every step, until (a) the local error test (2.9) fails,
(b) the order is reduced (by the rules given below), or (c) the order reaches 5 (the maximum). For
step and order selection on the general step, IDAS uses a different set of local error estimates, based
on the asymptotic behavior of the local error in the case of fixed step sizes. At each of the orders ¢’
equal toq, q—1 (if ¢ >1),¢—2 (if ¢ > 2), or ¢+ 1 (if ¢ < 5), there are constants C(q’) such that the
norm of the local truncation error at order ¢’ satisfies

LTE(¢") = C(d)l|¢(d + DIl + O(h'),

where ¢(k) is a modified divided difference of order k that is retained by 1DAS (and behaves asymp-
totically as h*). Thus the local truncation errors are estimated as ELTE(q") = C(¢')||¢(q’' + 1)|| to
select step sizes. But the choice of order in IDAS is based on the requirement that the scaled derivative
norms, ||h*y*)||, are monotonically decreasing with k, for k near q. These norms are again estimated
using the ¢(k), and in fact

th’+1y(q’+l)|| ~T(q¢) = (¢ +1)ELTE(¢).

The step/order selection begins with a test for monotonicity that is made even before the local error
test is performed. Namely, the order is reset to ¢/ = ¢—11if (a) ¢ =2 and T(1) < T(2)/2, or (b) ¢ > 2
and max{T (¢ — 1), T(q — 2)} < T(q); otherwise ¢' = ¢q. Next the local error test (2.9) is performed,
and if it fails, the step is redone at order ¢ < ¢’ and a new step size h/. The latter is based on the
ha*1 asymptotic behavior of ELTE(q), and, with safety factors, is given by

n="h/h=09/[2ELTE(g)]"/(«tD)

The value of 7 is adjusted so that 0.25 < 1 < 0.9 before setting h < h’ = nh. If the local error test
fails a second time, IDAS uses 17 = 0.25, and on the third and subsequent failures it uses ¢ = 1 and
n = 0.25. After 10 failures, IDAS returns with a give-up message.

2.2 Preconditioning 21

As soon as the local error test has passed, the step and order for the next step may be adjusted.
No such change is made if ¢’ = ¢ — 1 from the prior test, if ¢ = 5, or if ¢ was increased on the previous
step. Otherwise, if the last ¢ + 1 steps were taken at a constant order ¢ < 5 and a constant step size,
IDAS considers raising the order to ¢ + 1. The logic is as follows: (a) If ¢ = 1, then reset ¢ = 2 if
T(2) <T(1)/2. (b) If ¢ > 1 then

o reset ¢ <—q—1if T(¢—1) <min{T(q),T(¢+1)};
o clsereset g« g+ 1if T'(g+1) <T(q);
e leave ¢ unchanged otherwise [then T'(¢ — 1) > T'(¢) < T(q + 1)].

In any case, the new step size b’ is set much as before:
n=h/h=1/]2ELTE(q)]/ @V

The value of 7 is adjusted such that (a) if n > 2, 5 is reset to 2; (b) if n < 1, n is restricted to
05 <1 <09 and (¢) if 1 <n < 2 we use n = 1. Finally A is reset to ' = nh. Thus we do not
increase the step size unless it can be doubled. See [9] for details.

IDAS permits the user to impose optional inequality constraints on individual components of the
solution vector y. Any of the following four constraints can be imposed: y; > 0, y; < 0, y; > 0,
or y; < 0. The constraint satisfaction is tested after a successful nonlinear system solution. If any
constraint fails, we declare a convergence failure of the nonlinear iteration and reduce the step size.
Rather than cutting the step size by some arbitrary factor, IDAS estimates a new step size h’ using a
linear approximation of the components in y that failed the constraint test (including a safety factor
of 0.9 to cover the strict inequality case). These additional constraints are also imposed during the
calculation of consistent initial conditions. If a step fails to satisfy the constraints repeatedly within
a step attempt then the integration is halted and an error is returned. In this case the user may need
to employ other strategies as discussed in §4.5.2 to satisfy the inequality constraints.

Normally, IDAS takes steps until a user-defined output value ¢ = t,y is overtaken, and then
computes y(tout) by interpolation. However, a “one step” mode option is available, where control
returns to the calling program after each step. There are also options to force IDAS not to integrate
past a given stopping point ¢ = tgp.

2.2 Preconditioning

When using a nonlinear solver that requires the solution of a linear system of the form JAy = —G (e.g.,
the default Newton iteration), IDAS makes repeated use of a linear solver. If this linear system solve
is done with one of the scaled preconditioned iterative linear solvers supplied with SUNDIALS, these
solvers are rarely successful if used without preconditioning; it is generally necessary to precondition
the system in order to obtain acceptable efficiency. A system Ax = b can be preconditioned on the
left, on the right, or on both sides. The Krylov method is then applied to a system with the matrix
P~'A or AP~ or P, ' APy, instead of A. However, within IDAS, preconditioning is allowed only on
the left, so that the iterative method is applied to systems (P~1J)Ay = —P~1G. Left preconditioning
is required to make the norm of the linear residual in the nonlinear iteration meaningful; in general,
||[JAy + G|| is meaningless, since the weights used in the WRMS-norm correspond to y.

In order to improve the convergence of the Krylov iteration, the preconditioner matrix P should in
some sense approximate the system matrix A. Yet at the same time, in order to be cost-effective, the
matrix P should be reasonably efficient to evaluate and solve. Finding a good point in this tradeoff
between rapid convergence and low cost can be very difficult. Good choices are often problem-
dependent (for example, see [11] for an extensive study of preconditioners for reaction-transport
systems).

Typical preconditioners used with IDAS are based on approximations to the iteration matrix of
the systems involved; in other words, P ~ %—Z + a%—g, where « is a scalar inversely proportional to
the integration step size h. Because the Krylov iteration occurs within a nonlinear solver iteration

22 Mathematical Considerations

and further also within a time integration, and since each of these iterations has its own test for
convergence, the preconditioner may use a very crude approximation, as long as it captures the
dominant numerical feature(s) of the system. We have found that the combination of a preconditioner
with the Newton-Krylov iteration, using even a fairly poor approximation to the Jacobian, can be
surprisingly superior to using the same matrix without Krylov acceleration (i.e., a modified Newton
iteration), as well as to using the Newton-Krylov method with no preconditioning.

2.3 Rootfinding

The 1DAS solver has been augmented to include a rootfinding feature. This means that, while inte-
grating the Initial Value Problem (2.1), IDAS can also find the roots of a set of user-defined functions
gi(t,y,y) that depend on ¢, the solution vector y = y(t), and its t—derivative g(¢). The number of
these root functions is arbitrary, and if more than one g; is found to have a root in any given interval,
the various root locations are found and reported in the order that they occur on the ¢ axis, in the
direction of integration.

Generally, this rootfinding feature finds only roots of odd multiplicity, corresponding to changes in
sign of g;(t, y(t),y(t)), denoted g;(t) for short. If a user root function has a root of even multiplicity (no
sign change), it will probably be missed by IDAS. If such a root is desired, the user should reformulate
the root function so that it changes sign at the desired root.

The basic scheme used is to check for sign changes of any g;(t) over each time step taken, and then
(when a sign change is found) to home in on the root (or roots) with a modified secant method [31].
In addition, each time g is computed, IDAS checks to see if g;(t) = 0 exactly, and if so it reports this as
a root. However, if an exact zero of any g; is found at a point ¢, IDAS computes g at ¢t + ¢ for a small
increment J, slightly further in the direction of integration, and if any g;(t +) = 0 also, IDAS stops
and reports an error. This way, each time IDAS takes a time step, it is guaranteed that the values of
all g; are nonzero at some past value of ¢, beyond which a search for roots is to be done.

At any given time in the course of the time-stepping, after suitable checking and adjusting has
been done, 1DAS has an interval (t,,t;] in which roots of the g;(¢) are to be sought, such that t; is
further ahead in the direction of integration, and all g;(¢;,) # 0. The endpoint ty; is either ¢,,, the end
of the time step last taken, or the next requested output time tq,; if this comes sooner. The endpoint
t1, is either ¢,,_1, or the last output time ¢,y (if this occurred within the last step), or the last root
location (if a root was just located within this step), possibly adjusted slightly toward ¢, if an exact
zero was found. The algorithm checks g at t; for zeros and for sign changes in (¢;,, tp;). If no sign
changes are found, then either a root is reported (if some g;(¢n;) = 0) or we proceed to the next time
interval (starting at ¢5;). If one or more sign changes were found, then a loop is entered to locate the
root to within a rather tight tolerance, given by

T =100%U * (|t,| + |h]) (U = unit roundoff) .

Whenever sign changes are seen in two or more root functions, the one deemed most likely to have
its root occur first is the one with the largest value of |g;(th:)|/|gi(thi) — gi(t10)|, corresponding to the
closest to t;, of the secant method values. At each pass through the loop, a new value t,,;4 is set,
strictly within the search interval, and the values of g;(¢;,iq) are checked. Then either ¢;, or tp; is reset
t0 tmiq according to which subinterval is found to have the sign change. If there is none in (¢i0, tmid)
but some g;(tmiq) = 0, then that root is reported. The loop continues until |¢t5; — ¢ < 7, and then
the reported root location is t;.
In the loop to locate the root of g;(t), the formula for ¢,,;q4 is

tmid = thi — (thi = t10)9i(thi)/[9i(thi) — agi(tio)]

where o a weight parameter. On the first two passes through the loop, « is set to 1, making t,,;q
the secant method value. Thereafter, « is reset according to the side of the subinterval (low vs high,
i.e. toward t;, vs toward t5;) in which the sign change was found in the previous two passes. If the
two sides were opposite, « is set to 1. If the two sides were the same, « is halved (if on the low

2.4 Pure quadrature integration 23

side) or doubled (if on the high side). The value of t,,;q is closer to t;, when « < 1 and closer to tp;
when o > 1. If the above value of t,,;4 is within 7/2 of t;, or tz;, it is adjusted inward, such that its
fractional distance from the endpoint (relative to the interval size) is between .1 and .5 (.5 being the
midpoint), and the actual distance from the endpoint is at least 7/2.

2.4 Pure quadrature integration

In many applications, and most notably during the backward integration phase of an adjoint sensitivity
analysis run (see §2.6) it is of interest to compute integral quantities of the form

) = [alru().g(r).p)dr. (2.10)

to

The most effective approach to compute z(t) is to extend the original problem with the additional
ODEs (obtained by applying Leibnitz’s differentiation rule):

Z= Q(t’y7 yap)v Z(tO) =0. (2'11)

Note that this is equivalent to using a quadrature method based on the underlying linear multistep
polynomial representation for y(t).

This can be done at the “user level” by simply exposing to IDAS the extended DAE system
(2.2)4+(2.10). However, in the context of an implicit integration solver, this approach is not desir-
able since the nonlinear solver module will require the Jacobian (or Jacobian-vector product) of this
extended DAE. Moreover, since the additional states, z, do not enter the right-hand side of the ODE
(2.10) and therefore the residual of the extended DAE system does not depend on z, it is much more
efficient to treat the ODE system (2.10) separately from the original DAE system (2.2) by “taking
out” the additional states z from the nonlinear system (2.4) that must be solved in the correction step
of the LMM. Instead, “corrected” values z, are computed explicitly as

1 , Z
th(tnayruynap) - Zan,iznfi y
Qn.0 =1

once the new approximation y,, is available.
The quadrature variables z can be optionally included in the error test, in which case corresponding
relative and absolute tolerances must be provided.

Zn =

2.5 Forward sensitivity analysis

Typically, the governing equations of complex, large-scale models depend on various parameters,
through the right-hand side vector and/or through the vector of initial conditions, as in (2.2). In
addition to numerically solving the DAEs, it may be desirable to determine the sensitivity of the results
with respect to the model parameters. Such sensitivity information can be used to estimate which
parameters are most influential in affecting the behavior of the simulation or to evaluate optimization
gradients (in the setting of dynamic optimization, parameter estimation, optimal control, etc.).

The solution sensitivity with respect to the model parameter p; is defined as the vector s;(t) =
Ody(t)/0p; and satisfies the following forward sensitivity equations (or sensitivity equations for short):

oF oF oF

—Si+ =8 +—-—=0

dy 9y Op; (2.12)
silto) = yo(p) 5ilto) = 99o(p)

1 \t0 api s 94\L0 3pi)

obtained by applying the chain rule of differentiation to the original DAEs (2.2).

24 Mathematical Considerations

When performing forward sensitivity analysis, IDAS carries out the time integration of the combined
system, (2.2) and (2.12), by viewing it as a DAE system of size N(Ns + 1), where Ny is the number
of model parameters p;, with respect to which sensitivities are desired (N, < N,). However, major
improvements in efficiency can be made by taking advantage of the special form of the sensitivity
equations as linearizations of the original DAEs. In particular, the original DAE system and all
sensitivity systems share the same Jacobian matrix J in (2.6).

The sensitivity equations are solved with the same linear multistep formula that was selected
for the original DAEs and the same linear solver is used in the correction phase for both state and
sensitivity variables. In addition, IDAS offers the option of including (full error control) or excluding
(partial error control) the sensitivity variables from the local error test.

2.5.1 Forward sensitivity methods

In what follows we briefly describe three methods that have been proposed for the solution of the
combined DAE and sensitivity system for the vector § = [y, 51, ..., sn,].

e Staggered Direct In this approach [19], the nonlinear system (2.4) is first solved and, once an
acceptable numerical solution is obtained, the sensitivity variables at the new step are found
by directly solving (2.12) after the BDF discretization is used to eliminate $;. Although the
system matrix of the above linear system is based on exactly the same information as the
matrix J in (2.6), it must be updated and factored at every step of the integration, in contrast
to an evaluation of J which is updated only occasionally. For problems with many parameters
(relative to the problem size), the staggered direct method can outperform the methods described
below [42]. However, the computational cost associated with matrix updates and factorizations
makes this method unattractive for problems with many more states than parameters (such as
those arising from semidiscretization of PDEs) and is therefore not implemented in IDAS.

e Simultaneous Corrector In this method [46], the discretization is applied simultaneously to both
the original equations (2.2) and the sensitivity systems (2.12) resulting in an “extended” non-
linear system G(gjn) = 0 where ¥, = [Yn,---,Si,...]. This combined nonlinear system can be
solved using a modified Newton method as in (2.5) by solving the corrector equation

J[gn(m-l-l) - gn(m)} = _G(yn(m)) (213)
at each iteration, where
J
JJ
J=1|J 0 J :
Iy, O ... 0 J

J is defined as in (2.6), and J; = (9/0y) [Fys; + Fys; + Fp,]. It can be shown that 2-step
quadratic convergence can be retained by using only the block-diagonal portion of J in the
corrector equation (2.13). This results in a decoupling that allows the reuse of J without
additional matrix factorizations. However, the sum Fys; + Fy;$; + F},, must still be reevaluated
at each step of the iterative process (2.13) to update the sensitivity portions of the residual G.

e Staggered corrector In this approach [27], as in the staggered direct method, the nonlinear system
(2.4) is solved first using the Newton iteration (2.5). Then, for each sensitivity vector £ = s;, a
separate Newton iteration is used to solve the sensitivity system (2.12):

J[gn(m+1) - gn(m)] =
q
- Fy(tn7 Yn, yn)gn(m) + Fy(tnu Yn, yn) . hr_Ll (an,ogn(m) + Z an,i&ni) + F, i(tna Yn, yn)] .

=1
(2.14)

2.5 Forward sensitivity analysis 25

In other words, a modified Newton iteration is used to solve a linear system. In this approach,
the matrices OF /0y, OF /0y and vectors OF/9p; need be updated only once per integration step,
after the state correction phase (2.5) has converged.

IDAS implements both the simultaneous corrector method and the staggered corrector method.

An important observation is that the staggered corrector method, combined with a Krylov linear
solver, effectively results in a staggered direct method. Indeed, the Krylov solver requires only the
action of the matrix J on a vector, and this can be provided with the current Jacobian information.
Therefore, the modified Newton procedure (2.14) will theoretically converge after one iteration.

2.5.2 Selection of the absolute tolerances for sensitivity variables

If the sensitivities are included in the error test, IDAS provides an automated estimation of absolute
tolerances for the sensitivity variables based on the absolute tolerance for the corresponding state
variable. The relative tolerance for sensitivity variables is set to be the same as for the state variables.
The selection of absolute tolerances for the sensitivity variables is based on the observation that
the sensitivity vector s; will have units of [y]/[p;]. With this, the absolute tolerance for the j-th
component of the sensitivity vector s; is set to ATOL;/|p;|, where ATOL; are the absolute tolerances for
the state variables and p is a vector of scaling factors that are dimensionally consistent with the model
parameters p and give an indication of their order of magnitude. This choice of relative and absolute
tolerances is equivalent to requiring that the weighted root-mean-square norm of the sensitivity vector
s; with weights based on s; be the same as the weighted root-mean-square norm of the vector of scaled
sensitivities §; = |p;|s; with weights based on the state variables (the scaled sensitivities 5; being
dimensionally consistent with the state variables). However, this choice of tolerances for the s; may
be a poor one, and the user of IDAS can provide different values as an option.

2.5.3 Evaluation of the sensitivity right-hand side

There are several methods for evaluating the residual functions in the sensitivity systems (2.12):
analytic evaluation, automatic differentiation, complex-step approximation, and finite differences (or
directional derivatives). IDAS provides all the software hooks for implementing interfaces to automatic
differentiation (AD) or complex-step approximation; future versions will include a generic interface
to AD-generated functions. At the present time, besides the option for analytical sensitivity right-
hand sides (user-provided), IDAS can evaluate these quantities using various finite difference-based
approximations to evaluate the terms (0F/0y)s; + (0F/0y)s; and (OF/dp;), or using directional
derivatives to evaluate [(OF/Jy)s; + (OF/0y)s; + (OF/0p;)]. As is typical for finite differences, the
proper choice of perturbations is a delicate matter. IDAS takes into account several problem-related
features: the relative DAE error tolerance RTOL, the machine unit roundoff U, the scale factor p;, and
the weighted root-mean-square norm of the sensitivity vector s;.

Using central finite differences as an example, the two terms (0F/dy)s; + (0F/0y)s; and dF/dp;
in (2.12) can be evaluated either separately:

oF oF © F(tay+0ysz7y+0-yslap) _F(t7y_ay8iay_ayéiap)

ST 58 N , 2.15
8y8 + ays 20, (2.15)
oF F(t,y,9 ie;) — F(t,y,9,p— oie;
o Fty9.pt oiei) = F(Ly §.p — oiei) (2.15")
8pi 20’1‘
1
o; = |pi|v/max(rrOoL,U), 0, = —,
PV max(Rr0L 0,00 = U, Toallwrnas)
or simultaneously:
87FSZ_ n 6—Fsl . oF ~ F(t,y+o0s;,y+0si,p+oe;) — F(t,y — 08,y — 08,0 — 0€;) , (2.16)
dy 9y opi 20

o =min(o;, 0y),

26 Mathematical Considerations

or by adaptively switching between (2.15)4(2.15’) and (2.16), depending on the relative size of the
two finite difference increments o; and o,,. In the adaptive scheme, if p = max(o; /0y, 0,/0;), we use
separate evaluations if p > ppax (an input value), and simultaneous evaluations otherwise.

These procedures for choosing the perturbations (o;, oy, o) and switching between derivative
formulas have also been implemented for one-sided difference formulas. Forward finite differences can
be applied to (OF/0y)s; + (0F/0y)s; and g—; separately, or the single directional derivative formula

oF OF . OF _ F(t,y+o0s,y+0s,p+oe)—F(t,y,y,p)
S8t 58+ ~
dy dy Op; o

can be used. In IDAS, the default value of pp.x = 0 indicates the use of the second-order centered
directional derivative formula (2.16) exclusively. Otherwise, the magnitude of ppax and its sign (pos-
itive or negative) indicates whether this switching is done with regard to (centered or forward) finite
differences, respectively.

2.5.4 Quadratures depending on forward sensitivities

If pure quadrature variables are also included in the problem definition (see §2.4), IDAS does not carry
their sensitivities automatically. Instead, we provide a more general feature through which integrals
depending on both the states y of (2.2) and the state sensitivities s; of (2.12) can be evaluated. In
other words, IDAS provides support for computing integrals of the form:

A1) :/ G y(r) 3, s1(r), s (7),p)

to

If the sensitivities of the quadrature variables z of (2.10) are desired, these can then be computed
by using:

Gi = Qysi +qysi +qp,, 1=1,...,Np,

as integrands for z, where gy, ¢4, and g, are the partial derivatives of the integrand function ¢ of
(2.10).

As with the quadrature variables z, the new variables z are also excluded from any nonlinear solver
phase and “corrected” values Z,, are obtained through explicit formulas.

2.6 Adjoint sensitivity analysis

In the forward semsitivity approach described in the previous section, obtaining sensitivities with
respect to Ny parameters is roughly equivalent to solving an DAE system of size (1 + Ng)N. This
can become prohibitively expensive, especially for large-scale problems, if sensitivities with respect
to many parameters are desired. In this situation, the adjoint sensitivity method is a very attractive
alternative, provided that we do not need the solution sensitivities s;, but rather the gradients with
respect to model parameters of a relatively few derived functionals of the solution. In other words, if
y(t) is the solution of (2.2), we wish to evaluate the gradient dG/dp of

G(p) = / g(t,y,p)dt, (2.17)

to

or, alternatively, the gradient dg/dp of the function g(¢,y,p) at the final time ¢t = T'. The function g
must be smooth enough that dg/0y and dg/0p exist and are bounded.

In what follows, we only sketch the analysis for the sensitivity problem for both G and g. For
details on the derivation see [18].

2.6 Adjoint sensitivity analysis 27

2.6.1 Sensitivity of G(p)

We focus first on solving the sensitivity problem for G(p) defined by (2.17). Introducing a Lagrange
multiplier A, we form the augmented objective function

T
10)=G) - [NF(tydat
to

Since F(t,y,y,p) = 0, the sensitivity of G with respect to p is
dG dI r T, .
—_— == / (gp + gyyp)dt —/ N (Fp + Fyyp + Fyyp)dt, (2.18)
dp dp Jy, to

where subscripts on functions such as F' or g are used to denote partial derivatives. By integration
by parts, we have

T T
| xRt =)l =[O0 E
to to

where (---)" denotes the t—derivative. Thus equation (2.18) becomes

dG r * T * * *
S| @ NR) i [o X E - (R - W Em (219)
(0] (0]
Now by requiring A to satisfy
(A Fy) = A"Fy = —gy, (2.20)
we obtain
dG T * * T
d7p = ; (9p = A" Fp) dt — (A Fyyp)‘to- (2.21)
0

Note that y, at t = %y is the sensitivity of the initial conditions with respect to p, which is easily ob-
tained. To find the initial conditions (at t = T') for the adjoint system, we must take into consideration
the structure of the DAE system.

For index-0 and index-1 DAE systems, we can simply take

N Fyly—r = 0, (2.22)

yielding the sensitivity equation for dG/dp

dG T

= | =N R)l (2:29
p to

This choice will not suffice for a Hessenberg index-2 DAE system. For a derivation of proper final

conditions in such cases, see [18].

The first thing to notice about the adjoint system (2.20) is that there is no explicit specification
of the parameters p; this implies that, once the solution X is found, the formula (2.21) can then be
used to find the gradient of G with respect to any of the parameters p. The second important remark
is that the adjoint system (2.20) is a terminal value problem which depends on the solution y(t) of
the original IVP (2.2). Therefore, a procedure is needed for providing the states y obtained during
a forward integration phase of (2.2) to IDAS during the backward integration phase of (2.20). The
approach adopted in IDAS, based on checkpointing, is described in §2.6.3 below.

2.6.2 Sensitivity of ¢(7',p)

Now let us consider the computation of dg/dp(T). From dg/dp(T) = (d/dT)(dG/dp) and equation
(2.21), we have

d . T . d(*F
G (- NEID) — [Nyt O Fygy)ims, — 2T (220

dp to dr

28 Mathematical Considerations

where Ar denotes OA/OT. For index-0 and index-1 DAEs, we obtain

dA"Fyyp)le=r

dT =0,

while for a Hessenberg index-2 DAE system we have

AN Fyyp)li=r _ d(gya(CB)‘lfﬁ)

ar dt

The corresponding adjoint equations are
(ARFy) = ApF, = 0. (2.25)

For index-0 and index-1 DAEs (as shown above, the index-2 case is different), to find the boundary
condition for this equation we write A as A(t,T") because it depends on both ¢ and T. Then

(T, T)Fyli=r = 0.
Taking the total derivative, we obtain

* " dF;
e+ Ar)" (T, 1) Fylomr + X" (1, 1) 21— = 0.

Since A; is just A, we have the boundary condition

dFy,
i Fpller = = [N (D)L + 3 Fy oo

For the index-one DAE case, the above relation and (2.20) yield
AT Ey)li=r = [9y = A" Ey] li=r- (2.26)

For the regular implicit ODE case,