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Chapter 1

Introduction

CVODES [53] is part of a software family called SUNDIALS: SUite of Nonlinear and DIfferential/AL-
gebraic equation Solvers [34]. This suite consists of CVODE, ARKODE, KINSOL, and IDA, and variants
of these with sensitivity analysis capabilities. CVODES is a solver for stiff and nonstiff initial value
problems (IVPs) for systems of ordinary differential equation (ODEs). In addition to solving stiff and
nonstiff ODE systems, CVODES has sensitivity analysis capabilities, using either the forward or the
adjoint methods.

1.1 Historical Background

FORTRAN solvers for ODE initial value problems are widespread and heavily used. Two solvers that
have been written at LLNL in the past are VODE [11] and VODPK [14]. VODE is a general purpose solver
that includes methods for both stiff and nonstiff systems, and in the stiff case uses direct methods
(full or banded) for the solution of the linear systems that arise at each implicit step. Externally,
VODE is very similar to the well known solver LSODE [49]. VODPK is a variant of VODE that uses
a preconditioned Krylov (iterative) method, namely GMRES, for the solution of the linear systems.
VODPK is a powerful tool for large stiff systems because it combines established methods for stiff
integration, nonlinear iteration, and Krylov (linear) iteration with a problem-specific treatment of
the dominant source of stiffness, in the form of the user-supplied preconditioner matrix [12]. The
capabilities of both VODE and VODPK have been combined in the C-language package CVODE [19].

At present, CVODE may utilize a variety of Krylov methods provided in SUNDIALS that can be used
in conjuction with Newton iteration: these include the GMRES (Generalized Minimal RESidual) [52],
FGMRES (Flexible Generalized Minimum RESidual) [51], Bi-CGStab (Bi-Conjugate Gradient Stabi-
lized) [55], TFQMR (Transpose-Free Quasi-Minimal Residual) [27], and PCG (Preconditioned Con-
jugate Gradient) [29] linear iterative methods. As Krylov methods, these require almost no matrix
storage for solving the Newton equations as compared to direct methods. However, the algorithms
allow for a user-supplied preconditioner matrix, and for most problems preconditioning is essential for
an efficient solution. For very large stiff ODE systems, the Krylov methods are preferable over direct
linear solver methods, and are often the only feasible choice. Among the Krylov methods in SUNDIALS,
we recommend GMRES as the best overall choice. However, users are encouraged to compare all op-
tions, especially if encountering convergence failures with GMRES. Bi-CGStab and TFQMR, have an
advantage in storage requirements, in that the number of workspace vectors they require is fixed, while
that number for GMRES depends on the desired Krylov subspace size. FGMRES has an advantage
in that it is designed to support preconditioners that vary between iterations (e.g. iterative methods).
PCG exhibits rapid convergence and minimal workspace vectors, but only works for symmetric linear
systems.

In the process of translating the VODE and VODPK algorithms into C, the overall CVODE organi-
zation has been changed considerably. One key feature of the CVODE organization is that the linear
system solvers comprise a layer of code modules that is separated from the integration algorithm,
allowing for easy modification and expansion of the linear solver array. A second key feature is a
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separate module devoted to vector operations; this facilitated the extension to multiprosessor envi-
ronments with minimal impacts on the rest of the solver, resulting in PVODE [16], the parallel variant
of CVODE.

CVODES is written with a functionality that is a superset of that of the pair CVODE/PVODE.
Sensitivity analysis capabilities, both forward and adjoint, have been added to the main integrator.
Enabling forward sensititivity computations in CVODES will result in the code integrating the so-
called sensitivity equations simultaneously with the original IVP, yielding both the solution and its
sensitivity with respect to parameters in the model. Adjoint sensitivity analysis, most useful when
the gradients of relatively few functionals of the solution with respect to many parameters are sought,
involves integration of the original IVP forward in time followed by the integration of the so-called
adjoint equations backward in time. CVODES provides the infrastructure needed to integrate any
final-condition ODE dependent on the solution of the original IVP (in particular the adjoint system).

Development of CVODES was concurrent with a redesign of the vector operations module across
the SUNDIALS suite. The key feature of the NVECTOR module is that it is written in terms of abstract
vector operations with the actual vector functions attached by a particular implementation (such as
serial or parallel) of NVECTOR. This allows writing the SUNDIALS solvers in a manner independent of
the actual NVECTOR implementation (which can be user-supplied), as well as allowing more than one
NVECTOR module to be linked into an executable file. SUNDIALS (and thus CVODES) is supplied with
serial, MPI-parallel, and both OpenMP and Pthreads thread-parallel NVECTOR implementations.

There were several motivations for choosing the C language for ¢VODE, and later for CVODES.
First, a general movement away from FORTRAN and toward C in scientific computing was apparent.
Second, the pointer, structure, and dynamic memory allocation features in C are extremely useful in
software of this complexity. Finally, we prefer C over C++ for CVODES because of the wider availability
of C compilers, the potentially greater efficiency of C, and the greater ease of interfacing the solver
to applications written in extended FORTRAN.

1.2 Changes from previous versions

Changes in v5.4.0

Added the function CVodeSetLSNormFactor to specify the factor for converting between integrator
tolerances (WRMS norm) and linear solver tolerances (L2 norm) i.e., tol L2 = nrmfac * tol _WRMS.

Added new functions CVodeComputeState, and CVodeGetNonlinearSystemData which advanced
users might find useful if providing a custom SUNNonlinSolSysFn.

This change may cause an error in existing user code. The CVodeF function for forward
integration with checkpointing is now subject to a restriction on the number of time steps allowed
to reach the output time. This is the same restriction applied to the CVode function. The default
maximum number of steps is 500, but this may be changed using the CVodeSetMaxNumSteps function.
This change fixes a bug that could cause an infinite loop in the CVodeF function.

The expected behavior of SUNNonlinSolGetNumIters and SUNNonlinSolGetNumConvFails in the
SUNNONLINSOL API have been updated to specify that they should return the number of nonlinear
solver iterations and convergence failures in the most recent solve respectively rather than the cumu-
lative number of iterations and failures across all solves respectively. The API documentation and
SUNDIALS provided SUNNONLINSOL implementations have been updated accordingly. As before, the
cumulative number of nonlinear iterations may be retreived by calling CVodeGetNumNonlinSolvIters,
CVodeGetSensNumNonlinSolvIters, CVodeGetStgrSensNumNonlinSolvIters, the cumulative num-
ber of failures with CVodeGetNumNonlinSolvConvFails, CVodeGetSensNumNonlinSolvConvFails,
CVodeGetStgrSensNumNonlinSolvConvFails, or both with CVodeGetNonlinSolvStats, CVodeGetSensNonlinSolvStats
CVodeGetStgrSensNonlinSolvStats.

A minor inconsistency in checking the Jacobian evaluation frequency has been fixed. As a result
codes using using a non-default Jacobian update frequency through a call to CVodeSetMaxStepsBetweenJac
will need to increase the provided value by 1 to achieve the same behavior as before. For greater clarity
the function CVodeSetMaxStepsBetweenJac has been deprecated and replaced with CVodeSetJacEvalFrequency.
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Additionally, the function CVodeSetLSetupFrequency has been added to set the frequency of calls to
the linear solver setup function.

A new API, SUNMemoryHelper, was added to support GPU users who have complex memory
management needs such as using memory pools. This is paired with new constructors for the NVEC-
TOR_CUDA and NVECTOR_RAJA modules that accept a SUNMemoryHelper object. Refer to sections
8.1,13.1, 9.9 and 9.10 for more information.

The NVECTOR_RAJA module has been updated to mirror the NVECTOR_CUDA module. Notably, the
update adds managed memory support to the NVECTOR_RAJA module. Users of the module will need
to update any calls to the N_VMake Raja function because that signature was changed. This module
remains experimental and is subject to change from version to version.

The NVECTOR_TRILINOS module has been updated to work with Trilinos 12.18+. This update
changes the local ordinal type to always be an int.

Added support for CUDA v11.

Changes in v5.3.0

Fixed a bug in the iterative linear solver modules where an error is not returned if the Atimes function
is NULL or, if preconditioning is enabled, the PSolve function is NULL.

Added the ability to control the CUDA kernel launch parameters for the NVECTOR_CUDA and SUNMATRIX_CUSPARSE
modules. These modules remain experimental and are subject to change from version to version. In
addition, the NVECTOR_CUDA kernels were rewritten to be more flexible. Most users should see equiva-
lent performance or some improvement, but a select few may observe minor performance degradation
with the default settings. Users are encouraged to contact the SUNDIALS team about any perfomance
changes that they notice.

Added new capabilities for monitoring the solve phase in the SUNNONLINSOL_NEWTON and SUN-
NONLINSOL_FIXEDPOINT modules, and the SUNDIALS iterative linear solver modules. SUNDIALS must
be built with the CMake option SUNDIALS BUILD WITH MONITORING to use these capabilties.

Added the optional functions CVodeSetJacTimesRhsFn and CVodeSetJacTimesRhsFnB to specify
an alternative right-hand side function for computing Jacobian-vector products with the internal
difference quotient approximation.

Changes in v5.2.0

Fixed a build system bug related to the Fortran 2003 interfaces when using the IBM XL com-
piler. When building the Fortran 2003 interfaces with an XL compiler it is recommended to set
CMAKE _Fortran COMPILER to £2003, x1£2003, or x1£2003_r.

Fixed a linkage bug affecting Windows users that stemmed from dllimport/dllexport attributes
missing on some SUNDIALS API functions.

Fixed a memory leak from not deallocating the atolSminO and atolQSminO arrays.

Added a new SUNMatrix implementation, SUNMATRIX_CUSPARSE, that interfaces to the sparse ma-
trix implementation from the NVIDIA cuSPARSE library. In addition, the SUNLINSOL_CUSOLVER_BATCHQR
linear solver has been updated to use this matrix, therefore, users of this module will need to update
their code. These modules are still considered to be experimental, thus they are subject to breaking
changes even in minor releases.

The functions CVodeSetLinearSolutionScaling and CVodeSetLinearSolutionScalingB were
added to enable or disable the scaling applied to linear system solutions with matrix-based linear
solvers to account for a lagged value of v in the linear system matrix I — «J. Scaling is enabled by
default when using a matrix-based linear solver with BDF methods.

Changes in v5.1.0

Fixed a build system bug related to finding LAPACK/BLAS.
Fixed a build system bug related to checking if the KLU library works.
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Fixed a build system bug related to finding PETSc when using the CMake variables PETSC_INCLUDES
and PETSC_LIBRARIES instead of PETSC_DIR.

Added a new build system option, CUDA_ARCH, that can be used to specify the CUDA architecture
to compile for.

Added two utility functions, SUNDIALSFileOpen and SUNDIALSFileClose for creating/destroying
file pointers that are useful when using the Fortran 2003 interfaces.

Added support for constant damping to the SUNNonlinearSolver FixedPoint module when using
Anderson acceleration. See Section 12.4.1 and the SUNNonlinSolSetDamping FixedPoint function
for more details.

Changes in v5.0.0
Build system changes

e Increased the minimum required CMake version to 3.5 for most SUNDIALS configurations, and
3.10 when CUDA or OpenMP with device offloading are enabled.

e The CMake option BLAS_ENABLE and the variable BLAS_LIBRARIES have been removed to simplify
builds as SUNDIALS packages do not use BLAS directly. For third party libraries that require
linking to BLAS, the path to the BLAS library should be included in the LIBRARIES variable
for the third party library e.g., SUPERLUDIST _LIBRARIES when enabling SuperLU_DIST.

e Fixed a bug in the build system that prevented the NVECTOR_PTHREADS module from being
built.

NVECTOR module changes

e Two new functions were added to aid in creating custom NVECTOR objects. The constructor
N_VNewEmpty allocates an “empty” generic NVECTOR with the object’s content pointer and the
function pointers in the operations structure initialized to NULL. When used in the constructor
for custom objects this function will ease the introduction of any new optional operations to the
NVECTOR API by ensuring only required operations need to be set. Additionally, the function
N_VCopyOps(w, v) has been added to copy the operation function pointers between vector ob-
jects. When used in clone routines for custom vector objects these functions also will ease the
introduction of any new optional operations to the NVECTOR API by ensuring all operations are
copied when cloning objects. See §9.1.6 for more details.

e Two new NVECTOR implementations, NVECTOR_MANYVECTOR and NVECTOR_MPIMANYVECTOR,
have been created to support flexible partitioning of solution data among different processing
elements (e.g., CPU 4+ GPU) or for multi-physics problems that couple distinct MPI-based sim-
ulations together. This implementation is accompanied by additions to user documentation and
SUNDIALS examples. See §9.13 and §9.14 for more details.

e One new required vector operation and ten new optional vector operations have been added to
the NVECTOR API. The new required operation, N_-VGetLength, returns the global length of an
N_Vector. The optional operations have been added to support the new
NVECTOR_MPIMANYVECTOR implementation. The operation N_VGetCommunicator must be im-
plemented by subvectors that are combined to create an NVECTOR_MPIMANYVECTOR, but is not
used outside of this context. The remaining nine operations are optional local reduction oper-
ations intended to eliminate unnecessary latency when performing vector reduction operations
(norms, etc.) on distributed memory systems. The optional local reduction vector operations
are N_VDotProdLocal, N_VMaxNormLocal, N_VMinLocal, N_VL1NormLocal, N_VWSqrSumLocal,
N_VWSqrSumMaskLocal, N_VInvTestLocal, N VConstrMaskLocal, and N_VMinQuotientLocal.
If an NVECTOR implementation defines any of the local operations as NULL, then the NVEC-
TOR_MPIMANYVECTOR will call standard NVECTOR operations to complete the computation.
See §9.1.4 for more details.
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An additional NVECTOR implementation, NVECTOR_MPIPLUSX, has been created to support
the MPI4+X paradigm where X is a type of on-node parallelism (e.g., OpenMP, CUDA). The
implementation is accompanied by additions to user documentation and SUNDIALS examples.
See §9.15 for more details.

The * MPICuda and *_MPIRaja functions have been removed from the NVECTOR_CUDA and
NVECTOR_RAJA implementations respectively. Accordingly, the nvector mpicuda.h,

nvector mpiraja.h, libsundials nvecmpicuda.lib, and 1ibsundials nvecmpicudaraja.lib
files have been removed. Users should use the NVECTOR_MPIPLUSX module coupled in conjunc-
tion with the NVECTOR_CUDA or NVECTOR_RAJA modules to replace the functionality. The
necessary changes are minimal and should require few code modifications. See the programs
in examples/ida/mpicuda and examples/ida/mpiraja for examples of how to use the NVEC-
TOR_MPIPLUSX module with the NVECTOR_CUDA and NVECTOR_RAJA modules respectively.

Fixed a memory leak in the NVECTOR_PETSC module clone function.

Made performance improvements to the NVECTOR_CUDA module. Users who utilize a non-default
stream should no longer see default stream synchronizations after memory transfers.

Added a new constructor to the NVECTOR_CUDA module that allows a user to provide custom
allocate and free functions for the vector data array and internal reduction buffer. See §9.9.1
for more details.

Added new Fortran 2003 interfaces for most NVECTOR modules. See Chapter 9 for more details
on how to use the interfaces.

Added three new NVECTOR utility functions, FN_VGetVecAtIndexVectorArray,
FN_VSetVecAtIndexVectorArray, and FN_VNewVectorArray, for working with N_Vector arrays
when using the Fortran 2003 interfaces. See §9.1.6 for more details.

SUNMatrix module changes

Two new functions were added to aid in creating custom SUNMATRIX objects. The constructor
SUNMatNewEmpty allocates an “empty” generic SUNMATRIX with the object’s content pointer and
the function pointers in the operations structure initialized to NULL. When used in the constructor
for custom objects this function will ease the introduction of any new optional operations to the
SUNMATRIX API by ensuring only required operations need to be set. Additionally, the function
SUNMatCopyOps (A, B) has been added to copy the operation function pointers between matrix
objects. When used in clone routines for custom matrix objects these functions also will ease the
introduction of any new optional operations to the SUNMATRIX API by ensuring all operations
are copied when cloning objects. See §10.1.2 for more details.

A new operation, SUNMatMatvecSetup, was added to the SUNMATRIX API to perform any setup
necessary for computing a matrix-vector product. This operation is useful for SUNMATRIX imple-
mentations which need to prepare the matrix itself, or communication structures before perform-
ing the matrix-vector product. Users who have implemented custom SUNMATRIX modules will
need to at least update their code to set the corresponding ops structure member, matvecsetup,
to NULL. See §10.1.1 for more details.

The generic SUNMATRIX API now defines error codes to be returned by SUNMATRIX operations.
Operations which return an integer flag indiciating success/failure may return different values
than previously. See §10.1.3 for more details.

A new SUNMATRIX (and SUNLINSOL) implementation was added to facilitate the use of the
SuperLU_DIST library with SUNDIALS. See §10.6 for more details.

Added new Fortran 2003 interfaces for most SUNMATRIX modules. See Chapter 10 for more
details on how to use the interfaces.
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SUNLinearSolver module changes

e A new function was added to aid in creating custom SUNLINSOL objects. The constructor
SUNLinSolNewEmpty allocates an “empty” generic SUNLINSOL with the object’s content pointer
and the function pointers in the operations structure initialized to NULL. When used in the
constructor for custom objects this function will ease the introduction of any new optional
operations to the SUNLINSOL API by ensuring only required operations need to be set. See §11.3
for more details.

e The return type of the SUNLINSOL API function SUNLinSolLastFlag has changed from long
int to sunindextype to be consistent with the type used to store row indices in dense and
banded linear solver modules.

e Added a new optional operation to the SUNLINSOL API, SUNLinSolGetID, that returns a
SUNLinearSolver_ID for identifying the linear solver module.

e The SUNLINSOL API has been updated to make the initialize and setup functions optional.

e A new SUNLINSOL (and SUNMATRIX) implementation was added to facilitate the use of the
SuperLU_DIST library with SUNDIALS. See §11.10 for more details.

e Added a new SUNLINSOL implementation, SUNLinearSolver_cuSolverSp_batchQR, which lever-
ages the NVIDIA cuSOLVER sparse batched QR method for efficiently solving block diagonal
linear systems on NVIDIA GPUs. See §11.12 for more details.

e Added three new accessor functions to the SUNLINSOL_KLU module, SUNLinSol KLUGetSymbolic,
SUNLinSol _KLUGetNumeric, and SUNLinSol _KLUGetCommon, to provide user access to the under-
lying KLU solver structures. See §11.9.2 for more details.

e Added new Fortran 2003 interfaces for most SUNLINSOL modules. See Chapter 11 for more
details on how to use the interfaces.

SUNNonlinearSolver module changes

e A new function was added to aid in creating custom SUNNONLINSOL objects. The constructor
SUNNonlinSolNewEmpty allocates an “empty” generic SUNNONLINSOL with the object’s content
pointer and the function pointers in the operations structure initialized to NULL. When used in
the constructor for custom objects this function will ease the introduction of any new optional
operations to the SUNNONLINSOL API by ensuring only required operations need to be set. See
§12.1.8 for more details.

e To facilitate the use of user supplied nonlinear solver convergence test functions the
SUNNonlinSolSetConvTestFn function in the SUNNONLINSOL API has been updated to take a
void* data pointer as input. The supplied data pointer will be passed to the nonlinear solver
convergence test function on each call.

e The inputs values passed to the first two inputs of the SUNNonlinSolSolve function in the SUN-
NONLINSOL have been changed to be the predicted state and the initial guess for the correction to
that state. Additionally, the definitions of SUNNonlinSolLSetupFn and SUNNonlinSolLSolveFn
in the SUNNONLINSOL API have been updated to remove unused input parameters. For more
information on the nonlinear system formulation see §12.2 and for more details on the API
functions see Chapter 12.

e Added a new SUNNONLINSOL implementation, SUNNONLINSOL_PETSCSNES, which interfaces to
the PETSc SNES nonlinear solver API. See §12.5 for more details.

e Added new Fortran 2003 interfaces for most SUNNONLINSOL modules. See Chapter 12 for more
details on how to use the interfaces.
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CVODES changes

e Fixed a bug in the CVODES constraint handling where the step size could be set below the
minimum step size.

e Fixed a bug in the CVODES nonlinear solver interface where the norm of the accumulated cor-
rection was not updated when using a non-default convergence test function.

e Fixed a bug in the CVODES cvRescale function where the loops to compute the array of scalars
for the fused vector scale operation stopped one iteration early.

e Fixed a bug where the CVodeF function would return the wrong flag under certrain cirumstances.

e Fixed a bug where the CVodeF function would not return a root in CV_NORMAL_STEP mode if the
root occurred after the desired output time.

e Removed extraneous calls to N_VMin for simulations where the scalar valued absolute tolerance,
or all entries of the vector-valued absolute tolerance array, are strictly positive. In this scenario,
CVODES will remove at least one global reduction per time step.

e The CVLS interface has been updated to only zero the Jacobian matrix before calling a user-
supplied Jacobian evaluation function when the attached linear solver has type
SUNLINEARSOLVER_DIRECT.

e A new linear solver interface function CVLsLinSysFn was added as an alternative method for
evaluating the linear system M =1 —~J.

e Added new functions, CVodeGetCurrentGamma, CVodeGetCurrentState,
CVodeGetCurrentStateSens, and CVodeGetCurrentSensSolveIndex which may be useful to
users who choose to provide their own nonlinear solver implementations.

e Added a Fortran 2003 interface to CVODES. See Chapter 7 for more details.

Changes in v4.1.0

An additional NVECTOR implementation was added for the Tpetra vector from the Trilinos library
to facilitate interoperability between SUNDIALS and Trilinos. This implementation is accompanied by
additions to user documentation and SUNDIALS examples.

A bug was fixed where a nonlinear solver object could be freed twice in some use cases.

The EXAMPLES_ENABLE_RAJA CMake option has been removed. The option EXAMPLES_ENABLE_CUDA
enables all examples that use CUDA including the RAJA examples with a CUDA back end (if the
RAJA NVECTOR is enabled).

The implementation header file cvodes_impl.h is no longer installed. This means users who are
directly manipulating the CVodeMem structure will need to update their code to use CVODES’s public
APIL

Python is no longer required to run make test and make test_install.

Changes in v4.0.2

Added information on how to contribute to SUNDIALS and a contributing agreement.
Moved definitions of DLS and SPILS backwards compatibility functions to a source file. The
symbols are now included in the CVODES library, 1ibsundials_cvodes.

Changes in v4.0.1

No changes were made in this release.
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Changes in v4.0.0

CVODES’ previous direct and iterative linear solver interfaces, CVDLS and CVSPILS, have been merged
into a single unified linear solver interface, CVLS, to support any valid SUNLINSOL module. This
includes the “DIRECT” and “ITERATIVE” types as well as the new “MATRIX_ITERATIVE” type.
Details regarding how CVLS utilizes linear solvers of each type as well as discussion regarding intended
use cases for user-supplied SUNLINSOL implementations are included in Chapter 11. All CVODES
example programs and the standalone linear solver examples have been updated to use the unified
linear solver interface.

The unified interface for the new CcvLS module is very similar to the previous CvDLS and CVSPILS
interfaces. To minimize challenges in user migration to the new names, the previous C routine names
may still be used; these will be deprecated in future releases, so we recommend that users migrate to
the new names soon.

The names of all constructor routines for SUNDIALS-provided SUNLINSOL implementations have
been updated to follow the naming convention SUNLinSol_* where * is the name of the linear solver.
The new names are SUNLinSol _Band, SUNLinSol _Dense, SUNLinSol KLU, SUNLinSol_LapackBand,
SUNLinSol_LapackDense, SUNLinSol_PCG, SUNLinSol_SPBCGS, SUNLinSol_SPFGMR, SUNLinSol_SPGMR,
SUNLinSol_SPTFQMR, and SUNLinSol_SuperLUMT. Solver-specific “set” routine names have been simi-
larly standardized. To minimize challenges in user migration to the new names, the previous routine
names may still be used; these will be deprecated in future releases, so we recommend that users
migrate to the new names soon. All CVODES example programs and the standalone linear solver
examples have been updated to use the new naming convention.

The SUNBandMatrix constructor has been simplified to remove the storage upper bandwidth ar-
gument.

SUNDIALS integrators have been updated to utilize generic nonlinear solver modules defined through
the SUNNONLINSOL API. This API will ease the addition of new nonlinear solver options and allow for
external or user-supplied nonlinear solvers. The SUNNONLINSOL API and SUNDIALS provided modules
are described in Chapter 12 and follow the same object oriented design and implementation used by
the NVECTOR, SUNMATRIX, and SUNLINSOL modules. Currently two SUNNONLINSOL implementations
are provided, SUNNONLINSOL_NEWTON and SUNNONLINSOL_FIXEDPOINT. These replicate the previ-
ous integrator specific implementations of a Newton iteration and a fixed-point iteration (previously
referred to as a functional iteration), respectively. Note the SUNNONLINSOL_FIXEDPOINT module can
optionally utilize Anderson’s method to accelerate convergence. Example programs using each of these
nonlinear solver modules in a standalone manner have been added and all CVODES example programs
have been updated to use generic SUNNONLINSOL modules.

With the introduction of SUNNONLINSOL modules, the input parameter iter to CVodeCreate
has been removed along with the function CVodeSetIterType and the constants CV_NEWTON and
CV_FUNCTIONAL. Instead of specifying the nonlinear iteration type when creating the CVODES memory
structure, CVODES uses the SUNNONLINSOL_NEWTON module implementation of a Newton iteration by
default. For details on using a non-default or user-supplied nonlinear solver see Chapters 4, 5, and 6.
CVODES functions for setting the nonlinear solver options (e.g., CVodeSetMaxNonlinIters) or getting
nonlinear solver statistics (e.g., CVodeGetNumNonlinSolvIters) remain unchanged and internally call
generic SUNNONLINSOL functions as needed.

Three fused vector operations and seven vector array operations have been added to the NVEC-
TOR API. These optional operations are disabled by default and may be activated by calling vector
specific routines after creating an NVECTOR (see Chapter 9 for more details). The new operations are
intended to increase data reuse in vector operations, reduce parallel communication on distributed
memory systems, and lower the number of kernel launches on systems with accelerators. The fused op-
erations are N_VLinearCombination, N_.VScaleAddMulti, and N_VDotProdMulti and the vector array
operations are N_VLinearCombinationVectorArray, N_VScaleVectorArray, N_.VConstVectorArray,
N_VWrmsNormVectorArray, N_-VWrmsNormMaskVectorArray, N_VScaleAddMultiVectorArray, and
N_VLinearCombinationVectorArray. If an NVECTOR implementation defines any of these operations
as NULL, then standard NVECTOR operations will automatically be called as necessary to complete the
computation.
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Multiple updates to NVECTOR_CUDA were made:
e Changed N_VGetLength_Cuda to return the global vector length instead of the local vector length.
e Added N_VGetLocalLength Cuda to return the local vector length.
e Added N_VGetMPIComm Cuda to return the MPI communicator used.
e Removed the accessor functions in the namespace suncudavec.

e Changed the N_VMake_Cuda function to take a host data pointer and a device data pointer instead
of an N_VectorContent_Cuda object.

e Added the ability to set the cudaStream_t used for execution of the NVECTOR_CUDA kernels.
See the function N_VSetCudaStreams_Cuda.

e Added N_VNewManaged_Cuda, N_VMakeManaged Cuda, and N_VIsManagedMemory_Cuda functions
to accommodate using managed memory with the NVECTOR_CUDA.

Multiple changes to NVECTOR_RAJA were made:

e Changed N_VGetLength Raja to return the global vector length instead of the local vector length.
e Added N_VGetLocalLength Raja to return the local vector length.
e Added N_VGetMPIComm Raja to return the MPI communicator used.

e Removed the accessor functions in the namespace suncudavec.

A new NVECTOR implementation for leveraging OpenMP 4.5+ device offloading has been added,
NVECTOR_OPENMPDEV. See §9.11 for more details.

Two changes were made in the CVODE/CVODES/ARKODE initial step size algorithm:

1. Fixed an efficiency bug where an extra call to the right hand side function was made.

2. Changed the behavior of the algorithm if the max-iterations case is hit. Before the algorithm
would exit with the step size calculated on the penultimate iteration. Now it will exit with the
step size calculated on the final iteration.

Changes in v3.2.1

The changes in this minor release include the following:

e Fixed a bug in the CUDA NVECTOR where the N_VInvTest operation could write beyond the
allocated vector data.

e Fixed library installation path for multiarch systems. This fix changes the default library instal-
lation path to CMAKE_INSTALL_PREFIX/CMAKE_INSTALL_LIBDIR from