
Natural Unit Representation in Modelica
Kevin L. Davies and Christiaan J.J. Paredis

George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA USA

• Start­up overhead is noticeable
• Half of time is to re­translate units—unnecessary if base units

have not changed
• Units are included in symbolic preprocessing

• Overhead of ~10% during translation
• No measureable effect on simulation time

• Existing framework for unit checking is appropriate for dimension
checking [1,2 ,3]
• Simpler because fewer fundamental dimensions than SI units

• Work­arounds necessary in Modelica 3.2:
• der() operator must be divided by U.s
• time variable must be multiplied by U.s

The Modelica language establishes a formatted unit string forReal quantities. Methods for unit checking and unit inference are
used [1, 2, 3]. Tools may support unit conversion for input and
display, e.g., defineUnitConversion().

Package Modelica is based on SI units [4]. However, other
systems of units may be more convenient for certain applications.
E.g., in electrochemistry, it is helpful to normalize the Faraday and
gas constants [5].

BIPM—the organization that maintains SI—states:

Although Modelica tracks units, it does not fully embrace this
concept. The present work explores how this can be implemented in
Modelica and the implications of such an approach.

1. Introduction
Start­up time—once per session (Dymola 7.4, Ubuntu 11.10
(Linux), Intel Core 2 Duo):

• Translate units: 2.8 s
• Check unit relations (optional): 1.0 s
• Define unit conversions and default units: 2.7 s

Model translation and simulation time—1D transient thermal
conduction and convection among 20 subregions (same platform):

• Translate: 18.8 s with “natural” units, 17.1 s without
• Simulate: 0.19 s with and without “natural” units

4. Results

Advantages:
• Consistent with the essence of quantities, values, units, and

numbers [4]
• Supports non­SI unit systems (CGS, Planck, imperial, etc.)
• Units from multiple unit systems can be used in the same model

(where compatible)
• Selected physical constants can be normalized
Disadvantages and limitations:
• Unfamiliar way of thinking
• Not used in Modelica Standard Library
• Overhead during start­up and model translation
• Only affine units are directly supported
• Other tools must correctly interpret simulation results (e.g., a

value of 1 for velocity may not be 1 m/s)

6. Conclusion

References
• Robert G. Shackelford

Fellowship from Georgia Tech
Research Institute

• Presidential Fellowship from
George W. Woodruff School
of Mechanical Engineering

Acknowledgements

• Numeric systems of units—based on values assigned to a minimal
set of base constants and interrelations among units

2. Method

• Prototype of method coded in Modelica 3.2 and utilized with a fuel cell model library [5]
3. Implementation

[4] Bureau International des Poids et Mesures (BIPM). The International
System of Units (SI). http://www.bipm.org/en/si/si_brochure/, 2006.

[5] K. Davies, C. Paredis and C. Haynes. Library for first­principle
models of proton exchange membrane fuel cells in Modelica. In Proc.
9th Int. Modelica Conf., 2012.

[6] OMG Systems Modeling Language (OMG SysML®), Jun. 2010. Ver.
1.2.

[1] P. Aronsson and D. Broman. Extendable physical unit checking with
understandable error reporting. In Proc. 7th Int. Modelica Conf.,
2009.

[2] D. Broman, P. Aronsson, and P. Fritzson. Design considerations for
dimensional inference and unit consistency checking in Modelica. In
Proc. 6th Int. Modelica Conf., 2008.

[3] S. Mattsson and H. Elmqvist. Unit checking and quantity
conservation. In Proc. 6th Int. Modelica Conf., 2008.

5. Discussion

Summary: Modelica can express physical values in a
manner that is unit­neutral by fully embracing the concept

of a physical value as the product of a number and a unit [4].

record Am

"Base constants and units for SI with k_F and R normalized

instead of A and m"

final constant Q.Angle rad=1 "radian";

constant Q.Wavenumber R_inf=sqrt(8.3144621)*10973731.568539

"Rydberg constant";

constant Q.Velocity c=299792458/sqrt(8.3144621) "speed of light

in vacuum";

constant Q.MagneticFluxReciprocal k_J=483597.870e9*sqrt(S*s)/m

"Josephson constant";

constant Q.ResistanceElectrical R_K=(96485.3365^2

*25812.8074434)/8.3144621 "von Klitzing constant";

constant Q.PowerRadiant 'cd'=1 "candela";

constant Q.Number k_F=1 "Faraday constant";

constant Q.Number R=1 "gas constant";

end Am;

Listing 3: Example Base record for a system of units

// Base physical constants and units

replaceable constant Bases.Am basis constrainedby Bases.Base

"Scalable base constants and units";

final constant Q.Angle rad=basis.rad "radian";

[...]

final constant Q.Number R=basis.R "gas constant";

// Empirical units

constant Q.Length m=10973731.568539*rad/R_inf "meter";

constant Q.Time s=299792458*m/c "second";

constant Q.MagneticFlux Wb=483597.870e9/k_J "weber";

constant Q.ConductanceElectrical S=25812.8074434/R_K "siemen";

constant Q.ParticleNumber mol=96485.3365*Wb*S/k_F "mole";

constant Q.Potential K=8.3144621*(Wb*rad)^2*S/(s*mol*R) "kelvin";

// Remaining SI base units [BIPM2006, Table 1] and intermediates

final constant Q.Potential V=Wb*rad/s "volt";

final constant Q.Current A=V*S "ampere";

final constant Q.ParticleNumber C=A*s "coulomb";

final constant Q.Energy J=V*C "joule";

final constant Q.EnergyMassic Sv=(m/s)^2 "sievert";

final constant Q.Mass kg=J/Sv "kilogram ";

// SI prefixes [BIPM2006, Table 5]

final constant Q.Number yotta=1e24 "yotta (Y)";

[...]

final constant Q.Number yocto=1e-24 "yocto (y)";

// Coherent derived units in the SI [BIPM2006, Table 3]

final constant Q.Force N=J/m "newton";

final constant Q.Pressure Pa=N/m^2 "pascal";

[...]

// Non-SI units accepted for use with SI units [BIPM2006, Table 6]

final constant Q.Time min=60*s "minute";

[...]

// Derived physical constants

final constant Q.ConductanceElectrical G_0=2/R_K

"conductance quantum";

final constant Q.Number alpha=pi*1e-7*c*s*G_0/(m*S)

"fine-structure constant";

[...]

Listing 2: Excerpts from Units package (U)

M B S EM B S E

// Base quantities

type Angle = TypeReal(final unit="A");

type Length = TypeReal(final unit="L", min=0);

type Mass = TypeReal(final unit="M", min=0);

type Number = TypeReal(final unit="1");

type ParticleNumber = TypeReal(final unit="N", min=0) "Particle

number";

type Time = TypeReal(final unit="T");

// Derived quantities

type MassSpecific = TypeReal(final unit="M/N") "Specific mass";

type Torque = TypeReal(final unit="L2.M/(A.T2)");

[...]

Listing 1: Excerpts from Quantities package (Q)
The unit attribute is used

to denote the dimension.

constant Q.MassSpecific m_H=1.00794*U.g/U.mol "Specific mass of

hydrogen";

Listing 4: Example usage within a model

A quantity is the explicit
product of a number and a unit.

defineUnitConversion("M/N", "g/mol", mol/g) "Specific mass";

Listing 5: Defining a unit conversion for display

This means: “Quantities with dimension mass per particle
number may be displayed in g/mol after dividing by g/mol.”

206 OMG SysMLTM, v1.2

Integer, Real, and Complex as defined in the SysML Blocks model library specified in Chapter 8, Blocks. A Quantity type
may optionally be used to type properties or other values.

In the QUDV Unit diagram in Figure C.9, SimpleUnit provides the basis for defining other units via conversion or derivation.
Additionally, QUDV provides support for specifying a coherent derived unit as a product of the baseUnit(s) of a given
SystemOfUnits. In a coherent SystemOfUnits, there is only one base unit for each base quantity kind.

In the QUDV QuantityKind diagram in Figure C.10, SimpleQuantityKind provides the basis for defining other quantity kinds
via specialization or derivation. QUDV provides a declarative specification of dimensional analysis to assign to each
QuantityKind an expression of its dependence on the baseQuantityKind(s) of a SystemOfQuantities. This dependence is
expressed as a product of powers of DimensionFactor(s) corresponding to the base quantities. Section C.5.2.20,
“SystemOfQuantities” specifies the derivation of quantity dimensions using an algorithm specified in OCL.

Figure C.8 - QUDV Concepts diagram

[QUDV Concepts][package] QUDVbdd

value : Number [0..1]
unit : Unit [0..1]
quantityKind : QuantityKind [0..1]

 «valueType»
Quantity

name : String
symbol : String [0..1]
description : String [0..1]
definitionURI : String [0..1]

Unit

name : String
symbol : String [0..1]
description : String [0..1]
definitionURI : String [0..1]

SystemOfUnits

name : String
symbol : String [0..1]
description : String [0..1]
definitionURI : String [0..1]

SystemOfQuantities

description : String
value : Number

ScaleValueDefinition

name : String
symbol : String [0..1]
description : String [0..1]
definitionURI : String [0..1]

QuantityKind

numerator : Integer
denominator : Integer

 «valueType»
Rational

 «valueType»
Number

Scale

0..*

quantityKind

0..1

0..*

systemOfQuantities

0..*

1

scale

0..10..*

unit 0..1

1

valueDefinition

{ordered}
1..*

0..*

quantityKind
{ordered}
0..*

0..*

{ordered}
unit 0..*

Instance ofRealType fromQuantities
packageUnits package

Quantities
package

Most units are defined
by interrelations.

Base units may be
chosen independently.

Other useful constants and
non­SI units are included.

SI prefixes are factors
just like other units.

“The value of a quantity is generally expressed as the
product of a number and a unit. The unit is simply a

particular example of the quantity concerned which is
used as a reference, and the number is the ratio of the

value of the quantity to the unit.” [4]

Unit from Units package
(instance of RealType fromQuantities package)

Relations among
units in Units

package
RealType fromQuantities

package

SysML definition of quantities, units, dimensions, and values (QUDV) [6]

