
Efficient hybrid simulation of autotuning PI controllers

Alberto Leva, Marco Bonvini∗

Dipartimento di Elettronica e Informazione, Politecnico di Milano
Via Ponzio 34/5, 20133 Milano, Italy
{leva,bonvini}@elet.polimi.it

∗PhD student at the Dipartimento di Elettronica e Informazione

Abstract

Autotuning methods are typically conceived as proce-
dures, thus need simulating as digital blocks. How-
ever, when no autotuning is in progress, it is far
more efficient to represent the tuned controller as a
continuous-time system, to exploit variable-step inte-
gration. This manuscript presents the first nucleus of a
Modelica library of autotuning controllers, where the
problem just mentioned is tackled explicitly. The fo-
cus is here restricted to the PI structure, but the pre-
sented ideas are general.

Keywords: Autotuning; PI control; hybrid systems’
simulation.

1 Introduction

It is universally acknowledged that PI and PID regu-
lators significantly contribute to form the backbone of
industrial controls [5, 3]. Also, in many applications
and especially in recent years, their automatic tuning
is of paramount importance for a quick system setup
and an easy maintenance. As a result, an impressing
quantity of autotuning rules can be found in the litera-
ture, see e.g. the vast review [17]; analogously, a large
and steadily increasing number of industrial applica-
tion and products are available, as testified by works
such as [15].

Apparently, therefore, the simulation of PI(D) au-
totuners is a very interesting topic, for at least two
reasons. From the standpoint of the analyst who per-
forms system-level simulation studies, for example
in a view to ease and speed the commissioning of a
plant, autotuning is precious to reduce the time needed
to parametrise the included regulators, that are often
quite numerous. From the point of view of engineer
who develops autotuning controllers, conversely, the
possibility of testing a product (with a quasi-replica
code representation) on realistic simulation models is

equally precious, since doing so allows to assess a pri-
ori its correct behaviour in the whole class of applica-
tion it is intended for.

However, in a view to achieve efficient simulation,
the presence of autotuning regulators poses a relevant
issue. The problem is that autotuners are typically con-
ceived as digital blocks, and for the sake of correctness
and precision, so need to be their models. On the other
hand, when no autotuning is in progress, the regulator
behaves as a fixed-parameter dynamic system, thus it
is far more convenient to represent it in the continuous-
time domain, so as to exploit variable-step integration.

In such a context, this manuscript presents the
first nucleus of a Modelica library of autotuning con-
trollers, and concentrates on their hybrid representa-
tion, encompassing a continuous-time model of the
controller, and a digital model of the autotuning part.
After a brief theoretical review, a general structure
for the necessary Modelica models is proposed as the
main contribution, and an application that refers to
a relay-based PI autotuner is presented. Simulation
examples show the efficiency advantages of the pre-
sented hybrid representation with respect to a fully
digital one.

2 Theoretical background

This work, although (as can be guessed) the proposed
ideas are general, limits the scope to relay-based au-
totuning, and considers a one-degree-of-freedom PI
written in the Laplace transform domain as the error-
to-control transfer function

R(s) = K
(

1+
1

sTi

)
, (1)

where K is the gain and Ti the integral time. The basic
principle of relay-based autotuning was introduced in
[1], and then developed in [2, 8, 4, 16, 9] and many
other papers; a survey on the matter, for the interested
reader, can be found in [21].

In extreme synthesis, the idea is to lead the con-
trolled system to a limit cycle by substituting the con-
troller to be tuned with a relay, as shown in figure 1.

Figure 1: Basic scheme for relay-based (PI) autotun-
ing.

Once said condition is established, by measuring the
period and amplitude of the induced controlled vari-
able’s oscillation and by resorting to the well known
describing function approximation, it is possible to es-
timate one point P̂(jωox) = Poxe jϕox of the process fre-
quency response P(jω), where ωox is the mentioned
oscillation frequency. Then, to tune the PI, a point
L is chosen that the open-loop frequency response
L(jω) = R(jω)P(jω) has to contain, and the two pa-
rameters of the regulator R(s) are found by solving the
complex equation

R(jωox)Poxe jϕox = L. (2)

A widely used specification in relay-based PI auto-
tuning is the closed-loop phase margin ϕm, which is
enforced in a straightforward way by forcing L(jω)
to cross the unit circle, at frequency ωox, in the point
L = e j(ϕm−π), with ϕm in radians.

In this work, a slight variant of the scheme shown
in figure 1 is used, where the relay is hysteresis-free,
or has so small a hysteresis to allow the real nega-
tive semiaxis to be considered its critical point locus,
and there is an integrator cascaded to it. Doing so
causes the oscillation to occur at the frequency where
the phase of P(jω)/(jω) is −π , i.e., that of P(jω) is
−π/2. The situation is illustrated in figure 2, where M
denotes the frequency response magnitude of P(s)/s
at frequency ω−ox

In this case, some computations omitted for brevity
lead to determine the magnitude of P(jω) at the oscil-
lation frequency ωox as

Pox =
π2A
8D

, (3)

where A is the amplitude of the controlled variable’s
permanent oscillation, and D the relay swing. Select-
ing the process frequency response point with phase

Figure 2: One-point identification with relay plus in-
tegrator feedback.

−π/2 is a convenient choice, since a PI regulator can
only introduce a phase lag: the desired phase margin
ϕm is in fact obtained by drawing from (2) the two real
equations for magnitude and phase, whence the simple
tuning rules

Ti =
tan(ϕm)

ωox
, K =

tan(ϕm)
Pox
√

1+ tan2(ϕm)
, (4)

that are used for the PI autotuner presented later on in
this work.

Many variants of (4) exist in the literature, see e.g.
[18, 20] or the so called “contextual autotuning” re-
cently proposed in [12]. Moreover, the same tuning
principle is applicable to the PID, and also to more
complex regulator structure, possibly detecting and
employing several points of P(jω). The results shown
here can be easily extended to any such case.

3 Modelica implementation

This section presents two Modelica realisations (the
first fully digital, the second hybrid) of the considered
autotuning methodology. In both cases, the icon of the
resulting block is that of figure 3.

Figure 3: Modelica icon of the autotuning PI con-
troller.

The block inputs are the set point and the process
variable, plus a boolean one, a pulse on which initiates
the autotuning procedure; the output is clearly the con-
trol signal. The initial values for K and Ti, as well as
the required phase margin, are provided as parameters.

In both realisations, with reference to figure 1 and
the relationships introduced above, the autotuning pro-
cedure is composed of the following steps:

1. start with the controller in PI mode;

2. when the AT pulse is received,

(a) initialise the relay plus integrator control,

(b) connect it to the process,

(c) and wait for a permanent oscillation;

in the quite simple procedure presented here, an
oscillation is considered permanent when the dif-
ference between its period and that of the previ-
ous one is less than a percent defined as param-
eter, while - for the sake of safety in the face
of possible outliers - a certain number of oscil-
lations, defined as a parameter too, is counted un-
conditionally before proceeding;

3. when a permanent oscillation is detected, com-
pute its frequency, and by means of (3) deter-
mine the corresponding process frequency re-
sponse magnitude (the phase is −π/2);

4. apply (4) to tune the regulator, and finally switch
back to PI mode.

It is worth noticing that any industrial realisation
would be more articulated than those illustrated in the
following. For example, some logic would need intro-
ducing to abort the procedure in the case of unexpected
and/or possibly harmful system behaviours, a confir-
mation should be requested to the operator in order to
accept or decline the proposed parameters prior to up-
dating the PI, and so forth. Such features are however
omitted here since they are lengthy to discuss in the
necessary detail, and substantially inessential for the
purpose of this work.

3.1 Fully digital version

Based on the procedure sketched above, it is quite sim-
ple to write a digital Modelica model like that reported
below, together with some comments that should be
explicative enough compatibly with space limitations.

model ATPIrelayNCdigital
import Modelica.Constants.*;
parameter Real K0 = 1 "Initial K";
parameter Real Ti0 = 10 "Initial Ti";
parameter Real slope = 0.1 "relay integrator gain (control slope)";
parameter Real permOxPerc = 5 "% diff to take oscillations as equal";
parameter Real pm = 45 "reqd phase margin in degrees";
parameter Real CSmax = 1 "upper control saturation value";
parameter Real CSmin = 0 "lower control saturation value";
parameter Integer nOxMin = 3 "oxs to wait for unconditionally";
parameter Real Ts = 0.1 "sampling time";

protected

discrete Boolean UP; // relay is in the up state
discrete Real lastToggleUp; // instant of last toggle to up
discrete Real period; // measured ox period
discrete Real wox; // measured ox frequency
discrete Real Pox; // measured process mag at wox
discrete Real rPVmax // service variables to measure the
discrete Real rPVmin; // min and max values of the process
discrete Real rCSmax; // variable and the control during
discrete Real rCSmin; // oscillations
discrete Real K; // PI gain
discrete Real Ti; // PI integral time
discrete Real e; // error (Sp-PV)
discrete Real CSp; // proportional part of CS
discrete Real CSi; // integral part of CS
discrete Integer nOx; // ox counter
discrete Integer iMode; // mode: 0 is PI, 1 autotuning
Modelica.Blocks.Interfaces.RealInput SP;
Modelica.Blocks.Interfaces.RealInput PV;
Modelica.Blocks.Interfaces.RealOutput CS;
Modelica.Blocks.Interfaces.BooleanInput ATreq;

algorithm
when initial() then

iMode := 0;
K := K0;
Ti := Ti0;

end when;
when ATreq==true then

iMode:=1;
end when;
when sample(0,Ts) then

e := SP-PV;
if iMode==0 then // PI mode

CSp := K*e;
CSi := pre(CSi)+K*Ts/Ti*e;
CS := CSp+CSi;
if CS>CSmax then

CS:=CSmax;
end if;
if CS<CSmin then

CS:=CSmin;
end if;
CSi := CS-CSp;

end if;
if iMode==1 then // AT mode

if pre(iMode)==0 then // 1st step, initialise
wox := 0;
Pox := 0;
rPVmax := PV;
rPVmin := PV;
rCSmax := CS;
rCSmin := CS;
lastToggleUp := time;
nOx := 0;

end if;
if UP==false and PV<=SP then // Manage relay

UP := true;
end if;
if UP==true and PV>SP then

UP := false;
end if;
if UP==true then

CS := CS + slope*Ts;
else

CS := CS - slope*Ts;
end if;
if PV>rPVmax then // record max and min for PV and CS

rPVmax := PV;
end if;
if PV<rPVmin then

rPVmin := PV;
end if;
if CS>rCSmax then

rCSmax := CS;
end if;
if CS<rCSmin then

rCSmin := CS;
end if;
if UP==true and pre(UP)==false then // tune if perm ox

period := time-lastToggleUp;
lastToggleUp := time;
if period>0 and nOx>=nOxMin

and abs(period-pre(period))/period
< permOxPerc/100 then

iMode := 0;
wox := 2*pi/period;
Pox := pi^2*(rPVmax-rPVmin)/8/(rCSmax-rCSmin);
Ti := tan(pm/180*pi)/wox;
K := tan(pm/180*pi)/(Pox*sqrt(1+(tan(pm/180*pi))^2));
CSi := CS-K*Ts/Ti*e; // re-initialise the PI after AT

end if;
rPVmax := PV;
rPVmin := PV;
rCSmax := CS;
rCSmin := CS;
nOx := nOx+1;

end if;
end if;

end when;
end ATPIrelayNCdigital;

3.2 From fully digital to hybrid

When everything is digital, things are simple, and the
only issue to care about is to correctly manage the reg-
ulator tracking while the relay is driving the control
signal so as to achieve the required permanent oscil-
lation. If conversely one wants to represent the con-
troller as a continuous-time system, it is necessary to
suitably coordinate it with the digital procedure.

The solution adopted here can be summarised as fol-
lows. First, implement the controller in the desired
form (here, for consistence with the digital case, an an-
tiwindup PI was chosen) as differential and algebraic
equations. Then, realise the autotuning procedure as
a digital algorithm, including the control computation
during that procedure, exactly as it was in the fully dig-
ital case. Finally, manage the autotuning request event
by (a) setting a flag that selects the control output to be
that coming from the equations or the algorithm, de-
pending on the mode, and (b) initialising the algorithm
output to the last equation output. Analogously, man-
age the autotuning termination by resetting the above
flag, and reinitialising the equation-based controller
state to match the last algorithm output.

The only (small) disadvantage of such a solution is
that the equation-based controller stays in place during
the autotuning phase. However the resulting overhead
is generally very limited, given the invariantly simple
structure of the controller, while there is a gain in terms
of simplicity with respect to possible alternative solu-
tions attempting to avoid said overhead.

3.3 Hybrid version

The PI for this realisation is implemented in anti-
windup form, i.e., as the block diagram of figure 4.

Figure 4: Block diagram of the used continuous-time
antiwindup PI.

That scheme corresponds in Modelica to the equa-
tions

satIn = K*(SP-PV)+linFBout;
CSpi = Ti*der(linFBout)+linFBout;
CSpi = noEvent(max(CSmin,min(CSmax,satIn)));

where CSpi is the control signal in PI mode (u in
figure 4), satIn the input of the saturation block, and

linFBout the output of the feedback block, added in
the diagram to the term Ke.

Given all that, the Modelica model of the hybrid au-
totuning PI is shown in the listing below.

model ATPIrelayNCmixedMode
import Modelica.Constants.*;
// ... same parameters as the fully digital version ...
Integer iMode;
Real K;
Real Ti;
Real satIn;
Real linFBout(start=0,stateSelect=StateSelect.always);
Real CSpi;
discrete Real CSat;
discrete Boolean AT;
discrete Boolean UP;
discrete Real rPVmax;
discrete Real rPVmin;
discrete Real rCSmax;
discrete Real rCSmin;
discrete Real lastToggleUp;
discrete Real period;
discrete Real wox;
discrete Real Pox;
discrete Integer nOx;
// ... same connectors as the fully digital version ...

equation
// Continuous-time antiwindup PI
satIn = K*(SP-PV)+linFBout;
CSpi = Ti*der(linFBout)+linFBout;
CSpi = noEvent(max(CSmin,min(CSmax,satIn)));
// Output selection
if iMode==0 or iMode==1 then // 0, PI or 1, AT init

CS = CSpi;
else // 2, AT run

CS = CSat;
end if;

algorithm
// Autotuning procedure
when initial() then

K := K0;
Ti := Ti0;
AT := false;

end when;
when ATreq and sample(0,Ts) then // Turn on AT when required

if not AT then
AT := true; // set AT flag on
iMode := 1; // set next mode to AT init

end if;
end when;
when AT and iMode==1 and sample(0,Ts) then // AT init mode

iMode := 2; // set mode to AT run
CSat := pre(CSpi);
UP := false;
period := 0;
wox := 0;
Pox := 0;
rPVmax := pre(PV);
rPVmin := pre(PV);
rCSmax := CSat;
rCSmin := CSat;
lastToggleUp := time;
nOx := 0;

end when;
when (iMode==1 or iMode==2) and not AT

and sample(0,Ts) then // AT shutdown;
iMode := 0;
reinit(linFBout,CSat); // re-initialise the continuos-time PI

end when;
when AT and iMode==2 and sample(0,Ts) then // AT run mode

if UP==false and PV<=SP then // Manage relay
UP := true;

end if;
if UP==true and PV>SP then

UP := false;
end if;
if UP==true then

CSat := CSat + slope*Ts;
else

CSat := CSat - slope*Ts;
end if;
if PV>rPVmax then // record relay id max and min for PV and CS

rPVmax := PV;
end if;
if PV<rPVmin then

rPVmin := PV;
end if;
if CSat>rCSmax then

rCSmax := CSat;
end if;
if CSat<rCSmin then

rCSmin := CSat;
end if;
if UP==true and pre(UP)==false then // tune if perm ox

period := time-lastToggleUp;

lastToggleUp := time;
if period>0 and nOx>=nOxMin

and abs(period-pre(period))/period
< permOxPeriodPerc/100 then

AT := false;
wox := 2*pi/period;
Pox := pi^2*(rPVmax-rPVmin)/8/(rCSmax-rCSmin);
Ti := tan(pm/180*pi)/wox;
K := tan(pm/180*pi)/(Pox*sqrt(1+(tan(pm/180*pi))^2));

end if;
rPVmax := PV;
rPVmin := PV;
rCSmax := CSat;
rCSmin := CSat;
nOx := nOx+1;

end if;
end when;

end ATPIrelayNCmixedMode;

Notice the presence of some noEvent clauses. In
principle they can be omitted, but leaving them in
slightly reduces the computational burden and, above
all, is consistent with the operation of real-world auto-
tuners, where inputs are typically acquired only at the
beginning of a sampling period.

Also, observe how the proposed structuring can
be quite easily generalised, including different tuning
rules, different types of process stimulation (e.g., step-
instead of relay-based) and different controller struc-
tures, since the presence of the autotuning algorithm
does not modify in any sense the controller equations.

4 Simulation examples

In this section, two simulation examples are reported,
to show the advantages yielded by the proposed auto-
tuner models, and to verify their correct behaviour in
realistic situations.

4.1 Example 1

This example aims at illustrating the correctness of the
hybrid realisation, and its usefulness in terms of simu-
lation efficiency.

The Modelica scheme used for the example is that
of figure 5, where the ATPI block is the fully digital or
the hybrid autotuning PI, alternatively.

Figure 5: Modelica scheme for simulation example 1.

The process under control is described by the trans-
fer function

P1(s) =
1

(1+ s)3 (5)

and the autotuning PI, in both the fully digital and the
hybrid versions, is employed with a sampling time Ts

of 0.1s, first leading the loop to steady state with a low-
performance initial PI, then performing the autotuning
operation with a required phase margin of 45◦, and fi-
nally testing the so obtained PI with a set point and a
load disturbance step, introduced respectively by the
step sources SP and LD in figure 5.

Figure 6 shows the results, proving that the two real-
isations are de facto identical as for their outcome (in
both cases, for example, the tuned PI has K = 1.078
and Ti = 1.751). On the other hand, however, the num-
ber of simulation steps required by the system with
the hybrid autotuner in the 240s presented run is 3908,
versus the 24007 of the system with the fully digital
one. With so simple a process this does not turn into
a significant reduction of the simulation time, but with
more realistic a model of the controlled object, said
advantage would be evident.

4.2 Example 2

This example shows the presented autotuner at work
on a (slightly) more realistic example, namely the
speed control of an axis, the model of which is built
with standard Modelica blocks (with the sole excep-
tion of a noise generator) and is shown in figure 7.
Three tuning operations are performed, with three dif-
ferent values of the required phase margin, namely
40◦, 60◦, and 80◦.

Figure 8 shows the tuning results, obtained with the
hybrid version of the autotuner (of course the fully dig-
ital one produces the same outcome). For brevity only
the final part of the performed simulations is shown,
when the PI is already tuned and the closed-loop sys-
tem behaviour is tested by applying a set point step.

As can be seen, even in the presence of (reason-
ably) noisy measurements, the autotuning PI behaves
correctly. It must be noticed that with the used tun-
ing approach, the control system’s cutoff frequency is
dictated by the relay plus integrator experiment, as it
clearly becomes ωox. For that reason, the relationship
between the required phase margin and the shape of
the obtained closed-loop transients, or even basic char-
acteristics such as the maximum overshoot, is difficult
to characterise in a formal way. Incidentally, this is
especially true in the presence of resonances above
the cutoff, which is typical of mechanical systems.

Figure 6: Closed-loop transients in simulation example 1.

Nonetheless, the prescribed phase margin is achieved,
and in any case the mentioned difficulty is inherent to
the employed autotuning approach, not to its Modelica
representation. The interested reader can find in [8] a
discussion on this matter.

Figure 7: Model of the axis used in simulation exam-
ple 2.

5 Some more words on the proposal
usefulness

It was suggested above, as one of the motivations for
this work, that a Modelica library of autotuners is use-
ful to quickly set up the control system of a plant, or at
least the part of it that is composed of PI(D) loops, and
to verify the correct behaviour of a new autotuner by
applying it in simulation to a benchmark set of mod-
els, conveniently chosen so as to represent the whole
variety of applications where the new product is meant
to be used.

After looking at the examples, and taking a more
research-related point of view, at least one more use-

fulness can however be foreseen for such a library,
and the underlying model structuring. Apologising in
advance for the number of remarks to report prior to
reaching the main point, the matter can be explained
as follows.

In the first place, as can be noticed e.g. from the ex-
tensive review [17], establishing a taxonomy of tuning
methods, also if the scope is restricted to a single con-
troller structure, is far less trivial than one may expect.

Even more difficult is to set up a comparative anal-
ysis of such methods, basically because in the liter-
ature, when proposing and discussing a method, the
process stimulation and information gathering phase
is seldom accounted for. As shown in works like [14],
comparisons between different tuning methods can be
reversed by simply modifying the way in which the
process is stimulated.

For the sake of completeness, it is worth observ-
ing that relay-based rules are the less keen to incur in
that problem, since there is virtually no ambiguity on
how process information is obtained and use with re-
spect for example to the step-based identification of a
fixed-order model, that can be carried out in a variety
of manners, but nevertheless the problem exists, and
needs addressing.

The absence of a taxonomy like that just envisaged
is felt in the applications as an important open prob-
lem, see e.g. [11], because it makes it difficult to de-
cide a priori which tuning rule is best suited for the
particular problem at hand. In the opinion of the au-
thors, the fact that a tuning method “sometimes works
satisfactorily and sometimes does not”, with no appar-
ent reason, is a major reasons for the resistances that
autotuning still encounters in some applications. It is

Figure 8: Tuning results in simulation example 2.

by definition possible to decide which rule (in a given
and wide enough set) is the best for a given problem
a posteriori, by simply applying all the rules in the set
and examining the results, but this is clearly infeasible
in practice.

As a result, most tuning rules are discussed “in
nominal conditions”, i.e., making some structural as-
sumptions on the process dynamics and performing
the analysis under the hypothesis that the real process
adheres to said assumptions [3].

Some attempts were made to circumvent the prob-
lem by means of the robust control theory, but this re-
quires information on the class of processes to which
the one under control belongs, and no matter how such
a class has to be characterised, no single experiment
can provide the necessary information. Attempts were
also made to bring in the “identification for control”
theory [6, 7], but unfortunately in many cases techno-
logical limitations do not permit to apply process in-
puts with the necessary excitation characteristics, and
leave little (if any) room for “experiment design” as
meant for in that theory.

For the problem just sketched, the presented library
offers (part of) a solution. In fact, if evaluating a set
of control rules a posteriori is infeasible in practice,
it is not in simulation. Having in mind the type of
application to be addressed (thermal, mechanical, and
so forth), one can set up an enormous set of cases, test
each considered rule on each case, and draw from such
a simulation campaign the information required to set
up a selection mechanism. In fact there are plenty of
techniques to create such a mechanism, from interpo-

lation to soft computing [13, 10], and what is typically
missing is precisely the data. On a similar front, when
introducing a new tuning rule, the proposal is signifi-
cantly strengthened if some idea is provided on how it
will behave when coupled to realistic process experi-
ments. Providing such information requires a lot of ad-
ditional work with respect to the typical analyses per-
formed in the literature, that are most frequently based
on linear models, because in that domain is autotuning
typically treated, and only the linear framework allows
for powerful methods that do not require simulation.

As noticed e.g. in [19], however, the used models
are frequently inadequate to examine the behaviour
of an autotuner in the large, and therefore the men-
tioned analyses are sometimes confuted by experience,
thereby further hindering a wide adoption of autotun-
ing. Needless to explain why and how, the availability
of a library like that presented here can help solve also
this problem.

6 Conclusions and future work

The problem of simulating autotuning industrial con-
trollers in Modelica was addressed, with the specific
aim of obtaining efficient models. To this end, the
controller is represented as a continuous-time system,
while the autotuning procedure is realised as an al-
gorithm. The proposed model structuring thereby al-
lows to separate the two main parts of an autotuner
clearly, preserving the simulation speed yielded by
continuous-time control blocks, and replicating the au-
totuning software precisely.

As shown by the reported examples, and a num-
ber of other ones not reported here for space reasons,
the so obtained simulation models are very precise if
compared to fully digital ones, that certainly represent
industrial implementation more closely, but oblige to
pay for said fidelity in terms of simulation speed.

In this work, the focus was restricted to relay-based
PI autotuning based on a single point of the process
frequency response. It is however clear that the pre-
sented structuring is totally general, with respect to
both the controller structure, the type of process stim-
ulation, the tuning rules, and all in all the overall tun-
ing procedure, inclusive of the logic needed to control
the tuning operation. Future research will thus explore
all those extensions, leading to a complete Modelica
library of autotuning controllers, including different
tuning rules and excitation procedures, and possibly
addressing not only single controller blocks, but also
the most frequently used control structures.

References

[1] K.J. Åström and T. Hägglund. Automatic tuning
of simple regulators with specifications on phase
and amplitude margins. Automatica, 20(5):645–
651, 1984.

[2] K.J. Åström and T. Hägglund. Industrial adaptive
controllers based on frequency response tech-
niques. Automatica, 27(4):599–609, 1991.

[3] K.J. Åström and T. Hägglund. Advanced PID
control. Instrument Society of America, Re-
search Triangle Park, NY, 2006.

[4] A. Besançon-Voda and H. Roux-Buisson. An-
other version of the relay feedback experiment.
Journal of Process Control, 7(4):303–308, 1997.

[5] R.C. Dorf and H. Bishop. Modern control sys-
tems. Addison-Wesley, Reading, UK, 1995.

[6] M. Gevers. Identification for control: from the
early achievements to the revival of experiment
design. European Journal of Control, 11(4–
5):335–352, 2005.

[7] H. Hjalmarsson. From experiment design to
closed-loop control. Automatica, 43:393–438,
2005.

[8] A. Leva. PID autotuning algorithm based on re-
lay feedback. IEE Proceedings-D, 140(5):328–
338, 1993.

[9] A. Leva. Simple model-based PID autotuners
with rapid relay identification. In Proc. 16th
IFAC World Congress, Praha, Czech Republic,
2005.

[10] A. Leva and F. Donida. Normalised expression
and evaluation of pi tuning rules. In Proc. 17th
IFAC World Congress, Seoul, Korea, 2008.

[11] A. Leva and F. Donida. Quality indices for the
autotuning of industrial regulators. IET Control
Theory & Applications, 3(21):170–180, 2009.

[12] A. Leva, S. Negro, and A.V. Papadopou-
los. PI/PID autotuning with contextual model
parametrisation. Journal of Process Control,
20(4):452–463, 2010.

[13] A. Leva and L. Piroddi. Model-specific auto-
tuning of classical regulator: a neural approach
to structural identification. Control Engineering
and Practice, 4(10):1381–1391, 1996.

[14] A. Leva and L. Piroddi. On the parameterisation
of simple process models for the autotuning of
industrial regulators. In 26th American Control
Conference (to appear), New York (USA), 2007.

[15] Y. Li, K.H. Ang, and C.Y. Chong. Patents,
software, and hardware for PID control—an
overview and analysis of the current art. IEEE
Control Systems Magazine, pages 42–54, febru-
ary 2006.

[16] W.L. Luyben. Getting more information from
relay feedback tests. Industrial & Engineering
Chemistry Research, 40(20):4391–4402, 2001.

[17] A. O’Dwyer. Handbook of PI and PID controller
tuning rules. World Scientific Publishing, Singa-
pore, 2003.

[18] R.C. Panda and C.C. Yu. Analytical expressions
for relay feed back responses. Journal of Process
Control, 13:489–501, 2003.

[19] F.G. Shinskey. Process control: as taught versus
as practiced. Industrial & Engineering Chem-
istry Research, 41(16):3745–3750, 2002.

[20] T. Thyagarajan and C.C. Yu. Improved autotun-
ing using the shape factor from relay feedback.
Ind. Eng. Chem. Res., 43:4425–4440, 2003.

[21] C.C. Yu. Autotuning of PID controllers: relay
feedback approach. Springer-Verlag, London,
1999.

