
Modelica Compliance Library Guide

May 16, 2013

1 Test case structure
Each test case should consist of a separate file that contains one model marked as a test case.
The test case model does not need to be the top-level class in the file, so a file can e.g. have a
package with multiple classes defined in it, but each file should only contain one test case model.
Models are marked as test cases by the test case annotation:

annotation (__ModelicaAssociation (TestCase (shouldPass =true|false)))

The shouldPass property defines whether the test case is expected to succeed or fail. Each test
case should also extend the Icons.TestCase model which supplies a graphical icon annotation,
a Documentation annotation with HTML documentation, and an experiment annotation for
simulation properties. Given below is an example of a test case which is expected to succeed:

model SimpleDeclaration
extends Icons.TestCase ;
Real x = 3;
Real y = x;
annotation (

__ModelicaAssociation (TestCase (shouldPass =true)),
experiment (StopTime =0 .0 1),
Documentation (

info="<html >Tests simple component declarations. </html >"));
end SimpleDeclaration ;

And a test case which is expected to fail:
model DoubleDeclaration

extends Icons.TestCase ;
Real x;
Real x " Double declaration of x.";
annotation (

__ModelicaAssociation (TestCase (shouldPass =false)),
experiment (StopTime =0 .0 1),
Documentation (

info="<html >Tests that double declaration of elements is not
allowed, according to section 4 .2 .</html >"));

end DoubleDeclaration ;

1

2 Library structure
The compliance library uses a package hierarchy to divide the test cases into suitable categories,
as defined by the table below. References are for the Modelica 3.3 specification (since I haven’t
seen the mythical 3.2rev2). Section references in the table uses intervals and wildcards, where
1.2-1.4 means from section 1.2 to 1.4 and 1.1.* means section 1.1 and its subsections. Section
references does not otherwise include subsections, so section 1.1 means only 1.1.

Components
Declarations Section 4.2-4.4.2.1, 4.4.3.
Conditional Conditional components, section 4.4.5.
Prefixes Component prefixes, section 4.4.2.2, 4.4.4.*.
Variability Variability prefixes, section 3.8.*, 4.4.4.
Time The built-in variable time, section 3.6.7.

Classes
Declarations

Long “Long” declarations, section 4.5, 4.5.2, 4.5.3.
Short “Short” declarations, section 4.5.1.

Specialized Restrictions on specialized classes, section 4.6.
Prefixes Class prefixes, section 4.4.2.2.
Balancing Balance checking, section 4.7.
Predefined The predefined types, section 4.8-4.8.4, 4.8.8.1.
Enumeration Enumerations, section 4.8.5.

Scoping
MemberAccess The member access operator, section 3.6.6.
Visibility Public and protected elements, section 4.1.
NameLookup

Simple Section 5.3.1.
Composite Section 5.3.2.
Global Section 5.3.3.
Imports Section 13.2.1.*.

InnerOuter Section 5.4-5.5.

Operators
Arithmetic Arithmetic operators ∧ ∗ / + −, section 3.4 and 3.6.1.
Relational Relational operators ==, <>, etc. Section 3.5 and 10.6.10.
Logical Logical operators not, and, or (section 3.5).
Mathematical Operators in 3.7.1.*, except Integer and String.
Conversion Conversion operators in 3.7.1, Integer and String.
Events Event-related operators in 3.7.3.*.
Special Special purpose operators in 3.7.2.*, except connection operators.
If If-expressions, section 3.3, 3.6.5.
Precedence Precedence rules in section 3.2.
Associativity Associativity rules in in section 3.2.
Overloading Overloaded operators, chapter 14.

2

Inheritance
Flattening Flattening of extends, section 5.6.1, 7.1-7.1.2.
Restrictions Base class restrictions, section 7.1.3-7.1.4.

Modification
Flattening Flattening of modifications, section 7.2-7.2.3, 7.2.5.
Restrictions Restrictions on modifications, section 7.2.4, 7.2.6.

Redeclare
Flattening Flattening of redeclares, section 7.3, 7.3.4.
ConstrainingType Constraining types, section 7.3.2.
ClassExtends Class extends, section 7.3.1.
Restrictions Restrictions on redeclares, 7.3.3.

Equations
Equality Section 8.3.1.
For Section 8.3.2.*.
If Section 8.3.4.
When Section 8.3.5.*.
Reinit Section 8.3.6.
Assert Section 8.3.7.
Terminate Section 8.3.8.
Events? Section 8.5.
Initialization? Section 8.6.

Algorithms
Assignment Section 11.2.1.*.
For Section 11.2.2.*.
If Section 11.2.6.
When Section 11.2.7.*.
While Section 11.2.3.
Break Section 11.2.4.
Return Section 12.1.2.
Reinit Section 11.2.8.1.
Assert Section 11.2.8.2.
Terminate Section 11.2.8.3.

Connections
Declarations Basic connect equations, section 9.1.
Operators Section 3.7.2, 15.2-15.3
Expandable Expandable connectors, section 9.1.3.
Stream Stream connectors, chapter 15.
Restrictions The restrictions in section 9.3.*, 15.1.
Overconstrained Section 9.4.

3

Arrays
Declarations Array declarations, section 4.4.2, 10.1.*, 10.7.
Flexible Flexible arrays, section 12.4.5.
Indexing Array indexing, slicing, section 10.5.*, 10.6.9.
Functions

Size ndims and size, section 10.3.1.
Construction Array construction, section 10.3.3 and 10.4.*.
Conversion Dimensionality conversion functions, section 10.3.2.
Reductions Reduction expressions from section 10.3.4.*.
Algebra Matrix and vector algebra functions, section 10.3.5.

Operations
Assignment Array assignment, section 10.6.1.
Equality Array equality, section 10.6.1.
Arithmetic Arithmetic operators, section 10.6.2-10.6.3, 10.6.5-10.6.7.
MatrixProduct Matrix multiplication, section 10.6.4, 10.6.8.
Logical Logical operators, section 10.6.11.

Functions
Declarations Function declarations, section 12.1-12.1.1, 12.1.3.
Restrictions Function restrictions, section 12.2.
Calls Function calls, section 12.4.1, 12.4.3-12.4.4, 12.4.7.

Vectorization Vectorization of scalar functions, section 12.4.6.
HigherOrder Higher order functions, 12.4.2.*.
Records Record constructor functions, section 12.6.
External External functions, section 12.9.*.
Derivative Function derivatives, section 12.7.*
Inverse Function inverses, section 12.8.

Packages Chapter 13, except imports.
Annotations Chapter 18.

4

3 Style guide
The test cases should follow the style of the specification and MSL to the extent that a consistent
style is used. This means that class names should be UpperCamelCase, while function and
component names should be lowerCamelCase. The contents of classes and control statements
should be indented with two spaces, and tabs should not be used.

package TestPackage
type TestType = Real;

model TestModel
TestType testComponent ;

end TestModel ;
end TestPackage ;

Control statements should be written as in the specification with the beginning and end parts
on separate lines and the content indented.

for i in 1:3 loop
if i == 1 then

x[i] = 1;
elseif i == 2 then

x[i] = 2;
else

x[i] = 3;
end if;

end loop;

Expressions and operators should usually be separated with spaces. Notable exceptions are
brackets and the range operator.

model Test
Real x = 2 .0 ;
Real y, z;
Integer u[1, 3] = {{1, 2, 3}};

equation
y = x * (2 + z);
z = sum(u[1, i] for i in 1:size(u, 1));

end Test;

5

