
ncDataReader2 - User Manual

version 2.5.0

Overview
ncDataReader2 is a library of C functions to access data stored in netCDF files using different interpolation
and extrapolation methods. The aim of this library is to provide access from simulation systems like

 to data sets like weather data or measured time rows. As such systems usually require strictlyModelica
continuity of functions and their derivatives, smooth spline interpolation is included.

netCDF is a very efficient binary file format for structured multidimensional data. The netCDF library is
freely available on all major platforms. ncDataReader2 works both with netCDF versions 3.x and 4 (which is
based on).HDF5

ncDataReader2 supports reading one dimensional data (like generated or measured time rows of simple
quantities), using periodic extrapolation if needed. Interpolation methods currently supported are discrete
steps, linear, akima splines and smoothed steps.

Support for variables that depend on two dimensions (scattered points, lists of x,y,z-pairs) is included but not
very well tested. The 2D functions use the library for cubic spline interpolation by Pavel Sakov.csa

ncDataReader2 will build as a static or dynamic library on Linux, Windows and MacOS X.

Author and License
ncDataReader2 was developed by Joerg Raedler (). The code is released under thejoerg at j-raedler dot de
terms of the . The code in the files , , , and GNU Lesser General License csa.c csa.h csa_config.h svd.c svd.h

was taken from the library which has its own open source license.csa

Building and Installation
The build process uses to configure the sources. To compile ncDataReader2 you will need netCDF,cmake
cmake and a compiler/development system for C/C++. ncDatareader2 was tested with:

gcc and tcc on linux platforms
cygwin, or Microsoft Visual Studio (including the free) onMinGW Express Edition
Windows platforms
XCode developer tools on MacOS X

Use to configure the sources and build system, then build the library and examples. On linux you usecmake

the command in the source folder to do this.make . && make

The installation procedure is not yet automated, you should copy the relevant files manually to the needed
location. To compile your programs with ncDataReader2 you need a library file and the header file(s).
Library files are:

http://www.modelica.org/
http://www.unidata.ucar.edu/software/netcdf/
http://www.hdfgroup.org/HDF5/
http://code.google.com/p/csa-c/
http://www.gnu.org/licenses/lgpl.html
http://code.google.com/p/csa-c/
http://www.cmake.org/
http://www.cygwin.com/
http://www.mingw.org/
http://www.microsoft.com/express/

Linux:
libncDataReader2.a (static) or
libncDataReader2.so (dynamic)

Windows (Visual Studio):
ncDataReader2.dll and (dynamic) orncDataReader2.lib

ncDataReader2.lib (static)

Windows (MinGW or cygwin):
libncDataReader2.a (cygwin or MinGW)

MacOS X:
???

The header file is called for the general API and for the easy API.ncDataReader2.h ncDataReaderEA.h

Examples
You will find some examples in the folder . You should run first to create theexamples GenerateFile(.exe)

netCDF file the other example programs will need. will create a large file that isGenerateBigFile(.exe)

used by some of the examples.

Another very simple example:

#include "ncDataReader2.h"
#include <stdio.h>
int main(void) {
 NcDataSet1D *t;
 NcVar1D *y;
 t = ncDataSet1DNew("data.nc", "time", EpPeriodic, LtFull, 10);
 y = ncVar1DNew(t, "y", IpAkima, LtFull);
 printf("The value of y for time=42.0 is %g.\n", ncVar1DGet(y, 42.0));
}

This will open the independent variable and the dependent variable in a file , calculate thetime y data.nc

interpolated value of for . The variable will be used periodic, will be interpolated by they time=42.0 time y

Akima method. All data will be fully loaded.

Concept
A one dimensional data set (NcDataSet1D) is the representation of one independent variable in a netCDF file.
This data can be equally spaced, but it doesn't need to. A one dimensional variable (NcVar1D) is the
representation of a dependent variable that has a dependency to exactly one NcDataSet1D. The value of a
NcVar1D at a certain point can be evaluated (usually interpolated). A NcDataSet1D can be referenced by
more than one NcVar1D.

Example: a file contains weather data as time rows (e.g. hourly values). One variable (time) contains the time
values at which other quantities were measured. The other time rows (temperature, humidity, radiation)
contain the measured values. With ncDataReader2 we would reference 'time' as a NcDataSet1D.
'temperature', 'humidity' and 'radiation' are referenced as single NcVar1D's which are connected to the this
set. For every possible value of 'time' we can now evaluate the quantities and get (possibly interpolated)
values.

You can reference the same variables in a file multiple times with different parameters as different
NcDataSet1D or NcVar1D.

Interpolation

Discrete

This is the simplest but fastest method. The value of a variable is the value of the last data point where the
value of the independent variable is smaller or exactly equal to the demanded point. This will lead to steps at
the interval boundaries. Neither the function nor the derivatives are continuous.

Linear

Linear interpolation between the points leads to a continuous function with non-continuous derivatives and is
very fast.

Akima

Akima interpolation is a cubic spline interpolation method. The calculation is not fast, but the result is a very
smooth function (continuous curve and derivative). The continuity of the second derivative was abandoned to
get only local dependencies of the parameters. This is a big advantage in comparison to normal cubic splines
where all values of a data set have to be taken into account to calculate a single value.

By using Akima interpolation with ncDataReader2 you can get a smooth interpolation of very large variables
by reading only a few values of the required range from the file.

Sine Steps (SinSteps)

This is a variation of the discrete method where the steps are smoothed by inserting parts of the sine function.
In the middle of an interval the values are still constant (step-like behavior) but at the interval boundaries a
smooth transition is ensured. The amount of smoothing can be configured by defined by an influence radius
around the points. The resulting curve is continuous and has a continuous first derivative. Strictly speaking,
this is not an interpolation method since the data points are usually not met.

Cosine Window (CosWin)

This is method does also more an approximation than a real interpolation. It will calculate the weighted
average of all points and their linear interpolation inside a window. The weighting function is cos(x) (scaled
and shifted).

The result is continuous and has a continuous first derivative. For small windows the curve will follow the
linear interpolation with some smoothing around the points. Large windows lead to more smoothing of the
data set. The window size should be much smaller than the data range of the abscissa.

Transformations

Every variable can be automatically shifted and scaled by setting an offset and a scale factor to avoid later
conversions. This is very handy if you need to convert between different units. A NcDataSet1D can be used

in periodic mode where the data virtually continues after the end or before the start. This way you may use a
generated weather file with one year of data to simulate severals years with continuous time values.

Loading Data

As variables in netCDF files can be very large different methods of loading are supported. Small variables
(few values) can be loaded completely into memory to get the fastest access. The other extreme is to load
every single value only on demand. This is significant slower but still fast because of the very efficient
netCDF file access. A third possibility is to load chunks of data on demand.

Optimization

To optimize the calculation different caches can be activated. All caches are implemented as ring buffers with
a specific capacity. With a capacity of x, the last x items are cached and can be retrieved very fast. But large
capacities will lead to a large overhead and slow down the calculation. That's why the cache sizes can can't be
optimized globally but should carefully be adapted to the current problem. An example program
CacheTests(.exe) demonstrates the effect of the caches.

Value Cache

The value cache stores the calculated values of a NcVar1D for a specific value of the independent variable.
DAE based simulation systems tend to call the same functions with the same arguments very often. A value
cache can speed up the calculations in this case.

Lookup Cache

When the value of a NcVar1D is requested the first action is to search the corresponding interval of the
NcDataSet1D with a nested search over the whole data set. For large data sets this may need a lot of time.
The lookup cache stores the last used intervals and their boundaries. If the next requested value is in the same
interval as the last one(s), this may speed up the search.

Parameter Cache

Linear and Akima interpolation methods need to calculate the parameters of a linear or a cubic function for
one interval. These parameters can be stored in a cache. If the next requested value is in the same interval as
the last one(s), this may speed up the calculation (in particular for the Akima method).

Scattered Points (2D)

Variables that depend on two dimensions are defined as a list of 3D points that can be scattered in 3D space.
Those points are read from a two dimensional variable in the netCDF file. At initialization time a spline
surface is constructed from the points. Some parameters (npmin, npmax, k and nppc) affect the construction
and the quality of the spline surface.

After this step the interpolated value of z for arbitrary values of x and y can be calculated.

File annotations / netCDF Attributes

All the parameters like interpolation and extrapolation methods, transformations, cache sizes and other can be
explicitly set or can be read from the data file. netCDF files may contain generic attributes (global and and

variable specific). Some attributes with special names are honored by ncDataReader2. Parameters set with
explicit functions always have precedence over annotations. The following attributes are supported for
netCDF variables:

Name Possible Values Meaning
scale_factor float value scaling factor
add_offset float value offset
extrapolation "default", extrapolation method for indep.

"periodic" variables
interpolation "discrete", interpolation method for dep.

"linear", variables
"akima",
"sinsteps"

load_type "auto", data load type
"full",
"none",
"chunk"

chunk_size integer value chunk size for data loading
smoothing float value smoothing radius for SinSteps
window_size float value window size for CosWin
lookup_cache integer value capacity of lookup cache
value_cache integer value capacity of value cache
parameter_cache integer value capacity of parameter cache
csa_npmin integer value npmin parameter for csa
csa_npmax integer value npmax parameter for csa
csa_k integer value k parameter for csa
csa_nppc integer value nppc parameter for csa

General API
To use the general API you should include the header file . Data sets and variables arencDataReader2.h

represented by C-structs. You should not try to initialize or destroy these struct objects yourself but to use the
provided functions instead.

NcDataSet1D

NcDataSet1D is a struct object which holds all information on a data set. A new NcDataSet1D will be
created with the following function:

NcDataSet1D *ncDataSet1DNew(const char *fileName,
 const char *varName,
 Extrapolation extra,
 LoadType loadType,
 size_t lookupCacheSize);

fileName is the name of the file, is the name of the independent variable. is the method ofvarName extra

extrapolation (the behavior when the defined data range is left). The variable defines the way theloadType

data is loaded from file to memory. The parameter is the size of the lookup cache for thislookupCacheSize

data set. Use to read this value from the file annotation. If not set, no cache will beNC_LOOKUP_CACHE_AUTO

used.

Possible values for the extrapolation method () are:Extrapolation

EpDefault - use a method corresponding to the interpolation method. This is the first or
last value for discrete or sine steps and the linear cubic extrapolation using the parameters
of the first/last interval for linear or Akima extrapolation.
EpPeriodic - adjust values for periodic use. The first and last values of the data set must
mark the boundaries of the periodic range. Example: time-dependent values for one whole
day should start with a value for 0:00 and end with a value for 24:00 to get a daily periodic
data set. If the first and last values of a NcVar1D are not equal, they will be replaced with
an average transition value.
EpConstant - use the border values when outside.
EpAuto - the extrapolation method will be read from the file annotation. If not set EpDefault
will be used.

The load type () can be one of the following:LoadType

LtFull - the full variable will be loaded to memory.
LtNone - every single value will be read from the file on demand.
LtAuto - use the file annotation. If not set, will be used for small variables and LtFull LtNone

for large ones. The limit is defined as in .LARGE_DATASET ncDataReader2.h

LtChunk - load chunks of data on demand. The size can be set with an option. For a
NcDataSet1D this will usually be slower than because the interval search needs theLtNone

whole data range.

A NcDataSet1D should be freed with the following function when no more NcVar1D is connected to it. This
will release all used memory and close netCDF objects like variables and files.:

void ncDataSet1DFree(NcDataSet1D *dataSet);

Interval search for a value of the independent variable:

size_t ncDataSet1DSearch(NcDataSet1D *dataSet, double *x);

Get the value for one interval:

double ncDataSet1DGetItem(NcDataSet1D *dataSet, size_t i);

Set an option for a data set with this var-arg function:

int ncDataSet1DSetOption(NcDataSet1D *dataSet, DataSetOption option, ...);

Possible options are:

OpDataSetScaling - set scaling and offset of the variable with the following two double
arguments. This corresponds to the netCDF attributes and .scale_factor add_offset

OpDataSetLookupCacheSize - change the capacity of the lookup cache to the value of the
following integer value.
OpDataSetChunkSize - change the chunk size.

NcVar1D

NcVar1D is a struct object which holds all information on a variable. For existing data set objects new
variables can be defined:

NcVar1D *ncVar1DNew(NcDataSet1D *dataSet,
 const char *varName,
 Interpolation inter,
 LoadType loadType);

dataSet is a object, the name of the dependent variable in the file. You may chooseNcDataSet1D varName

the interpolation method () from the following values:Interpolation

IpDiscrete - discrete steps
IpSinSteps - discrete steps with smoothing by a sine function. The smoothing radius can
be defined by setting the option. If not set, a value of 0.0 will be used whichsmoothing

will lead to the same result as .IpDiscrete

IpLinear - piecewise linear Interpolation
IpAkima - piecewise cubic interpolation
IpCosWin - cosine window approximation. The window size can be defined by setting the window_size
option. If not set, a value of 1.0 will be used.
IpAuto - determine the interpolation method from file annotations. If not set, isIpAkima

used.

The possible values for are the same as for the .LoadType NcDataSet1D

The calculation of values from a NcVar1D (which is the main purpose of this library) is done with the
function:

double ncVar1DGet(NcVar1D *var, double x);

var is the NcVar1D object and x the value of the independent variable at the requested point.

To get the value of the variable (without any interpolation) in one interval you may call:

double ncVar1DGetItem(NcVar1D *var, size_t i);

A NcVar1D should be freed with the following function when it's not needed anymore. This will release all
used memory and close netCDF variable object:

void ncVar1DFree(NcVar1D *var);

Set an option for a variable with this var-arg function:

int ncVar1DSetOption(NcVar1D *var, VarOption option, ...);

Possible options are:

OpVarScaling - set scaling and offset with the following two double arguments. This
corresponds to the netCDF attributes and .scale_factor add_offset

OpVarSmoothing - set the following double value as the smoothing radius for the
interpolation method . This value has to be smaller than the smallest intervalIpSinSteps

length of the data set.
OpVarWindowSize - set the following double value as the window size for the interpolation

method . This value should be much smaller than the data range.IpCosWin

OpVarValueCacheSize - set the capacity of the value cache to the following integer value.
OpVarParameterCacheSize - set the capacity of the parameter cache to the following
integer value. This is only useful for the interpolation methods and .IpLinear IpAkima

OpVarChunkSize - set the chunk size to the following integer value when using .LtChunk

NcScattered2D

NcScattered2D is a struct object which holds all information on a data set of scattered points and its spline
interpolation. A new NcScattered2D object can be defined with:

NcScattered2D *ncScattered2DNew(const char *fileName, const char *varName);

fileName is the name of the netCDF file and the name of the variable that contains the pointvarName

coordinates. should be a two dimensional variable (list of 3D points).varName

Before you can request interpolated values you have to initialize the data (construct the spline surface) by
calling:

void ncScattered2DInit(NcScattered2D *data);

To get an interpolated value you may call:

double ncScattered2DGet(NcScattered2D *data, double x, double y);

A NcScattered2D object should be freed after usage by calling:

void ncScattered2DFree(NcScattered2D *data);

Several options can be set by calling this var-arg function:

int ncScattered2DSetOption(NcScattered2D *data,
 Scattered2DOption option,
 ...);

This is call is valid only before ncScattered2DInit() was called! Possible options are:

OpScattered2DScaling - set scaling and offset with the following two double arguments.
This corresponds to the netCDF attributes and . This call willscale_factor add_offset

scale and shift all three dimensions!
OpScattered2DScalingX, , - setOpScattered2DScalingY OpScattered2DScalingZ

scaling and offset only in one dimension.
OpScattered2DPointsMin - set the npmin parameter for csa
OpScattered2DPointsMax - set the npmax parameter for csa
OpScattered2DPointsPerCell - set the nppc parameter for csa
OpScattered2DK - set the k parameter for csa

Error handling

netCDF functions may return errors. Errors are represented by an integer id and a message string. The default
error handler will print the message to and exit the program, on Win32 systems it will open an errorstderr

dialog. You may replace this with your own handler function of the form:

void myhandler(int id, char *message);

by calling the function:

NcErrorHandler ncSetErrorHandler(NcErrorHandler newHandler);

This will set the function to be the new error handler and return a pointer to the previousnewHandler

handler.

Access Statistics

To tune the different optimization parameters some statistics can be dumped:

void ncDataSet1DDumpStatistics(NcDataSet1D *dataSet, FILE *f);
void ncVar1DDumpStatistics(NcVar1D *var, FILE *f);

This will write some statistics about the data set or the variable to a file. may be a writable file pointer orf

NULL for stdout.

Easy API (EA)
The easy API was motivated by the fact that languages like Modelica cannot handle C-structs, pointers and
other language elements used in ncDataReader2. They require simple functions that return values without
large initializations blocks and local data storage.

The EA is a wrapper around the general API of the library that hides most of its details. To use the EA you
have to include the header file . The EA is based on hash tables that store data sets andncDataReaderEA.h

variables after the first use. The main function is:

double ncEasyGet1D(const char *fileName, const char *varName, double x);

It will return the interpolated value of the variable in the netCDF file at the point . At thevarName fileName x

first call the needed NcVar1D and NcDataSet1D objects are initialized. Following calls to this function will
reuse these objects. All parameters like extrapolation, interpolation, scaling, cache sizes and others are read
from file annotations or set to default values.

A strict requirement to get this initialization automatically done is to follow a naming convention: the
independent variable in the file must have the same name as the dimension that is used both for the
independent and the dependent variable.

The functionality for 2D interpolation is also exposed via the EA:

double ncEasyGetScattered2D(const char *fileName, const char *varName,
 double x, double y);

This will return the value of for the position defined by and of a spline surface. This surface representsz x y

the list of scattered points defined by the variable in the netCDF file . All parameters forvarName fileName

the surface will be read from file annotations or set to default values. At the first call to this function the data
is read and the surface is constructed, following calls will reuse the objects.

If you want to clean all stored objects of the EA, you may call:

void ncEasyFree();

Access statistics for all open data sets and variables can be dumped with the function:

int ncEasyDumpStatistics(const char *fileName);

There are some more functions that return attributes of the netCDF file or of variables:

double ncEasyGetAttributeDouble(const char *fileName, const char *varName,
 const char *attName);
int ncEasyGetAttributeLong(const char *fileName, const char *varName,
 const char *attName);
const char *ncEasyGetAttributeString(const char *fileName, const char *varName,
 const char *attName);

These functions may be used to read additional data like location coordinates for weather files. Special values
will be returned on errors (like non-existent attributes), defined as , and NC_DOUBLE_NOVAL NC_LONG_NOVAL NC_STRING_NOVAL

. If is an empty string () the global attribute is returned.varName ""

Tools

ncdr2Dump1D

This is a command line client that includes most of the functions for 1D variables. It will dump interpolated
values for a variable in textual form. CSV format is the default, but you may choose a gnuplot compatible
output or provide your own template (for printf()). The usage is as following:

Usage: ncdr2Dump1D [parameter] filename
 filename name of the netCDF file or DAP-URI
mandatory parameters:
 -v string name of the variable
 -a string name of the abscissa / data set
optional parameters:
 -o string name of output file (default: stdout)
 -s float start of data range
 -e float end of data range
 -n int number of points
 -i char interpolation:
 [a]kima, [l]inear, [d]iscrete, [s]insteps, [c]oswin
 -x char extrapolation:
 [d]efault, [p]eriodic, [c]onstant
 -l char load type:
 [f]ull, [n]one, [c]hunks (see -h)
 -w float window size for coswin interpolation
 -m float smoothing radius for sinsteps interpolation (default is 0)
 -k int size of lookup cache
 -p int size of parameter cache
 -c int size of chunks for chunk loading
 -t string template string for output (used with printf())
 -g use gnuplot-compatible output (default is CSV)
 -d dump timing information and access statistics to stderr
 -h print this help and exit

ncdr2ImportCSV1D

This is a command line client that converts CSV data to netCDF files that are compatible with
ncDataReader2. The special attributes that ncDataReader2 respects can be added easily. The usage is as
following:

1.

2.

1.
2.
3.

Usage: ncdr2ImportCSV1D [parameter] filename
 filename name of the CSV input file
optional parameters:
 -o string name of output file
 -t string comment to include in file
 -h print this help and exit
the following is stored as attributes of the variables:
 -i char interpolation:
 [a]kima, [l]inear, [d]iscrete, [s]insteps, [c]oswin
 -x char extrapolation:
 [d]efault, [p]eriodic, [c]onstant
 -l char load type:
 [f]ull, [n]one, [c]hunks (see -h)
 -w float window size for coswin interpolation
 -m float smoothing radius for sinsteps interpolation
 -k int size of lookup cache
 -p int size of parameter cache
 -v int size of value cache
 -c int size of chunks for chunk loading

The input file is a simple CSV file with the following structure:

fields delimited by comma ','
every row has the same number of fields
optional header row with the variable names
all other fields contain just numbers
the decimal separator for numbers is a point '.'
every column contains one variable
first column is used as the abscissa for all variables

Modelica Interface
The Modelica package contains function wrappers for the Easy API as well as some examples.

Tips and Tricks
A template for can contain special characters like TAB or NEWLINE. In C thesencdr2Dump1D

characters are inserted using '\t' or '\n'. To use these characters on the Linux-shell you can use thebash

following syntax:

ncdr2Dump1D -v foo -a bar -t $'%g\t%g\n' file.nc

CSV files generated with software in some languages (like German) will use a comma as decimal
separator. To use such files with ncdr2ImportCSV1D you can do the following:

export to CSV with field separator set to semicolon ';'
replace every comma ',' with a point '.'
replace every semicolon ';' with a comma ','

The steps 2 and 3 can be done in a text editor or with the following command line (UNIX only):

tr ',;' '.,' <data.csv >data_corrected.csv

Changes
2.5.0

changed Modelica files to use Modelica 3.2.3

2.4.0

generally worked on an improved Modelica compatibility
changed directory structure to improve the Modelica compatibility
changed Modelica files to use Modelica 3.2.1
removed the hard exit from the default error handler
added pre-built binaries for linux32, linux64, win32 and win64
reimplemented StringHashTable based on uthash
fixed memory leak for easy API (ncEasyFree was never called)

2.3.1

added command line client ncdr2ImportCSV1D to import CSV data
changed all examples to work with optional file names
changed Modelica files to use Modelica 3.2

2.3.0

added CosWin approximation
added constant extrapolation
GenerateBigFile is much faster now
fixed a bug with Akima and default extrapolation near the right border that existed for a long
time
added functions to dump statistics
added error dialog for Win32, useful with Dymola
added command line client ncdr2Dump1D to dump interpolated values
built with netCDF 4 on Windows including DAP supported

