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The physical law governing the movement must be valid for any (angular) velocity

da “thus we can divide by fl—i‘ to get at:

dt

d2
mézd—g +mglsina = —Flsina
i3
2
F
Cclng = —% sin o — oy sin av. (6.2)

The pendulum model in Eq. 6.2 can be rewritten in state space form as

do

a (09
dw g . F .

E_—ZSH]O{—I—WSIHO{ (64)

where ¢ is a natural constant, m, ¢ are parameters, F' is a variable input, while o, w
are states. A

6.2.5.2 Multi-body, one degree of freedom™*

...under construction...

6.2.5.3 n degrees of freedom*

...under construction...

6.2.5.4 Energy balance vs momentum balance*

...under construction...

6.2.6 Lagrangian mechanics*"

...under construction...

6.2.7 Beams, torsion™"

...under construction...

6.3 Spatial description

6.3.1 Momentum balance

We have seen that for a closed system/material description, Newton’s law is equiv-
alent to the linear momentum balance

dM
= _F
dt
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We are now interested in extending the momentum balance to the case of a spatial
description, where we allow for mass to flow into and out of the system. The
extension is straightforward, and the general momentum balance becomes

d . .
ﬁ%:Mrw@+R (6.5)

As we have seen, the momentum is
M =mu, (6.6)

where m is the (possibly varying) mass and v is the linear velocity. The linear
velocity v is an intensive variable, while the mass is an extensive variable. It follows
that the momentum flowing with matter is given as

M = 1w, (6.7)

where 7 is the mass flow rate.

The simple formulation above is valid when the velocity vector v is perpendicular
to the surface OV through which it flows; v L 0V. In a more general case, we can
write

Mi—Me:—yg pv-vin-dA
av

where 0V is the surface of the system and n is the outwardly pointing normal vector
to the surface. However, in these notes, we will use the simple formulation where
M = .

Some of the force terms F' relate to forces operating on the boundary 0V of the
system, e.g., pressure forces. Other force terms operate within the system volume
V', e.g., gravity, friction, etc. The forces operating within the system volume V'
are considered as source terms in the balance law, hence the momentum balance is
strictly speaking not a conservation law as defined in these notes.

Similarly, we can introduce an angular momentum balance in a spatial descrip-
tion, which takes the form

dA . .
= A— Ao+ (6.8)

where the angular momentum is

A=Jw (6.9)

Here, if the material influent is given at a fixed radius and tangential to the radius,
we have

A=r. M. (6.10)

6.3.2 Mechanical energy balance

We have seen that in the material description, the mechanical energy balance can

be written as in Eq. 6.1:

dE :
= W
dt ’
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where energy F is the sum of kinetic and potential energy, ¥ = K + P, and where
kinetic energy K can come from linear movement, K = %mvz, or angular movement,
K = %sz, while the work rate is related to generalized force multiplied by gener-
alized velocity: W = Fu for linear movement and W = Tw for angular movement.
Potential energy PP describes the potential of those conservative forces that are not
included in the work rate term V.

In a spatial description, we need to include the possibility of a change of mass
within the system boundaries as well flow of energy transported by mass flow. Thus,
the mechanical energy balance changes to

dE
dt
where F = K+ P. By comparing the expression for linear kinetic energy K = %va,
we can express kinetic energy flow rate as

. 1 1 1 .
K = éﬁwQ = EMU Sy = 5./\/11).

Similarly, we could have a potential energy, say P = mgz, with potential energy
flow rate P = 1gz. In both cases, it is an underlying assumption that the mass
flow m enters the system. If the mass flow rate m instead hits the system boundary
and creates a force F' working on the system, this effect should be included in the
work term as W = Fu.

Similarly, for angular movement, the kinetic energy K = %J = lAw should
give rise to a convective kinetic energy flow rate as

=B — B+ W (6.11)

K = %Aw. (6.12)

Here,

A=rM = rmw.
Similary, we could envision a potential energy flow P. Again, it is an underlying
assumption that the mass flow 7 enters the system.

The mechanical energy balance for angular movement is commonly used for
turbo machines. In that case, a fluid moving with mass flow rate 1 hits blades of an
object rotating with angular velocity w. However, the fluid mass does not become
part of the rotating mass, hence for turbo machines, K = 0, and normally the
level difference z; — 2. is so small that we can neglect P. Furthermore, the moving
fluid hits (or leaves) the blades of the rotating mass at a radius r with a torque
T = A = rM" where M" is the projection of momentum flow rate of the movmg
fluid, M = 1w, on the direction tangential to the rotation. Thus, M' = ot
where it has been assumed that the mass flow rate m actually is tangential to the
rotation and parallel to v, but where subscript t has been added to v* for clarity.
The resulting work rate is W = Tw. Introducing the “reference” velocity of the
rotating object at the “point of attack”, v, = rw, the work rate can be written as

W="Tw=wr M'=uv,-mo'. (6.13)

As stated above, v, is the reference velocity of the rotating object (the turbine mass,
etc.), while 7 and v* refer to the flow of the fluid hitting (or leaving) the rotating
object.
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6.4 Friction

6.4.1 Friction and pressure drop in filled pipes
6.4.1.1 Overview of friction force

The friction force F} is directed in the opposite direction of the velocity v of the
fluid. A common expression for friction force in filled pipes is the following:

I =K"A,f. (6.14)

In Eq. 6.14, K" is the kinetic energy per volume,
K" = Zp 0y

where p is density and (v) is the linear velocity average across the cross-section of the
pipe. Furthermore, in Eq. 6.14, A, is the wetting surface, i.e., the contact surface
between the fluid and the wall; A, = @L where @ is the perimeter of the pipe —
o = mD for a circular pipe. Finally, in Eq. 6.14, f is Fanning’s friction factor.
Clearly, Eq. 6.14 does not include direction of vectors in the expression. If we
would include the direction of F; and the direction of the velocity, a more correct

expression would be
F1f — _K///Awf

with ]

E" = Sp (o) - [{0)]. (6.15)
It is common to use the more readable expression in Eq. 6.14, and include an un-
derstanding of the correct direction of friction force vs. velocity in the model de-
velopment. Still, care must be shown if the flow changes direction; in that case the
expression for K" in Eq. 6.15 must be used.

The so-called Moody diagram depicts the friction factor f as a function of
Reynolds’ number, with the roughness ratio  as parameter, see Fig. 6.6.

In Fig. 6.6, the turbulent region (Ng. > 2.3 x 10%) is a flow regime where the
velocity across the pipe has a stochastic nature, and where the velocity v is more
or less uniform across the pipe when we average the velocity over some short time
period. von Karméns “law of the wall”, see subsequent more detailed discussion and
Eq. 6.25, gives a velocity profile which is relatively flat over a large fraction of the
cross sectional pipe area.? The laminar region (Nr. < 2.1 x 10%) is a flow regime
with a regular velocity v which varies as a parabola with the radius of the pipe, with
zero velocity at the pipe wall and maximal velocity at the center of the pipe.

As discussed above, Fanning’s friction factor will vary with the roughness of the
pipe surface, specified by roughness height €. Table 6.1 indicates the roughness of
some pipe materials.?

Some publications use Darcy’s friction factor fp instead of Fanning’s friction
factor f; these two friction factors are related as fp = 4f.

2See https://en.wikipedia.org/wiki/Law_of_the_wall.
3Selected values taken from https://neutrium.net/fluid_flow/absolute-roughness/.
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Figure 6.6: Moody diagram for Fanning’s friction factor f for fluid flow in a pipe,
as a function of the Reynolds number Nge, Bird et al. (2002).

Table 6.1: Roughness height € for various materials.

Material

Roughness ¢, mm

Drawn tubing (glass, plastic)

Flexible rubber tubing (smooth)

Stainless steel

Wrought iron (new)

Carbon steel (new)

Carbon steel (slightly corroded)
(

Carbon steel (moderately corroded)

Carbon steel (badly corroded)
Asphalted cast iron

Galvanized iron

Cast iron (new)

Concrete (very smooth)
Concrete (fine, floated /brushed)
Concrete (rough, form marks)

[0.0015,0.01]
[0.006, 0.07]
0.03

0.045
[0.02,0.05]

[0.025,0.2]
[0.2,0.8]
0.8, 3]
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6.4.1.2 Friction force and friction loss™

So far, we have treated the expression for the friction force F; somewhat ad hoc.’
Formally, friction force F} directed in the opposite direction of the velocity v can be
expressed as the product of shear stress 7, between fluid and wall (force per area),
and wall “wetting” surface A, :

Ff = T, WAW.

It follows that 7, has the same direction as F;. Shear stress 7, is a function of the
local velocity gradient of the fluid at the wall. For a straight, cylindrical pipe, the
relevant gradient is the gradient in the radial direction, thus 7, is a function of %;
Tw (%). For rigid walls, it is common to assume that the velocity at the wall is zero
— this indicates that the velocity decreases when the radius approaches the wall,
hence the gradient is negative at the wall and hence has the same direction as .
From thermodynamics, it can be shown that friction leads to a mechanical power

“production” Wt given by
ov

or’
ov

For non-elastic fluids, the functional relationship 7 (5) is static. Then, the second

Wf:—TW'

law of thermodynamics (entropy production) dictates that Wy < 0, in other words:
friction leads to a loss of mechanical power® for non-elastic fluids.
It is straight forward to see that in general, function 7 (%) must lie in the

first and third quadrant of the coordinate system of (%, TW). The simplest possible
choice of 7 (%) that guarantees a negative Wi, is

ov
Tw = Ho (6.16)

. ov\ 2
Wi=—p <§) ;

here W; is guaranteed to be negative (and thus produce entropy) provided that
the proportionality factor p > 0. Quantity p is known as (dynamic) wviscosity, and
the expression in Eq. 6.16 is known as Newton’s shear stress law; fluids for which
Newton’s shear stress law is valid, are known as Newtonian fluids.

Some fluids show viscoelastic behavior, where there is a dynamic relationship for
the shear stress, e.g., as in the Maxwell model:

dre _ 1 (__ Ov\.
dt T, Wl )

here, T} is the relaxation time and p is the viscosity. Realistic viscoelastic mod-
els may be considerably more complicated than the Maxwell model. Examples of

leading to

4 Ad hoc: Latin expression, literally meaning “to this” (ad = to, hoc = this). The expression is
used in the meaning “temporary”, “informal”; or “arranged for a particular purpose”, as opposed to
a “formal and general treatment”. So far, we have used a temporary and simplified description of
friction force (ad hoc); now it is time for a more general treatment.

5The lost mechanical power does not disappear: it leads to a heating of the fluid /wall.
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viscoelastic fluids include, e.g., molten polymers. For viscoelastic fluids, the in-
stantaneous friction power Wi may break the second law of thermodynamics during

transients and may even become positive, but in steady state all systems must satisfy
W <0.

6.4.1.3 Fanning friction™

Shear stress 7, has dimension force/area or force-length /volume, which is work /vol-
ume or energy/volume. Studies in hydraulics have indicated that for a fully devel-
oped flow,® the shear stress 7,, between the fluid and the wall of a fixed object (e.g., a
wall) is proportional to the kinetic energy of the fluid per volume, K"; 7, o< K. In
1877, Fanning” proposed the dimensionless friction factor/proportionality constant

f7

Tw

f - K///’
known as Fanning’s friction factor. Here, it must be observed that f > 0, i.e.,
we should really use the absolute value of the shear stress if we include directional
information in its value. Assuming a Newtonian fluid, Fanning’s friction factor f is
a function of the so-called Reynolds number Nge, Table 2.15 p. 36, here defined as:

here p is the fluid density, p is the fluid viscosity, (v) is the average velocity of the
fluid over a cross sectional area A,® and D is a characteristic dimension. Typically,
D will be the diameter of the pipe if we are talking about friction against a pipe
wall, while it may be the diameter of a sphere if we are talking about the drag force
on a solid sphere “swimming” in the fluid flow; Bird et al. (2002). Observe that the
Reynolds number Ng, is dimensionless.

If we express the friction force as F; = 7w Ay, we find

Fr
Aw
f K///‘
Fr=K"A,f. (6.17)
In this friction law, K" is defined as
, imv? 1
K "n_ 2 % — épUQ’

where p is the density of the fluid and v is the linear velocity of the fluid. If the fluid
is allowed to reverse its direction of flow, the more general expression for K" is

1
K" = 3P v . (6.18)

At zero velocity, v — 0, we will have F; — 0, since K — 0 quadratically as
v — 0 while (as we will see) f — oo linearly as v — 0.

6“Fully developed” implies after the entrance effects have disappeared.

"John Thomas Fanning (1837-1911).

8Reynolds’ number is positive, thus (v) is the numerical value (absolute value) of the velocity
— in case the direction is included in the value of the velocity.
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p1 — P2

L

Figure 6.7: Measuring pressure drop Aps = p; — p2 due to friction, using a manome-
ter.

6.4.1.4 Friction force and pressure drop™

Fanning introduced his friction factor in 1877. Figure 6.7 illustrates how the friction
force is related to the pressure drop.
Assuming steady state conditions and constant density, the mass balance leads

to
dm

dt
where the location of subscripts 1 and 2 are indicated in Fig. 6.7 for the pressures
p1 and po. The momentum balance is

:ml—m2:>7h1:ﬁl2:>‘/1:‘/YQZV:>1}1:UQI’U,

dM . .
— =M; - My + F.
dt
In steady state, % = 0, and M; = M, due to constant mass flow and constant

density. The steady momentum balance thus only involves the pressure forces and
the friction force, i.e.,

0=p1A—pA—F = ApiA = (p1 —p2) A = Fp.

It follows that the pressure loss due to friction is

1 Ay
Apr = ZFf = TWI-

6.4.1.5 Darcy friction™

Prior to Fanning’s work, the pressure loss due to friction was expressed using the
Darcy-Weisbach equation®

Apy pv?
7 _fD2D' (6.19)

9Developed by Henry Darcy from the Prony equation of hydraulics, and further refined into the
current form by Julius Weisbach in 1845.
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How does the Darcy-Weisbach expression relate to Fanning’s model?
Assuming a cylindrical pipe with diameter D, we find that A, = wDL, while
2 . . . .
A= WDT. With 7, = K" f, Fanning’s expression gives

F; A mDL L 1 L
A :_:W_W:K/// :4K/// ZL=4= 2~
Dt A T A f7TDT2 fD va fD
\
Apy pv?
Comparing Eqgs. 6.19 and 6.20 gives
Jo=4Ff. (6.21)

Because two different friction factors are used in the literature, it is important
to know which friction factor is involved in the relevant friction factor model, and
make sure that the correct factor is used in the chosen friction force expression.

6.4.1.6 Smooth pipe friction factors™

For laminar flow in a cylindrical pipe, it can be shown that the velocity has a
parabolic profile over the radius, i.e.,

v (1) = vmn (1 - (%)2)

where v, is the maximal velocity found in the center, 7 is the distance from the
pipe center, and R is the pipe radius. Laminar flow can be expected for 0 < Ny, <

2.1 x 10°, and it can be shown that with Ng. = —p<7:2D,
64 16
= o f = .22
fD NRe f NRe’ (6 )

see Exercises 6.1 and 6.2.
For turbulent flow, Nge > 2.3 x 103, it is common to rewrite the expression for
the Darcy friction factor as

4 _ K" B %p<v>

N 8
fD Tw Tw fD Tw

[8 ) _{»
/o Tw/p  Ur
Here, v, = \/7y/p is known as the shear velocity or friction velocity. By observing
n

that Reynolds’ number Ng, = % is dimensionless, it follows that 2y has unit
length and thus also ;% has unit length. We can then introduce some dimensionless

or
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quantities:
a2l
Vr
R*AR_§_0<U>D Ur _NReUT
e poo 2(v) 2 (v)
oe Y
J _La
PUT

here, R* is the von Karman number (or rather: the von Kéarman distance) and
y = R —r; we see that £ = 2 and it is clear that 7, hence v,, is independent of r
or y. It follows that!?

(v} = 27TfoR7:g27’)7“d7’ :_2f1(%)v(3/> -éf—y)dyZQ/olv(y) (1_g)d(g)

s+ (3) (-5)e()

Power laws for v* have been popular. One possible model is the one-seventh
power law:

<~

y* 1/7
o= k- (y*)1/7 — k. (R*>l/7 (ﬁ)

which leads to

f 8 1
D= 7/ N1/4)
(fm0277) " Mre

see Exercise 6.3. By curve fitting to data for a smooth pipe, Blasius!! found (ca.
1913) k = 8.56, leading to
0.316 0.079
NRe NRe
which gives a good description for Ny, € (2.3 x 10, 10°).
For higher Reynolds numbers and a smooth pipe, Blasius’ expression is not that

good. An improved model for v* could then be the “law of the wall” proposed by
von Karman'? in 1930:

1
vt = p, In(y* +a*)+ C” (6.25)

where r is the von Karméan constant, a* = —i is an offset parameter, while C* is an
pur

additive constant, McKeon et al. (2005). In von Karman’s version, a* = 0, leading
to

In(10)
1 2.2y/2 | V2 §owor
\J— = —2-logy, 2-2v2 107mvE | (6.26)
/o NgreV fp

10Gee Exercise 6.1.
"'Paul Richard Heinrich Blasius, 1883-1970.
2Theodore von Karman, 1881-1963 was a PhD student of Prandtl.
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see Exercise 6.4. Assuming that C* is independent of Ng. and fp, Prandtl*® found
from curve fitting with the data of Nikuradse (see below) that

In (10 In (10
n(0) 200 44070

4Kk\/2 42
and

—AC*

AV2 107 vE & 2.51
ll
2.51
C* —4v/2 10 ~ 5.6814,
B10 <4\/§>

thus

1 2.51 1
\/f: —2- loglo (N_Re . ﬁ) . (627)

A modification of Prandtl’s fitting has later been suggested as (Coelho & Pinho

2007)
1 2. 825 1
—2-lo . 6.28

fD glO ( NRe /fD ) ( )

McKeon et al. (2005) suggest that for Ng. € (3.1 x 10°,1.8 x 107), a better expres-
sion is

I 11 1.8557
\/— = —1.93log (——) —0.537 = —2log . (6.29
fD 10 NRe \/E 10 (NRe\/f—D)O,965 ( )

6.4.1.7 Rough pipes and the Colebrook relation™

Nikuradse'* studied turbulent flow in rough pipes, described by the dimensionless

ratio 5 of the roughness height € and the pipe diameter D, and fitted the data to
the shape of the von Karman relation, Eq. 6.26, leading to '°

1 3.71 e/D

Colebrook!® considered how to merge Prandtl’s fitting of von Kéarman’s model
for smooth pipes with Nikuradse’s model for rough pipes. The general problem is
how to merge a model of type klog,, f1 (z) with a model of type klog,, f (x) into
a global model F (x), with fi (z) > fs (z) for small values of z, and f; (z) < f2 (2)
for large values of x, and with a smooth transition between the two functions.

The relevance is that for small Reynolds numbers, NR2 ‘i’lﬁ > g/ 7?, while for large

13Ludwig Prandtl, 1875 — 1953.
14 Johann Nikuradse (1894 1979) was a PhD student of Ludwig Prandtl in 1920.

15 _
Originally: fp = m, but this expression can be rewritten as =

2logyo (£) = 2logy, (\/101 74) +2log (£) or F = 2log ( Y10~ 7 D) =2-log;, ( '67/%36).
L6C.F. Colebrook was at Imperial College, London.

= 1.74 +

o
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Reynolds numbers, NRQGEi/lfTa < 3—7131. Colebrook’s observation was that with functions

of type f1 (z) and f5 (x) as described above, a reasonable approximation could be

klogyo f1 (), x is small

F (z) £ klogy, (fi (x) + f2 (z)) = { klogy, fo (x), = is large
10 ) ’

To this end, Colebrook proposed the following merging of the von Kérméan-Prandtl
model with Nikuradse’s model:

L (2.51 1 +E/D>
NI B0\ Nee Vi | 3.71)

which can be trivially modified, e.g., by replacing factor 2.51 with 2.825 (Coelho
& Pinho 2007) or by using the expression of McKeon et al. (2005). Colebrook’s
relation is in general taken to be valid for 2.3 x 103 < Ng. < 108.

As an extension of the above idea, we observe that

(6.31)

k k
klogy f (x) = ];p logyo f (z) = 2_9 logyo f ()"

It follows that we could more generally write

F(z) = g logio (/s (2)” + fo (1))

where p > 0, and where a large value for p (p > 1) gives a more abrupt transition
between f; (z) and f3 (z). Thus, we could generalize Colebrook’s model to

fr- () () e

with p > 0, typically p > 1; Colebrook’s model has p = 1. The experimental results
of McKeon et al. (2005) from the Princeton Superpipe seem to indicate that with
p = 1, the estimate of fp is slightly too large in the transition from smooth pipe to
rough pipe dominance, thus it may be better to use p > 1.

6.4.1.8 Solution of Colebrook’s relation by iteration™

As seen, Colebrook’s relation is implicit in the unknown fp, and it is not possible
to find an explicit solution. To find a solution, iteration is thus needed. Iterative
solutions need a first/seed value. Natural seed values could be based on explicit ex-

. . . . -1/
pressions, e.g., Blasius’ smooth pipe expression (?\%}f = —2-logy, (1()—0-1508']\Gae1 4)),
Nikuradse’s rough pipe expression, or a combination of these:

1/, / ?\ﬁ}f, Blasius
1 Re
o =< —2-logy, (;)/—7]31) , Nikuradse (6.33)

316, P
JD _]% -log, (10*T' Re (E/—D) ) , Blasius-Nikuradse
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and then compute refined approximations by successive substitution:

p

1 2 251 1 D\"*

i N_e i 3.71
/f](3+1) p R /f]())

Using, e.g., the “Nikuradse” seed, successive substitution converges to an accurate
solution in some 7 steps (Brki¢ 2011b).

Newton iteration is superior to successive substitution. To find a Newton itera-
tion scheme, we introduce the “transmission” 1"

1
Vo

T2

and function f (71") defined as
2

where we seek T" such that f(7') = 0. The idea of Newton iteration is essentially
to set the Taylor series expansion of f (T") evaluated at iteration T}, truncated after
the linear term, equal to zero, and solve the linear equations to find Tj,1:

of

[ (L) = f(T3) + b i(Ti+1—Tz’) =0
I
T;
ﬁ‘z‘
Here,
af _ L+ 2a (aT)
or —~  Inl10 (aT)? + v’

It follows that the Newton scheme for our generalized Colebrook relation is

p
1 2 251 1 [9220%
1 1 r +3 logg (<NRe fé”) + (3.71) )
[ ¢(i+1) B [ ¢(3) (2.51 1 )pl 7
D D 2 2.51 NRe (@)

1 _I_ .NRC .
In10 b5 1 p+(E/D )p
NRe \/fé,_i) 3.71
with the obvious modifications if a or b are changed.

The Moody diagram in Fig. 6.6 is constructed from Eqs. 6.22 and 6.31, where
we convert to Fanning’s friction factor by using the relation fp = 4f.

6.4.1.9 Approximations to Colebrook’s relation™

Approximations to the Colebrook relation are typically based on some direct explicit
expressions, or by using the Lambert W function to solve the implicit expression —
see Section 6.4.1.10 for a discussion on the Lambert W function.
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In the sequel, the focus is on simple and efficient approximations of Colebrook’s
relation. Sections 6.4.1.8 gives an overview of iteration methods for Colebrook’s
relation. First, assume that the Blasius seed is used, Eq. 6.33:

A / 1/4
Rc

With one iteration of successive substitution, Eq. 6.34, this gives

1 2 2.51 1/8 E/D P
— 2 1.7789 - N g=
PO Og10(<NRe ) +<3'71

1 1 2 4.4651\7 e/D P
- ~ - loglo <<—) _I_ (_) > 5 (6.35)
N0.875 3.71
vV /o / ) p Re

where normally p = 1. An alternative approach could be to use the Blasius relation
as the initial guess in an iterator on Prandtl’s smooth pipe relation to get

1 01 4.4651 - 5.5292 *87
=-2-lo ——= | =—2-lo .
D g10 Nl%fm g10 NRe
)

Merging this expression with the von Karman expression similar as to Colebrook’s

approach, we get
L ~ 2. log 5.5202) "7 + E/—D ’ (6.36)
V /b p Nre 3.71 ' '

If we choose the log argument to be linear in 1/Ng,, we have p = Wlm ~ 1.1429 and
2 = 1.75. Alternatively, we could set p = 1 with 5.52920875 =~ 4.4651. If coefficient
2.51 in the original Colebrook relation is replaced by value 2.825 as indicated in
Eq. 6.28, we find 5.5292 — 6.329 with 6.329°%7 ~ 5.0254.

Table 6.2 gives a summary of some approximations.

All approximations in Table 6.2 seem to be based on some successive substitution
approach, with 1-2 iterations. It is not really meaningful to compare Haaland’s
gas expression in Table 6.2 with Colebrook’s original relation with p = 1. See
Brkié¢ (20116) for a comprehensive, updated review of approximations to Colebrook’s
formula.!” Newton iterations would be more accurate, but slightly more complex.

If it is desirable to use Fanning’s friction factor instead of Darcy’s friction factor,
the conversion is simple: f = fp/4.

—1.7789 - N5,

6.4.1.10 Colebrook’s relation and the Lambert W function™

We consider Colebrook’s relation with Darcy friction as in Eq. 6.31.

17See also https://en.wikipedia.org/wiki/Darcy_friction_factor_formulae.
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Table 6.2: Simple, explicit approximations of Colebrook’s relation, with maximal
deviation (Max dev) from Colebrook’s relation over the region N, € [10%, 10%] and
€ [1071,107%]. See Brki¢ (2011b).

Approximation Max dev  Method

A= —2-logg (7 + 22) 8.2%  Eck, 1973

A= —2.log (ﬂg? + g2 ) 2.18%  Churchill, 1973. Observe
the similarity to Eq. 6.36
with p = 1.

A= 2.log (;Vg@g + g) 2.04%  Swamee and Jain, 1976;
tuning of Churchill, 1973.

ﬁ = —2-log ( Z 4 36/7?5> 2.05% Jain, 1976; tuning of

e Churchill, 1973.
111

A~ 18- log <NRC +(42) > 14%  Haaland, 1983, for liquid;
similar to Eq. 6.36 with
0.875-p=1.

18 e, (80 4 (g2 Haaland, 1983, for gas;

=~ =5 log | (F i aaland, , for gas;
similar to Eq. 6.36 with
0.875-p = 3.

o (E/D)1.1098
1](30) = —2.01 - logy, (]30833861 + W) 0.35% Chen, 1979: seed \/]W’

/o ~ £ based on Eq. 6.34
with “3.71” replaced by

“3.71065”
1(0) = —2-log,, ( 184 e/D) 1% Zigrang and Sylvester
D 1982: seed

similar to
JE
Eck, 1973; fp = fD based
on Eq. 6.34 with “3.71”
replaced by “3.7°

1(0) = —2-logy (1—3 + e/D) 0.13% Zigrang and Sylvester
o 1982: seed \/7 similar to
o

Eck, 1973; fp = fD with
f](jl), fg) based on Eq. 6.34
with “3.71” replaced by
“3.777
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Theorem 6.1. Colebrook’s relation can alternatively be expressed as

W.exp (W) =ux
where
~ NgeIn10 %lnloe/_D
Y7951 2 P25 2 371
NRe In 10
W=sm 2~
and
2.51 1 e/D
z = + .
Nre vVfp 3.71
A
Proof. For Colebrook’s relation in Eq. 6.31, introduce z,
2.51 1 ¢/D
z= +
Nre v fo 371
N2
1 . NRe E/D
Vo 251 \" 7 371)°
which when inserted into Colebrook’s relation gives
NRe E/D o
ﬁ (Z— ﬁ) = —2'10g102
N3
2.51 2 3.71) N 2
or
1_ Nge In 10 _%lnlOe/_D
- P os1 2 )P\ 251 2 371
which can be rewritten into
NRe 11’1106/_D — e NRe 1n102
P o512 371) 7 “P\a251 2
I
Nge In 10 NreIn10€¢/D Nge In 10 Nge In 10
ex = - exp —z .
251 2 2.51 2 3.71 2.51 2 2.51 2
Here, let
. NRe In 10
T 951 2
NRe In 10 NRe In 10 F/D
T = —ex ——
251 2 251 2 3.71
and Colebrook’s relation can be written as
W.exp(W)=uz (6.37)

with solution W (z). O
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Figure 6.8: z, W relation between z and the Lambert “function” W showing two
branches (functions) W_; (z) and Wy (z). The so-called principal branch Wy can

be split into W~ valid for x € [—ﬁ,()) and W, valid for > 0. From Brki¢
(2011a).

Remark 6.1. The solution W (z) to W -exp (W) = x is given by Lambert’s W func-
tion. Solving Colebrook’s implicit relation has thus been rephrased into solving the
implicit relation in Eq. 6.37. This implicit relation is a standard form in mathemat-
ics, which can be solved using the so-called Lambert W function. There is no magic
in the Lambert W function, though iterations are necessary to find the solution.
The advantage with using Lambert’s W function, is that it has been thoroughly
studied in (numerical) mathematics. A

In general, W and x can be complex numbers, but here, x is a real number, and
W is a real number. The pair (z, W) constitute a relation,'® see Fig. 6.8.

W (x) is a relation since W (x) is two-valued in the region x € [ ﬁ, 0). The

" exp

principal branch Wy (z) (Fig. 6.8) is a strictly increasing function.

From Theorem 6.1, we see that both x and W must be positive numbers, hence

18Relations are generalizations of functions to allow for multi-valued mappings.
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we are interested in the function W, (x), where W, (0) = 0. Recursively, we have

W.exp(W)==x
I
W =x-exp(—=W)
\
W =ua-exp(—x-exp(—=W))

\
W=z -exp(—z-exp(—z-exp(—z-(---))));

it can be shown that when x — 0, this recursion can be truncated to give an
approximation of W (x) (Barry et al. 1995). If we instead are interested in large
values of  (z — 00), we can instead rewrite the expression as

W.exp(W)=x

I
exp(InW) -exp (W) =«
I
exp(nW +W) =z
I
W=Inz—InW =In—
a W
4
W =1In—"

x
€T

In L

In =

This recursion can be truncated to given an approximation of W (z) for large .
In Barry et al. (2000), a relatively simple and accurate approximation W, *2 for
Wyt is developed:

Wi (2) = (14¢)In 5111[2&% ] —61n<1n(12—im)> (6.38)

5 ln(l+%x>

where ¢ ~ 0.4586887, with maximal error 0.196%. A procedure for finding more
accurate approximations is also given.

The procedure for solving Colebrook’s relation using the Lambert W function is
thus as follows, Theorem 6.1:

1. With given ratio ¢/D and Ng., compute x from

= NRe hlloe NRe lnlOE/_D
~ 251 2 OP\2s1 2 371/

2. Next, with z known, compute W (z), e.g., via the approximation W™ (x),
Eq. 6.38.
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3. Next, find z from

~ NgeIn10 251 2 251 2

+%2
~951 2 ° O F

T NpeInl0 ' NpoInlo ' °

4. Finally, find ﬁ from
251 1 ¢/D 1 Nge ( e/D>
= z .

z

= = — —
Nee Vo 371 Vi 251 371
See also Brki¢ (2011a).

6.4.1.11 Global friction factor models™

It may be of interest with a friction factor model that spans both the laminar and
the turbulent regions, i.e., global models. One such model is due to Churchill, 1977
(Brki¢ 2011b), and is valid for 0 < Ng, < 10:

8 12 1 %
fo =% <(NRE) G +02>1'5>

16

where

1
0.9

(v) +0275

37530\
0, = < ) |
NRe
Alternatively, one could use the idea of Colebrook and write

64 1 N2 Ny

01 = 2.4571In

= = = — % . log, 1016 P
/o Nrs Ty 3 D £10
which can then be merged with the Colebrook relation into
1 2 Ny 251 1 \” [e/D\?
—=——"-1 107 6P . — . 6.39
Vi p e < coT (NRe \/_fD> " (3-71> ) (6:39)

Yet another possibility is to use some interpolation expression between the lam-
inar value at Nz, = 2100 and the turbulent value at Ng. = 2300, e.g., linear
interpolation — or if the friction factor should be differentiable: a cubic polyno-
mial fitting with the same slope as laminar friction at Ng. = 2100 and turbu-
lent friction at Ng. = 2300. To achieve global differentiability, with p(Nge) =
aNj, + bNR, + cNge + d, thus

p (Nge = 2100) = f£ (Nge = 2100)
p (Nge = 2300) = f£ (Nre = 2300)

dp _dff

dNRe NRe=2100 dNRe NRe=2100
dp _ 9

dNRge NRe=2300 ONrge %7NRC:2300’
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which gives rise to 4 linear equations in the four unknowns (a, b, ¢, d).

In some cases where a “global” expression for fp could be useful, the average
velocity will oscillate around zero, i.e., change direction.'® With (v) — 0= fp —
0o, which is not really useful. Instead, it is better to consider the friction force
directly:

Froo1 » 16 p (v)? w(v)
— n - = . — . — .
Fr=K Awf:>AW—2p<v> Vo 8-~ =9 i)
I
Y
Ffzg-“g’>AW:8-#WDL:&T-M(@L. (6.40)

where it clear that friction force Ft is directed opposite to (v).

6.4.2 Pressure drop due to constrictions, etc.

We have seen that the pressure drop in a long, straight pipe is

1 Ay
Aps = ZFf = TWI'

where we utilized that
1
T _ F F(,” _ FDZFL/”/'

With a cylindrical pipe, we have A—X == = %, and it follows that
4

L.,
Aps = f, DEK "
Inspired by this, we could write the friction pressure drop as
Apy = ¢ K" (6.41)

where dimensionless factor ¢ is ¢ = fD% for a long, straight pipe. We will refer to
¢ as the generalized friction factor.?®

What if we instead of a long, straight pipe have various contractions, enlarge-
ments, bends, etc.? It turns out that we for those cases also can write the pressure
drop as in Eq. 6.41. Tables 6.3—6.4 illustrate some cases.

6.4.3 Liquid friction in open channel

In open channels, it is common to introduce the co-called (steady) friction slope S,
which can be expressed as
F/
Su o b
S pgAs
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Table 6.3:
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Generalized friction factor ¢ for various fittings, valves, etc.

For Reynolds number Ng, and Darcy friction coefficient fp, this refers

to the entrance velocity (v), and diameter D;.

See also Table 6.4.

Taken from https://neutrium.net/fluid_flow/pressure-loss-from-fittings
-expansion-and-reduction-in-pipe-size/.

Square reduction

X
{":">1 A
—> ‘T)J_ DQ

v
v
Nge < 2500:
) 1
dur = (124422 {(g—;) - 1}
Ngre > 2500:

b = (0.6 + 0.48p) (g_)2 Rg_)z _ 1}

Square expansion

A
{'U)l A
— DJ_ Dg
Y
A 4
Nge < 4000:
4
¢se:2|:1_(g_;> :|
Nge > 4000:

=08 |1 (8)]

Tapered reduction

{th Tttt

— Dy Dy

v_/_

a—
L

0 €10,22.5°]:
Oy = 1.6 - sin (%) Dy
0 € (22.5°,90°):

qbtr =\ sin (%) ’ ¢sr

Tapered expansion

{“>1

— 4 i, Dy
\ 4
\\ \ 4
0 e [0, 22.50]:
Pre = 2.6 - sin (%) - Pse
S (22.50, 900):
¢te - ¢se
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Table 6.4: Generalized friction factor ¢ for various fittings, valves, etc.
For Reynolds number Ng, and Darcy friction coefficient fp, this refers
to the entrance velocity (v), and diameter Dj. See also Table 6.3.
Taken from https://neutrium.net/fluid_flow/pressure-loss-from-fittings
-expansion-and-reduction-in-pipe-size/.

Rounded reduction Rounded expansion

A \\ / A
{"".-'}1 {'{-:>-J_

— Dy Dy —> Dy Do

4
qbrr = (01 + ]\?_lge> "<g_;) - 1“ (bre = (bse
Sharp orifice Thick Orifice
A A < L >
oo Ve ey | g
D ,T)l iDz D JUL iDz
A v
. L .
Nge < _2500. o; <O
2
o= (2724 (82) (G2 - 1)| - of o= 05844 0o )4
¢ I D, NRe so (b: + (DL2>14 +0.225 §b
NRe 2_2500: , Dy > 5:
Pso = |2.72 + (g—j) - ?Vo—gg -0 Square reduction followed by

) 2 4
where ¢2 = {1 — (g—f) W (g—;) — 1}. square erpansion
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[0 Cross sectional area, Ag
[ Surface area, S

= Wetting perimeter (g
Figure 6.9: Nomenclature for open channel flow.

Here, I, is the (steady) friction force per unit length of the channel, p is the density
of the liquid, ¢ is gravity, and A is the cross sectional area of the liquid in the
channel; Fig. 6.9.
For open channel flow of Newtonian liquids, it is common to describe the friction
slope Sg using the Gauckler—Manning—Strickler formula
_ E _ i 2/3 ql/2
Vs = As - kMRS st ’

where ky is Manning’s friction coefficient (sometimes denoted n) while Ry is the
hydraulic radius defined as

— the ratio of the cross sectional area Ay and the wetting perimeter @s. It follows
that we can express Si as

Vs 2/3 ol/2
As k Rs st
U
N2 N2
Vs Vs 4/3
_ 2 <A_S) 42 (A_S> B
st - kM R3/3 —kMT

It is of interest to compare this friction slope with the result obtained by using
the Friction force in Eq. 6.17. If we simplify the expression for Sg above somewhat

using the approximation
4
Ay A’

19This is the case, e.g., in the surge tank of a high pressure hydro power plant.

2In  https://neutrium.net/fluid_flow/pressure-loss-from-fittings-expansion-and-
reduction-in-pipe-size/, this “generalized friction factor” is referred to as the K-value, while
Lydersen (1979) refer to is as n.
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Table 6.5: Examples of values for Manning’s friction factor k.

Bed material Manning factor k)
Asphalt 0.016
Brick 0.015
Clay tile 0.014
Concrete - steel forms 0.011
Concrete (Cement) - finished 0.012
Concrete - wooden forms 0.015
Earth, smooth 0.018
Earth channel - clean 0.022
Earth channel - gravelly 0.025
Earth channel - weedy 0.030
Earth channel - stony, cobbles 0.035
Floodplains - pasture, farmland 0.035
Floodplains - light brush 0.050
Floodplains - heavy brush 0.075
Floodplains - trees 0.15
Natural streams - clean and straight 0.030
Natural streams - major rivers 0.035
Natural streams - sluggish with deep pools 0.040
Natural channels, very poor condition 0.060
Wood - planed 0.012
Wood - unplaned 0.013

we see that the friction slope becomes

On the other hand, from Eq. 6.17, we have

.1 1 :
P = K'Asf = SpulpLf = F = Spolo.f,

thus the friction slope from this expression is

Sf et Ff,s — %Pvgﬁsf — ivgps
© o pgAs pgAs 29 A

We see that Manning’s friction factor ky; is approximately

]{72 f

~

M

Some typical values for Manning’s friction factor are given in Table 6.5.%!
When used for flow of water in rivers, Manning’s friction coefficient ky; typically
varies from 0.03 in clean and straight river beds to 0.06 for poorly conditioned

1 Taken from www.engineeringtoolbox.com/mannings-roughness-d_799.html
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channel beds. A typical value for Fanning’s friction factor under turbulent flow in
hydraulically smooth pipes is f € [0.002,0.005], Bird et al. (2002), which would lead

to 4/ % € [0.01,0.016]. For turbulent flow in less smooth pipes, the Fanning friction

factor f can have a value of up to 0.01, which would lead to 1/% = 0.02 Thus,

values for Manning’s friction coefficient appear to be compatible with Fanning’s
friction factor.

6.4.4 Power consumption in agitated liquid tanks

In Problem 2.2 p. 41, the task is to show that for agitation of a liquid tank,
1%
= {(Npe
where T is the power consumption used for agitating the liquid tank, p is the liquid
density, D; is the impeller diameter, and 7; is the number of revolutions per time unit
of the impeller. f is a friction factor (“power number”) and the Reynolds number
for agitation is??

_ piD}
i

NRe

where p is the liquid viscocity.

The power consumption essentially is dissipated power by friction between the
impeller blades and the liquid. Thus the shaft power W essentially is equal to the
friction power W; for the rotating liquid of the tank, hence

Wi = —pDPid f. (6.42)

Figure 6.10 shows the agitation friction factor (“power number”) for some impeller
geometries.

6.5 Compressible fluid. Elasticity of walls®

...under construction...

6.6 Turbo machines*

A turbo-machine is a machine which transfers energy between a continuous stream
of a fluid and an element rotating about a fixed axis, Turton (1995). Examples of
turbo-machines are pumps, fans, compressors, and turbines. In pumps (liquid) and
fans and compressors (gas), mechanical power is added through the rotating axis
and leads to an increase in the fluid pressure over the equipment, while turbines

22Normally, Reynolds’ number is expressed as %D. Observe that 7; = 5 where w; is angular

o D2 D2 _
velocity, thus the velocity at the impeller tip is v = w; i, Thus, Nge = % = % = %D‘ﬁ.
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Baffles

I .
No. Type of impeller D; Z; D; Number  B/D;
1 Turbine with q 3 2.7 0.75 4 0.10
6 vanes o~ -3.9 -1.3
< =l 1
0.25 D;
2 Plate with g rfh1 2.5 25 075 4 0.25
16 vanes i ol I
<] o= 1
0.35 D;
3 Paddle with <} 3 27 0.75 4 0.10
2 blades 0 I -3.9 -13
=)
4 Propeller with 3 3 2.7 075 4 0.10
blades, pitch & = D; -39 -1.3
10 %
s
2
\\ 3
\N
f(Nge) 1
—
~ 4
2 r 2 3 4 5 6
10 10 10 10 10 10
Nre = ——+

I

Figure 6.10: Agitation friction factor f (“power number”) as a function of Reynolds
number Ng, for some impeller geometries (Lydersen 1979). In the upper figure, D;
is the impeller diameter, D; is the tank diameter, h is the propeller pitch (No. 4),
2; is the height of impeller above bottom, z, is the liquid level in the tank, and B is
the width of baffles. In the curves of the lower figure, the curve numbers (1-4) refer
to the configuration row in the upper figure.
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Ap
V — I /4
— > Turbine >

Figure 6.11: Key quantities in a turbine.

convert a pressure drop in the fluid across the machine into mechanical power on
the rotating axis.
...under construction...

e Start with dimensionless model/dimensional analysis

e Transport equipment: fan (gas, low pressure), compressor (gas, high pressure),
pump (liquid) ... role of energy balance?

e Energy extraction: turbine (gas, liquid)

Pump model: providing power to pump the fluid, fluid flows through the pump at

volumetric flow rate V,, while increasing the pressure over the pump by Ap,. A
typical model for the pressure increase is

S\ 2

< Vp

Apy = [ (u) | Ap;, — dpy, o

p

where u is an input signal that governs the provided power.

6.6.1 Turbines

In hydro turbines, water flows at volumetric flow rate V' (volume/time) through the
machine, and part of the pressure drop Ap in the water is converted to mechanical
power W on the axis rotating at speed N (revolutions/time), while an additional
pressure drop is due to friction/losses. An actuator signal u may change the opening
in the fluid passage and change the pressure drop and mechanical power produced.

Figure 6.11 indicates the key quantities for a turbine.

In practical operation, some of the variables are given by the environment to the
turbine — these variables are specified as boundary conditions for the turbine, while
the turbine itself determines the remaining variables.

The boundary conditions for the turbine are the following:
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e the volumetric flow rate V is a state of the system leading water through the
turbine, and is therefore given by the environment to the turbine,

e the actuator signal u is given by the turbine controller, and is therefore given
by the environment of the turbine,

e the rotational speed N (or w) is a state of the rotating aggregate, and is
therefore given by the environment of the turbine, or rather to the part of the
turbine converting pressure drop to mechanical energy.

It follows that the turbine itself determines the pressure drop Ap and the mechan-

ical shaft power W,. Thus, by knowing (V,u, N ), it must be possible to deduce
(W, Ap).

The operation of the turbine will also depend on fluid properties such as density
p, viscosity pu, and compressibility 5 (1/pressure):

10p

e Oy (6.43)

as well as geometric properties such diameter D of the turbine rotor.

6.6.2 Mechanistic hydro turbine models

Turbine types The two main classes of turbines are the impulse turbines and the
reaction turbine. The most common impulse turbine is the Pelton turbine (1870s),
while the two most common reaction turbines are the Francis turbine and the Kaplan
turbine. Figure 6.12 gives a typical selection chart for hydro turbines depending on
the relation between volumetric flow rate V (“Q” in the figure) and height difference
between reservoir level and level downstream from the turbine ( “H” in the figure)
— the figure also includes a fourth turbine type, the Bulb turbine.

As seen from Fig. 6.12, the Pelton turbine is used for “small” flow rates V and
pressure drops with equivalent water height of [100,2000]m. A needle is used to
adjust a nozzle opening and thereby increasing the water velocity. High velocity
water hits a bucket with two cups?® and the energy is released as an impulse to
atmospheric pressure, causing the wheel to rotate. A water flow deflector is used for
additional and quick control of over-speed. See the paragraph on the Pelton turbine,
p- 256, for details.

In reaction turbines, a rotor is forced to rotate by a high water flow rate, much
like the propeller of a boat will rotate if the boat is towed. Two common types of
reaction turbines are the Francis turbine (1848) and the Kaplan turbine (1912). The
Francis turbine is used for medium to large flow rates V and waterfalls in the interval
[20, 500 m. Water enters through a spiral casing that surrounds the runner (rotor).
The water enters the rotor through a ring of stationary guide vanes which direct
the water flow onto the rotor blades at some optimal angle. After the turbine,
the remaining kinetic energy is recovered in a draft tube of gradually increasing

23Pelton invented the use of two cups.
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Figure 6.12: Turbine selection chart for selected turbine types. Due to Heinzmann
HydroTech, India, see http://www.heinzmann.co.in/technology.html.
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diameter, thereby gradually reducing the linear velocity and thus the kinetic energy
towards zero. See the paragraph on the Francis turbine, p. 261, for details.

The Kaplan turbine is used for very large and varying flow rates V and low
waterfalls in the range of [7,70]m; a typical use is in run-of-river hydro power pro-
duction. In Kaplan turbines, water enters the runner radially through guide vanes,
and the flow then changes to axial (vertical) flow where the axial propeller/turbine
blades are rotated. The guide vanes are adjusted automatically for optimal opera-
tion, while the produced power is manipulated by changing the turbine blade pitch.
See the paragraph on the Kaplan turbine, p. 269, for details.

Bulb turbines are used for very low water height differences, such as in tidal
plants, etc.

Fundamental relations Let the total energy be £ = K, for the aggregate (ro-
tating turbine and generator) and E = K + P =0, this gives the aggregate energy
balance (Eq. 6.11)

dKa . . . .

:VVi_We_W - a

dt — ~ Ve Wy =V,
AW,

where Wj is the shaft work produced by the fluid (water) side, while W, is the
equivalent work on the aggregate side; W, will include windage friction loss W,
bearing friction loss Wi, friction loss in the generator ng, etc., but also work on the
aggregate due to consumption of electrical power W, taken out from the generator:

Here, we will focus on the shaft work W, which consists of the net work due to
forces from the fluid, AWg, defined as

AWg 2 W, — W, (6.44)
and possible fluid side friction drop through the turbine, W
W, £ AWy — Wy

When we have computed W, (see below), the pressure drop Aps across the shaft of
the fluid side can be computed from

Ws = ApSV

where V is the volumetric flow rate through the fluid side.
From Eq. 6.13
Wi = Tw = Vpi - 10}
W, = Tow = v, - 1c0}
where T'= A = RM® = Riwt and v, = wR. We neglect the leakage of mass in the

turbine, hence 7i7; = e = 1; we consider the case of constant density p, hence the
volumetric flow rate through the fluid side is given by m = pV. Furthermore, the
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Figure 6.13: The absolute (earth bound) velocity v of a horse/rider is observed as
a relative velocity © by passengers in a train moving with a reference velocity v,,.
More generally, an absolute velocity vector ¥ is observed as relative velocity © for
an observer moving with reference velocity v,; 7 = v, + 0.

velocity v* is the projection of the velocity tangential to the rotation (orthogonal to
the radius 7).
We thus have

AWy = m (Vpi - VF = Vpe - 0Y) (6.45)

1 e

where the “reference” velocity is v, ; £ R,w; the expression for AWy in Eq. 6.45 is
known as Euler’s turbine equation.

Turbine geometry*** (How much is general?) In the development of models,
absolute velocity v in an earth bound reference system will be essential, together
with a reference velocity v, in the same reference system, and a velocity © relative
to the reference velocity, Fig. 6.13.

Example 6.2. Absolute and relative velocity

If a horse/rider moves at velocity v = 20km/h in parallel to a train moving at
reference velocity v, = 15km/h, the passengers of the train will perceive the cowboy
to move at a velocity 0 = v — v, = 5km/h relative to themselves. A

For turbine models, we are interested in relating XXX

In general vector form, we relate absolute velocity (vector) ¢ with reference
velocity @, and relative velocity @ as follows,

=7, + 0.
If we decompose the vectors into an orthogonal coordinate system of z- and y-axes,
and skip the vector symbol for the decomposed vectors, we get
vt =y 0"
v =)+ oY
If we specifically choose z || ¥, and denote this by t (“tangential”), thus y L ¥,
denoted r (“radial”), we have v§ = vy = v,, and v} = v; = 0:

vt =wv, + 0" (6.46)

T

vt =" (6.47)
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Here,
v’ =v-cosa (6.48)
' =0 -cosy (6.49)
v =v-sina (6.50)
0" =0 -siny, (6.51)
where it follows that
v' =" cot a. (6.52)
Furthermore, from the sine law, we have
v v 0
- — . 6.53
sin(m—7) siny  sina (6.53)
By combining Eq. 6.46 with Eqs. 6.48 and 6.49 to get
v-cosa = v, + V- cosv, (6.54)

we can use Eq. 6.53 to express ¥, and the relative velocity can be eliminated from
Eq.6.54 to get

a
——7 - COS 7Y

v-Ccosa =1, +
sin 7y

cos « - siny — sin a - cos 'yu (6.55)

v, = -
’ sin 7y

This expression relates the reference velocity v, the absolute velocity v and the

involved angles.
Here, we can alternatively use Eq. 6.50 and relate v, to v':

Cos v - Sin }/—Sil’lOé'COS Y U*
vV, =
p

\
v, = (cot v — cot y)v". (6.56)

sin 7y sin «v

The Pelton turbine: impulse transfer

Overview The impulse turbine is a conceptually simple type of turbine, where
the Pelton turbine is the most commonly used one today. Figure 6.14 illustrates the
main concepts.

The impulse turbine consists of a nozzle (“0"1”) where a needle in position Y
can be moved to change the cross sectional area at position “1”, and thus the velocity
vo. Then water from position “1” hits the buckets of the turbine wheel at position “2”
and transfers energy to the rotating engine. It is natural to divide the treatment into
one model for the nozzle, and another one for the bucket system/rotating engine.

In general, the mass flow rate m is assumed to be constant through the impulse
turbine, i.e., in all position. Furthermore, we neglect compressibility of water which
leads to a constant density p, hence the volumetric flow rate V is constant through
the turbine.
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Figure 6.14: Some key concepts of the impulse turbine.

Nozzle pressure drop The nozzle model is based on a steady state energy
balance. Thus the energy flow is the same at positions “0” and “1”. Assuming a
small nozzle, we can neglect potential energy and only include kinetic energy flow
K and pressure-flow power W, as well as friction loss ;. Hence

K0+W0:K1+W1+Wf

where
. 1
K = —rmv?
. 2 .
W =pV.

With constant m and V', and v = V/A, this leads to

. 2 . 2
1. Vv . 1. Vv . .
I

) 1 . 1 1 .
Do — P vz—mv2<———>+w.
(o = p1) 2 A2 A2 !

Here, Apn. = Po — p1 is the pressure drop across the nozzle. It is common to
assume that W oc V2, e.g.,

1 .
Wf = épk‘f‘/Q.

Finally, A; is a function of needle position Y; A; = A; (V). Thus

. 1. 1 1
ApaV = V2 i oo = il
mV =35V L”(A%m Aé)”kf]
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By utilizing that m = pV, we can alternatively find

SR e 1 1
Bral =50V {V (A%(Y) A%)*kf}

and
I | 1 1
o= |V (et )+

Geometry The ideal transfer of power W, to the rotor of the turbo machine
is given by Euler’s turbine equation

VVt = (Tl—TQ)w

where 7} is the torque at position “1” (or rather: when the water hits the bucket) and
T5 is the torque at position “2” (or rather for the water reflected from the bucket).
In the Pelton turbine, the torques share the same radius R of the turbine wheel in
Fig. 6.14:

T1 == mv‘iR

Ty = oy R;

v} indicates the tangential coordinate of the velocity in position j — parallel to m;
R is the radius of rotor where the mass hits the bucket, and we have utilized that
the mass flow 7 is constant in size through the turbine. This also means that the
reference velocity is the same for poth position “1” and position “2”: v, = v,2 =
VR = wR.
For position “17, we simply have that
¢ V

Vi =01 = —.
1 1
Ay

For position “2”, we observe from Fig. 6.14 that the relative velocity 0, is reflected
from the bucket at an angle 8 backwards. By relative velocity, we mean the velocity
that we would observe had we been sitting and moving around on the turbine wheel.
But the velocity we need in our expression for the torque, is the absolute velocity in
the earth-bound coordinate system. Thus we need to find an expression for v5.

First, we assume that the reflected relative velocity o9 is proportional in size to
the inlet relative velocity v;:

{)2 == k?v)l,

here k < 1 is some friction factor, typically k£ € [0.8,0.9]. Next, we need to relate
the relative velocities to the absolute tangential velocity. Then we have

U = v} — Vg = v, — UR

and
vy = vg — Vg cos (180 — B) = vg + 3 cos f3.
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Here, a typical value for the reflection angle is 5 = 165°. We find
vy =vgr + k (v; — vg) cos (.
The ideal turbine work thus becomes

Wt = (Tl — Tg)w
4
W, = m (U} — Ug) Rw.

We have

o) — vy = v — [vg + k (v1 — vg) cos 3]

4

vy — vy = (v; —vg) (1 — kcosf3).

Shaft power The ideally transferred power can then be written as
W, = 1hwg (v; — vg) (1 — kcos §).

It is of interest to see how we can maximize the performance of the turbine.
Although the reference velocity vy is given since vg = Rw and w normally is con-
strained by the grid frequency, let us consider the case when v; is known and we can
vary vg. To this end, the transferred power W, (vg) is maximised when ‘37”2 =0,

leading to (vg),,., = sv1 or

max

. 2
Wi (VR) s = m% (1 —Fkcosp).

Similarly, the maximal torque is given from W="Tw= T =T3%, or

15 (VR) o = T'rzR% (1 —kcosp).

The real shaft power transferred is the ideal power given by Euler’s equation

reduced by friction loss, ' ' '

Wy =Wy — Wy,
where for the case that Wy = 0, W, = W,. Similarly, the real shaft torque Tyw = W..
Figure 6.15 illustrates how the friction free model W (vg) fits with experimental
data.

Possible explanations for the mismatch between the theoretical model and the
actual data in Fig. 6.15 could be friction loss, the fact that there is not a continuum
of buckets, etc. A common way to represent this mismatch is to say that there is a
power loss proportional to rw%, thus

Wi = K'rvd = K (1 — kcos ) v,
leading to the shaft power
W, = 1hwg [v; — (1 4+ K)vg] (1 — kcos 3).
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Figure 6.15: Comparison of how W, fits with actual data. Taken from Jyn-
Cherng Shieh (2007), www.taiwan921.1lib.ntu.edu.tw/mypdf/fluid12.pdf, but
with modified notation and correction of a typo in the expression for 7.
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It is easily found that W, attains it maximum for vp given by (vg) =1 4

max 2(1+K)
leading to

2
Uh

. , 1
Ws (VR) pux = mz (1 — kcos ) oKk

From Fig. 6.15, we see that in that figure,

1 1-0.8
——~x08=> K~
1+ K 0.8

= 0.25.

Furthermore, from the expression for WS, we see that W, = 0 when vg = 0V vg =
1%(”1 = (.8v;, which also fits well with Fig. 6.15.

In practical installations, there will be a deflector mechanism to reduce the ve-
locity v10 (us) to avoid over-speed. A final expression for the shaft work could thus
be

W, = 1mwg [0 (us) - v — (1+ K)vg] (1 — kcos ).

Model summary Produced shaft power is given as
W, = rwg [0 (us) - v1 — (1 + K)vg] (1 — kcos ).

If needed, we can compute the pressure drop across the turbine itself from W, =
ApsV where V = Ay (V) vy.

The Francis turbine: reaction transfer

Overview The Francis turbine is a radial flow turbine, and is illustrated in
Fig. 6.16.

Figure 6.17 shows how the so-called guide vanes affect the flow of water towards
the turbine stator.

In Fig. 6.17, the spiralling cage is designed so that the flow through each of NV
opening pairs of guide vanes is (approximately) the same, %;24 the linear velocity vy
is also the same through each opening. The distance between each suspension point
for guide vanes is d, each guide vane has the same angle oy with the vane perimeter,
and the distance between each (almost) parallel guide vane is . It follows that d
and d are related as

. )
sina; = —.

d

With width w of the rotor and stator, it follows that the cross sectional area of the
flow through each guide vane pair is ay = 0w, hence the linear velocity v; is related
to V and «a; as

V/N V/N  V/N 1%
a,  O0-w sinaj-d-w Nd-w-sinag

v =

241n the figure, only 3 openings are shown; the N openings are spread equidistantly around the
stator entrance.
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Figure 6.16: Principle drawing and illustration of Francis turbine.

From Hari-
naldi,

http://staff.ui.ac.id/system/files/users/harinaldi.d/material/
fluidsystemO9-reactionturbine-francisandkaplan.pdf.
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Figure 6.17: Effect of guide vane angle a; on stator inlet velocity v.
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Here, o, £ Nd is the perimeter of the guide vane suspension circle, hence Nd - w =
pyw = 2rR,w = A, is the maximal area opening through the guide vanes;

v
v Aysinag

The flow from the turbine entrance (volumetric flow rate V', cross sectional area
Ap) through the guide vanes and to the stator/rotor interface (volumetric flow rate
V cross sectional area A, sin aq) gives a certain pressure change. Simultaneously,
the guide vanes steer the water at a certain angle a; towards the rotor blades,
thus driving the rotor and producing a rotational power with another pressure drop
through the rotor and to the exit from the rotor.

In the sequel, we first discuss the pressure drop across the guide vanes. Next,
the rotational shaft power produced in the turbine is discussed. Finally, paragraph
Guide vane geometry on p. 267 discusses how the actuator signal u relates to guide
vane angle ;.

Guide vane pressure drop We will assume that the flow from the turbine
entrance through the inlet guide vanes follows Bernoulli’s law. To this end, we have
the following steady energy balance along stream lines, where we neglect any vertical
difference in position:

Ko +p0V =K +p1V + va;

here subscript 0 indicates entrance to the turbine and subscript 1 indicates after
guide vanes, while Wy, is friction loss from turbine entrance and across guide vanes.
Here, we have used that mass is not accumulated and assumed constant density,
hence the volumetric flow rate is the same everywhere. From Fig. 6.17 and the
above discussion, we have

1. 1. V2
KO_EmUO_QmA_g
1 1 V2
K = -nmv?=-1m—
L T M i

With V = r/p, we then have

"/2

V2 m

h—s + - W
—Mm— — = —-Mm— — -
2 A? Po p 2 A?sin’q h p !
Introducing
Ap, £ Po — D1,
we find ]
P 1 1 79 fv
Ap, == —5——— |V 4+ —.
P79 (A% sin® oy A%) 174

When the vanes are closing, a; — 0 and thus sina; — 0, the velocity v; o Sinlal will

go to infinity. However, Ap, will go to infinity quadratically (hence, much faster),
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Stator

Rotor

Figure 6.18: Key quantities in the Francis turbine model, with blade angles 5, and
(2. The water effluent comes out from the paper plane.

and thus the counter pressure to the turbine entrance flow will block the flow of
water as the guide vanes close.

In general, the friction loss will depend on (i) the mass flow rate, and (ii) the
vane angle aq. If we simplify the description and set Wiy = %m, then

1 . [A2— A%sin’ oy
A = — \Va 0 v
Pe=oPM AZA2sin? oy

As indicated above, the angle will be a function of the the actuator signal w.

From this discussion, we see that Ap, may be either positive or negative, de-
pending on the angle o and the size of kg,. In standard presentations of the Francis
turbine, the pressure drop Ap, is not discussed, and is thus implicitly neglected, or
may alternatively be included in some overall efficiency of the turbine.

+ kfv

Geometry** Insert??

Shaft power Figure 6.18 shows absolute velocities, rotor reference velocities,
and relative velocities in the Francis turbine.
We have seen that the shaft power W, produced in a turbo machine can be
written as in Eq. 6.44,
W, = AW, — Wy
where the the change in work rate across the rotor is given in Eq. 6.45 and can be
written as follows for the Francis turbine:
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AW, = 1m (vp,10] — vp205)
where the reference velocity is
Vpj = why.
Being a radial flow turbine, the water net flow is in the radial direction. With
no mass accumulated in the turbine, we have

s r r

Here, A; is the area through which the water flows, typically equal to the perimeter
of the turbine, p; = 27 R;, multiplied by the width of the turbine/blades w;: A; =
9;w;, possibly with the reduction of the area taken by guide vanes, etc., expressed
through some factor »;. Thus

Aj = QWijj/ij.

Next, it is desirable that there is no shock when the water hits the turbine blades,
which implies that the angles of the relative velocities «; must be aligned with the
blade angles 3;; v; = 3;. At the inlet, Eq. 6.56 gives

v,1 = (cotay — cotyy) v] (6.57)
where v, = wR; is given by state w, blade inlet angle 8, given by design, v] = All
is given by state V, and the inlet guide vane angle «; is given by control signal u.
It follows that +; is then constrained by the above equation, and we do not have
the freedom to align v; with the blade angle £;: this alignment can only be done
in a design phase — changing either of a;, w (through v,,) or V (through %) will
change v, accprdomg to Eq. 6.57 and make it differ from ;. When operating with
v # B, this leads to a friction-like hydraulic loss in the turbine.

For the outlet from the turbine, however, Eq. 6.56 can be achieved with v = (s,

leading to
Vp2 = (cot ag — cot fy) vj. (6.58)

Here, reference velocity v,2 = wly, blade outlet angle B2 is given by design, and

radial outlet velocity is v = A%. Thus, this equation gives the angle as.
From Eq. 6.52, we finally have the friction free shaft power as

AWy = 1 (v,10] cot o — v, 205 cOt ap)

or with
vy cot ay = v, 9 + vy cot B,

we find

AW, = m (vp 1] cot aq — V0 (Vy2 + V5 cot Ba))

4

AWt =1m lel cota; — wRs | Ry + K cot By )
A1 A2
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Here, cr; < 90° is a function of the guide vane servo position u, and Sy < 90° is a
design variable.
In turbine design, the following considerations are important:

1. For the nominal operating condition with given w , V, and operating guide
vane angle aq, a suitable turbine with R; , Ay, (i, is selected such that the
influent no-shock condition of Eq. 6.57 can be achieved with v, = £,. This
will reduce the hydraulic friction loss.

If the turbine is operated at conditions different from the nominal ones, this
will incur a friction shock loss which, e.g., can be expressed as

me = Fia (cot Y1 — cot [y, V> >0

where (; is a design variable (inlet blade angle) and cot~, is found from

Eq. 6.57 as
v wR
pf =cota; — !

v} V/A,

coty; = cotay —

As an example, we could postulate (V >0)

me = k:me (coty; — cot /81)2.

2. For the nominal operating condition with efluent no-shock condition Eq. 6.58
satisfied, the so-called no-whirl effluent condition az = 5 = cotaz = 0 is en-

forced, which increases and simplifies the shaft power to AW, = rmwR; All cot ay.

Effluent whirl both reduces the shaft power directly, and gives some hydraulic
friction loss:

Wft72 = Fhi2 (COt s, V) >0

where

As an example, we could postulate

Wft72 = kfft72V COt2 Q9.

Model summary Produced shaft power is given as

Ws = AWt - Wft
where ' '
. ) V %
AW, =mw | Ri— cot a; — Ry | wRy + — cot 3y
Al AQ
while, e.g.,

Wi = kft’lv (cot 1 — cot 51)2 + kme cot? ag + kft,3v2
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Figure 6.19: Guide vane geometry relating actuator position Y to guide vane angle
aq.

where kg 3 gives some standard friction loss due to wall friction, etc. Here, 1, V will
be a state of the entrance system (1 = pV), w will be a state of the aggregate, o
will be given by the actuator position u. The total work rate removed through the
turbine will be

Wt - Ws + Apv"/vv

thus the total pressure loss Ap; across the turbine can be found from W, = AptV.

Guide vane geometry The guide vane geometry is depicted in Fig. 6.19.2°
From Fig. 6.19 (a), assuming that the actuator cylinder is “vertical” in position
“0”, we find that

=
Ty

Oy = —.
cos 6 Ry
Clearly, dy = R, — r,.Next, moving the actuator to position Y, Fig. 6.19 (b) with
the cosine law gives

Y2 =1l + RY — 2ry Ry cos®,

2Syww.mekanizmalar.com/francis-turbine-wi cket-gate-animation.html
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Table 6.6: Example parameters for Guide Vane system.

Parameter Value Parameter Value
Ty 1.5m Ty 1.6m
Rv 2m Ry 3m

(Ry—ry)?
l 1.8/ 5

thus specifying angle §. We introduce the change in angle 6 as (Fig. 6.19 (b), (c))
as

AO =0 —06,.
Then, applying the cosine law to Fig. 6.19 (c) gives length d from?®

d?> =12+ R* - 2r R, cos Af

and then angle ¥ from
r2=d*+ R? —2d - R, cos;

here it is necessary to ensure that the sign of ¢ equals the sign of Af.
From Fig. 6.19 (d) and applying the cosine law, we find

d
£2:€2+d2—2€d-cos</§:>cos¢:ﬂ.

Finally, we find the guide vane angle as

ar=¢—1.

In the above development, it has been assumed that the guide vane is perpen-
dicular to the attached “arm” of length ¢, and that in position “0”, a guide vane is
at position “9 o’clock”, Fig. 6.19 (a).

As a simple example, consider the guide vane parameters as in Table 6.6 — these
numbers are not necessarily realistic.

The mapping from actuator position Y to guide vane angle o can then be found
as in the Python code below (file guideVaneGeometry.py).

# —-*- coding: utf-8 -*-

minn

Created on Tue Jan 17 16:02:20 2017

Qauthor: Bernt Lie

nin

import numpy as np

import numpy.random as nr
import matplotlib.pyplot as plt
import pandas as pd

#

rv = 1.5

26Clearly, d € [dy, 2/].
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Rv = 2

rY = 1.6

RY = 3

#

YO = np.sqrt(RY**2-rY*%2)
theta0 = np.arccos(rY/RY)
d0 = Rv-rv

#

L = np.sqrt(d0o*x*2/2)*1.8

alphal0 = np.arccos(d0/(2%*L))

#

Y = np.linspace(2.25,3.22)

#

theta = np.arccos ((rY**2 + RY*x2 - Y*%x2)/2/rY/RY)

dtheta = theta-thetal

d = np.sqrt(rv**2 + Rv**2-2*xrvxRvx*np.cos(dtheta))

psi = np.arccos ((d**2 + Rv**2 - rv**2)/(2xd*Rv))*np.sign(
dtheta)

phi = np.arccos(d/2/L)

#

alphal = phi - psi

#

plt.plot(Y,alphal*180/np.pi,linewidth=2.5)

plt.xlabel(r’$Y$,[m]’)

plt.ylabel(r’$\alpha_1$,[${} " \circ$]l’)

plt.title(r’GuideVaneangle $\alpha_1$ ,asya,functionof,
actuator_ position $Y$’)

plt.grid(True)

plt.hold(True)

plt.plot(Y0,alphal0*180/np.pi,’ko’)

plt.hold(False)

This case leads to the guide vane characteristic of Fig. 6.20.

The shape of the Guide Vane characteristic will depend on the chosen geometry,
but with sensible geometry, it is possible to make the mapping from Y to «; fairly
linear.

In order to change angle «, it is necessary to use a servo motor. Depending on
how the control loop is constructed, it may be possible to specify the setpoint to
angle aq, a setpoint to sinay, or a setpoint to Y. The closed servo loop normally
adds a time constant of about 1s to the system.

The Kaplan turbine: reaction transfer

Overview The Kaplan turbine is an axial flow turbine, and is illustrated in
Fig. 6.21.
Figure 6.22 shows some velocities in the Kaplan turbine.



