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Nomenclature 

 

Symbol Description Units 

m�  Mass flow rate [Kg/sec] 

p Pressure [Pa] 

P Index referring to the penstock  

L� Penstock length [m] 

A� 
Cross-section area of penstock with inelastic walls (constant 

through the whole length of the penstock) 
[m�] 

p� Water pressure along the penstock at location X = X� [Pa] 

ρ� 
Water density along the penstock at location X = X� as a 

function of pressure p� 
[Kg/m�] 

A�,� 
Cross-section area of penstock with elastic walls at location 	
X = X� as a function of water pressure	p� inside the penstock at 

that location. 

[m�] 

A�!"# 

Cross-section area of penstock with elastic walls when pressure 

inside and outside of the penstock is equal to atmospheric 

pressure, i.e. empty penstock (constant through the whole 

length of the penstock) 

[m�] 

p!"# Atmospheric pressure [Pa] 

ρ!"# Water density at atmospheric pressure [Kg/m�] 
CV��%& Control volume enclosed between penstock cross-sections at [m�] 
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Symbol Description Units 

locations X��	and X��%� for applying mass conservation rule (for 

i=1,…,N-1) 

CV��%� 

Control volume enclosed between penstock cross-sections at 

locations X��%&	and X��%� for applying momentum conservation 

rule (for i=1,…,N-1) 

[m�] 

V Volume [m�] 

HWDI 

Index referring to the interface variables between elastic 

penstock and head water system. “HW” refers to head water, 

“D” refers to “at downstream of HW” and “I” indicates that the 

variable is an input to HW system. 

 

HWDO 

Index referring to the interface variables between elastic 

penstock and head water system. “HW” refers to head water, 

“D” refers to “at downstream of HW” and “I” indicates that the 

variable is an output from the HW system. 

 

TWUI 

Index referring to the interface variables between elastic 

penstock and tail water system. “TW” refers to tail water, “U” 

refers to “at the upstream of TW” and “I” indicates that the 

variable is an input to TW system. 

 

TWUO 

Index referring to the interface variables between elastic 

penstock and tail water system. “TW” refers to tail water, “U” 

refers to “at the upstream of TW” and “I” indicates that the 

variable is an output from the TW system. 

 

β()*)+, 
total compressibility due to water compressibility and pipe shell 

elasticity 
[Pa.&] 



12 
 

Symbol Description Units 

β(/0
 equivalent compressibility due to the pipe shell elasticity [Pa.&] 

β Compressibility of water  [Pa.&] 

m� �,� 
Mass flow rate through a cross-section of penstock at location	
	X = X� (in direction of increasing “i” or simply X direction.) 

[Kg/sec] 

v�,� 
Velocity of water along penstock wall at location	X = X� (in 

direction of increasing “i” or simply X direction.) 
[m/sec] 

F4,��%� The force acting on the water column inside the control volume 	
CV��%� due to pressure difference at both ends 

[N] 

F5,��%� The gravity force acting on the water column inside the control 

volume CV��%�  
[N] 

F6,��%� The friction force acting on the water column inside the control 

volume CV��%�  
[N] 

	ξ��%� A friction factor. Friction force applying on the control volume 

CV��%� is given by 	ξ��%�v�,��%� 

[N.sec/m] 

f Fanning friction factor [-] 

Π�,��%� Internal perimeter of the penstock cross section at X = X��%� [m] 

P"9 Hydraulic power available for conversion by turbine [W] 

m� " Mass flow rate of water through turbine  [Kg/sec] 

∆p" Pressure drop across turbine inlet and outlet  [Pa] 

P"# Mechanical output power of the turbine [W] 
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Symbol Description Units 

η" Efficiency of the turbine [-] 

H= (H") Turbine head [m] or [%] 

Q" Turbine volumetric discharge 
[m�/sec] or 

[%] 

Y5? Guide vanes opening [%	or	degrees] 
ω# Turbine mechanical rotation speed [rad/sec] 
ND Turbine Specific Speed [-] 

N"E Turbine design speed [rpm] 

FGH/IJKL
 Turbine design speed [Rad/sec] 

P"E Turbine design power [kW] 

H"E Turbine design head [m] 

η"E 
Turbine efficiency at design head and rated power and 

discharge 
[-] 

HMN	and	QMNEquivalent head and discharge as defined in Section 2.2.2 
[m] and 	

[m�/sec] 

H 
Head (in some cases through the report is used as values of 

turbine head) 
[m] 

Q 
Volumetric flow rate (in some cases through the report is used 

as values of turbine discharge) 
[m�/sec] 

C Index indicating that property belongs to conduit  
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Symbol Description Units 

S Index indicating that property belongs to surge shaft  

lS Length of the water column in the surge shaft [m] 

a, b, c Index which refers to one of the stator coils  [-] 

F, D, Q Index which refers to one of the rotor coils. “F” is the coil in 

which the field (magnetizing) current flows. “D” and “Q” are 

the damper windings. 

[-] 

LP Self-inductance of the coil “x” where x refers to one of the 

indices a, b, c, F, D and Q. 

[H] 

LPQ Mutual inductance between the “x” and “y” coils where x and y 

refer to the indices a, b, c, F, D and Q. The equality LPQ = LQP 

always holds.  

[H] 

n� Number of the poles of the generator [-] 

f# Rotation frequency of the rotor  [Hz] 

fM Frequency of induced voltage in the stator coils (fM = N�f# 2⁄ ) [Hz] 

ω# Rotor rotation angular speed (ω# = 2Tf#) [rad/sec] 

ωM Angular speed of the induced voltage in the stator coils 

(ωM = 2TfM) 

[rad/sec] 

θ# and θM The rotor angle θV(t) = ωVt + θV(0) is the rotor position 

measured in a reference frame fixed to the stator. The rotor 

electrical angle θM(t)	is defined by	θM(t) = ωMt + θM(0) =
N�θ#(t) 2⁄ . The initial angle θV(0) depends on the measuring 

[rad] 



15 
 

Symbol Description Units 

points on the rotor and the stator and is usually chosen in such a 

way that the open circuit terminal voltage of the “a” stator coils 

becomes proportional to sinθM(t). 

L[ Average value of any of the quantities L!	, L\	and	L] taken over 

the rotor electrical angle (θM) values between 0 and T [rad]. 

[H] 

M[ Absolute value of the average of any of the quantities 

L!\, L!]	and	L\] taken over the rotor electrical angle (θM) values 

between 0 and T [rad]. 

[H] 

L_ Absolute value of maximum deviation of any of the quantities 

L!	, L\	, L]	, L!\, L!]	and	L\]	from their average value when the 

rotor electrical angle (θM) varies between 0 and T [rad]. 

[H] 

M6 Absolute value of maximum of any of the quantities 

L!6	, L\6	, L]6	when the rotor electrical angle (θM) varies 

between 0 and 2T [rad]. 

[H] 

M` Absolute value of maximum of any of the quantities 

L!`	, L\`	, L]`	when the rotor electrical angle (θM) varies 

between 0 and 2T [rad]. 

[H] 

Ma Absolute value of maximum of any of the quantities 

L!a	, L\a	, L]a	when the rotor electrical angle (θM) varies 

between 0 and 2T [rad]. 

[H] 
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Chapter 1 Introduction 

 Background 1.1

Hydropower systems are extensively studied in the literature. Some of the literature in this field 

or at least some of their references dates back at 1920’s. In 1992 IEEE published a paper in 

which various models for hydropower generation units existing at that time was gathered in one 

place (IEEE, 1992). An enormous effort has been taken recently for advanced modeling, 

optimization and control of hydropower production units (Kishor, 2007).  

A high head hydropower generation unit typically consists of reservoir, waterway (head-race 

tunnel, surge shaft, penstock, turbine case and draft tube, and tale-race), turbine, and generator. 

The overall system is highly non-linear and its controller is usually designed for stability and 

best performance at the best-efficiency operating point using a linearized model. For having a 

stable operation and acceptable performance at the other operating points it may be necessary to 

change the controller parameters when the operating point of the system changes. 

It is important to be able to model and simulate the system as accurately as possible. With an 

accurate model, a designed controller can be tested more reliably for stability and performance in 

different operating points. Different models with different degrees of complexity have been 

published (Kishor, 2007). The simple models consider rigid penstock walls with incompressible 

water column in the penstock. A more accurate model can be obtained if a penstock with elastic 

walls and compressible water column in the penstock is considered. Such a penstock can be 

modeled by two nonlinear partial differential equations. These equations can be linearized and 

solved by the Method of Characteristics (MOC) (Warnick, 1984). Numerical methods can also 

be used for solving these equations. Some software solutions such as WHAMO (WHAMO, 

1998) and Hydro-Plant Library (Modelon, 2010) are available for numerical simulations. 

In Telemark University College a research group is established to study around hydropower. In 

this direction some projects and theses are defined and done previously like (Shresta, 2010) and 

(Thoresen, 2010). A Phd student is currently working on the subject of modeling and control of 

hydropower plants. This Thesis is also about the modeling of the hydropower systems. 

 Task Description 1.2
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The complete task description of this thesis is included in the Appendix I. For fulfillment of the 

tasks, a complete model for the hydropower generation unit is introduced which takes the 

compressibility of the water and elasticity of the penstock walls into account. It is shown how to 

enter data available in the performance charts of the Francis turbine into MATLAB and make an 

interpolation function for estimation of the turbine head and efficiency. The penstock model is 

validated by the charts available in the literature. A classic controller is used to show the closed 

loop operation of the introduced models and finally it is shown how to include the synchronous 

generator with voltage control loop in the overall model and simulate the whole system. (Due to 

lack of time the generator is only simulated with the inelastic model) 

Due to the lack of complete data from real plants, validation of simulations in this work was not 

possible by comparing to real plant operations data. Also because of time shortage, 

implementing of an advanced controller which had been considered as an option in the thesis 

task description was not possible.  

 Structure of the report 1.3

The report has two main chapters:  

Chapter 1 includes the models and simulations of the hydraulic system. In Section 2.1 penstock 

model with considering compressibility and elasticity effects has been studied. In section 2.2 

Francis turbine, similarity laws and turbine performance charts are discussed. In Section 2.3 

models available for other parts of the waterway are extended to include an interface part to 

elastic penstock. In Section 2.4 a classic controller is introduced to use with closed loop 

simulations. In Section 2.5.1 the elastic penstock model is validated against available charts and 

finally in Section 2.5.2 the closed loop system (without generator) is simulated for both cases of 

the waterway with an inelastic penstock and the waterway with elastic penstock. (Elastic 

penstock in this report refers to the model of penstock with considering water compressibility 

and elasticity of penstock walls.) 

Chapter 3 is devoted to study of the synchronous generator. In sections 3.1.1 to 3.1.3 structure of 

a multi-pole salient poles generator is discussed. In section 3.1.4 the self and mutual inductances 

of various windings in the machine are studied. Sections 3.1.5 to 3.1.7 the Park’s transform and 

machine equations in the rotor reference frame are discussed. The power term in the swing 
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equation which is relevant to the generator active power is discussed in Section 3.1.8. In Sections 

3.1.9 to 3.1.11 available simplified models for the synchronous generator are introduced and it is 

shown how to relate the variables of these models to the network variables through the “phasors” 

concept. Finally a generator connected to an infinite bus is simulated with the waterway model 

(without elasticity). 

Relevant simulations and discussions necessary for each chapter are included in the same 

chapter. No separate results chapter is included. Only a short conclusion will be given in the 

Chapter 4. 

MATLAB code of the simulations in this report is included in the Appendix III. 
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Chapter 2 The Hydraulic System 

The hydraulic system in a high-head hydropower plant will be modeled in this chapter. This 

system consists of all the components in the waterway plus the turbine and its auxiliaries. The 

interface of this system with the electrical parts of the plant is the turbine-generator shaft. The 

turbine-generator shaft rotating speed and the mechanical output power of the turbine are the 

quantities which are needed to be controlled within this system. However measurement of the 

turbine mechanical output power is easier if it’s done indirectly by measuring the electric active 

power delivered at the generator terminals and dividing it by the generator efficiency or 

alternatively, by estimation given the guide vanes opening and the current gross head of the 

plant.  

Governing equations for water flow inside the tunnels and pipes (head-water, penstock and tail- 

water) are an important part of the hydraulic system model. In the Section  2.1 a general model 

for the penstock will be derived. This model assumes compressible water and elastic penstock 

walls. Models for the head-water and tail-water tunnels and surge-shaft are similar to the 

penstock but usually there’s no need to consider compressible water and elastic walls for these 

models due to the lower pressures. Simpler model for the penstock is also available by neglecting 

the compressibility and elasticity effects. Models for Francis turbine are discussed in the 

section  2.2. In the section  2.3 differential equations governing the whole head-water system 

(reservoir, head-water tunnel, surge-shaft and an interface part to the elastic penstock model) and 

the whole tail-water system (interface to the elastic penstock model, turbine, draft tube, tail-water 

tunnel and reservoir) will be summarized. The turbine controller model which will be used for 

simulations throughout this report is given in the section  2.4. Finally in the section  2.5 simulation 

results of the hydraulic system, with turbine output mechanical power considered as a constant 

disturbance, for the both cases of elastic penstock and inelastic penstock will be included. 
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 General Penstock Model 2.1

2.1.1 Introduction 

Having a model for hydropower station which is as complete as possible is very important. It’s 

true because simulation of the controller performance in a wide range of operating points 

becomes possible. For this purpose all the nonlinearities, delays and dominant higher order 

effects (like higher order differential equations) shall be considered in the model. In this section a 

model for the penstock will be derived which considers effects of compressibility of the water 

and elasticity of penstock walls. “Finite volume method” (Versteeg & Malalasekera, 1995) of 

computational fluid dynamics (CFD) will be used to derive a set of ordinary differential 

equations as the penstock model. 

2.1.2 Problem Definition 

Compressible water flow inside a penstock with elastic walls is governed by a partial differential 

equation (Warnick, 1984) (Lie, 2011). This PDE is obtained by applying the mass and 

momentum conservation laws to a 1D infinitely small control volume along the penstock axis. 

(Parmakian, 1963). Solving such equation numerically needs both temporal and spatial 

discretization. Software such as WHAMO (US Army Corps of Engineers, 1998) which is a tool 

for simulation of water flow in pipe networks uses a finite difference scheme for discretizing the 

governing differential equations. In this scheme, the partial derivative terms in the differential 

equations are replaced by their equivalent “difference relations” and so the differential equations 

turn into difference equations. There is an alternative scheme reffered to as the “finite volume 

method” or simply “FVM” which is more straight forward. This method (applied to a 1D 

problem such as fluid flow in a pipe) avoids the partial differential equations from the beginning 

by dividing the whole pipe volume into several control volumes along the pipe axis and then 

applying conservation laws to derive two differential equations for each control volume: One of 

the equations is an exact representation of the conservation of mass (continuity equation) and the 

other one is an exact representation of the conservation of momentum (Versteeg & Malalasekera, 

1995). “Advantage of FVM is that the discredited governing equations retain their physical 
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interpretation, rather than possibly distorting the physics due to numerical discrimination of each 

derivative term.” (Chung, 2002) 

The idea of control volumes in FVM is better described by refering to the Figure ( 2-1). The 

whole penstock length is devided into 2N equal segments. The first segment is between the 

locations X&and X� and the last segment is located between X�b	and X�b%&. It’s possible to 

define the volume determined by each two adjacent pipe segments located between X��%&	and 

X��%� (i=1,…,N-2) as a control volume for application of both mass and momentum conservation 

laws, but this can cause the discretized momentum equations have unrealistic behaviour for 

spatially oscillating pressures (Versteeg & Malalasekera, 1995). The solution to this possible 

problem which is suggested in that reference is to use a so called “staggered grid”. Stggered grid 

for the penstock in the Figure ( 2-1) means to define the volume determined by each couple of 

pipe segments located between X��%&	and X��%� (for i=1,…,N-2) as a control volume for 

application of the momentum conservation and define the volume determined by each couple of 

pipe segments located between X��	and X��%� (for i=1,…,N-1) as a control volume for 

application of the mass conservation. 

The state variables along the pipe which usually appear in the literature of CFD is mass density 

and velocity of fluid particles. In this report however it’s been decided to use static pressure and 

mass flow rate as the state variables. The later variables are more interesting than the former 

ones in a hydropower application. In addition, choosing the mass flow rate as the state has the 

advantage that in the steady-state condition mass flow rate in the whole waterway of the plant 

will be the same (surge shaft level will be constant in the steady-state condition and hence mass 

flow rate in the conduit and penstock will also be the same). Hence determining the steady-state 

value of the states will be much easier. In (Lie, 2011) it is shown that a one to one relation exists 

between water static pressure and mass density. Later in this report it will be shown that there’s 

also a one to one relation between water velocity and mass flow rate at a particular location 

along the penstock.  

The state “pressure” will be considered spatially constant along the whole length of a control 

volume for mass conservation and the state “mass flow rate” will be treated as being spatially 

constant along the whole length of a control volume for application of the momentum 

conservation. In (Versteeg & Malalasekera, 1995) alternatively “density” and “velocity” is 



22 
 

considered to be spatially constant inside the control volume. These states are indicated at the 

center of their related control volumes in Figure ( 2-1). Pressures are shown by bold dots and 

mass flow rates are shown by bold arrows. The differential equations governing these states will 

be introduced in the section  2.1.4. Cross-section area of penstock when pressure inside and 

outside of the penstock is equal to the atmospheric pressure (e.g. when the penstock is empty) 

will be considered constant throughout this report. Amount of variations of penstock cross-

section area due to water pressure inside the penstock will be discussed in the next section. 

 

Figure ( 2-1) Control Volumes for Application of Mass and Momentum Conservation Laws in a 

Penstock 

 

The pressure and mass flow rate variables at locations X&, X�, X�b	and	X�b%&	are shown with 

hollow dots and arrows. This means that these variables will not be governed by penstock 

equations. They will be determined by head/tail water system models and will be treated as 

inputs in the penstock model. States of the penstock model at locations 

X�, Xc, X�b.�	and	X�b.&will be available as outputs to the neighboring systems (head/tail water). 

They are named after their neighboring systems: 
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HWDI: Input to the head water system 

HWDO: Output from the head water system  

TWUI: Input to the tail water system 

TWUO: Output from the tail water system  

2.1.3 Water Density and Pipe Cross-Section Area as a Function of 

Pressure 

Relationship between water density and pressure is given in (Lie, 2011). Compressibility d for 

fluids is defined as: 

 β = 1
ρ

∂ρ
∂p ( 2-1) 

Where ρ stands for density and p stands for pressure 

 ρ = Density [Kg/m�] 
 p = Pressure [Pa] 

 β = Compressibility [Pa.&] 

If  p!"# and  ρ!"# withstand for atmospheric pressure and water density at atmospheric pressure 

respectively, the following formula can be used to calculate fluid density at other pressures: 

 ρ = ρ!"#ef(4.4ghi) ( 2-2) 

A typical value of the water compressibility is d = 4.5	 × 10.&l [1/Pa] which can be considered 

constant at the range of pressures and temperatures which occur in a hydropower application. 

Relationship for changes in the pipe inner radius (∆R) and changes in the pipe cross-section area 

(∆A) against difference in the inside and outside pressure of the pipe (∆p ) is given in 

(Parmakian, 1963) for a pipe which is anchored against longitudinal movement: 
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∆A
A = 2	 ∆R

R = D(1 − μ�)
eE 		∆p ( 2-3) 

Where 

 R = Pipe inner radius [m] 

 D = Pipe inner diameter [m] 

 A = Pipe cross-section area [m] 

 e = Pipe thickness [m] 

 E = Young’s Modulus of Elasticity [Pa] 

 μ = Poisson’s ratio [-] 

Here new parameters can be defined as “equivalent compressibility due to the pipe shell 

elasticity” and “total compressibility due to water compressibility and pipe shell elasticity”: 

 
β(/0 = 1

A
∂A
∂p = D(1 − μ�)

eE 					(Equivalent	compressibility	[Pa.&]) 

β()*)+, = β(/0 + β										(Total	compressibility		[Pa.&]) 

( 2-4) 

Speed of sound in water inside the pipe is related to β()*)+, as follows: (Parmakian, 1963) 

 
yz{{|	}~	�}��| = 	 1

�ρ	β()*)+, 	
	

( 2-5) 

 

Illustrative values for  β()*)+, can be calculated having the speed of sound in the water inside a 

particular pipe. Illustrative values for speed of sound inside various pipes can be found in the 

same reference. As another example, the following calculations give an illustrative value for 
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fiberglass pipes series SN10000, DN1400 and PN32 manufactured by Fibrelogic Pipe Systems 

Pty Ltd
1
.  According to datasheet of this manufacturer, stiffness of the pipe is defined by: 

 S = Ee�
12D� 								[N/m	per	metre	length	of	pipe]								 ( 2-6) 

Specifications of the selected pipe are: 

S = 10000		[N/m/m]					(SN10000	series	of	pipes) 

D = 1.388			[m]	
e = 0.0227		[m]	
μ =	0.22 to 0.29 

Using ( 2-4) and ( 2-6) with a Poisson’s ratio μ = 	0.29 will result in: 

E = 12	S	D�
e� = 	 12	 × 10000	 × 	 1.388�

0.0227� = 2.74329	 × 	 10&l			[Pa]		 

β(/0 = 1
A

∆A
∆p = D(1 − μ�)

eE 	 = 	 1.388	 × (1 − 0.29�)
0.0227	 × 	2.74329	 × 	 10&l	 = 2.04	 × 10.�			[Pa.&] 

Speed of sound in water inside this pipe calculated using ( 2-5) will be equal to 633 [m/sec].	
Similar of the Equation ( 2-2) can be written for the cross-section area (A) and the product (A×ρ): 

 
A = A!"#ef���(4.4ghi) 

A × ρ = A!"#ρ!"#ef�h�hg��4.4ghi� 

( 2-7) 

Where 

 A!"# = Cross section area of the pipe when pressures inside 

and outside of the pipe both are equal to	p!"#. 

[m�] 

 

                                                 

1
 Datasheet available at the following web address (accessed 06.2011): 

 http://www.fibrelogic.com/pdfs/Fibrelogic Flowtite Engineering Guidelines DES M-004.pdf 
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Now it’s interesting to know how much error will be involved if someone uses a linear 

approximation for the exponential functions in ( 2-2) and ( 2-7): 

Max	percentage	of	error = ef�h�hg��4.4ghi� − 1 − β�"�"!�(p − p!"#)
ef�h�hg�(4.4ghi)  

If  Max	�β�"�"!�� = 10.�	[Pa.&] and	Max	(p − p!"#) = 10�	[Pa] , then maximum percentage of 

error will be: 

Max	percentage	of	error = 0.005% 

So in the range of pressures and elasticity applicable in hydropower one can easily assume that 

values of A, ρ or the product A × ρ linearly change with pressure. 

 

ρ ≈ ρ!"#[1 + β(p − p!"#)] 
A ≈ A!"#�1 + β�

MN(p − p!"#)� 
A × ρ ≈ A!"#ρ!"#�1 + β�"�"!�(p − p!"#)� 

( 2-8) 

 

2.1.4 Governing Equations 

In this section governing differential equations for (compressible) water flow inside the penstock 

with elastic walls will be formulated by: 

• Applying the mass conservation law for the control volumes each enclosed between 

penstock cross-sections at locations X��	and X��%� (for i=1,…,N-1) which results in N-1 

ordinary differential equations for the “pressure” states. 

• Applying the momentum conservation law for the control volumes each enclosed between 

penstock cross-sections at locations X��%&	and X��%� (for i=1,…,N-2) which results in N-2 

ordinary differential equations for the “mass flow rate” states. 

 

Continuity Equation 
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Continuity equations by applying the mass conservation rule to the control volumes CV��%& 

enclosed between penstock cross-sections at locations X��	and X��%� (for i=1,…,N-1) will be 

given in this section. 

Mass conservation law simply states that the rate of change of the fluid mass inside the control 

volume with time is equal to the rate of mass flow into the control volume with time. In CFD this 

fact usually is stated by the following equation which is applicable to a fluid element. A fluid 

element is the smallest volume in which fluid retains its macroscopic properties. (Versteeg & 

Malalasekera, 1995) 

 
∂ρ
∂t + ∇. (ρ�) = 0 ( 2-9) 

Where 

 
ρ = Density of the fluid as a function of the location with 

Cartesian coordinates (x,y,z) and the time t        

[Kg/m
3
] 

 
v = Velocity vector field as a function of the location (x,y,z) 

and the time t 

[m/sec] 

 ∇. (ρ�) = Divergence of the vector field ρ� [Kg⁄m3/sec] 

It can be shown that integrating ( 2-9) inside the control volume CV��%& enclosed between 

penstock cross-sections at locations X��	and X��%� (for i=1,…,N-1) will result in the same 

statement as the mass conservation law for that control volume but one should be very careful 

when evaluating the volume integrals and applying the Gauss’ theorem
2
 to the divergence term 

because those boundries of the control volume which coinside with the penstock walls are 

moving with pressure and hence are moving with time. 

The mass of water inside the control volume CV��%&is given by the following relation: 

                                                 

2
 http://en.wikipedia.org/wiki/Divergence_theorem    (accessed 06.2011) 
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 m��%& = � ρ��%&A�,��%&dX
�����

�����
= ρ��%&A�,��%&∆x ( 2-10) 

Remember from section  2.1.2 that pressure and hence density and cross section area are 

considered spatially constant inside the control volume. In ( 2-10) these values are set to be equal 

to their value at the central location X��%&. 

It’s of great importance for the later analysis that the value of A × ρ at the boundaries of the 

control volume for continuity be considered equal to the mean value of that function in the two 

adjacent control volumes (Bold dotes shown in the Figure ( 2-2)). 

 

Figure ( 2-2) Values of the Product A×ρ Inside the Control Volumes for Mass Conservation and 

at the Boundary Points of the Control Volumes 

 

So applying mass conservation to ( 2-10) will result in the following differential equation for the 

control volume	CV��%&: 

 ∆x	 d
dt �ρ��%&A�,��%&� = m� �� − 	 m� ��%�					(	i = 1, … , N − 1)		 ( 2-11) 

Where 

 m� �� = Mass flow rate into the control volume 	CV��%& at 

location	X�� (according to the conventional flow 

direction shown in the Figure ( 2-1)) 

[Kg/sec] 
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 m� ��%� = Mass flow rate out of the control volume 	CV��%& 

at location	X��%� (according to the conventional 

flow direction shown in the Figure ( 2-1)) 

[Kg/sec] 

 

As discussed in section  2.1.2 it is of interest to represent the Equation ( 2-11) in terms of the 

pressure inside the control volume. According to the discussion in Section  Chapter 1 2.1.2, cross-

section area of penstock only changes with pressure ( �∂A�,��%& ∂X⁄ � = 0). So by also using 

( 2-8) the derivative term in ( 2-11) can be written as the following: 

 

d
dt �A�,��%&ρ��%&� = d

dp��%&
�A�,��%&ρ��%&�		dp��%&

dt  

																				= β()*)+,A�!"#ρ!"# 	dp��%&
dt  

( 2-12) 

 

From ( 2-11) and ( 2-12) the final form of the continuity equations will be as follows: 

 ∆x	β()*)+,A�!"#ρ!"# 	dp��%&
dt = m� �� − 	 m� ��%�					(	i = 1, … , N − 1)		 ( 2-13) 

 

Momentum Equations 

A preliminary form of the momentum equations will be given in this section. The final form of 

the momentum equations will be given in the next subsection (The Upwind Difference Scheme). 

Momentum conservation for the control volume CV��%� enclosed between penstock cross-

sections at locations X��%&	and X��%� (for i=1,…,N-2) states that rate of change (with time) of the 

momentum (in the X direction i.e. conventional direction of the water flow) of the water flowing 

inside the control volume at a particular time t is equal to the rate of the net momentum flowing 

into the control volume by mass transport at boundary surfaces X = X��%& and X = X��%� plus 

sum of the forces that apply to the water column inside the control volume at the X direction 

along the penstock axis at that time.  
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Like the mass conservation case, there is an equation which is applicable to a fluid element: 

(Versteeg & Malalasekera, 1995) 

 
∂
∂t (ρv) + ∇. (ρv�) = − ∂p

∂x + S_¡  ( 2-14) 

Where 

 v = Component of the velocity vector field � in the X direction 

as a function of the location (x,y,z) and the time t 

[m/sec] 

 p = Pressure as a function of the location (x,y,z) and the time t [Pa] 

 S_¡ = Body forces (friction/viscous and gravity) per unit volume 

in the X direction 

[N/m
3
] 

It can be shown that integration of the above equation over the control volume CV��%� will result 

in the momentum conservation statement above. Again one should be careful in performing the 

volume integration and shall consider movement of those boundaries of the control volume 

which coincide with the penstock wall. 

Amount of momentum of the water column in the control volume CV��%� is as follows: 

Momentum	of	the	water	Column = 

� v	dm
£?����

	 = � v	(A	ρ	dX)
£?����

	 = � (v	A	ρ)	dX
£?����

= 	 � m� 	dX
£?����

= 	 m� �,��%�∆x 
( 2-15) 

In deriving the above relation it’s being assumed that mass flow rate in X direction inside the 

control volume is spatially constant (as mentioned in Section  2.1.2) and equal to	m� ��%�. This 

assumption is indicated in Figure ( 2-3). By this assumption velocity throughout the control 

volume will be piecewise constant because the product A×ρ is assumed to be piecewise constant 

between X��%&	and X��%� (see Figure ( 2-2)). The velocity at X��%� can be considered equal to 

m� �,��%�/�A�,��%�ρ��%��. 

Net momentum in the X direction along the penstock which is flowing into the control volume 

CV��%� due to mass transport is equal to: 
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 m� �,��%&v�,��%& − m� �,��%�v�,��%� ( 2-16) 

 

 

Figure ( 2-3) Variations of Mass Flow Rate and Velocity inside Control Volumes for Momentum 

 

Forces that act on the water column are due to pressure difference between locations X��%&	and 

X��%�, weight of the water column and friction between water and penstock wall. Amount of the 

force due to pressure difference at locations X��%&	and X��%� is given in the following relation: 

 F4,��%� = A�,��%�	(p��%& − 	 p��%�) ( 2-17) 

Relations giving the amount of gravity and friction forces for the water column inside control 

volume CV��%� are as follows: 

 

F5,��%� ≅ ∆x	A�,��%�	ρ��%�	g	sinθ 

F6,��%� = 	ξ��%�v�,��%� 

( 2-18) 

Where 

 F5,��%�= Gravity force applied to the control volume [N] 
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 F6,��%�= Friction force applied to the control volume [N] 

 

	ξ��%�= 

A friction coefficient of the control volume 

(always negative) given by the following formula: 

	ξ��%� = 

− 1
2 f�	Δx	Π�,��%�	ρ��%�	sign�v�,��%��	v�,��%� 

[N.sec/m] 

 f� = Fanning friction factor [-] 

 Π�,��%� = 
Internal perimeter of the penstock cross section at 

X = X��%� 
[m] 

Average of the product A×ρ is used in the relation for gravity force and average velocity is used 

in the relation for friction. 

 

Now the momentum conservation law can be formulated for the control volume CV��%� using 

( 2-15) to ( 2-18): 

∆x |m� �,��%�
|¦ = m� �,��%&v�,��%& − m� �,��%�v�,��%� + F4,��%� + F5,��%� + F6,��%� ( 2-19) 

This is not the final form of the momentum equations. Before obtaining the final form, this 

question shall be answered: What shall be substituted for values of m� � and v�	at 

locations	X��%&	and	X��%�? Answer to this question and final form of the momentum 

equations are given in the next subsection (The upwind difference scheme). 

 

The Upwind Difference Scheme 

For determining values of m� � and v�	at locations	X��%&	and	X��%�, it’s necessary to rewrite 

( 2-19) in terms of	�dv�,��%� |¦⁄ �: 
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dm� �,��%�
dt = d

dt �	A�,��%�	ρ��%�	v�,��%�� 

= 	A�,��%�	ρ��%� 	d	v�,��%�
dt 	 + 	 	v�,��%� 	 d

dt �	A�,��%�	ρ��%��	 

= 	A�,��%�	ρ��%� 	d	v�,��%�
dt 	 + 	 	v�,��%� 	 d

dt §	A�,��%&	ρ��%& +	 	A�,��%�	ρ��%�
2 ¨ 

( 2-20) 

By substituting the terms of the form 	d(A�	ρ) dt	⁄  from ( 2-11) into ( 2-20) the following relation 

will be concluded: 

 
dm� �,��%�

dt = 	A�,��%�	ρ��%� 	d	v�,��%�
dt 	 +	 	v�,��%� 	§m� �,�� − 	 m� �,��%c

2	∆x ¨ ( 2-21) 

By substituting ( 2-21) into ( 2-19), the continuity equation in the form of differential equation for 

	v�,��%� will be obtained as follows: 

 
∆x		A�,��%�	ρ��%� 	d	v�,��%�

dt 	 + 	 §m� �,�� − 	 m� �,��%c
2 − 	ξ��%�¨	 	v�,��%� + 

m� �,��%�v�,��%� − m� �,��%&v�,��%& = F5,��%� + F�,��%� 

( 2-22) 

 

In Equation ( 2-22) values of v� and m� � at X��%&	and	X��%� shall be determined. One possibility 

known as Central Differences Scheme (Versteeg & Malalasekera, 1995) could be as follows: 

 

m� �,��%& = m� �,�� + 	 m� �,��%�
2 			,			v�,��%& = v�,�� + 	 v�,��%�

2  

m� �,��%� = m� �,��%� + 	 m� �,��%c
2 			,			v�,��%� = v�,��%� + 	 v�,��%c

2  

( 2-23) 

In this case ( 2-22) can be re-written as follows: 

 
∆x		A�,��%�	ρ��%� 	d	v�,��%�

dt 	 + 	 ©��%�ª 	v�,��%� = ©��ª v�,�� + 

©��%cª 	v�,��%c + F5,��%� + F4,��%� 

( 2-24) 
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Where 

 ©��ª = m� �,�� + 	 m� �,��%�
4  

 

 ©��%�ª = m� �,�� − 	 m� �,��%c
4 − 	ξ��%� 

 

 ©��%�ª = − m� �,��%� + 	 m� �,��%c
4  

 

It can be shown that at inviscid flows with large Peclet numbers the above choice does not 

guarantee stability of the variables. (Versteeg & Malalasekera, 1995) One sufficient condition for 

( 2-22) to have a stable answer for steady-state velocity values in case of known pressures is (the 

same reference): 

1. All the three coefficients ©��ª  , ©��%�ª  and ©��%cª  should be positive 

2. The following condition shall be satisfied: 

 
©��ª + ©��%cª

©��%�ª 	«≤ 1 for	all		i = 1,2, … , N − 2
< 1 at	least	for	one	i = 1,2, … , N − 2	

																				
	

									  ( 2-25) 

When the system reaches the steady state condition, all m�  values become equal and the first 

condition obviously isn’t satisfied in ( 2-24). 

 

One solution known as “Upwind Difference Scheme” is available to the above problem.  In this 

solution the values of  v� and m� � at X��%&	and	X��%� for use with ( 2-22) are determined as 

below: 

 

m� �,��%& = m� �,�� + 	 m� �,��%�
2 			,			m� �,��%� = m� �,��%� + 	 m� �,��%c

2  

If	m� �,�� + 	 m� �,��%� ≥ 0 ⇒ 	 v�,��%& = v�,��	and	v�,��%� = v�,��%� 

If	m� �,��%� + 	 m� �,��%c ≤ 0 ⇒ 	 v�,��%& = v�,��%�	and	v�,��%� = v�,��%c 

( 2-26) 

Then ©��ª , ©��%�ª 	and	©��%cª  in ( 2-24) will be given by the following table: 
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 if		m� �,�� + 	 m� �,��%� ≥ 0 if			m� �,��%� + m� �,��%c ≤ 0 

 

	©��%�ª  
m� �,�� + 	 m� �,��%�

2 − 	ξ��%� − m� �,��%� + m� �,��%c
2 − 	ξ��%� 

©��ª  
m� �,�� + 	 m� �,��%�

2  0 

©��%cª  0 − m� �,��%� + m� �,��%c
2  

So the coefficients will always be nonnegative and the following condition will be satisfied: 

  ©��ª + ©��%cª
©��%�ª 	 < 1				(in	presence	of	friction) 

 

 

The relation ( 2-24) with the coefficients determined by the upwind differences will make the 

final form of the momentum equation. It’s desirable to change back ( 2-24) as an ODE in terms of  

�dm� �,��%� dt⁄ � . Using ( 2-19) and ( 2-26) the final form of the momentum equations will be 

obtained as follows: 

∆x |m� �,��%�
|¦ + 	 ©��%�

±�J%�²	v�,��%� = ©��
±�J%�²v�,�� + ©��%c

±�J%�²	v�,��%c + F5,��%� + F4,��%� 

(i=1,2,….,N-2) 

( 2-27) 

Where ©��
±�J%�², ©��%�

±�J%�²	and	©��%c
±�J%�²

 are obtained from the following table: 

 if		m� �,�� + 	 m� �,��%� ≥ 0 if			m� �,��%� + m� �,��%c ≤ 0 

( 2-28) ©��%�
±�J%�²

 
m� �,��%� + 	 m� �,��%c

2 − 	ξ��%� − m� �,�� + m� �,��%�
2 − 	ξ��%� 

©��
±�J%�²

 
m� �,�� + 	 m� �,��%�

2  0 
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©��%c
±�J%�²

 0 − m� �,��%� + m� �,��%c
2  

F5,��%�, F4,��%� and 	ξ��%� are given in ( 2-17) and ( 2-18). 

 

2.1.5 Summary Penstock Model 

In this section penstock model will be summarized based on the equations developed in the 

previous section, but before that, some definitions shall be made: 

The state vector: The state vector of the penstock ³	 ∈ ℛ�b.� (where N is number of the pipe 

segments with equal length of ∆x	along the penstock) contains pressures at the center of the 

control volumes CV��%& (control volumes located between	X��	and	X��%�	for i=1, 2, …, N-1) and 

mass flow rates at the center of the control volumes CV��%� (control volumes located 

between	X��%&	and	X��%�	for i=1, 2, …, N-2) as shown in the Figure ( 2-1): 

³	�∈ ℛ�b.�� = 	 ¶ ·
�̧ ¹ 

·	�∈ ℛb.&� = [p�,�(= pº»`¼) p�,½ p�,� … p�,�b.� p�,�b.&(= p¾»¿¼)]¾ 

�̧ 	�∈ ℛb.�� = [m� �,c(= m� º»`¼) m� �,À m� �,Á … m� �,�b.c m� �,�b.�(= m� ¾»¿¼)]¾ 

( 2-29) 

 

Extended pressure and mass flow rate vectors: These vectors are the same as p and m�  defined 

above except that they include input pressures and mass flow rates from the neighboring systems 

(Head water and tail water): 

·ÂÃÄ	�∈ ℛb%&� = [p�,&(= pº»`Å) p�,�(= pº»`¼) p�,½ p�,� … 

p�,�b.� p�,�b.&(= p¾»¿¼) p�,�b%&(= p¾»¿Å)]¾ 

�̧ ÂÃÄ	�∈ ℛb� = [m� �,�(= m� º»`Å) m� �,c(= m� º»`¼) m� �,À m� �,Á … 

m� �,�b.c m� �,�b.�(= m� ¾»¿¼) m� �,�b(= m� ¾»¿Å)]¾ 

( 2-30) 
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Æ·, Æ �̧ , Æ·_ÂÃÄ and	Æ �̧ _ÂÃÄ	: The vector Æ·_ÂÃÄ contains the products (area × density) at the 

center of the control volumes CV��%& (i=1,2, …, N-1) as well as at the end points (X& and X�b%&). 

The vector Æ �̧ _ÂÃÄ contains the products (area × density) at the center of the control volumes 

CV��%� (i=1,2, …, N-2) as well as at the end points (X� and X�b). 

Æ·_ÂÃÄ�∈ ℛb%&� = [A�,& × ρ& A�,� × ρ� … A�,�b.& × ρ�b.& A�,�b%& × ρ�b%&]¾ 

Æ �̧ _ÈÉÊ�∈ ℛb� = [A�,� × ρ� A�,c × ρc … A�,�b.� × ρ�b.� A�,�b × ρ�b]¾ 

Since penstock is going to connect to systems with incompressible water and inelastic walls 

models, it’s easier to consider the same conditions (incompressible water and inelastic walls) at 

locations	X1, X�, X�b and X�b%&. Then Æ·_ÂÃÄ and Æ �̧ _ÈÉÊ will be as follows: 

Æ·_ÂÃÄ = �A�+)G × ρ+)G Æ·Ë A�+)G × ρ+)G�¾
 

Æ �̧ _ÈÉÊ = �A�+)G × ρ+)G Æ �̧Ë A�+)G × ρ+)G�¾
 

Where 

Æ·�∈ ℛb.&� = [A�,� × ρ� … A�,�b.& × ρ�b.&]¾ 

Æ �̧ �∈ ℛb.�� = [A�,c × ρc … A�,�b.� × ρ�b.�]¾ 

( 2-31) 

As a consequence of considering incompressible water and inelastic walls at locations	X1, X�, X�b 

and X�b%&, ·ÂÃÄ (including pº»¼ and p¾»¼) defined in ( 2-30) will not be used anymore and · defined in 

( 2-29) is enough in the penstock model. 

 

Vectors containing velocities and cross-section areas at the center of the control volumes 

ÌÍÎÏ%Î (i=1,2, …, N-2) as well as at the end points (ÐÎ and ÐÎÑ): 

Ò �̧ _ÂÃÄ(∈ ℛb) = [APÓ¦Ô Ò �̧¾ APÓ¦Ô]¾     

Ò �̧ (∈ ℛb.�) = [A�,c A�,À … A�,�b.�]¾        

(Area at locations X� and X�b is considered not changing with pressure i.e. inelastic 

walls) 

( 2-32) 
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� �̧ _ÂÃÄ(∈ ℛb) = [v�,� v�,c … v�,�b.� v�,�b]¾  

 

Vectors containing densities and pipe perimeters at center of the control volumes ÌÍÎÏ%Î 

(i=1, 2, …, N-2): 

Õ �̧ (∈ ℛb.�) = [ρc ρÀ … ρ�b.�]¾ 

Ö �̧ (∈ ℛb.�) = [Π�,c Π�,À … Π�,�b.�]¾ 

( 2-33) 

 

Vectors containing densities and cross-section areas at the center of the control volumes 

ÌÍÎÏ%× (i=1,2, …, N-1): 

Õ·(∈ ℛb.&) = [ρ� ρ½ … ρ�b.&]¾ 

Ò·(∈ ℛb.&) = [A�,� A�,½ … A�,�b.&]¾        

( 2-34) 

 

Pressure at the center of the control volumes ÌÍÎÏ%Î (i=1,2, …, N-2): 

· �̧ (∈ ℛb.�) = [p�,c p�,À … p�,�b.�]¾ ( 2-35) 

 

 

Gravity and pressure gradient forces acting on the control volumes ÌÍÎÏ%Î (i=1,2, …, N-2): 

ØÙ, �̧ 	(∈ ℛb.�) = [F5,c F5,À … F5,�b.�]¾ 

Ø·, �̧ 	(∈ ℛb.�) = [F4,c F4,À … F4,�b.�]¾ 

( 2-36) 

 

Vector of friction coefficients for the control volumes ÌÍÎÏ%Î (i=1,2, …, N-2): 

Ú �̧ (∈ ℛb.�) = [ξc ξÀ … ξ�b.�]¾ ( 2-37) 
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The matrix for coefficients of velocities in the momentum equations: This matrix includes 

the time varying coefficients of the velocity terms in ( 2-27) and with relations given in ( 2-28): 

Û �̧ �∈ ℛ(b.�)×�� =

ÜÝ
ÝÝ
ÝÝ
ÝÝ
ÝÝ
Þ −©c

±c² ©�
±c² ©À

±c²

−©À
±À² ©c

±À² ©Á
±À²

⋮ ⋮ ⋮
−©�à.c

±�à.c² ©�à.À
±�à.c² ©�à.�

±�à.c²

−©�à.�
±�à.�² ©�à.c

±�à.�² ©�à
±�à.�²áâ

ââ
ââ
ââ
ââ
ã

 ( 2-38) 

 

Now a step by step procedure can be defined for calculation of time derivative of the state vector 

S. This procedure is summarized in Table ( 2-1). 

 

Table ( 2-1) Summary Penstock Model  

1.  

Input  N, S, m� º»`Å and m� ¾»¿Å (Elements of S and the other three variables defines in Figure ( 2-1) 

2.  

·	 = ³(1: N − 1)   and    �̧ = ³(N: 2N − 3) 

3.  

�̧ ÂÃÄ = [m� º»`Å �̧ ¾ m� ¾»¿Å]¾ 

4. Vector form of continuity equations given in ( 2-13): 

	d·
dt = �∆x	β()*)+,A�!"#ρ!"#�\[ �̧ ÂÃÄ(1: N − 1) − 	 �̧ ÂÃÄ(2: N)] 

5. According to ( 2-8) and ( 2-31): 
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Æ· ≈ APatmρatm ¶ones(N − 1,1) + βæ
¦}¦Óç�· − patm × ones(N − 1,1)�¹     

Æ �̧ ≈ 2\�Æ·(1: N − 2) + Æ·(2: N − 1)�       (Averaging as mentioned in Section  2.1.4) 

Æ �̧ _ÂÃÄ = �A�!"# × ρ!"# Æ �̧è A�!"# × ρ!"#�¾
 

6. Definition in ( 2-39):  

� �̧ _ÂÃÄ = �̧ ÂÃÄ		./		Æ �̧ _ÂÃÄ        ( . 	 	⁄ 	 ≜ pointwise	division) 

7. From ( 2-29), ( 2-41) and averaging according to (Versteeg & Malalasekera, 1995): (In fact 

in that reference averaging is done on density at center of the control volumes for 

momentum) 

 · �̧ = 2\�·(1: N − 2) + ·(2: N − 1)� 

8.  From ( 2-8), ( 2-32) and ( 2-33): 

Õ �̧ = ρ!"# × �ones(N − 2,1) + β × �· �̧ − p!"# × ones(N − 2,1)�� 
Ò �̧ = 	 Æ �̧ 	./	Õ �̧  

Ö �̧ = sqrt	(4πÒ �̧ ) 

9. From ( 2-18) and ( 2-37): (.* denotes point wise multiplication)  

Ú �̧ = §− 1
2 f�	Δx¨	¶Ö �̧ 	.∗ 	 Õ �̧ 	.∗ 	sign ì� �̧ ÂÃÄ(2: í − 1)î	 .∗ 	 � �̧ _ÂÃÄ(2: í − 1)¹ 

10.  From ( 2-17), ( 2-29), ( 2-32) and ( 2-36): 

Ø·, �̧ 	 = Ò �̧ 	.∗ 	 �·(1: í − 2) − 		·(2: í − 1)� 

11. From ( 2-18) and ( 2-36): 

ØÙ, �̧ 	 = ∆x	g	sinθ� × 	 Æ �̧ _ÂÃÄ(2: N − 1) 

12.  The matrix Û �̧  defined by ( 2-38) and ( 2-28) shall be calculated with a loop for i=1:N-2. 

13. Finally momentum equations from ( 2-27): 
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∆x | �̧
|¦ = 	 Û �̧ (: ,1) × � �̧ ÂÃÄ(2: í − 1) + Û �̧ (: ,2) × � �̧ ÂÃÄ(1: í − 2) + 

Û �̧ (: ,3) × � �̧ _ÂÃÄ(3: í) + ØÙ, �̧ + Ø·, �̧  

 

2.1.6 Special Case: Neglecting Compressibility and Elasticity 

Effects 

If compressibility of water and elasticity of the walls in a Penstock are neglected, a first order 

model can be derived. Conservation of mass in this case ensures that mass flow rate from the 

pipe cross section is constant with axial position everywhere along the pipe length. Furthermore 

if the pipe cross-section area is constant along the pipe length, axial velocity of the water will be 

constant with axial position. Momentum conservation can be applied to the whole mass of the 

water inside the pipe with considering the whole pipe as the control volume. Then the differential 

equation for the mass flow rate can be directly concluded from ( 2-17) to ( 2-19): 

v� � m� 4
A�	ρ!"#

 

L� 	dm� 4
dt � oA�	Wp�� o p�¼Y Z L�	A�	ρ!"#	g	sinθ� o 1

2 f�	L�	Π�	ρ!"#	signWv�Y	v�� 

( 2-39) 

 

 Francis Turbine 2.2

2.2.1 Introduction 

Hydraulic power available to be converted into mechanical power by the turbine is given by the 

following equation (Kjølle, 2001): 

P"9 � 1
ρ!"# m� "	∆p" 

Where 
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 P"9: Hydraulic power available for conversion by turbine [W] 

 m� ": Mass flow rate of water through turbine [Kg/sec] 

 ∆p":	Pressure drop across turbine inlet and outlet [Pa] 

The above equation can be investigated using the Bernoulli equation with following 

assumptions: 

• Incompressible water with inelastic turbine case walls are assumed so that the mass flow 

rate is the same at the inlet and outlet of the turbine. This is also the reason why in this 

case the water density is considered to be constant and equal to	ρ!"#. 

• Power used for accelerating the water inside the turbine case is neglected so that the 

steady-state turbine equations can be used to describe turbine operation in general case 

and hence the Bernoulli equation can be applied (considering the huge amount of water in 

the waterway other than the turbine case, this assumption is acceptable.) 

• Difference between the turbine inlet and outlet diameters is neglected. Since the axial 

velocity of water at both the inlet and the outlet is about a few meters per second, this 

will cause a small error in estimation of the pressure drop across the turbine which is 

acceptable for high-head plants. In fact a rotational component is also present at the water 

leaving the turbine runner which is vanished across the draft tube and so its effect is 

partly recovered. The remaining effect of the rotational speed is considered in the 

efficiency of turbine by the manufacturer. 

The mechanical output power of the turbine is then given by the following equation: 

 P"# � η"
ρ!"#

m� "	∆p" ( 2-40) 

Where 

 P"# � Mechanical output power of the turbine [W]  

 η" � Overall efficiency of the turbine [-]  
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2.2.2 Turbine Efficiency and Similarity Laws
3
 

Turbine efficiency is a function of pressure head across the turbine	H= � ∆4h
ï	ðghi 	[m] , volumetric 

flow rate	Q" � #� h
ðghi 	[m�/sec] , turbine rotational speed	ω#	[rad/sec] , turbine guide-vane 

opening	Y5?[%	or	degrees] and turbine mechanical output power	P"#[W]. These five variables 

are interrelated and if any three of these variables are known, then the other two variables and 

also efficiency of the turbine can be found using detailed datasheets if provided by the turbine 

manufacturer. The key datasheet information for this purpose are the so called “hill curves”. For 

using the hill curves one often should be familiar with some terminology, definitions and rules 

which will follow hereinafter. 

Output Power Equation of the Turbine 

Figure ( 2-4) shows trajectory of a water particle that leaves the guide vanes at the point	al, enters 

in one of the water passages of the runner at the point	a& and leaves the runner at the point	a�. 

                                                 

3
 This chapter is based on materials from (Farell, 1987), (Kjølle, 2001),  (Selecting Hydraulic Reaction Turbines, 

1976) and (Thoresen, 2010) 
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Figure ( 2-4) Trajectory of a water particle in the turbine (based on (Kjølle, 2001)) 

 

Descriptions of the various variables shown in the figure are as follows: 

ò:	Peripheral velocity of the runner 

ó: Absolute velocity of the water particle measured in a reference frame fixed to the turbine case 

� � ó o ò ∶ Relative velocity of the water particle measured in a reference frame fixed to the 

runner 

ó]: Circumferential component of the velocity c 

ó#: Meridional component of the velocity c 

The torque induced on the turbine by the water flow is given by: 

 T" � m� "Wr&c&] o r�c�]Y ( 2-41) 

a2

c1
c

c1v1

u1

c1
m

c2
c

c2
m

c2

v2

u2

α1β1

α2

β2

r 1

r 2

a1

runner

c0
c

c0

c0
m

α0a0

r 0
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In the above equation it’s assumed that all the water flowing through the turbine runs through the 

runner passages (in fact ideal sealing is impossible). The turbine mechanical output power will 

then be equal to: 

 

P"# � T"ωG 

							� m� "Wr&ωGc&] o r�ωGc�]Y 

							� m� "Wu&c&] o u�c�]Y 

( 2-42) 

Mechanical losses due to friction are neglected in ( 2-42). The efficiency equation can be found 

from ( 2-40) and ( 2-42): 

 η" � ρ!"# Wu&c&] o u�c�]Y
∆p"

 ( 2-43) 

The efficiency found by ( 2-43) is in fact the “hydraulic efficiency” of the turbine because 

mechanical losses like friction losses are not considered in ( 2-42). If these losses be shifted to the 

generator side (which has a common shaft with turbine), then η" in ( 2-43) can be considered as 

the overall efficiency of the turbine. 

Similar Operating Conditions 

Similar operating conditions for the same turbine means conditions under which water particle 

trajectories inside the turbine casing, runner passages and the draft tube will be the same. For this 

purpose all the velocities shall be proportional and all the directions (angles) shall be the same 

when the two operating conditions are being compared. The angle αl in Figure ( 2-4) is 

considered to be constant for all operating conditions under the same guide vane opening and is 

determined by the angle that guide vanes make with the circumferential direction at radius	rl. 

The angle β� is also considered to be constant and determined by the angle that the runner blades 

make with the circumferential direction at radius	r�. It’s expected that meridional component of 

water absolute velocity in between the guide vanes and the runner is proportional to reciprocal of 

the radius. If travel of water particles in this area be assumed frictionless then water maintains its 

rotational momentum and hence circumferential component of velocity will also be proportional 

to reciprocal of the radius. Hence α& ≈ αl and therefore α&is also nearly constant for all 
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operating conditions with fixed guide vane opening. Figure ( 2-5) shows the same turbine 

operating in a different condition in which the turbine speed and water flow is reduced. 

 

Figure ( 2-5) Turbine Operating in Different Operation Conditions (Continued from Figure ( 2-4)) 

 

For the two operating conditions shown in the Figure ( 2-4) and the Figure ( 2-5) to be similar, the 

following conditions shall be met: 

 β&ª � β& , α�ª � α� , 
ö÷ø
ö÷

� ]÷ø
]÷

� ù÷ø
ù÷

� ö�ø
ö�

� ]�ø
]�

� ù�ø
ù�

 ( 2-44) 

It can be shown that only satisfaction of the following relation is enough for the two conditions 

to be similar:  

 
u&ª

u&
� c&ª

c&
 ( 2-45) 
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Proof: The equality 
ö÷ø
ö÷

� ö�ø
ö�

 is obvious. Since α&is constant for all operating conditions, the 

equalities β&ª � β& and 
ö÷ø
ö÷

� ù÷ø
ù÷

 can be concluded from ( 2-45). It only remains to prove that 

equality 
]÷ø
]÷

� ù�ø
ù�

 holds by which satisfaction of  α�ª � α� and 
]÷ø
]÷

� ]�ø
]�

 will be proved already (since 

β� is constant). The water volumetric flow rate inside the runner passage in Figure ( 2-4) is given 

by A&c&G � A�v� where A& is the circumferential area of the runner passage inlet and A�is the 

cross section area of the passage outlet perpendicular to	v�. The same holds for the Figure ( 2-5): 

A&c&ªG � A�v�ª  (β� is constant so cross section area normal to v�ª  is also	A�). Then it follows: 

 Wα&ú�	û}��¦Ó�¦Y 	 ⇒ 		 c&ª

c&
� c&ªG

c&G
� v�ª

v�
 ( 2-46) 

And this completes the proof.  

 

From the above discussion a sufficient condition for similarity can be stated as below (Farell, 

1987): 

 
Q)

ωG
� û}��¦Ó�¦ ( 2-47) 

Then for similar operating conditions all the velocities are proportional to	ωG. It is expected that 

similar operating conditions result in equal efficiencies. So from ( 2-43) it follows that for similar 

operating conditions the following holds: 

H=
ω#�

� constant,			 P"G

ω#�
� constant	, η" � constant						where						H= � ∆p"

g	ρ!"# ( 2-48) 

Since it’s expected that under the conditions of fixed speed and fixed guide vane opening,  each 

head value corresponds to one and only one discharge value, then the relation 
ºü
ýi�

� constant 
can be used as an equivalent sufficient condition for similarity. 

Turbine Efficiency Charts 
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Turbine efficiency charts or the so called “hill charts” or “hill curves” indicate the constant 

efficiency loci on (Q" , H=Y or (P"G, H=Y	plane for design operating speed. Figure ( 2-6) shows an 

example for the “hill chart”. This chart gives efficiency as a function of the turbine volumetric 

flow and head at design speed for a specific series of turbines. If the values for design head and 

design power for a particular turbine in this series are known, then the design speed for that 

turbine can be found by the parameter	ND. The parameter	ND is the so called “Specific Speed” 

and defined in the metric system as: 

ND � N"E	WP"EY&
�

WH"EY½
c

				 

Where 

 N"E:   Turbine design speed  [rpm] 

 P"E:   Turbine design power  [kW] 

 H"E:   Turbine design head  [m] 

The series of turbines with the hill chart shown in the Figure ( 2-6) have a specific speed equal to 

111 in metric system. So if a particular turbine of this series is designed for operating in 100MW 

output power and 333m design head, then its design speed will be 500 rpm.  
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Figure ( 2-6) An Example of Hill Chat for a Turbine with ND � 111 with Percent Discharge as 

the Horizontal Axis (Selecting Hydraulic Reaction Turbines, 1976) 
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Figure ( 2-7) An Example of Hill Chat for a Turbine with ND � 111 with Percent Power as the 

Horizontal Axis (Selecting Hydraulic Reaction Turbines, 1976) 
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The Figure ( 2-7) shows the hill chart for the same series of turbines in terms of head versus 

power. The 100 percent turbine discharge point shown in the Figure ( 2-6) coincides with the 100 

percent design power point in Figure ( 2-7). If a particular turbine of this series is designed for 

operating in 100MW output power and 333m design head, then its 100% discharge can be found 

as follows: 

P"E � η"EρgH"EQ"E 

100 × 10À�Watt� � 0.85 × 1000�Kg/m�� × 9.8�m/sec�� × 333�m� × Q"E�m�/sec� 

Q"E � 36	�m�/sec�	

Normally design power is chosen so that best efficiency power is equal to 80% of the design 

power. 

The dashed sloped lines in Figure ( 2-6) show head variations with discharge for different guide 

vane openings at the design speed. Knowing two out of the three variables (discharge, head and 

guide vane opening) for the turbine running with the design speed, the third variable and the 

efficiency of the turbine can be found using the chart shown in the Figure ( 2-6). Also the turbine 

power can be determined using ( 2-40) or from the Figure ( 2-7). 

The question of interest is that if the turbine operated in a speed other than the design speed, how 

the chart shown in the Figure ( 2-6) could be used for finding efficiency in the new operating 

condition. Let’s consider that turbine discharge and head at a speed N [rpm] which is different 

from	í)H (design speed) are equal to Q �m�/sec� and H [m] respectively. Let’s denote this 

operating condition by	(H, Q, N). A similar operating point (HMN, QMN, N"E) can be found using 

( 2-47) and ( 2-48): 

 
HMN

N"E
� �

H

N�
,			

QMN

N"E

�
Q

N
 ( 2-49) 

Since operating points (H, Q, N) and (HMN, QMN, N"E) are similar, they should have equal 

efficiencies. So efficiency for the off-design operating point can be found by using the equivalent 

head and discharge values HMN	and	QMN in Figure ( 2-6).  
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In Figure ( 2-6) by knowing the values of head and discharge at the design speed one can find the 

corresponding guide vane opening which resulted in that operating condition. What can be said 

about the guide vane opening at the operating condition (H, Q, N) where N is off-design speed? 

Since similarity conditions are obtained under assumption of geometric similarity of the flows in 

scroll case, guide vanes, turbine and draft tube, so it’s expected that guide vane opening will be 

the same for similar conditions. So the corresponding guide vane opening for the operating point 

(H, Q, N) can be found by using the equivalent head and discharge HMN	and	QMN in Figure ( 2-6). 

That means that:	Y��MN
� Y��. 

2.2.3 Simulation of Turbine in Matlab 

For being able to simulate a turbine in Matlab, data of the “hill chart” for that particular turbine 

(or series of similar turbines) shall be input into Matlab. For this purpose, an area (will be 

referred to as “interpolation area” throughout this report) in the hill chart shall be defined which 

has the following properties: 

- Hill chart data shall be defined in allover the interpolation area (for example, this area 

shouldn’t extend beyond the “full gate opening” locus where obviously no head-

discharge relationship or efficiency is defined for that area.) 

- The interpolation area shall cover as many operating points as possible (including the 

operating points with higher turbine efficiencies which are the most usual areas of the 

turbine operation) 

- It shall be able to define a uniform grid for the interpolation area (for example if the 

interpolation area is a rectangle with sides parallel to H and Q axes, grid points can be 

defined by the following instruction in Matlab: Ô{�ℎ��ú|(�&: ∆�: ��, �&: ∆�: ��) ) 

After deciding on the shape and size of the interpolation area, data (efficiency and/or guide vane 

opening) at some sample points inside that area can be entered into Matlab. Obviously these 

sample data points will be scattered and off-grid (no data available at every point). As many 

sample points as possible shall be chosen. Then data at uniform grid points can be found by 1D 

interpolation as described in the next paragraph.  After data was estimated at the uniform grid 

points, uniform interpolation functions in Matlab (such as interp2) can be used for further 

interpolations. The function “interp2” in Matlab requires uniform grid points like the ones 
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created by the “meshgrid” command and also requires that data be available at all the grid points 

which these requirements are reflected in the required properties for the interpolation area listed 

above.  

• Efficiency as a function of Head and Guide-Vane opening: Examining Figure ( 2-6) shows 

that the area defined by inequalities 0.3 ≤ Y5? ≤ 1 and 65% ≤ H ≤ 125% if mapped into a 

rectangular area in the Y5? − H Cartesian coordinates can be a suitable interpolation area. A 

uniform grid can be defined for that mapped area. The available data in the form of (Y5?, H, η) 

extracted from Figure ( 2-6) are listed in Appendix II. The data are scattered, i.e. there are not the 

same number of data points for different guide-vane openings and head values (H) are not the 

same for each data set corresponding to one guide vane opening value. Using a 1D spline 

interpolation for each set of data corresponding to a fixed guide vane opening, efficiency at fixed 

head values can be estimated for each guide vane opening. So an interpolated sample data at 

uniform grid points (like  Ô{�ℎ��ú|(0.3: 0.1: 1, 65: 5: 125) ) will be obtained. Then using a 2D 

interpolation function (like “interp2”) a set of data at finer grid points (like  

Ô{�ℎ��ú|(0.3: 0.01: 1, 65: 1: 125) ) can be generated. This way a look-up table with fine grid 

has been created. “Spline” or “cubic” interpolation methods are available as options with interp2 

function. The look-up table further can be used to build the function	η � Eff_Turb(Y5?, H). This 

function interpolates (or extrapolates) the data of the look-up table to give efficiency at the new 

point	(Y5?, H). Matlab codes for simulation of turbine are given in the Appendix III. Figure ( 2-8) 

shows a sketch of the reproduced efficiency values based on the sample data for different guide 

vane and head values. Figure ( 2-9) gives a sketch of isocontours of the reproduced efficiency 

function in the Y5? − H plane. 
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Figure ( 2-8) Turbine efficiency reproduced in MATLAB by Interpolation of Hill Chart Data 

 

 

Figure ( 2-9) Isocontours of Turbine Efficiency Reproduced in MATLAB 
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• Head as a function of Discharge and Guide-Vane opening: From Figure ( 2-6) it’s possible 

to find turbine discharge as a function of head and guide vane opening and use an interpolation 

function as described in the above paragraph to create a look-up table for discharge values. Since 

water flow is inertial and cannot change discontinuously, it’s desirable to find head as a function 

of discharge and guide vane opening. One possible solution is to use a search function to find the 

head value corresponding to a given discharge and guide-vane opening from the above 

mentioned look-up table. This process might be slow in simulations. Alternatively another 

method is suggested in the following which is applicable to the chart in Figure ( 2-6). 

Figure ( 2-11) shows that fixed guide-vane head-discharge loci in the chart of the Figure ( 2-6) are 

almost straight lines (in the range of variations of the head) which have a common intersection 

point. So a polar coordinate can be introduced for which fixed guide-vane head-discharge loci lie 

in the same direction as the “fixed-θ” lines. Figure ( 2-11) is created by importing and scaling the 

hill chart (image) in the AutoCAD environment. Relationship between position data 

(R	�%�, θ	�degree�) of a particular point in the hill chart and corresponding (Q=percent 

discharge, H=percent head) values are as follows (θ is measured from the 100% give-vane 

opening loci in counterclockwise direction): 

 

R cos(72.04° + θ) � 32.2 + Q 

R sin(72.04° + θ) � 331.6 + (H − 60) ×
134

70
 

( 2-50) 

Figure ( 2-12) shows the angle θ for different guide vane openings as tabulated below: 

θ [degrees] 0 0.64 1.50 2.56 3.30 5.30 6.76 8.16 10.09 

Guide vane opening [p.u] 1 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 

These data can be interpolated to give θ as a function of guide vane opening. Then from ( 2-50) 

with a known Q, the corresponding H value can be determined as the function	H_Turb(Y5?, Q) . 

A sketch of the angle θ versus guide-vane opening found by interpolation is given in Figure 

( 2-10).  



56 
 

 

Figure ( 2-10) Interpolating θ values as a function of Y5? (See text) 

 

If the fixed guide-vane head-discharge loci have more curvature then using the straight line 

approximations would have less accuracy. In fact discharge of turbine for a given guide vane 

opening is proportional to the square root of difference between the head and the turbine 

motoring head. Turbine motoring head varies between 15% and 40% of the design head 

(Selecting Hydraulic Reaction Turbines, 1976). In the head ranges that turbine operates (between 

65% and 125% of the design head) discharge variations with head might be considered almost 

linear. The accuracy of course might vary for different turbines. Extrapolations for head values 

outside the range between 65% and 125% of the design head might also have large errors and 

should be treated carefully. 

In most of the literature like in (Machowski, 2008) it’s been assumed for simplicity that for 

constant guide vane opening turbine discharge varies with square root of turbine head. This 

assumption simply neglects the turbine motoring head discussed in the above paragraph. This 

assumption implies that the discharge coefficient defined by the following formula for a given 

guide vane opening is independent of turbine head: 

cù �
Q"	2gH"

								 (discharge	coefficient) 

The accuracy of this assumption can be investigated for the diagram of Figure ( 2-6). For the full 

guide vanes opening, discharge values for 65%, 100% and 125% of design head are 79%, 100% 
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and 117% respectively. Calculation of discharge coefficient at these conditions will result in 

discharge coefficient values equal to: 

cù

����


� 	
Q"E	2gH"E

 

cù

��l.À½��


�
0.79	Q"E	2g(0.65	H"E)

� 0.98	
Q"E	2gH"E

 

cù

��&.�½��


�
1.17	Q"E	2g(1.25	H"E)

� 1.05	
Q"E	2gH"E

 

As evident, assuming cù being constant with turbine head can cause up to 7% error in calculation 

of turbine discharge at full guide vane opening when turbine head varied between its minimum 

and maximum values. 
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Figure ( 2-11) Relationship between Turbine Head and Discharge for Fixed Guide Vane 
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Figure ( 2-12) Same as Figure ( 2-11) with More Details 
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2.2.4 Summary Turbine Model in Matlab 

The turbine model is summarized in Table ( 2-2) below: 

Table ( 2-2) Summary Turbine Model 

Q) ∶ 									volumetric	discharge	given	�%� 

Q"ª � Q)
FG

k FG
H/IJKL

 

H"ª � H_TurbWY5?, Q"ª Y 

�) � Eff_TurbWY5?, H"ªY 

H) � H"ª

�FG
H/IJKL�� k FG� 								head	�%� 

P"G � ρ+)G	g	η"	H"	Q"    (	H" in [m] and 	Q" in �m�/sec�) 

 

 Models for Head-Water and Tail-Water 2.3

In this section models in the form of differential equations are introduced for head water and tail 

water systems. These models are available in the literature like in (Lie, 2011). Here the models 

are further developed to interface elastic penstock. Head water system consists of reservoir, 

intake, conduit, surge shaft and finally the penstock. Tail water system consists of turbine, draft 

tube, tail water tunnel and tail water reservoir. For simplicity it’s assumed that level of water in 

both reservoirs doesn’t change (for example because of make-up water flowing into the head 

water reservoir or water flowing out from the reservoir in tail water. Incompressible water and 

inelastic walls are assumed everywhere except for the penstock. First models for the case in 

which elastic penstock is considered will be given. Then the model for inelastic penstock case 

can be obtained as a special case. 

2.3.1 Local Pressure Losses 
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Local pressure losses (hence energy losses) take place at the intake, bends, joints, orifices (surge 

shaft) and cross-section area widening or reduction in different places along the waterway. The 

total inertia of the water flowing in locations that these losses take place can be neglected 

compared to the inertia of the huge amount of water that flows in the whole waterway. So 

steady-state (instead of dynamic) models of these losses can be used in the dynamic model of the 

whole waterway with enough accuracy. The equations available as models for these losses are 

described in (Thoresen, 2010). Due to relatively low speed of water inside the waterway these 

losses are not very important in a high head plant. So they will be ignored in models that will be 

introduced in the next two subsections.  

2.3.2 Head Water System 

Figure ( 2-13) shows the components of the head water system that are considered in the model in 

this subsection. 
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Figure ( 2-13) Head Water System with Interface to Elastic Penstock 

 

Three subsystems can be recognized for modeling: Reservoir-conduit, surge shaft and finally 

penstock interface. These subsystems join together at a T-junction. Conservation of mass will 

result in the following relationship between mass flow rates in the conduit, surge shaft and 

penstock interface: 

m� º»`Å � m� £ + m� [	 ( 2-51) 
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If local losses and velocity heads are neglected at the conduit-surge shaft- penstock junction, the 

following approximation can be concluded: 

p£� ≈ p[� ≈ pº»`Å	 ( 2-52) 

 

• Reservoir-conduit Subsystem: It’s assumed that water is added to the reservoir surface to 

keep h� constant. Horizontal components of the water velocity inside the reservoir are not 

modeled and it’s assumed that vertical component of the water velocity is the same at all 

locations inside the reservoir. Axial mass flow rate m� £ in the conduit is assumed to be equal to 

the mass flow rate across the horizontal cross-section area of the reservoir due to the assumption 

that make-up water is added just to the surface and there is just one intake where water flows out 

and also incompressible water assumption. Intake losses are neglected. Wall frictions inside the 

reservoir are neglected too. Writing the momentum equation ( 2-39) for the volume of water 

inside the reservoir and also for the conduit will result: 

h� dm� £
dt � −A�Wp£¼ − p!"#Y + ρ!"#gh�A� ( 2-53) 

 

L£
dm� £

dt � −A£Wp£� − p£¼Y + ρ!"#g	L£	A£ sin θ� − �� 	m� £� 

Where 

�� � f£	L£	Π£	signWm� £Y
2	A�� 	ρ!"#  

( 2-54) 

 

 

When	A� → ∞, the reservoir can be considered as a fixed head source and the Equation ( 2-53) 

will change to the following approximate algebraic relation: 

p£¼ ≈ p!"# + ρ!"#	g	h�				 ( 2-55) 
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• Surge Shaft: By applying the momentum conservation for the water volume inside the surge 

shaft using the equations ( 2-17) to ( 2-19) and ( 2-39) will result in the following equation: 

l[
dm� [

dt − m� [
dl[
dt � −ADWp[� − p!"#Y + ρ!"#g	l[	A[ sin θ[ − f[	l[	Π[	signWm� [Y

2	A[� 	ρ!"# 	m� [� ( 2-56) 

The term ì–m� [
E��
E" î in the above equation is because one of the boundaries for the control 

volume for momentum equation is moving with time by a speed equal to: 

dl[
dt � − m� [

	A[ρ!"# ( 2-57) 

Substituting 
E��
E"  from ( 2-57) into ( 2-56) will result in the following equation: 

l[
dm� [

dt + ��m� [� � −ADWp[� − p!"#Y + ρ!"#g	l[	A[ sin θ[ 

Where 

�� � f[	l[	Π[	signWm� [Y
2	A[� 	ρ!"# + 1

	A[	ρ!"# 

( 2-58) 

• Conduit Interface: An equation of the form ( 2-39) can be developed for the volume enclosed 

between the axial positions X& and X� in Figure ( 2-13): 

∆x dm� º»`Å
dt � −A�Wpº»`¼ − pº»`ÅY + ρ!"#	g	∆x	A� sin θ� − ���	m� º»`Å�  

Where 

��� � f�	∆x	Π�	signWm� º»`ÅY
2	A�� 	ρ!"#  

( 2-59) 
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Equations ( 2-54), ( 2-58) and ( 2-59) are for variables which are linearly dependent according to 

( 2-51). So the headwater subsystem’s order actually is three. It’s possible to omit the equation 

( 2-58) to find pº»`Å in terms of other variables: 

§A£
L£

+ A�
∆x + AD

l[
¨ pº»`Å � §A£

L£
p£¼ + A�

∆x pº»`¼ + AD
l[

p!"#¨ + 

ρ!"#	g	WA£ sin θ� − A� sin θ� + A[ sin θ[Y − ��
L£

m� £� − ��
l[

Wm� º»`Å − m� £Y� + ���
∆x m� º»`Å�  

( 2-60) 

So the Equations ( 2-51), ( 2-52), ( 2-54), ( 2-55), ( 2-57), ( 2-59) and ( 2-60) define the model for the 

head water system. It’s possible to replace for the variables m� [	, p£�	and	p[� from equations 

( 2-51) and ( 2-52) to get the final set of equations for the head water system as summarized in 

Table ( 2-3). 

 

Table ( 2-3) Summary Head Water System Model  

�� � f[	l[	Π[	signWm� º»`Å − m� £Y
2	A[� 	ρ!"# + 1

	A[	ρ!"#	 

�� � f£	L£	Π£	signWm� £Y
2	A�� 	ρ!"#  

��� � f�	∆x	Π�	signWm� º»`ÅY
2	A�� 	ρ!"#  

p£¼ � p!"# + ρ!"#	g	h� 

pº»`Å � §A£
L£

+ A�
∆x + AD

l[
¨

.& �§A£
L£

p£¼ + A�
∆x pº»`¼ + AD

l[
p!"#¨ + 

ρ!"#	g	WA£ sin θ� − A� sin θ� + A[ sin θ[Y − ��
L£

m� £� − ��
l[

Wm� º»`Å − m� £Y� + ���
∆x m� º»`Å� � 

dl[
dt � m� £ − m� º»`Å

	A[ρ!"#  
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L£
dm� £

dt � −A£Wpº»`Å − p£¼Y + ρ!"#g	L£	A£ sin θ� − ��m� £�  

∆x dm� º»`Å
dt � −A�Wpº»`¼ − pº»`ÅY + ρ!"#g	∆x	A� sin θ� − ���m� º»`Å�  

 

2.3.3 Turbine, Draft Tube and Tail Water System 

The model discussed in this subsection consists of an interface to penstock, turbine, draft tube, 

tail water tunnel and tail water reservoir. Tail water tunnel always has a positive slope in the 

direction of water flow to insure submergence of the turbine in water and prevent cavitation 

problems. Like the head water, here also three subsystems can be verified: 

 

• Interface to Penstock: The equation is similar to ( 2-59): 

∆x dm� ¾»`Å
dt � −A�bWp¾»¿Å − p¾»¿¼Y + ρ!"#g	∆x	A�b sin θ� − ���m� ¾»`Å�  

Where 

��� � f�	∆x	Π�b	signWm� ¾»`ÅY
2	A�b� 	ρ!"#  

( 2-61) 

 

• Turbine and draft tube: Turbine equations are given in Table ( 2-2). Dynamics of the draft 

tube is neglected in here to avoid complexity, but static pressure of the water column inside the 

draft tube may be accounted for in the model. So the following relationship will be held for the 

pressures from the turbine inlet to the draft tube outlet: 

P¾»¿Å � ρ!"#g	H) − ρ!"#g	h�� + P¾»¾¼ ( 2-62) 
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Figure ( 2-14) Tail Water System with Interface to Elastic Penstock 

 

• Tail Water Tunnel and Reservoir: Like the reservoir at the head water if the horizontal 

cross section area of the tail water reservoir be quite large, then pressure at outlet of the tail water 

tunnel can be considered to be fixed: 

p¾»¾� � p!"# + ρ!"#	g	h¾» ( 2-63) 

The water flow rate in the tail water tunnel is equal to the water flow rate at the penstock 

interface (Penstock interface is inelastic and so is the whole of the downstream of the interface). 

So the pressure drop at the both ends of the head water tunnel can be determined from the 

following differential equation: 

L¾»¾
dm� ¾»`Å

dt � −A¾»¾Wp¾»¾� − p¾»¾¼Y − ρ!"#g	L¾»¾	A¾»¾ sin θ¾»¾ − �¾»¾m� ¾»`Å�  ( 2-64) 
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���� � f¾»¾	L¾»¾	Π¾»¾	signWm� ¾»`ÅY
2	A¾»¾� 	ρ!"#  ( 2-65) 

 

Solving ( 2-61), ( 2-62) and ( 2-64) for p¾»¿Å will give: 

P¾»¿Å � §1 + L¾»¾
∆x

A�b
A¾»¾

¨
.&

§ρ!"#g	WH) − h��Y 	 + p¾»¾� + L¾»¾
∆x

A�b
A¾»¾

p¾»¿¼ + 

ρ!"#	g	L¾»¾ 	§sin θ¾»¾ + A�b
A¾»¾

sin θ�¨ + §�¾»¾ − L¾»¾
∆x ���¨ m� ¾»`Å�

A¾»¾
� 

( 2-66) 

 

Relations given in Table ( 2-2) together with Equations ( 2-61), ( 2-63) and ( 2-66) define the tail 

water system model which is summarized in Table ( 2-4) for convenience: 

 

Table ( 2-4)  Summary Tail Water Model 

Q" � m� ¾»¿Å
ρ!"#

k 100
Q"

EMD�ï= 											Turbine	volumetric	discharge	�%� 

Q"
MN � Q"

ω#
k ω#

EMD�ï=
 

H"
MN � H_TurbWY5?, Q"

MNY 

η" � Eff_TurbWY5?, H"
MNY 

H" � � H"
MN

ìω#
EMD�ï=î� k ω#� � k H"

EMD�ï=

100 									Turbine	head	�m� 

P" � ρ!"#	g	η"	H"	Q"											Turbine	power	�Watt�	 

p¾»¾� � p!"# + ρ!"#	g	h¾» 
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���� � f¾»¾	L¾»¾	Π¾»¾	signWm� ¾»¿ÅY
2	A¾»¾� 	ρ!"#  

��� � f�	∆x	Π�b	signWm� ¾»¿ÅY
2	A�b� 	ρ!"#  

P¾»¿Å � §1 + L¾»¾
∆x

A�b
A¾»¾

¨
.&

§ρ!"#g	WH) − h��Y 	 + p¾»¾� + L¾»¾
∆x

A�b
A¾»¾

p¾»¿¼ + 

ρ!"#	g	L¾»¾ 	§sin θ¾»¾ + A�b
A¾»¾

sin θ�¨ + §�¾»¾ − L¾»¾
∆x ���¨ m� ¾»¿Å�

A¾»¾
� 

∆x dm� ¾»¿Å
dt � −A�bWp¾»¿Å − p¾»¿¼Y + ρ!"#g	∆x	A�b sin θ� − ���m� ¾»¿Å�  

 

2.3.4 Waterway Model with Inelastic Penstock 

The waterway Model with inelastic penstock walls and incompressible water inside the penstock 

consists of the equations in Table ( 2-3) and Table ( 2-4) except for the last equation in each table. 

Instead a differential equation based on the Equation ( 2-39) can be developed for mass flow rate 

in the penstock: 

L� 	dm� 4
dt � −A�Wp¾»¿Å − pº»`ÅY + ρ!"#	g	L�	A� sin θ� −	�(m� �� 

�( � f�	L�	Π�	signWm� �Y
2	A�� 	ρ!"#  

( 2-67) 

Also in other equations of Table ( 2-3) and Table ( 2-4):  

m� ¾»`Å and m� º»`Å will be replaced with m� � 

∆x will be replaced with L�  

 A�	and	A�b will be replaced with A�  

Π�	and	Π�b will be replaced with Π� ��� and ��� will be replaced with �(  
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pº»`¼ will be replaced with p¾»¿Å 

p¾»¿¼ will be replaced with pº»`Å 

pº»`¼ in Table ( 2-3) will changed to p¾»¿Å 

Moreover, pº»`Å and p¾»¿Å can be found by solving the following set of equations: 

W & +  �Ypº»`Å −  �p¾»¿Å �  �  

− cpº»`Å + W1 +  cYp¾»¿Å �  ½ 
 

Where  
 

 & � A£
L£

+ AD
l[

 
( 2-68) 

 � � A�
L�

 
 

 � � A£
L£

p£¼ + AD
l[

p!"# + ρ!"#g	WA£ sin θ� − A� sin θ� + A[ sin θ[Y − ��
L£

m� £� − 

��
l[

Wm� � − m� £Y� + �(
L�

m� ��  

 

 c � L¾»¾
L�

A�
A¾»¾

 
 

 ½ � ρ!"#g	WH) − h��Y 	 + p¾»¾� + ρ!"#g	L¾»¾ 	§sin θ¾»¾ + A�
A¾»¾

sin θ�¨ + 

§�¾»¾ − L¾»¾
L�

�(¨ m� ��

A¾»¾
 

 

 

 Turbine Controller 2.4

A transient droop governor which has been used extensively in the hydropower installations will 

be considered for simulations in this chapter. First concepts of “swing equation” and “speed 

droop” shall be introduced. 
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Swing Equation: The mechanical energy stored in the rotating parts of the hydropower 

generation unit (turbine and generator rotor) is given by the following equation where J is the 

moment of inertia of the rotating body: 

E � 1
2 Jω� 

Rate of change of this stored energy is equal to the net power entering the system of rotating 

body. That means: 

Jω dω
dt � P�= − P��DD − P�ö" 

Where 

P�=:      Hydraulic power transferred to turbine   

P�ö":    Active electric power output at terminals of the generator 

P��DD �	:   Power losses through turbine and generator  

( 2-69) 

The equation ( 2-69) is known as the swing equation of the generator. The term P��DD may be 

considered equal to �1 − ηï� k P�= if all the mechanical losses of the turbine-generator body and 

resistive losses at the generator armature are accounted for in the generator efficiency (ηï) in 

which case the equation ( 2-69) will become: 

Jω Eý
E" � ηï	P�= − P�ö" � ηïη""�H"Q" − P�ö"  ( 2-70) 

Speed Droop: According to the above paragraph electrical frequency in an interconnected 

network of generators and loads is a function of the stored energy in the rotating bodies of 

generators in that network. So changes in the electrical frequency depend on the balance between 

the total generated and consumed power in that network. If frequency drops below a reference 

value, each generator in that network will try to correct the frequency by increasing their active 

output power. This correction action is one of the turbine governor’s duties. The frequency-

power characteristic of a generator is a straight line with negative slope as shown in the Figure 

( 2-15). 
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Figure ( 2-15) Turbine Governor Freq.-Speed Characteristics (Schavemaker, 2009) 

 

Absolute value (in percent) of the negative slope of the frequency-speed characteristics of a 

generation unit when the power and the frequency are given in per unit system is known as the 

droop or regulation and can be expressed as (Schavemaker, 2009): 

S � −100 k ∆f f�M#⁄
∆P S$⁄  

Where 

S: droop	�%� 
f�M#: desired	frequency	of	the	network	�Hz� 
S$: rated	power	of	the	generator	�MVA� 

( 2-71) 

If generation units in an interconnected network have zero droop (it means that each generation 

unit would increase its output power until frequency corrected exactly) then faster generation 

units would increase their output power after a decrease in the frequency more than generation 

units with slower response and this will cause the network load be distributed between the 

generation units randomly (Schavemaker, 2009) . Another unwanted scenario is also likely to 

occur (Warnick, 1984): It’s impossible for the generation units to have exactly the same 

frequency set point (or better to say it’s impossible for these units to have the same error pattern 

in measuring the frequency, some might have negative errors whilst others might have positive 

errors). Units with higher set point will try to increase the network frequency to their set point 

until they achieve this goal or reach their maximum power. If they be able to increase the 

P

f

∆f

∆P
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network frequency, the units with lower set point will decrease their load to lower the frequency. 

This will continue until the units with higher set point will take the entire network load to 

themselves (if they have enough capacity) and the other units will go to the standby mode.  

Unwanted situations discussed above are resolved by assigning negative speed droops to the 

generation units. If a unique value is assigned as droop to all the generation units, then each unit 

will take part in the frequency correction with an amount of power which is proportional to its 

rating output power.  

Transient Droop Governor: Governing system for hydropower turbines usually has two 

servomotors: Pilot servomotor and main servomotor. The pilot servomotor operates a relay valve 

which in turn operates the high power main servomotor. The main servomotor changes the guide 

vanes opening position. These servomotors usually are hydraulic devices and operate with 

hydraulic oil pressure. (Machowski, 2008) 

A typical block diagram of the so called “transient droop controller” is shown in the Figure 

( 2-16). The pilot servomotor is models as a first order system. The main servomotor is modeled 

as an integrator with limit on the output and also on the rate of change of the output in both 

directions (increasing or decreasing). Limits on the rate of change of the guide vanes position are 

necessary for preventing high pressure surges due to the water hammer effect. These limits can 

be different when the guide vane closing and opening. Guide vanes should be able to close fast 

so that over speed of the turbine is prevented in case of a large load rejection. (Thoresen, 2010) 

 

Figure ( 2-16) Block Diagram of Transient Droop Controller (Machowski, 2008) 
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Y5?	and	Y5?_VM#	vary between 0 and 1 (per unit values). Integral action of the main servomotor is 

used in the control. This action in the steady state will cause the error  σ�Y5?_VM# − 	 Y5?� +
W1 − f/fVM#Y vanish. So if the output power of turbine be proportional to	Y5?, then σ could 

actually be considered as the per unit value of the droop. The differentiating block 
(¾)D

&%¾)D causes 

lower rate of change in Y5? right after a disturbance and then rate of change increases gradually. 

This allows the water column velocity in the penstock to catch up the guide vanes movements. 

(Machowski, 2008) 

The signal conditioning part of the block diagram in Figure ( 2-16) might be implemented 

mechanically or electrically. One disadvantage of the transient droop governor as is evident from 

the Figure ( 2-16) is that the feedback for implementing the static (steady state) droop is taken 

from the guide vanes position instead of generator output active power. This can cause 

deviations in power delivered to the network (Thoresen, 2010) . In (Thoresen, 2010) and 

(Johansson, 2009) controller configurations for using the feedback from the generator output 

active power are given. In (Johansson, 2009) also more complicated models for the pilot and 

main servomotors considering backlash and friction are introduced. 

Typical values for parameters of a transient droop controller are given in (Machowski, 2008): 

T� � 0.04	�sec] , Tï = 0.2	[sec] , TV = 5T*ª  , δ = 2.5T*ª /T# 

Where T*ª = ,�	ah�-�).-��üh
.�	ï	ºh

�-�).-��üh is called “water starting time” and T# = /ý01��2  is called “Mechanical 

time constant. Typical values for the static droop σ are given as 3 to 6 percent in (Machowski, 

2008) and 10 percent for Norway in 2010 in (Thoresen, 2010). 

Set of equations modeling the controller shown in Figure ( 2-16) is given in Table ( 2-5). 

 

Table ( 2-5) Transient Droop Controller Model 

d = δY5? − xV 
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e = σ�Y5?_VM# o Y5?� o § f
fVM# o 1¨ o d 

TV dxVdt Z xV � δY5? 

T�
dudt Z u � e 

dY5?dt �

34
45
44
6 0 if	Y5? ¬ 0		or		Y5? ¯ 1

Y�5?#!P if	�u Tï⁄ � ¯ Y�5?#!P	

oY�5?#�= if	�u Tï⁄ � ¬ oY�5?#�=

u Tï⁄ else

 

 

 Simulation Results 2.5

 

2.5.1 Validation of the General Penstock Model 

In this section the model of penstock with elastic walls and compressible water will be validated 

by application to the classic problem of reservoir-penstock-valve. Consider the system shown in 

the Figure ( 2-17). When the valve closes suddenly, pressure before the valve increases and a 

pressure wave travels back to the reservoir. When this wave reaches the water surface at the 

reservoir, becomes reflected as a negative wave and travels toward the valve. The time that takes 

for the pressure wave to travel from the valve to the reservoir and then back to the valve is equal 

to: 

2	 k 	 L�
Speed	of	the	pressure	wave 

The height h¾» of the reservoir is considered to be much less than the length L� of the penstock 

in deriving the above relation. Speed of the pressure wave inside penstock is equal to the speed 
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of sound inside the water in penstock which a relation was given for it in ( 2-5). (Parmakian, 

1963) This can be one of the criteria for validation of the penstock model. Time for traveling of 

the pressure waves (and hence speed of the waves) can be found from the results of simulations 

and then it can be compared to the value obtained from ( 2-5). 

 

Figure ( 2-17) The Classic Penstock-Valve Problem 

 

Maximum pressure rises before the valve when the valve starts closing from the steady-state 

condition with a uniform rate and reaches the complete closed position are tabulated by Allievi 

(Warnick, 1984). One of these charts is shown in Figure ( 2-18). This chart can be used as other 

criteria for validation of the penstock model. The maximum pressure rise found by simulation 

can be compared to the chart.  Various parameters used for defining the axes of the chart in 

Figure ( 2-18) are as follows: 

 k = a	v�
2gh�

			,					n = a	T
2	L�

				,				z = Max. head	before	the	valve
Operating	head		before	the	valve ( 2-72) 

Where 

 k = Time constant [-] 

 n = Pipe line constant [-] 

 a = Speed of the sound inside the penstock [m/sec] 

h
HW

L
P

θ
P

patm

patm

h
o
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 v� = Speed of water in steady-state condition before the 

valve closure 

[m/sec] 

 h� = Gross head as shown in Figure ( 2-17) [m] 

 T = Valve closure time [sec] 

 

Details of the reservoir and valve with penstock interfacing parts are shown in Figure ( 2-19) and 

Figure ( 2-20) respectively. Following similar procedures of Sections  2.3.2 and  2.3.3 the 

equations governing these two systems can be obtained as follows: 

The Reservoir: 

 

pº»Å = p!"# + ρ!"#	g	hº» 

∆x dm� º»Å
dt = −A�

!"#Wpº»¼ − pº»ÅY + ρ!"#g	∆x	A�
!"#	sin	θ� 

( 2-73) 

Terms due to friction are neglected in the second equation of ( 2-73). Also the height hº» is 

considered to be constant (for example due to make-up water flow to the reservoir. 

The Valve: 

 

∆p?.,?8 = m� ¾»Å	|m� ¾»Å|
ρ!"#�C?

�  

p¾»Å = p!"# + ∆p?.,?8 

∆x dm� ¾»Å
dt = −A�

!"#Wp¾»Å − p¾»¼Y + ρ!"#	g	∆x	A�
!"#	sin	θ� 

( 2-74) 

Again, Terms due to friction are neglected in the last equation. 
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Figure ( 2-18) Allievi Chart Tabulating Maximum Pressure Rise before the Valve when Closing 

with Uniform Rate (Warnick, 1984) 
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Figure ( 2-19) Details of the Reservoir with Penstock Interface 

 

 

Figure ( 2-20) Details of the Valve with Penstock Interface 

 

Simulation: Four different scenarios will be considered for simulation of the Penstock-Valve 

problem. The following parameters are the same for all the four scenarios: 

L� � 1000	�m]   ,   h� � 100	[m]   ,   hº» � 0	[m]   ,   a � 1000	[m/sec] ( 2-75) 

 

Valve closing times and steady-state initial velocity of water (hence the parameters k and n 

introduced in ( 2-72)) will be different for each scenario as follows: 
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Table ( 2-6) Scenarios for Simulation of the Penstock-Valve 

 T [sec] v� [m/sec] k n 
z (from Figure 

( 2-18)) 

Scenario #1 1 1 0.5 0.5 2 

Scenario #2 3 1 0.5 1.5 1.6 

Scenario #3 5.2 1 0.5 2.6 1.3 

Scenario #4 3 4 2 1.5 3.8 

 

Valve starts closing at t=50 second in each scenario. Result of simulation for the above scenarios 

is included in Figure ( 2-21) to Figure ( 2-24) respectively. In Figure ( 2-21) to Figure ( 2-23) the 

values of head rise are in close agree with z values in the above table.  

The result of simulation for the fourth scenario however is different. The value of head rise in 

this case is more than expected (3.47E+6/7.7E+5=4.5 whereas a value of 3.8 is expected from 

Allievi chart). The reason maybe because of the higher velocity which causes higher loses due to 

friction. The steady state value of the head before valve (before the time 50 sec when valve starts 

to close) is less than the other cases. For examining this guess, the case is simulated again with 

zero friction and the result is given in Figure ( 2-25). It appears that with zero friction the head 

rise is exactly in agree with Allievi chart. 4 m/sec here is an illustrative value and might not be a 

normal operating condition. In addition, the author of this report doesn’t have any clue about the 

normal range of the friction factors for the penstock. 

As mentioned earlier another criteria for validating the penstock model could be finding speed of 

the pressure waves from the simulation. MATLAB code for simulations in this part is included in 

the appendix III. In the code, value of β"�"!� is calculated from the desired speed of sound. Then 

simulation is done with the calculated value of	β"�"!�. So the simulation results shall reflect this 

value of the pressure Waves. In the Figure ( 2-21) to the Figure ( 2-25) the time difference 

between two consecutive peaks is 2 seconds (except for the peaks that coincide with valve 

closure) and this agrees with the value	2L�/a.  
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Figure ( 2-21) Result of Simulation of the Penstock-Valve for Scenario #1 (T=1 sec) 

 

 

 

Figure ( 2-22) Result of Simulation of the Penstock-Valve for Scenario #2 (T=3 sec) 
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Figure ( 2-23) Result of Simulation of the Penstock-Valve for Scenario #3 (T=5.2 sec) 

 

 

Figure ( 2-24) Result of Simulation of the Penstock-Valve for Scenario #4 (T=3 sec and v�= 4 

[m/sec] with f� = 0.04) 
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Figure ( 2-25) Result of Simulation of the Penstock-Valve for Scenario #4 (T=3 sec and v�= 4 

[m/sec] with	f� = 0) 

 

Pressure and Mass Flow Rate at the middle and entrance (in Head Water Side) of the 

Penstock: Pressure and mass flow rate variations at different locations in the penstock is shown 

in the Figure ( 2-26). Range of variations of mass flow rate is almost constant through the 

penstock length but range of variations of the pressure reduces at closer locations to the head 

water as was expected. Mass flow rate at the valve is given in Figure ( 2-27). There is a small 

flow after t=50 sec at the valve because the valve just closes to 0.001(p.u). This is done on 

purpose to prevent divide by zero error (see the code in Appendix III). 
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Figure ( 2-26) Variations of Pressure and Mass Flow Rate at different Locations of the Penstock 

for the Scenario #1 in Table ( 2-6) 

 

 

Figure ( 2-27) Mass Flow Rate at the Valve for the Scenario #1 in Table ( 2-6) 
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Partial Valve Closure: Partial valve closure for scenario #1 in Table ( 2-6) is simulated in Figure 

( 2-28). The valve starts closing at time t=50 sec from full open position (with a rate of full 

closure per one second) and closes until 0.9 (p.u.) open position.  

 

Figure ( 2-28) Simulation of Partial Valve Closure from 1 to 0.9 (p.u.) position 

 

Options for ODE Solvers: All the simulations in Figure ( 2-21) to Figure ( 2-28) are done with 

the MATLAB “ODE15S” solver with the following options: 

options=odeset('MaxOrder',5,'RelTol',1e-6,'AbsTol',1e-6); 

 

What happens if default options are used for “ode15s”? The simulations of Figure ( 2-21) and 

Figure ( 2-28) are repeated with increased relative tolerance (‘RelTol’=1e-3) and the result is 

given in Figure ( 2-29) and Figure ( 2-30) respectively. As can be seen, with increased relative 

tolerance the “ode15s” encounters numerical errors which completely distort the solution in case 

of small valve changes. 
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Figure ( 2-29) Simulation of Figure ( 2-21) with the option ‘RelTol’=1e-3 for “ode15s” 

 

 

Figure ( 2-30) Simulation of Figure ( 2-28) with the option ‘RelTol’=1e-3 for “ode15s” 
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Number of Penstock Segments: In all the above simulations, number of penstock segments is 

chosen to be 50. Figure ( 2-31) shows the result of the simulation for scenario #1 for two different 

N values (N=25 and N=50). As can be seen, number of segments has influence on the frequency 

of oscillations of the model. 

 

Figure ( 2-31) Simulation for Different Number of Penstock Segments 
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Demand to keep the frequency stable whereas Figure ( 2-34) shows that the steady state value of 

the frequency will not follow the frequency reference. This is due to the droop relation that its 

satisfaction requires the power be decreased with increasing frequency and vice versa.  

Figure ( 2-43) to Figure ( 2-45) show the results of a simulation in which the power demand is 

constant during simulation but the reference value for guide vane changes at t=300 sec. Since 

power demand has not changed the actual guide vane position returns to its previous value. As it 

can be seen there are small differences between the responses of the elastic and inelastic models 

this time but due to the time constants of the guide vanes movement still the differences are not 

significant. 

System parameters for these simulations can be found in Appendix III part C in the MATLAB 

code Main_parameters.m. 

 

Figure ( 2-32) Simulation Results (ActivePower Demand changes to 50MW at t=400 sec and 

changes back to 80MW at t=800 sec) 
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Figure ( 2-33) Same as the Figure ( 2-32) with Horizontal Zoom 

 

Figure ( 2-34) Simulation Results (Because of change in the active power demand and since the 

droop relationship shall be satisfied, frequency doesn’t remain constant.) 
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Figure ( 2-35) Simulation Results (Guide vanes reference and actual values) 
 

 

Figure ( 2-36) Simulation Results (Turbine head) 
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Figure ( 2-37) Same as the Figure ( 2-36) with Horizontal Zoom 

 

 

 

Figure ( 2-38) Same as the Figure ( 2-36) with Horizontal Zoom 
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Figure ( 2-39) Simulation Results (Turbine head) 
 

 

Figure ( 2-40) Simulation Results (Turbine Mass Flow Rate) 
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Figure ( 2-41) Simulation Results (Surge Shaft Level) 

 

 

Figure ( 2-42) Simulation Results (Conduit Mass Flow Rate) 
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Figure ( 2-43) Simulation Results with fixed power demand and guide vanes reference change at 

t=300 sec 

 

 

Figure ( 2-44) Simulation Results with fixed power demand and guide vanes reference change at 

t=300 sec. 
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Figure ( 2-45) Simulation Results with fixed power demand and guide vanes reference change at 

t=300 sec. 
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Chapter 3 Electrical System 

This chapter is devoted to study of the synchronous generator. In sections 3.1.1 to 3.1.3 structure 

of a multi-pole salient poles generator is discussed. In section 3.1.4 the self and mutual 

inductances of various windings in the machine are studied. Sections 3.1.5 to 3.1.7 the Park’s 

transform and machine equations in the rotor reference frame are discussed. The power term in 

the swing equation which is relevant to the generator active power is discussed in Section 3.1.8. 

In Sections 3.1.9 to 3.1.11 available simplified models for the synchronous generator are 

introduced and it is shown how to relate the variables of these models to the network variables 

through the “phasors” concept. Finally a generator connected to an infinite bus is simulated with 

the waterway model (without elasticity). 

 

 Synchronous Generator 3.1

3.1.1 Typical Structure of a 12-Pole Machine 

Figure ( 3-1) shows a radial cross-section sketch of a 12-poles synchronous generator. “Armature 

windings” carrying the generator output current and producing terminal voltages are fixed in the 

stator slots and are denoted by	a&	, a�, … , aÀ for phase “a”. Similar notation is used for denoting 

the phase “b” and phase “c” armature windings. Windings denoted by “F” are called “Field 

Windings” and are electrically connected in series with each other.  The “field current” or the 

“rotor magnetizing current” flowing through these windings is a constant DC current in the 

steady-state operation of the generator and produces a radial magnetic field at the pole shoes. 

The field current is generated and controlled by circuits responsible for controlling the generator 

terminal voltage. “Damper Windings” D and Q are short circuited windings which stabilize the 

generator operation during rapid changes in the operating condition. A third damper winding 

model “g” is also introduced in (Machowski, 2008) which actually is not a winding but is a 

model of the currents induced in the rotor body. This “winding” is important in the high speed 

turbo generators and the parameters relevant to it are not normally given for salient pole 

generators.  
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3.1.2 Conventional Directions 

Direction of magnetic fields: Conventional direction for magnetic field is shown in Figure ( 3-2) 

(a) and (b). Right-hand rule
4
 can be used in the both cases to determine direction of the magnetic 

field. 

 

 

Figure ( 3-1) Cross-Section sketch of a 12-Poles Synchronous Generator based on 2-Poles 

Machine Structures given in (Andersson, 2010) and (Machowski, 2008) 

 

                                                 

4
 http://en.wikipedia.org/wiki/Right_hand_rule 
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Figure ( 3-2) Direction of the Magnetic field in (a) center of a winding carrying current i (b) 

around a straight wire carrying current i 

Direction of current, voltage and magnetic flux in two magnetically coupled windings: 

Direction of the current in two windings is chosen so that the magnetic flux produced by the 

windings will add to each other. In Figure ( 3-3) Ψ&� is the flux produced by the current in the 

second winding and passing through the first winding. Similarly, the flux Ψ�& is part of the flux 

produced by the current in the first winding which passes through the second winding. By 

choosing currents flowing in the indicated directions, Ψ&� and Ψ�&will be in the same direction in 

the magnetic circuit of the two windings. It can be written: 

 
Ψ& � Ψ&& Z 	 Ψ&� � L&i& Z L&�i� 

Ψ� = Ψ�& Z 	 Ψ�� � L�&i& Z L�i� 

( 3-1) 

The so called “mutual inductances” L&�	and L�&depend on the number of turns in both the first 

and second windings and also on properties of the magnetic circuit between the two windings. It 

is a known fact that the equality	L&� � L�& � M always holds. By the right choosing of the 

conventional current directions in the two windings, M will become positive. This usually is 

shown by two dots as indicated in Figure ( 3-3). If the conventional current direction is chosen 

into the winding at the doted end of the two windings, then the fluxes will add to each other and 

the M will be positive. 

i

i

i

i
B

B

B i

(a) (b)

stands for a direction perpendicular to the page and towards the page.
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Figure ( 3-3) Two Magnetically Coupled Windings, Conventional Current and Voltage Directions 

In Figure ( 3-3), one of the windings is connected to a source and the other is connected to a load. 

Note that conventional voltage directions in the load side and in the source side are different. It’s 

because of the direction of energy flow. If the energy out of the source Wv&i&) is positive, then the 

energy given to the load (v�i�) should also be positive. This has a consequence on the voltage 

equations: 

 

v& = R&i& + dΨ&
dt = R&i& + L&

di&
dt + M di�

dt  

v� = −R�i� − dΨ�
dt = −R�i� − M di&

dt − L�
di�
dt  

( 3-2) 

 

N and S poles of a magnet: Figure ( 3-4) shows a solenoid with a core made of magnetic 

material. If current in the solenoid flows in the indicated direction then order of the “N” and “S” 

poles of the magnet will be as shown in the figure.  
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Figure ( 3-4) “N” and “S” Poles of a Magnet 

 

N and S poles of the Rotor: If a dc current flows in the “F” windings of a synchronous 

generator in the directions indicated in the Figure ( 3-1), then the “hatched” poles will act as “N” 

poles of constant magnets and the other poles will be “S” poles. 

Rotor Angle	"<¸": The rotor angle "θ#" is measured from any of the “a” axes to the nearest 

“N” pole in counter-clockwise direction (direction of rotation). (See Figure ( 3-1)) 

3.1.3 Electrical Connections 

 

In Figure ( 3-5) to Figure ( 3-7) a possible combination (illustrative based on (Chapman, 2005)) of 

electrical connections for different windings of the generator are indicated. Note the difference 

between defining conventional voltage polarities in the armature windings (Figure ( 3-5)) with 

those of the field windings (Figure ( 3-6)). The field windings are considered to be on the source 

side. (See section  3.1.2) 

Conventional direction for current in the “F” and “D” windings are chosen such that when the 

rotor angle is equal to 0, mutual inductance between “F” (or “D”) and “a” windings will be 

maximum positive.  

i

i

N

S
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Conventional direction for current in the “Q” windings is chosen such that when the rotor angle 

is equal to	(π n�⁄ ), mutual inductance between “Q” windings with “a” windings will be 

maximum positive.  

 

Figure ( 3-5) Illustrative Electrical Connections for “a” Windings (for other Armature Windings 

will be Similar) 
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Figure ( 3-6) Connections of the “F” Windings 

 

 

Figure ( 3-7) Connections of “D” Windings (“Q” Windings will be Short Circuited as well) 
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3.1.4 The Inductance Matrix 

It is known from the theory of electromagnetism that the flux linkage in each of the machine 

windings can be considered as a linear function of the machine currents (if saturation and 

hysteresis effects can be neglected) (Machowski, 2008): 

 

ÜÝ
ÝÝ
Ý
ÞΨ!Ψ\Ψ]Ψ6Ψ`Ψaáâ

ââ
â
ã

=
>

=

ÜÝ
ÝÝ
ÝÝ
Þ L!! L!\ L!]L\! L\\ L\]L]! L]\ L]]

L!6 L!` L!a
L\6 L\` L\a
L]6 L]` L]a

L6! L6\ L6]L`! L`\ L`]La! La\ La]

L66 L6` L6a
L`6 L`` L`a
La6 La` Laaáâ

ââ
ââ
ã

?@@@@@@@@@@A@@@@@@@@@@BC
ÜÝ
ÝÝ
Ý
Þi!i\i]i6i`iaáâ

ââ
â
ã

D
Ï

 
( 3-3) 

The values for each element in the matrix “L” is given in (Machowski, 2008) and (Andersson, 

2010) for a two-pole machine. The relations for a general machine with n4 poles will be as 

follows (Lie, 2011): 

 θM = �n4 2⁄ �θ#  ,  θMª = θM − 2π 3⁄   , θMªª = θM + 2π 3⁄   

 

L!! = LD + L#	cos	(2θM) 

L\\ = LD + L# cos(2θMª ) 

L]] = LD + L#	cos	(2θMªª) 

 

 

L!\ = L\! = −MD − L#	cos	ì2θM + π
3î 

L\] = L]\ = −MD − L#	cos	ì2θMª + π
3î 

L!] = L]! = −MD − L#	cos	ì2θMªª + π
3î 

( 3-4) 

 

L!6 = L6! = M6	cos	(θM) 

L\6 = L6\ = M6	cos	(θMª ) 

L]6 = L6] = M6	cos	(θMªª) 
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L!` = L`! = M`	cos	(θM)	
L\` = L`\ = M`	cos	(θMª )	
L]` = L`] = M`	cos	(θMªª) 

 

 

L!a = La! = Ma	sin	(θM)	
L\a = La\ = Ma	sin	(θMª )	
L]a = La] = Ma	sin	(θMªª) 

 

 

L66 = L6		, L`` � L`		, Laa � La		 
L6` � L`6 � M� 

L6a � La6 � L`a � La` � 0 

 

Where LD	, L#	, MD	, M6	, M`	, Ma	, L6	, L`	, La	and	M�	are positive real values.  

The relations for mutual inductances between the “Q” and the stator windings in ( 3-4) are in 

agree with (Machowski, 2008) but different from those given in (Andersson, 2010). The reason 

is the conventional direction of current in the “Q” winding is chosen differently.  

In the following the relations ( 3-4) will be investigated intuitively for a multi-pole machine by 

examining the magnetomotive forces
5
 and flux line paths in each case and for various rotor 

angles. 

• L!! : Self-inductance of “a” windings on the stator depends partly on the flux path through 

the stator itself and partly on the flux path between the stator and rotor. Reluctance of the 

rotor path is dependent on the rotor angle. Figure ( 3-8) shows the flux paths and 

magnetomotive forces generated by a constant dc current in the “a” windings for different 

rotor angles: 

(a) θ# � �EF
=�

	Wk � 0,1, … Y 

                                                 

5
 http://en.wikipedia.org/wiki/Magnetomotive_force (accessed 2011) 
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(b) θ# � W�E%&YF
=�

			Wk � 0,1, … Y 

In the case (a), the poles are located in the same direction as the magnetomotive forces 

induced by “a” windings. So the rotor has the least reluctance seen by the “a” windings and 

hence L!! has its maximum. In the case (b), due to symmetry no flux is generated in the 

rotor and the rotor magnetic circuit has the largest reluctance. Hence L!! has its minimum.  

• L!\ : Figure ( 3-9) shows the flux path induced by dc currents in the “a” and “b”windings for 

two different rotor angles and current directions: 

(a) θ# � ì2kπ + �G
� î /n�					Wk = 0,1, … Y and currents in the “a” and “b” windings are 

equal and positive 

(b) θ# � ì2kπ − G
�î /n�					Wk = 1, … Y and currents in the “a” and “b” windings are equal 

but positive in “a” and negative in “b” 

In case (a), the flux induced by the current in winding “a” has a maximum positive linkage 

with the winding “b”. In case (b), the flux linkage is maximum and negative. 

 

Figure ( 3-8) Flux Lines Generated Merely by the Current in “a” Windings for Different Rotor 

Positions 
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Figure ( 3-9) Flux Lines Generated by Currents in “a” and “b” Windings for Different Rotor 

Positions (Current in the “b” winding is negative in case (b).) 

 

• L!6	and	L!` : Figure ( 3-10) shows the flux path induced by just the positive dc current in 

the “a” windings for different rotor angles: 

(a) θ# � W4kπY/n�					Wk = 0,1, … Y 

(b) θ# � W4kπ + TY/n�					Wk = 0,1, … Y 

(c) θ# � W4kπ + 3TY/n�					Wk = 0,1, … Y 

(d) θ# � W4kπ + 2πY/n�					Wk = 0,1, … Y 

In cases (a) and (d) the flux linkages in the “F” windings are maximum in magnitude. In 

case (a) the flux passes the “F” windings in the same direction that flux induced by the 

“F” windings would have passed. So mutual inductance in this case is positive. However 

In case (d) the flux direction is opposite and the mutual inductance will be negative. In 

cases (b) and (c) due to symmetry there’s no flux linkage in the “F” windings. 
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Figure ( 3-10) Flux Lines Generated Merely by the Current in “a” Windings and Linking the “F” 

Windings for Different Rotor Positions 

 

• L!a, L6a	and	L`a : Figure ( 3-11) shows the flux paths induced by just the positive dc 

current in the “Q” windings for different rotor angles: 

(a) θ# � 2kπ/n�					Wk = 0,1, … Y 

(b) θ# � W4kπ + πY/n�					Wk = 0,1, … Y 

(c) θ# � W4kπ + 3πY/n�					Wk = 0,1, … Y 

At first site it is clear that in no case there is a flux linkage between the “Q” and “F” or 

between the “Q” and “D” windings. So values of L6a	and	L`a are always equal to zero. In 
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case (b) the flux induced by the current in “Q” windings are in the same direction as the flux 

induced by a current flowing into “a” windings would have been (see Figure ( 3-10) part (b)). 

So the mutual inductance L!a will be positive. A same conclusion results for a negative L!a 

in case (c). It is obvious due to symmetry that no flux linkage exists between “a” and “Q” 

windings in case (a). 

3.1.5 The Park’s Transformation 

Equations for the synchronous generator are best described by using the so called Park’s 

transformation. Consider Figure ( 3-12) where	�( � 2. This special case can be considered as 

when the area restricted to the a1_axis and a2_axis in Figure ( 3-1) be mapped into a complete 

circle by multiplying the angles with center at O by a factor of Wn�/2Y. For this reason the rotor 

angle in Figure ( 3-12) is shown with	n�θ# 2⁄ . 

The idea behind the Park’s transform is to formulate the rotating magnetic field produced by a 3-

phase sinusoidal current flowing in the armature windings in a coordinate system fixed to the 

rotor. This new coordinate system in Figure ( 3-12) is denoted by the “d” and the “q” axes. In the 

steady-state operation of the generator, the stator magnetic field will be stationary in the rotor 

reference frame. Thus the stator magnetic field can be modeled as the result of fictitious 

windings fixed to the rotor and carrying dc currents. An advantage of this transformation as will 

be shown later in this section is that self-inductances of these fictitious windings and their mutual 

inductance with rotor windings will no longer depend on the rotor angle. 
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Figure ( 3-11) Flux Lines Generated Merely by the Current in “Q” Windings and Linking the “a” 

Windings for Different Rotor Positions 

 

 

Figure ( 3-12) “d” and “q” Axes in a Two Poles Generator 
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In the following the projection of the stator magnetomotive force onto the rotor frame will be 

obtained. The resultant magnetomotive force in the stator frame at the rotor axis “O” is given by: 

 H � H!ò! Z H\ò\ Z H]ò] ( 3-5) 

Where 

 H � Resultant magnetomotive force vector at the rotor axis measured in the 

stator reference frame [A. turns] 

 H!(H\	, H]Y � Resultant magnetomotive force of the current flowing in the “a” (“b”, 

”c”) winding measured in the stator reference frame [A. turns] 

 ò!(ò\, ò]Y � Unit vector along the “a” (“b”, ”c”) axis 

H can be presented in the rotor reference frame as: 

 H � HIEòE Z HINòN ( 3-6) 

Where 

 HIE	WHINY � Magnitude of projection of H onto the “d”  (“q”) axis [m�] 

 òEWòNY = Unit vector along the “d” (“q”) axis 

For calculation of HIE	and	HIN, the unit vectors ò!, ò\	and	ò] shall be written in terms of 

òE	and	òN: 

 

ò! � cos §n�θ#
2 ¨	òE + sin §n�θ#

2 ¨	òN 

ò\ = cos §n�θ#
2 − 2T

3 ¨	òE + sin §n�θ#
2 − 2T

3 ¨	òN 

ò] = cos §n�θ#
2 + 2T

3 ¨	òE + sin §n�θ#
2 + 2T

3 ¨	òN 

( 3-7) 
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From ( 3-5) and ( 3-7) it can be concluded: 

 

H
= �H!cos §n�θ#

2 ¨ 	 + H\cos §n�θ#
2 − 2T

3 ¨	 + H]cos §n�θ#
2 + 2T

3 ¨	�?@@@@@@@@@@@@@@@@@@@A@@@@@@@@@@@@@@@@@@@B
ºIJ

òE 

+ �H!sin §n�θ#
2 ¨ + H\sin §n�θ#

2 − 2T
3 ¨ + H]sin §n�θ#

2 + 2T
3 ¨	�?@@@@@@@@@@@@@@@@@@@A@@@@@@@@@@@@@@@@@@@B

ºI�

òN 

( 3-8) 

Or: 

KHIE
HIN
L = Mcos §n�θ#

2 ¨ cos §n�θ#
2 − 2T

3 ¨ cos §n�θ#
2 + 2T

3 ¨
sin §n�θ#

2 ¨ sin §n�θ#
2 − 2T

3 ¨ sin §n�θ#
2 + 2T

3 ¨
N 	OH!H\H]

P = æQ OH!H\H]
P ( 3-9) 

It can be shown that: 

 æQæQ� = M3
2 0
0 3

2
N 									Ó�|								æQ O11

1
P = ¶0

0¹ ( 3-10) 

This suggests the following orthonormal transformation from ℛ� to	ℛ�: 

 

R = S2
3

ÜÝ
ÝÝ
ÝÝ
Þ 1√2

1√2
1√2

cos §n�θ#
2 ¨ cos §n�θ#

2 − 2T
3 ¨ cos §n�θ#

2 + 2T
3 ¨

sin §n�θ#
2 ¨ sin §n�θ#

2 − 2T
3 ¨ sin §n�θ#

2 + 2T
3 ¨áâ

ââ
ââ
ã
	 

PP¾ = P¾P = O1 0 0
0 1 0
0 0 1

P 
( 3-11) 
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By applying the transform P to the vector OH!H\H]
P one can get: 

 �HlHEHN
� =

ÜÝ
ÝÝ
ÝÝ
ÝÝ
ÝÞS1

3 (H! + H\+H])

S2
3 HIE

S2
3 HIN áâ

ââ
ââ
ââ
âã

= R	 OH!H\H]
P ( 3-12) 

At the following operating condition the sum H! + H\+H] will be equal to zero: 

• The armature windings are star connected without ground connection 

• No saturation effect or no imbalance armature currents  

So values of the set (H!,H\,H]) at any time instant are uniquely determined if the values of the 

set (HIE,HIN) are known and vice versa.  

HE and HN in ( 3-12) will preserve the direction of the stator magnetic field measured in the rotor 

frame and preserve its strength if a correction factor of ��
� is applied. OH!H\H]

P is ideally proportional 

to the armature currents vector Oi!i\i]
P. So the transform P can be used to study the effects of a three 

phase sinusoidal current flowing in the armature windings on the magnetic field seen by the 

rotor. Voltages across the armature windings can also be transformed by P into the rotor frame 

and the transformed currents, voltages and fluxes can be associated to fictitious windings “d” and 

“q” fixed to the rotor frame as shown in the Figure ( 3-13). In the next section relations for the 

self-inductances of these fictitious windings and the mutual inductance between them and the 

rotor windings will be derived. In section  0 relations for voltages across these fictitious windings 

will be found so that the inverse transform of these voltages will give the terminal voltages of the 

generator. 
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The relation for matrix P in ( 3-11) is in agrees with (Machowski, 2008) but differs from that of 

(Andersson, 2010). The reason is that in (Machowski, 2008) and here the “q” axis is chosen to 

lag “d” axis. According to (Machowski, 2008) this is the configuration recommended by IEEE. 

According to the same reference when studying equations transformed into “d-q” frame, one 

should always note which Park’s transform has been used. 

 

Figure ( 3-13) Reproduction of the Stator Magnetic Field by Fictitious Rotor Windings “d” and 

“q” 

 

Using notations from ( 3-4) the Park’s transform matrix can be written in the following form: 

 R = S2
3

ÜÝ
Ý
Þ 1√2

1√2
1√2

cos(θ/) cos(θ/ª ) cos(θ/ªª)
sin(θ/) sin(θ/ª ) sin(θ/ªª)áâ

â
ã
 ( 3-13) 

 

3.1.6 Flux Linkage Equations in the 0dq Frame 

An extended Park’s transformation matrix is defined by: 

 RMP" = ¶ R U�×�U�×� V�×� ¹												RMP"¾ RMP" = RMP"RMP"¾ = V       ( 3-14) 

Applying the extended transform to ( 3-3) will result: 

d_axis

q_axis

d

qQ

F

D
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ÜÝ
ÝÝ
Ý
ÞΨlΨEΨNΨ6Ψ`Ψaáâ

ââ
â
ã

= RMP"

ÜÝ
ÝÝ
Ý
ÞΨ!Ψ\Ψ]Ψ6Ψ`Ψaáâ

ââ
â
ã

= RMP"C
ÜÝ
ÝÝ
Ý
Þi!i\i]i6i`iaáâ

ââ
â
ã

= RMP"C	RMP"¾?@@A@@BCW
ÜÝ
ÝÝ
Ý
ÞiliEiN
i6i`iaáâ

ââ
â
ã
 ( 3-15) 

CW is the new inductance matrix in the rotor frame and can be shown to be independent from 

rotor angle. The flux linkage equations then will become: 

 

ÜÝ
ÝÝ
Ý
ÞΨlΨEΨNΨ6Ψ`Ψaáâ

ââ
â
ã

=

ÜÝ
ÝÝ
ÝÝ
ÞLl 0 0 0 0 0

0 LE 0 kM6 kM` 0
0 0 LN 0 0 kMa
0 kM6 0 L6 M� 0
0 kM` 0 M� L` 0
0 0 kMa 0 0 La áâ

ââ
ââ
ã

?@@@@@@@@@@@A@@@@@@@@@@@BCW ÜÝ
ÝÝ
Ý
ÞiliEiN
i6i`iaáâ

ââ
â
ã
 

( 3-16) 

Where 

 Ll = LD − 2MD ,  LE = LD + MD + k�L# , 

 LN = LD + MD − k�L# , k = ��
� 

 

 

3.1.7 Voltage Equations 

Consider electrical connections of Figure ( 3-5) to Figure ( 3-7). Especially the conventional 

direction for currents and voltages shall be noticed. Regarding the discussion in section  3.1.2 and 

the voltage directions, the equation ( 3-2) applies in here. Sign of the mutual inductances depends 

on the rotor angle: 
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ÜÝ
ÝÝ
ÝÞ

v!v\v]−v60
0 áâ

ââ
âã = −

ÜÝ
Ý
Ý
Ý
Þ r

r
r

r6 r` raáâ
â
â
â
ã

?@@@@@@@@A@@@@@@@@BX ÜÝ
ÝÝ
Ý
Þi!i\i]i6i`iaáâ

ââ
â
ã

− d
dt

ÜÝ
ÝÝ
Ý
ÞΨ!Ψ\Ψ]Ψ6Ψ`Ψaáâ

ââ
â
ã

=>
 

( 3-17) 

Applying the extended transform to ( 3-17) will result: 

ÜÝ
ÝÝ
ÝÞ

v!v\v]−v60
0 áâ

ââ
âã = −(RMP"X	RMP"¾ )

ÜÝ
ÝÝ
Ý
Þi!i\i]i6i`iaáâ

ââ
â
ã

− RMP" 	 d
dt
Y
ZZ[RMP"¾

ÜÝ
ÝÝ
Ý
ÞΨ!Ψ\Ψ]Ψ6Ψ`Ψaáâ

ââ
â
ã

\
]]̂ 

= −(RMP"X	RMP"¾ )

ÜÝ
ÝÝ
Ý
ÞiliEiN
i6i`iaáâ

ââ
â
ã

− 	RMP"

Y
ZZZ
Z[RMP"¾

ÜÝ
ÝÝ
Ý
Ý
ÞΨ� lΨ� EΨ� NΨ� 6Ψ� `Ψ� aáâ

ââ
â
â
ã

+ R�MP"¾

ÜÝ
ÝÝ
Ý
ÞΨlΨEΨNΨ6Ψ`Ψaáâ

ââ
â
ã

\
]]]
]̂ = −X

ÜÝ
ÝÝ
Ý
ÞiliEiN
i6i`iaáâ

ââ
â
ã

− 	

ÜÝ
ÝÝ
Ý
Ý
ÞΨ� lΨ� EΨ� NΨ� 6Ψ� `Ψ� aáâ

ââ
â
â
ã

− RMP"R�MP"¾

ÜÝ
ÝÝ
Ý
ÞΨlΨEΨNΨ6Ψ`Ψaáâ

ââ
â
ã
 

It can be shown that: 

RMP"R�MP"¾ = �RR� ¾ U�×�U�×� U�×�� = M0 0 0
0 0 −1
0 1 0

U�×�

U�×� U�×�
N × §|_/

|¦ ¨?AB`a
 

So the voltage equations become: 

 

ÜÝ
ÝÝ
ÝÞ

vlvEvN−v60
0 áâ

ââ
âã = −

ÜÝ
ÝÝ
Ý
Þr 0 0 0 0 0
0 r 0 0 0 0
0 0 r 0 0 0
0 0 0 r6 0 0
0 0 0 0 r` 0
0 0 0 0 0 raáâ

ââ
â
ã

?@@@@@@@A@@@@@@@BX ÜÝ
ÝÝ
Ý
ÞiliEiN
i6i`iaáâ

ââ
â
ã

−

ÜÝ
ÝÝ
Ý
Ý
ÞΨ� lΨ� EΨ� NΨ� 6Ψ� `Ψ� aáâ

ââ
â
â
ã

− 	

ÜÝ
ÝÝ
ÝÞ

0
F/ΨN

−F/ΨE0
0
0 áâ

ââ
âã

?@@A@@BR�bhR��bhc >

 ( 3-18) 
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3.1.8 The Swing Equation 

The swing equation first was introduced in Chapter 2. Here it is repeated for convenience: 

 

Jω#
dω#

dt = P�= − P��DD − P�ö" = ηïη"ρgH"Q" − P�ö" 

ω# = dθ#
dt  

( 3-19) 

Where 

 P�= = Hydraulic power transferred to turbine  [W]  

 P�ö" = Active electric power output at terminals of the generator [W]  

 P��DD = Power losses through turbine and generator [W]  

 H" = Turbine head [m]  

 Q" = Turbine volumetric discharge [m�/sec]  

 η" = Overall efficiency of turbine (hydraulic and mechanical)  

 ηï = Overall efficiency of generator  

The relation giving the	P�ö" is as follows: 

 

P�ö" = v!i! + v\i\ + v]i] 

= Ov!v\v]
P¾ Oi!i\i]

P = Ov!v\v]
P¾ R¾R Oi!i\i]

P = OvlvEvN
P¾ �iliEiN

� = vlil + vEiE + vNiN 

( 3-20) 

 

According to Figure ( 3-14) the amount of power losses within the generator can be categorized 

in four groups: 
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• Armature resistive losses with an instantaneous value equal to r(i!� + i\� + i]�) or equivalently 

r(il� + iE� + iN�) 

• Core losses: These losses are due to Eddy currents and hysteresis and depend on the 

generator load and frequency 

• Mechanical losses: These losses are due to friction and windage and are a function of the 

rotational speed (P,�DD._M]9 = K`ω#� ) 

• Stray losses: Losses that cannot be categorized in other groups. “For most machines, stray 

losses are taken by convention to be one percent of full load.” (Chapman, 2005) 

The efficiency of generator may vary by the generator load. Sometimes the armature resistive 

losses and/or mechanical losses are treated separately in the relevant equations as appear in the 

literature in general. 

 

Figure ( 3-14) Power Flow Diagram of a Synchronous Machine (Chapman, 2005) 

 

The flux linkage equations ( 3-16), the voltage equations ( 3-18), the Park’s transform ( 3-13), the 

swing equation ( 3-19) and differential equations governing the waterway in a hydropower 

generation unit will make the complete model for the hydropower generation unit. 

3.1.9 Simplified Generator Models
6
 

Usually the following assumptions are made to reduce order of the model given by equations 

( 3-13), ( 3-16), ( 3-18) and ( 3-19): 

                                                 

6
 Material of this section are mostly taken from (Machowski, 2008). 

Armature

Resistive
Losses

Core Losses
Mechanical

Losses
Stray
 Losses

P  =τ     ω
in app m

P   = v i +v i +v i
out a b ca b c
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 dΨ� Ed ≪ dF/ΨNd			,			dΨ� Nd ≪ |F/ΨE|	 ( 3-21) 

The new model will be obtained by ignoring the terms Ψ� E and Ψ� N in ( 3-18). Under the 

assumptions of balanced currents and voltages, vl and il and hence Ψl and Ψ� l will always be 

equal to zero. So actually the flux linkage and the voltage equation along the “0” axis can also be 

removed to reduce the model order further. It is also customary to ignore existence of one or both 

of the damper windings to obtain simpler models. And finally the dynamics for the changes in 

the field current can be ignored by ignoring the term Ψ� 6 in ( 3-18) to obtain the steady-state 

voltage-current relationship for the generator. (Machowski, 2008) 

By application of the assumptions ( 3-21) and ignoring the terms Ψ� E and Ψ� N in ( 3-18), equations 

for vE and vN regarding ( 3-16) and ( 3-18) will become as the following: 

 

¶vEvN¹ = − ¶r 0
0 r¹ �iEiN� + �−ω/ψN

ω/ψE
� 

= − ¶r 0
0 r¹ �iEiN� + � −ω/(LNiN + kMaia)

ω/(LEiE + kM6i6 + kM`i`)� 
( 3-22) 

Frequency of the generator (ω/), when operating stably in a large network, is not normally fixed 

and has zero-mean small oscillations around the system center of inertia frequency	fD(t). 

Normally fD(t) has very slow variations (and can be regarded constant if the time duration for 

studying the generator dynamics is not too long) (Andersson, 2010). The rotor electrical angle of 

the generator then can be written in the form: 

 

θM(t) = 2πfDt + δ/(t) 

δ/(t) = δ/(0) + � [ωM(τ) − 2πfD]dτ"

l
= δ/(0) + � ∆ωM(τ)dτ"

l
 

( 3-23) 

For stable operation of the generator, δ/(¦) should be bounded and hence frequency fluctuations 

ΔF/(¦) should have zero mean. For simplification purposes in ( 3-22), it is assumed that: 

 |ΔωM(t)| ≪ ωD = 2πfD   ,   fD: system	frequency	(almost	constant) ( 3-24) 

With the above assumption, ( 3-22) turns into: 
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¶vEvN¹ = − ¶ r xN−xE r ¹ �iEiN� + � −ωIkMaia
ωIkM6i6 + ωIkM`i`

� 
xE = ωILE   ,   xN = ωILN 

( 3-25) 

Note that	ΔωM(t), when its effect accumulated in time as in ( 3-23), still affects the system 

model’s voltage-current relationship through changes in the Park’s transform. Consider generator 

be paralleled with an ideal three-phase voltage source so that its terminal voltages are given by: 

v!(t) = V	sinωDt	,					v\(t) = V	sin §ωDt − 2T
3 ¨	,					v](t) = V	sin §ωDt + 2T

3 ¨ 

In this case the transformed voltages will become as ¶vEvN¹ = ¶V	sinh
V	cosh¹ and hence ΔωM(t) affects 

¶vEvN¹ by changing the rotor angle. 

Steady-state Operation of the Generator: 

The steady state value of the field current i6 is equal to v6/r6 . If the transient term in the field 

current is denoted by	∆i6, i.e. i6 = v6/r6 + ∆i6 , then ( 3-25) can be rewritten as: 

 ¶vEvN¹ = − � r xN 0
−xE r −ωIkM6 r6⁄ � O iEiNv6

P + � −ωIkMaia
ωIkM6∆i6 + ωIkM`i`

� ( 3-26) 

The equation ( 3-26) is the output equation for a linear system with three inputs, two outputs and 

three states (i`, ia	and	∆i6 which tend to zero as the system reaches a steady-state condition). 

Any of the combinations (iE, iN, v6), (vE, iN, v6), (iE, vN, v6) or (vE, vN, v6) can be chosen as 

independent variables (inputs). The other two variables out of iE, iN, vE, vN, v6 will be the outputs 

in each case. It’s possible that (iE, iN) will be correlated with (vE, vN) through the load dynamics. 

The field voltage 	v6 will also be correlated with (vE, vN) through the excitation system. So it’s 

expected that after any disturbance in the system all the variables in ( 3-26) experience a change 

in their values. If the cause of disturbance is in the form of a step change (for example in the 

load), then system will reach a new steady-state condition as the induced currents i`, ia	and	∆i6 

decay and vanish. Then the steady-state values of iE, iN, vE, vN, v6 shall satisfy the following 

equation: 
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¶vEvN¹ = − � r xN 0
−xE r −ωIkM6 r6⁄ � O iEiNv6

P 
Or in another notation: 

 

¶vEvN¹ = − ¶ r xN−xE r ¹ �iEiN� + � 0
{0� 

{H = 0   ,    {0 = {i = ωDkM6v6/r6    

( 3-27) 

Equation ( 3-27) along with the swing equation (( 3-19) and ( 3-20)) and Park’s transform 

( 3-13) together define the simplest generator model in which the transient currents induced 

in the field and damper windings are neglected. Equation ( 3-27) can also be used for 

determining the steady state operating point of the generator. 

 

Transient and Subtransient Operations: 

The following assumptions are vital for the discussion that follows: 

After any disturbance system will reach a new steady-state condition as the induced 

currents i`, ia	and	∆i6 in ( 3-26) decay and vanish: 

• Induced currents in the damper windings decay faster than any other 

phenomena in the generator (with a time constant of order 0.01 to 0.1 second). 

During this time duration variables other than	i`	and	ia in ( 3-26) can be 

considered almost constant. Generator dynamics within this time interval is 

referred to as “subtransient operation”. 

• Time constant for transients in the field windings (∆i6) has an order of 1 to 10 

seconds. Dynamics of generator after damper currents are vanished until 

generator reaches the new steady state is referred to as the “transient operation” 

of generator.   

( 3-28) 

The time separation effect introduced by assumption ( 3-28) results in sort of simplification when 

studying each effect. 
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Generator dynamics with transient phenomenon: It’s possible to get a model more detailed 

than ( 3-27) by considering the effect of transient field current ∆i6 on the voltage-current 

characteristics of the generator. From ( 3-25) by neglecting the damper currents it’s concluded: 

 ¶vEvN¹ = − ¶ r xN−xE r ¹ �iEiN� + � 0
ωIkM6i6� ( 3-29) 

The field current i6 can be calculated from ( 3-16) by neglecting the damper current i` and from 

( 3-18) as follows: 

 

Ψ6 = 	kM6iE + L6i6 			 ⇒ 	 i6 = 1
L6
Ψ6 − kM6

L6
iE 

v6 = r6i6 + Ψ� 6 		 ⇒ 	 i6 = v6
r6

− 1
r6

	Ψ� 6 

( 3-30) 

Substituting i6	from the first equation in ( 3-30) into ( 3-29) will give the voltage equation as 

follows: 

 

¶vEvN¹ = − K r xNª
−xEª r L �iEiN� + �{Hª{0ª � 

xEª = ωDLEª 			, xNª � xN	 

LEª � LE − k�M6�

L6
 

{Hª � 0		,			{0ª � ωD
kM6
L6

Ψ6 

( 3-31) 

A differential equation can be obtained for {0ª  by eliminating i6 from the first and second 

equations in ( 3-30): 

v6
r6

− 1
r6

	Ψ� 6 = 1
L6
Ψ6 − kM6

L6
iE 

Multiplying both sides by	ωDkM6 will result: 

L6
r6

	ωD
kM6
L6

Ψ� 6 + ωD
kM6
L6

Ψ6 − ωD
k�M6�

L6
iE − ωDkM6

v6
r6
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In another notation regarding ( 3-27) and ( 3-31): 

 

jH*ª 	|eNª
|¦ = −{0ª + {0 + (xE − xEª )iE 

jH*ª = L6
r6

 

Assumption:    ω� D ≈ 0 

( 3-32) 

In deriving ( 3-32) it’s assumed that the system frequency ωD is almost constant so that the 

equality 
HM�ø
H) = H

H) ìωD E_k,k Ψ6î = ωD E_k,k Ψ� 6 will be held. 

Equations ( 3-31) and ( 3-32) and definitions of Él, Ém, Èl	nop	Èm from ( 3-25) and ( 3-27) 

along with the swing equation (( 3-19) and ( 3-20)) and Park’s transform ( 3-13) together 

define the model of generator in which transient variations of the field current is taken into 

account. 

 

Generator dynamics with both transient and subtransient phenomena: Now let’s consider 

( 3-26) complete without neglecting any terms. From ( 3-16) it’s possible to compute i6, i`	and	ia 

in terms of 	iE, iN,Ψ6,Ψ`	and	Ψa: 

Ψa � kMaiN + Laia ⇒ ia = 1
La

Ψa − kMa
La

iN

Ψ6 = 	kM6iE + L6i6 + M�i`Ψ` = kM`iE + M�i6 + L`i`
q ⇒

345
46i6 = L`WΨ6 − 	kM6iEY − M�WΨ` − kM`iEY

L6L` − M��
i` = −M�WΨ6 − 	kM6iEY + L6WΨ` − kM`iEY

L6L` − M��
 ( 3-33) 

Substituting i6, i`	and	ia from the above relations into ( 3-26) will result: 
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¶vEvN¹ = − K r xNªª
−xEªª r L �iEiN� + �{Hªª

{0ªª� 
xNªª = ωDLNªª			,			LNªª � LN − kMa

La
		,				{Hªª � −ωD

kMa
La

Ψa 

xEªª � ωDLEªª		, LEªª � LE − k� rL`M6� + L6M�̀ − 2M�M`M6
L6L` − M�� � 

{0ªª � ωDk rM6L` − M`M�
L6L` − M�� �Ψ6 + ωDk rM`L6 − M6M�

L6L` − M�� �Ψ` 

( 3-34) 

Again {0ªª and {Hªª each are a solution of a differential equation. Substituting the relations for 

i6, i`	and	ia from ( 3-33) into the equations for Ψ� 6,Ψ� `	and	Ψ� a in ( 3-16) and using the definitions 

in ( 3-31) and ( 3-34) will result in the following differential equations for {0ªª and	{Hªª: 

 

TE�ªª deNªª
dt = eNª − eNªª + iE(xEª − xEªª) 

TN�ªª deEªª
dt = eEª − eEªª − iN(xNª − xNªª) 

TE�ªª = rL` − M��
L6
� 1

r`
 

TN�ªª = La
ra

 

Assumption:    ω� D ≈ 0 

( 3-35) 

Equations ( 3-32), ( 3-34), ( 3-35), definitions of Élª , Émª , Èlª 	nop	Èmª  from ( 3-31) and definitions 

of Él, Ém, Èl	nop	Èm from ( 3-25) and ( 3-27) along with the swing equation (( 3-19) and ( 3-20)) 

and Park’s transform ( 3-13) together define the most complete generator model. 

 

3.1.10 System Reference Frame 



124 
 

Let fD be an agreed reference frequency in the power system which is fixed or varies slowly (like 

the frequency of center of inertia of the system (Andersson, 2010)). Also consider a particular 

time instant as the reference for measuring of the time t for all the system (for example the 

instant that a particular voltage within the system reaches its maximum positive value compared 

to the ground voltage). Any current or voltage signal within the system which is of the form 

s(t) = √2S(t)
ÜÝ
ÝÝ
Þcos(2πfDt + α(t))
cos §2πfDt − 2π

3 + α(t)¨
cos §2πfDt + 2π

3 + α(t)¨áâ
ââ
ã
 

can be indicated uniquely by its phasor S(t) = S(t)etu(") in the complex plane (Chapman, 2005).  

It’s assumed that variations of S(t) and α(t) are slow enough so that the signal still maintains its 

sinusoidal shape. S(t) is the “root mean square” (rms) value of each of the entries of the vector s(t). 

In a single machine system in which a synchronous generator supplies an isolated load, it’s 

possible to study the load and the generator together in the rotor reference frame of the generator. 

In a multi-machine system however another reference frame should be used for all the system 

components. The best reference frame in this case is the complex plane. So it’s desirable to 

derive equations like ( 3-35) for phasors of the terminal voltages and currents of the generator.  

As stated in the previous section, frequency of a generator when operating stably in a large 

network has zero-mean small oscillations around a reference frequency fD. The rotor electrical 

angle of the generator however can be written in the form ( 3-23) and repeated below for 

convenience: 

 

_/(¦) = 2T~I¦ + δ/(¦) 

δ/(¦) = δ/(0) + � [F/(v) − 2T~I]|v)

l
= δ/(0) + � ∆F/(v)|v)

l
 

( 3-36) 

For stable operation of the generator, δ/(¦) should be bounded and hence frequency fluctuations 

ΔF/(v) should have zero mean. Consider generator terminal voltage be given by the following 
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relations: (From now on time dependency of phasors will not be indicated explicitly for 

simplicity) 

�!\] = Ov!v\v]
P = √2Vï

ÜÝ
ÝÝ
Þsin(2πfDt + α)
sin §2πfDt − 2π

3 + α¨
sin §2πfDt + 2π

3 + α¨áâ
ââ
ã
		 

Applying the Park’s transform R(θM(t)) to generator terminal voltage will result: 

 �lEN = OvlvEvN
P = √3Vï O0sin(−h + α)

cos(−h + α)
P ( 3-37) 

It’s desirable to be able to write V!\] = Vïetu = Vïcosα + w	Vïsinα  (which is the phasor of �!\] 

in the system reference frame (complex plane)) in terms of vE and vN. The quantities Vïcosα and 

Vïsinα  can be found in terms of vE and vN from ( 3-37): 

 �Vïcosα
Vïsinα � = � cosδ/ −sinδ/	sinδ/ 	 cosδ/�?@@@@A@@@@B

è
KVïcos(−δ/ + α)
Vïsin(−δ/ + α) L = è KvN/√3

vE/√3L ( 3-38) 

The matrix T in ( 3-38) is a phase shift operator which rotates any point in the complex plane 

around the origin with an angle δ/. Note that this is different from the unitary matrix defined by 

the equation (3.121) in (Machowski, 2008). Regarding ( 3-38), the phasor V!\] in the system 

reference frame (complex plane) can be considered as the complex number vN/√3 + jvE/√3	 
which is rotated around the origin with an angle δ/. In other words: 

 V!\] = et(a�vN/√3 + jvE/√3� ( 3-39) 

The phasor for terminal currents of the generator can be found in terms of the quantities iN and iE 

in a similar way.  

Regarding ( 3-39) it’s customary to divide d_axis and q_axis variables in ( 3-27), ( 3-31), ( 3-32), 

( 3-34) and ( 3-35) by √3 and denote them by capital letters to emphasize that these variables are 

real or imaginary part of a phasor. 
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Application and usefulness of the concept presented in this section will be shown later in 

Section  0, but first summary of the generator models will be given in next section. 

3.1.11 Summary Generator Models 

Summary of generator models presented in Section  3.1.9 will be gathered here for convenience. 

According the discussion in the previous section, d_axis and q_axis variables in ( 3-27), ( 3-31), 

( 3-32), ( 3-34) and ( 3-35) will be divided by √3 and denoted by capital letters to emphasize that 

these variables are real or imaginary part of a phasor. 

Generator Model in the Steady State: This is the simplest model that neglects transient 

phenomena after a disturbance in the currents and voltages of generator. This model can also be 

used to find the steady-state operating point of the generator in the network if the swing equation 

also be considered in the steady state condition. The model is given in Table ( 3-1). 

 

Table ( 3-1) Generator Model with the Steady State Voltage-Current Relationship 

�VEVN� = − ¶ r xN−xE r ¹ �IEIN� + �yHy0�    
where  

yH = 0   ,   y0 = yi = eN/√3 = ωDkM6v6 �√3r6�⁄    ,   xE = ωILE   ,   xN = ωILN 

V" = et(�(VN + jVE)    (Phasor of terminal voltage in the system reference frame) 

I" = et(�(IN + jIE)    (Phasor of output current in the system reference frame) 
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P�ö" = 3(VEIE%VNIN)    (From ( 3-20), assuming v� = i� = 0 and considering that  VE = vE/√3 

and the same is true for the other currents and voltages) 

The Swing Equation: 

Jω#
dω#

dt = ηïη"ρgH"Q" − P�ö"		, ωM � n�
2 ω#		, ΔωM � ωM − ωD � dδM

dt 		 
The Swing Equation in the Steady-State: 

P�ö" = ηïη"ρgH"Q"				,				δ/ � constant 

 

Generator Model in the Transient State: This model takes the transient phenomenon in the 

field windings into account. This model is the same as the one used in Heffron-Phillips 

formulation (Andersson, 2010). The model is given in Table ( 3-2). 

 

Table ( 3-2) Generator Model in the Transient State 

jH*ª 	|ENª
|¦ = −y0ª + y0 + (xE − xEª )IE 

jH*ª = L6 r6⁄  ,  y0ª = ì &√�î ωD(kM6 L6⁄ )Ψ6  

y0 = yi = ì &√�î ωDkM6v6 r6⁄   ,  xE = ωILE  ,  xEª = ωDLEª   ,  LEª = LE − k�M6� L6⁄  

�VEVN� = − K r xNª
−xEª r L �IEIN� + �yHªy0ª �    

where  xNª = xN = ωILN  and  yHª = 0	  
(in (Machowski, 2008) yHª  is not 0 because there a third damper winding “g” has been 

considered which as stated before does not apply to salient pole machines) 

V" = et(�(VN + jVE)    (Phasor of terminal voltage in the system reference frame) 

I" = et(�(IN + jIE)    (Phasor of output current in the system reference frame) 
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P�ö" = 3(VEIE%VNIN)    (From ( 3-20), assuming v� = i� = 0 and considering that  VE = vE/√3 

and the same is true for the other currents and voltages) 

The Swing Equation: 

Jω#
dω#

dt = ηïη"ρgH"Q" − P�ö"		, ωM � n�
2 ω#		, ΔωM � ωM − ωD � dδM

dt 		 

 

Generator Model in the Subtransient State: This model takes the subtransient phenomenon in 

the damper windings “D” and “Q” into account. This model is the most complete one. The model 

is given in Table ( 3-3). 

 

Table ( 3-3) Generator Model in the Subtransient State 

TE�ªª dENªª
dt = ENª − ENªª + IE(xEª − xEªª) 

TN�ªª dEEªª
dt = EEª − EEªª − IN(xNª − xNªª) 

Where 

TE�ªª = (L` − M�� L6⁄ ) r`⁄   ,  TN�ªª = La ra⁄   ,  xNªª = ωDLNªª			,			LNªª � LN − E_z,z   ,  xEªª � ωDLEªª 

LEªª � LE − k� rL`M6� + L6M�̀ − 2M�M`M6
L6L` − M�� � 

xNª � xN � ωILN  ,  xEª � ωDLEª   ,  LEª � LE − k�M6� L6⁄  

yHª � 0	  (in (Machowski, 2008) yHª  is not 0 because there a third damper winding “g” has been 

considered which as stated before does not apply to salient pole machines) 

jH*ª 	|ENª

|¦ � oy0ª Z y0 Z WxE o xEª YIE 

jH*ª � L6 r6⁄  ,  y0 � yi � ì &√�î ωDkM6v6 r6⁄   and  xE = ωILE   
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�VEVN� = − K r xNªª
−xEªª r L �IEIN� + �yHªªy0ªª�    

V" = et(�(VN + jVE)    (Phasor of terminal voltage in the system reference frame) 

I" = et(�(IN + jIE)    (Phasor of output current in the system reference frame) 

P�ö" = 3(VEIE%VNIN)    (From ( 3-20), assuming v� = i� = 0 and considering that  VE = vE/√3 

and the same is true for the other currents and voltages) 

The Swing Equation: 

Jω#
dω#

dt = ηïη"ρgH"Q" − P�ö"		, ωM � n�
2 ω#		, ΔωM � ωM − ωD � dδM

dt 		 

 

All the above models assume that resistive losses in armature windings are included in the 

generator efficiency ηï. If this is not the case, then these losses can be added to P�ö": 

 P�ö" = 3�VEIE+VNIN + r�IE� + IN��� ( 3-40) 

By evaluating the above formula for different Voltage-Current relationships for the three models 

the following relations can be concluded: 

P�ö" = 3�EEIE+ENIN + �xE − xN�IEIN�      (For the Model in Table ( 3-1)) 

P�ö" = 3�yHª IE + y0ª IN + �xEª − xNª �IEIN�      (For the Model in Table ( 3-2)) 

P�ö" = 3�yHªªIE + y0ªªIN + �xEªª − xNªª�IEIN�      (For the Model in Table ( 3-3)) 

( 3-41) 

 

3.1.12 Simulation of Generator connected to an Infinite Bus 

Figure ( 3-15) shows the generator which is connected to an infinite bus. Equivalent impedance 

rM + j	xM is assumed between the generator and the bus (Demiroren, 2002). This impedance 

could be for example the transformer impedance or equivalent impedance of a transmission line 
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(Machowski, 2008). The system reference frame (Section  0) can be considered to be the bus in 

which case the phasor of the bus voltage will be the positive real number	VD. A transient model 

for the generator (Table ( 3-2)) will be assumed. An exciter which controls the voltage across the 

field winding with following transfer function will be assumed (Demiroren, 2002): 

 

EN = E# = K8
1 + sT8 (V"V − V" − VD"!\���{MV) 

VD"!\���{MV = sK6
1 + sT68 

( 3-42) 

Limiters can also be considered for the	EN(= E#). V"V is the voltage reference set point for the 

exciter. In (Demiroren, 2002) it’s been shown how to determine the net mechanical power 

delivered to generator by turbine and V"V in exciter so that at the steady-state condition a certain 

amount of active and reactive power (with controlled proportion) be injected into the network 

(infinite bus). 

 

 

Figure ( 3-15) Generator on Infinite Bus 

 

Steady-State Operation, Requirements and Determining ÍÄW (Reference 

Voltage) and R¸| (Net Turbine Output Power): It is of interest to find suitable values 
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power equal to Q� be delivered to the infinite bus. The bus voltage is constant and equal to VD 

and bus frequency is constant and equal to fD. Table ( 3-1) can be used for relationships in the 

steady-state. The procedure will be as follows (In the following the subscript “o” denotes the 

steady state or operating point): (Demiroren, 2002) Vp| and V}|: 

 I"� = 	P�� + Q��
3VD

, φ� � arctan Q�
P�

	 , I"� � I"�e.t�� 	 ( 3-43) 

Where 

 I"� � RMS value of terminal phase current at steady 

state [A] 

 

 I"� � Phasor of output current of generator at steady 

state [A] 

 

Substituting for I"� from Table ( 3-1) will result: 

I"�e.t�� � et(a�WIN� Z jIE�Y 

Which in turn will give the relations for IE� and IN�: 

 IE� � oI"�sin	(φ� + δ/*)  and  IN� = I"�cos	(φ� + δ/*)   ( 3-44) 

IE� and IN� can be determined if δ/* is known. An independent relation for δ/* will be given in 

( 3-50) below. 

RMS value of the Terminal Voltage: 

The relationship between bus voltages and generator terminal voltages and currents in the system 

reference frame can be written as follows: 

 V"� = VD + I"�(rM + j	xM) ( 3-45) 

Where 
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 VD = Phasor of bus voltage [V]  

 V"� = Phasor of terminal voltage of generator at steady 

state [V] 

 

As mentioned Ís is equal to real number VD. By substituting for VÄ| from ( 3-43), RMS value of 

terminal voltage can then be found as follows: 

 V"� = �V"�	V"�∗           (“*” denotes for complex conjugate) ( 3-46) 

 ��: 

Substituting for V"� and I"� from Table ( 3-1) will result: 

VD = et(a��VN� + jVE�� − et(a�(IN� + jIE�)(rM + j	xM) 

Separating the real and imaginary parts of the above equation will result in the following set of 

equations: 

 �VE�VN�� = ¶ rM xM−xM rM ¹ �IE�IN�� + �−VDsinδ/*VDcos	δ/* � ( 3-47) 

A relation for �VE�VN�� can also be found from Table ( 3-1): 

§�VE�VN�� = − ¶ r xN−xE r ¹ �IE�IN�� + �yH*y0*� 		where			yH* = 0¨ 	 ⇒	  VE� = −r	IE� − xNIN� ( 3-48) 

Eliminating	VE� from the first equation in ( 3-47) and the resultant relation in ( 3-48) will give: 

 VD	sinδ/* = 	 (r + rM)	IE� + �xN + xM�IN� ( 3-49) 

Substitution from ( 3-44) into ( 3-49) and solving for δ* will result in the following relation: 
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 δ/* = arctan I"��xN + xM� cosφ� − I"�(r + rM) sinφ�
VD + I"�(r + rM) cosφ� + I"��xN + xM� sinφ�

 ( 3-50) 

 

��|�= �}|�:  
Can be found by eliminating VN� from ( 3-47) and ( 3-48): 

 E#� = VD cos δ/* + (r + rM)	IN� − (xE + xM)IE� ( 3-51) 

 R¸|:  
P#� can be set equal to the air gap power as first relation in ( 3-41). This way the resistive losses 

in the armature windings are accounted for but other losses within the generator are neglected. If 

efficiency of the generator is available, it can be applied in here: 

P#� = 3�EE�IE�+EN�IN� + �xE − xN�IE�IN��    (Only armature resistive losses are accounted for) 

Or 

P#� = ��� �VEIE+VNIN�        (If ηï accounts for all the losses within the generator) 

Or  

P#� = P#� = ��� �VEIE+VNIN� + 3r�IE� + IN��  (If ηï accounts for all the losses except for the 

armature resistive losses) 

 

And finally	ÍÄW: 
	V"V can be found from ( 3-42) in the steady state: 

 	V"V = 	V"l + E#�
	K8 ( 3-52) 
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Dynamic Equations: 

The dynamic equations for transient operation will be the ones in the Table ( 3-2) plus the 

alternative active power relations ( 3-40) and ( 3-41) (whichever is applicable) and also ( 3-47) 

which is applicable in the transient operation of generator also: 

 �VEVN� = ¶ rM xM−xM rM¹ �IEIN� + �−VDsinδ/VDcos	δ/ � ( 3-53) 

By eliminating �VEVN� from the above relation and the voltage-current relation in Table ( 3-2), �IEIN� 
can be found: 

 �VEVN� = ¶ rM xM−xM rM ¹ �IEIN� + �−VDsinδ/VDcos	δ/ � = − K r xNª
−xEª r L �IEIN� + �yHªy0ª � ( 3-54) 

 

 K rM + r xM + xNª
−(xM + xEª ) rM + r L �IEIN� = � VDsinδ/−VDcos	δ/� + �yHªy0ª � ( 3-55) 

 

Simulations: In this part the generator is simulated along with the waterway with inelastic 

penstock and the transient droop controller introduced in Chapter 2. The generator is connected 

to an infinite bus so it is supposed that rotor electrical frequency do not alter much from the bus 

frequency. The simulation is done for a guide vane opening change at the time t=200 sec. 

Parameters for simulation are given in Appendix III part D in the Main_parameters.m and 

InitializeGenerator.m. 
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Figure ( 3-16)  Simulation of generator connected to an infinite bus (guide vane closes at t=200 

sec) 

 

Figure ( 3-17)  Simulation of generator connected to an infinite bus (Since frequency cannot 

change much, due to droop relation guide vane opening and hence the powers of turbine and 

generator follow the guide vane reference) 
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Figure ( 3-18) Frequency disturbance at the time of guide vanes closing 
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Figure ( 3-19) Simulation of generator connected to an infinite bus (by decreasing power, rotor 

electrical angle reduces to maintain the reactive power and hence the terminal voltage almost 

constant) 

 

 

Figure ( 3-20)  Simulation of generator connected to an infinite bus (disturbance in terminal 

voltage due to guide vanes closing) 
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Chapter 4 Conclusion  

Modeling of a high-head hydropower generation unit was considered in this work. It’s been 

shown how to use the “Finite Volume Method” and MATLAB to simulate the behavior of a 

penstock when elasticity of the penstock walls and compressibility of the water is taken into 

account. “Staggered grid” is used for spatial discretization of the variables along the penstock. 

This way a set of ODEs as a model for the penstock can be obtained. The “ode15s” ODE solver 

in MATLAB was used for solving this set of equation. It was shown that under default options, 

especially the default relative tolerance, the solution will have some numerical errors which will 

distort the solution completely.  

The model introduced for the elastic penstock was validated in a classic penstock-valve problem 

with uniform valve closing. The responses of the model for different conditions were compared 

to Allievi charts (Warnick, 1984). It was found that except for high water velocities (higher than 

one or two m/s) the results almost agree. It was doubted that the value considered as Fanning 

friction factor (0.04) is more than usual for a penstock. However an illustrative value for 

penstock was not available. 

It was shown how to enter Francis turbine efficiency data from its hill chart into MATLAB to 

create a suitable interpolation function. It was shown that the “square root of head” criteria for 

the discharge of turbine under constant guide vanes opening might not be accurate enough and 

the reason was guessed to be the motoring head of the turbine which varies for different heads (at 

least for the head ranges between %65 and %125 of design head) 

Available models for the other parts of the waterway (inelastic) were extended to include an 

interface to the elastic penstock model. 

The whole waterway model (with both elastic and inelastic penstock sub-models) was simulated 

in MATLAB using a classic transient droop controller for a given time-varying active-power-

consuming turbine load. No significant difference between the responses of the two models was 

observed. 

Simulation was also carried out with constant turbine load and time varying reference signal for 

the guide vanes opening. This time some effect of the moving waves could be observed in the 
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surge-shaft downstream pressure. However due to the controller action and more importantly due 

to the sluggish behavior of the guide vanes actuator the observed effects were not significant 

either. 

Simplified synchronous generator models available in the literature were studied and applied to 

the whole hydropower generation unit considering the inelastic penstock model. Synchronous 

operation of the hydropower generation unit was then simulated when generator connected to an 

infinite bus. The difference in the feature of the response in this case compared to the case when 

turbine was connected to the active load was studied. Without a dynamic generator model this 

was impossible.  

Simplified models of the generator are used for two reasons: 

- Variations of ∆~/  is much less than ~/  (like 50Hz against 0.01 Hz). See Figure (3-17). 

- The phenomena within generator and power network are described using these simplified 

models in almost all the literature like (Machowski, 2008). 

 

Future Work: 

- The methods described in this report can be extended to the units working in parallel. 

- If enough data from real plants become available, the methods can be validated against 

real data 

- Operation of an advanced controller can be simulated using the models introduced in this 

report 

- No significant diversion between the responses of the elastic and inelastic models (when 

operating in the closed loop) was observed in this work. This needs more investigation. 
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Appendix I  THESIS TASK DESCRIPTION 

 

 

FMH606 Master Thesis 
 

 

Title:     Modeling For Control of Hydropower Systems 

 
Student:     Behzad Rahimi Sharefi 

 
Supervisor:   Bernt Lie, PhD, Professor, HiT 

 

Co-supervisor:   
   

Task description:   

The following tasks should be carried out: 

1. An overview of hydropower systems is to be given, with special emphasis on storage based systems. 

2. Description of a model library for simulation of storage type hydropower systems with Francis 

turbine should be given, with models suitable for prediction and control of the various units. 

3. Parameters for an illustrative hydropower plant (e.g. Sundsbarm) with grid are to be given. 

4. A model for the chosen hydropower plant is to be implemented in MATLAB and the simulation model 

is to be validated. 

5. If there is time, a control structure is to be developed for the simulated system, and the suggested 

structure is to be compared with a standard control structure for such systems. 

6. The work is to be reported in a thesis. 

 

 

Task background:   

A hydropower system of storage type consists of a reservoir, a waterway, turbine gate + turbine, 

generator, transmission lines/grid, and consumer loads. The inlet tunnel from the reservoir to the penstock 

typically has a varying cross sectional area. In fact: several inlet tunnels may be joined in manifolds. 

Surge volumes of different types may be present. The system may have manifolds with several penstocks 

to several turbines, and the water may exhibit compressibility in the penstock + the penstock walls may 

exhibit elasticity. Governors of various types may be used to control the turbine gate operation. Salient-

pole synchronous generators with a different number of pole pairs may be used. Several generators 

connected to a grid have restrictions on the frequency, etc. It is of interest to give as complete a 

description in the form of a dynamic model as possible of the various units in a hydropower system. As 

the various models may operate on different time scales, it is of interest to rationally develop simplified 

models that are suitable on the chosen time scale. As an example, simplified models of generators are 

needed, and it is useful with a rational development of simplified models in the time domain based on 

standard generator models from Kirchhoff’s laws, etc. 

The developed models are meant for controller design/operational analysis, and illustrative realistic 

parameters should be chosen. 

 

 

Practical information (where, how, available equipment etc.):      
The work will be carried out at Telemark University College. 
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Formal acceptance by the student (with ultimate task description as stated above): 
 

 

Student's signature and date: 

 

Supervisor's signature and date: 
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Appendix II TURBINE EFFICIENCY DATA 

 

                

 

# YGV Η η 

 

# YGV Η η 

 

# YGV Η η 

 

 

1 0,3 65,0 70,0 

 

31 0,4 125,0 85,0 

 

61 0,7 73,0 89,0 

 

 

2 0,3 66,0 71,0 

 

32 0,5 65,0 80,0 

 

62 0,7 78,0 90,0 

 

 

3 0,3 68,0 72,0 

 

33 0,5 65,5 81,0 

 

63 0,7 83,5 91,0 

 

 

4 0,3 70,0 73,0 

 

34 0,5 66,5 82,0 

 

64 0,7 91,0 92,0 

 

 

5 0,3 70,5 74,0 

 

35 0,5 68,0 83,0 

 

65 0,7 110,0 92,0 

 

 

6 0,3 71,5 75,0 

 

36 0,5 69,0 84,0 

 

66 0,7 118,0 91,0 

 

 

7 0,3 73,5 76,0 

 

37 0,5 70,5 85,0 

 

67 0,8 67,5 86,0 

 

 

8 0,3 76,0 77,0 

 

38 0,5 72,5 86,0 

 

68 0,8 70,0 87,0 

 

 

9 0,3 80,0 78,0 

 

39 0,5 75,0 87,0 

 

69 0,8 74,5 88,0 

 

 

10 0,3 83,0 79,0 

 

40 0,5 79,0 88,0 

 

70 0,8 78,0 89,0 

 

 

11 0,3 86,0 80,0 

 

41 0,5 82,0 89,0 

 

71 0,8 84,0 90,0 

 

 

12 0,3 92,0 81,0 

 

42 0,5 87,0 90,0 

 

72 0,8 92,5 91,0 

 

 

13 0,3 114,0 81,0 

 

43 0,5 100,0 91,0 

 

73 0,8 108,5 91,0 

 

 

14 0,3 121,0 80,0 

 

44 0,5 109,0 91,0 

 

74 0,8 121,0 90,0 

 

 

15 0,3 125,0 79,5 

 

45 0,5 120,5 90,0 

 

75 0,8 125,0 89,0 

 

 

16 0,4 65,0 75,0 

 

46 0,5 125,0 89,0 

 

76 0,9 65,0 85,0 

 

 

17 0,4 66,0 76,0 

 

47 0,6 65,0 84,0 

 

77 0,9 70,0 86,0 

 

 

18 0,4 67,0 77,0 

 

48 0,6 66,0 85,0 

 

78 0,9 74,0 87,0 

 

 

19 0,4 68,5 78,0 

 

49 0,6 67,0 86,0 

 

79 0,9 82,0 88,0 

 

 

20 0,4 70,5 79,0 

 

50 0,6 69,5 87,0 

 

80 0,9 88,0 89,0 

 

 

21 0,4 71,0 80,0 

 

51 0,6 72,0 88,0 

 

81 0,9 111,0 89,0 

 

 

22 0,4 73,0 81,0 

 

52 0,6 75,0 89,0 

 

82 0,9 118,0 88,0 

 

 

23 0,4 74,5 82,0 

 

53 0,6 79,0 90,0 

 

83 0,9 123,0 87,0 

 

 

24 0,4 77,0 83,0 

 

54 0,6 84,0 91,0 

 

84 0,9 125,0 86,0 

 

 

25 0,4 78,5 84,0 

 

55 0,6 90,5 92,0 

 

85 1,0 70,0 85,0 

 

 

26 0,4 81,5 85,0 

 

56 0,6 113,0 92,0 

 

86 1,0 73,0 86,0 

 

 

27 0,4 84,5 86,0 

 

57 0,6 121,0 91,0 

 

87 1,0 78,0 87,0 

 

 

28 0,4 90,0 87,0 

 

58 0,7 66,0 86,0 

 

88 1,0 113,0 87,0 

 

 

29 0,4 116,0 87,0 

 

59 0,7 68,0 87,0 

 

89 1,0 117,0 86,0 

 

 

30 0,4 121,0 86,0 

 

60 0,7 70,5 88,0 

 

90 1,0 118,5 85,0 
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Appendix III MATLAB CODES 

A. Simulation of turbine 

 
% TurbineData.m 
% This program determines necessary data to be used by the functions 
% H_Turb and Eff_Turb for interpolation of turbine head and turbine 
% efficiency. 

  
YGV=  [ 0.2;   0.3;  0.4;  0.5;  0.6;  0.7;  0.8;  0.9;  1.0]; 
Theta=[ 10.09; 8.16; 6.76; 5.30; 3.30; 2.56; 1.50; 0.64; 0]; 

  
global YGV_PP; 
YGV_PP=spline(YGV,Theta); 

  
figure(1) 
YGVI=0.2:0.01:1; 
ThetaI=ppval(YGV_PP,YGVI); 
grid on; 
plot(YGV,Theta,'o',YGVI,ThetaI); 
grid;xlabel('YGV');ylabel('Theta'); 

  
Turb_Data_Table3=[ 
0.3  65.0   70.0; 
0.3  66.0   71.0; 
0.3  68.0   72.0; 
0.3  70.0   73.0; 
0.3  70.5   74.0; 
0.3  71.5   75.0; 
0.3  73.5   76.0; 
0.3  76.0   77.0; 
0.3  80.0   78.0; 
0.3  83.0   79.0; 
0.3  86.0   80.0; 
0.3  92.0   81.0; 
0.3  114.0  81.0; 
0.3  121.0  80.0; 
0.3  125.0  79.5]; 

  
Turb_Data_Table4=[ 
0.4  65.0   75.0; 
0.4  66.0   76.0; 
0.4  67.0   77.0; 
0.4  68.5   78.0; 
0.4  70.5   79.0; 
0.4  71.0   80.0; 
0.4  73.0   81.0; 
0.4  74.5   82.0; 
0.4  77.0   83.0; 
0.4  78.5   84.0; 
0.4  81.5   85.0; 
0.4  84.5   86.0; 
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0.4  90.0   87.0; 
0.4  116.0  87.0; 
0.4  121.0  86.0; 
0.4  125.0  85.0]; 

  
Turb_Data_Table5=[ 
0.5  65.0   80.0; 
0.5  65.5   81.0; 
0.5  66.5   82.0; 
0.5  68.0   83.0; 
0.5  69.0   84.0; 
0.5  70.5   85.0; 
0.5  72.5   86.0; 
0.5  75.0   87.0; 
0.5  79.0   88.0; 
0.5  82.0   89.0; 
0.5  87.0   90.0; 
0.5  100.0  91.0; 
0.5  109.0  91.0; 
0.5  120.5  90.0; 
0.5  125.0  89.0]; 

  
Turb_Data_Table6=[ 
0.6  65.0   84.0; 
0.6  66.0   85.0; 
0.6  67.0   86.0; 
0.6  69.5   87.0; 
0.6  72.0   88.0; 
0.6  75.0   89.0; 
0.6  79.0   90.0; 
0.6  84.0   91.0; 
0.6  90.5   92.0; 
0.6  113.0  92.0; 
0.6  121.0  91.0]; 

  
Turb_Data_Table7=[ 
0.7  66.0   86.0; 
0.7  68.0   87.0; 
0.7  70.5   88.0; 
0.7  73.0   89.0; 
0.7  78.0   90.0; 
0.7  83.5   91.0; 
0.7  91.0   92.0; 
0.7  110.0  92.0; 
0.7  118.0  91.0]; 

  
Turb_Data_Table8=[ 
0.8  67.5   86.0; 
0.8  70.0   87.0; 
0.8  74.5   88.0; 
0.8  78.0   89.0; 
0.8  84.0   90.0; 
0.8  92.5   91.0; 
0.8  108.5  91.0; 
0.8  121.0  90.0; 
0.8  125.0  89.0; 
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]; 

  
Turb_Data_Table9=[ 
0.9  65.0   85.0; 
0.9  70.0   86.0; 
0.9  74.0   87.0; 
0.9  82.0   88.0; 
0.9  88.0   89.0; 
0.9  111.0  89.0; 
0.9  118.0  88.0; 
0.9  123.0  87.0; 
0.9  125.0  86.0]; 

  
Turb_Data_Table10=[ 
1.0  70.0   85.0; 
1.0  73.0   86.0; 
1.0  78.0   87.0; 
1.0  100.0  88.0; 
1.0  112.0  87.0; 
1.0  116.5  86.0; 
1.0  118.5  85.0]; 

  

  
Y1=0.3:0.1:1.0; 
H1=(65:5:125)'; 
[qY1,qH1] = meshgrid(Y1,H1); 
V1=zeros(size(qY1)); 
V1(:,1)=interp1(Turb_Data_Table3(:,2),Turb_Data_Table3(:,3),H1,'spline'); 
V1(:,2)=interp1(Turb_Data_Table4(:,2),Turb_Data_Table4(:,3),H1,'spline'); 
V1(:,3)=interp1(Turb_Data_Table5(:,2),Turb_Data_Table5(:,3),H1,'spline'); 
V1(:,4)=interp1(Turb_Data_Table6(:,2),Turb_Data_Table6(:,3),H1,'spline'); 
V1(:,5)=interp1(Turb_Data_Table7(:,2),Turb_Data_Table7(:,3),H1,'spline'); 
V1(:,6)=interp1(Turb_Data_Table8(:,2),Turb_Data_Table8(:,3),H1,'spline'); 
V1(:,7)=interp1(Turb_Data_Table9(:,2),Turb_Data_Table9(:,3),H1,'spline'); 
V1(:,8)=interp1(Turb_Data_Table10(:,2),Turb_Data_Table10(:,3),H1,'spline'); 

  
Y2=0.3:0.01:1.0; 
H2=(65:1:125)'; 
global Grid_Turb_YGV Grid_Turb_Head Efficiency_Turb_Interpolant; 
[Grid_Turb_YGV,Grid_Turb_Head] = meshgrid(Y2,H2); 
Efficiency_Turb_Interpolant = 

INTERP2(qY1,qH1,V1,Grid_Turb_YGV,Grid_Turb_Head,'cubic'); 

  
figure(2); 
grid on; 
contour(Grid_Turb_YGV, Grid_Turb_Head, Efficiency_Turb_Interpolant); 
grid;xlabel('YGV');ylabel('Head'); 

  
figure(3); 
mesh(Grid_Turb_YGV, Grid_Turb_Head, Efficiency_Turb_Interpolant); 
xlabel('YGV');ylabel('Head');zlabel('Efficiency'); 

 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
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function H=H_Turb(YGV,Q) 

  
global YGV_PP; 

  
Theta=ppval(YGV_PP,YGV); 

  
Theta1=(72.04+Theta)*pi/180; 

  
H=(70/134)*((Q+32.2)*tan(Theta1)-331.6+60*134/70); 

 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

 

function Efficiency=Eff_Turb(YGV,H) 

  
global Grid_Turb_YGV Grid_Turb_Head Efficiency_Turb_Interpolant; 

  
if H>125 
    H=125; 
elseif H<65 
    H=65; 
end 

  
Efficiency=interp2(Grid_Turb_YGV,Grid_Turb_Head,Efficiency_Turb_Interpolant,Y

GV,H,'cubic'); 

 

 

 

 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

B. Simulation of elastic penstock + valve 

 

%test.m main program for simulation of penstock-valve problem. Valve 
%closure is determined by the function valveCV.m as a function of time. 
clc 
close all 
clear all 

  
tic; 
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% Quick Simulation Parameters: 
LP=1000; %Penstock Length  [m] 
VT=1; %Valve closure time [sec] 
ho=100; %Gross head  [m] 
vo=1; %Initial Water Velocity [m/sec] 
hHW=0; %Reservoir height [m] 
a=1000; %Sound Velocity [m/sec] 

  
global CONSTANTS; 
CONSTANTS=[]; 
CONSTANTS.rho_atm=1000; %Water density at atmospheric pressure [Kg/m3] 
CONSTANTS.g=9.8;        %gravity acceleration [m/sec2] 
CONSTANTS.p_atm=1e5;    %Atmospheric pressure [Pa] 
CONSTANTS.beta=4.5e-10; %compressibility of water [1/Pa] 

  
global PPENSTOCK; %Parameters for  penstock 
PPENSTOCK=[]; 
PPENSTOCK.LP=LP;     %Penstock length [m] 
PPENSTOCK.AP=7;      %Penstock cross-section area [m2]         
PPENSTOCK.ThetaP=asin((ho-hHW)/LP);  %Penstock slope [radians] 
PPENSTOCK.fP=0.00;    %Fanning friction factor for the penstock 
PPENSTOCK.N=50;       %No of deltax length along the penstock 
PPENSTOCK.beta_eq=1/(CONSTANTS.rho_atm*a^2)-CONSTANTS.beta; %penstock wall 

elasticity 

  
global PHEADWATER; %Parameters for head water system 
PHEADWATER=[]; 
PHEADWATER.ho=ho;      %Gross head [m] 
PHEADWATER.hR=hHW;      %Head water reservoir water level [m] 

  
global PTAILWATER; %Parameters for tail water system 
PTAILWATER=[]; 
PTAILWATER.VT=VT; %Valve closure time [sec] 
PTAILWATER.vo=vo; %Initial Water Velocity [m/sec] 

  
% Initial conditions: 
N=PPENSTOCK.N; 
rho_atm=CONSTANTS.rho_atm; 
g=CONSTANTS.g;         
p_atm=CONSTANTS.p_atm; 
AP=PPENSTOCK.AP; 

  
p1=p_atm+rho_atm*g*hHW; %pressure at the entrance of penstock (in head water) 
deltap=rho_atm*g*(ho-hHW)/N; 
P0=(p1+deltap:deltap:p1+(N-1)*deltap)'; 
mdot0=rho_atm*AP*vo*ones(N-2,1); 
X0=[rho_atm*AP*vo;rho_atm*AP*vo;P0;mdot0]; 

  

  
tspan=[0 100]; 
options=odeset('MaxOrder',1,'RelTol',1e-6,'AbsTol',1e-6); 
[T,X] = ode15s(@overall,tspan,X0,options); 

  
% [T,X] = ode45(@overall,tspan,X0); 
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toc; 

  
lT=length(T); 
UV=zeros(1,lT); 
for i=1:lT 
    [~,UV(i)]=valveCV(T(i)); 
end 

  
figure(1);grid on; plot(T,UV);axis([0,100,-0.1,1.1]); 
title('Cv of the valve [p.u]');grid; 

  
figure(2);grid on; plot(T,X(:,N+1));xlabel('Time [sec]'); 
title('pressure before the valve [Pa]');grid; 

  
figure(3);grid on;plot(T,X(:,2*N-1));xlabel('Time [sec]'); 
title('Mass flow rate at the valve [Kg/sec]');grid; 

  
subplot(221);grid on; plot(T,X(:,2+floor(N/4)));xlabel('Time [sec]'); 
title('pressure at 1/4 length from head water [Pa]');grid; 

  
subplot(222);grid on;plot(T,X(:,2+floor(N/4)+N-1));xlabel('Time [sec]'); 
title('Mass flow rate at 1/4 length from head water [Kg/sec]');grid; 

  
subplot(223);grid on; plot(T,X(:,3));xlabel('Time [sec]'); 
title('pressure at the head water interface [Pa]');grid; 

  
subplot(224);grid on;plot(T,X(:,N+2));xlabel('Time [sec]'); 
title('Mass flow rate at the head water interface [Kg/sec]');grid; 

 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

function dXdt=overall(t,X) 

     
global PPENSTOCK CONSTANTS PHEADWATER; 
LP=PPENSTOCK.LP;     %Penstock length [m] 
AP=PPENSTOCK.AP;      %Penstock cross-section area [m2]  
ThetaP=PPENSTOCK.ThetaP;  %Penstock slope [radians] 
N=PPENSTOCK.N;       %No of deltax length along the penstock 
deltax=LP/N; 

  

  

  
rho_atm=CONSTANTS.rho_atm; 
g=CONSTANTS.g;         
p_atm=CONSTANTS.p_atm; 

  
hHW=PHEADWATER.hR;      %Head water reservoir water level [m] 

  
xR=X(1); 
xV=X(2); 
S=X(3:2*N-1); 
pHWI=S(1);pTWI=S(N-1); 
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pHWO=p_atm+rho_atm*g*hHW; 
dxRdt=deltax\(AP*(pHWO-pHWI)+rho_atm*g*deltax*AP*sin(ThetaP)); 

  
deltap_valve=xV*abs(xV)/(rho_atm^2*valveCV(t)^2); 
pTWO=p_atm+deltap_valve; 
dxVdt=deltax\(-AP*(pTWO-pTWI)+rho_atm*g*deltax*AP*sin(ThetaP)); 

  
dSdt=penstock(S,xR,xV); 

  
dXdt=[dxRdt;dxVdt;dSdt]; 

 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

function dSdt=penstock(S,mdotHWI,mdotTWI) 

  
global CONSTANTS; 

  
rho_a=  CONSTANTS.rho_atm; %Water density at atmospheric pressure [Kg/m3] 
g=      CONSTANTS.g;       %gravity acceleration [m/sec2] 
Pa=     CONSTANTS.p_atm;   %Atmospheric pressure [Pa] 
beta=   CONSTANTS.beta;    %compressibility of water [1/Pa] 

  
global   PPENSTOCK; %Parameters for  penstock 
Aa=      PPENSTOCK.AP;      %Penstock cross-section area [m2]         
theta=   PPENSTOCK.ThetaP;  %Penstock slope [radians] 
fP=       PPENSTOCK.fP;      %Fanning friction factor for the penstock 
N=       PPENSTOCK.N;       %No of deltax length along the penstock 
deltax=  PPENSTOCK.LP/PPENSTOCK.N;   
beta_eq= PPENSTOCK.beta_eq; %penstock wall elasticity 

  
beta_tot=beta+beta_eq; 

  
p=S(1:N-1);   
mdot=S(N:2*N-3);   

  
mdot_ext=[mdotHWI;mdot;mdotTWI];  

  
dpdt=(mdot_ext(1:N-1)-mdot_ext(2:N))/(Aa*rho_a*deltax*beta_tot); 

  
Fp=Aa*rho_a*(ones(N-1,1)+beta_tot*(p-Pa*ones(N-1,1)));  
Fmdot=(Fp(1:N-2)+Fp(2:N-1))/2;  
Fmdot_ext=[Aa*rho_a;Fmdot;Aa*rho_a]; 

  
vmdot_ext=mdot_ext./Fmdot_ext;  

 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

function coef=velocitycoef(mdot_2n_ext,kthi_2n) 
%This function calculates the coefficients of the velocity variables in the 
%momentum equation using upwind discretization: 
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global PPENSTOCK; 
N=PPENSTOCK.N;       %No of deltax length along the penstock 

  
coef=zeros(N-2,3); 

  
for i=1:N-2 
    t1=(mdot_2n_ext(i)+mdot_2n_ext(i+1))/2; 
    t2=(mdot_2n_ext(i+1)+mdot_2n_ext(i+2))/2; 
    t3=(mdot_2n_ext(i+2)-mdot_2n_ext(i))/2; 

     
    if       t1>=0, 
             coef(i,1)=t1+t3-kthi_2n(i); 
             coef(i,2)=t1; 
             coef(i,3)=0; 
    elseif   t2<=0, 
             coef(i,1)=-t2+t3-kthi_2n(i); 
             coef(i,2)=0; 
             coef(i,3)=-t2; 
    else 
             coef(i,1)=-kthi_2n(i); 
             coef(i,2)=0; 
             coef(i,3)=0; 
    end 

     
end 

 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

function [y,uv]=valveCV(t) 

  

  
global CONSTANTS PPENSTOCK PTAILWATER PHEADWATER; 

  
rho_atm=CONSTANTS.rho_atm; %Water density at atmospheric pressure [Kg/m3] 
g=CONSTANTS.g;        %gravity acceleration [m/sec2] 

  
AP=PPENSTOCK.AP;      %Penstock cross-section area [m2]  

  
ho=PHEADWATER.ho;      %Gross head [m] 

  
VT=PTAILWATER.VT; %Valve closure time [sec] 
vo=PTAILWATER.vo; %Initial Water Velocity [m/sec] 

  
Max_VolumetricFlowRate=AP*vo; 
Max_DiffPressure=rho_atm*g*ho; 

  

  

  
if t<50, 
   uv=1;  
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else 

     
    uv=max(0.9,1-VT\(t-50)); 
end 

  
y=uv*Max_VolumetricFlowRate/sqrt(Max_DiffPressure); 

 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

C. Simulation of waterway, turbine and controller (with and without Compressibility and 

Elasticity Effects) and with a Torque Disturbance on Turbine Consuming Constant 

Active Power  

 

% main program for simulation of inelastic and elastic models of the plant   
% with transient droop controller and disturbance as torque on turbine  
% consuming constant active power 

  
clc 
clear all 
close all 
Main_parameters %run to define parameters 
TurbineData %run to generate turbine data 

  
%initial state vector for inelastic system: 
% lS=x_ie(1);    %Length of water column in the surge shaft 
% mdotC=x_ie(2); %Mass flow rate of water in the conduit 
% mdotP=x_ie(3); %Mass flow rate of water in the penstock 
% YGV=x_ie(4);   %guide vane openning 
% xr=x_ie(5);    %transient droop state 
% u=x_ie(6);     %pilot servomotor output 
% wm=x_ie(7);    %angular speed [rad/sec] 
x_ie0=[55;28000;28000;0.7;0;0;500*2*pi/60]; 

  
%initial state vector for elastic system: 
% YGV=x(1);   %guide vane openning 
% xr=x(2);    %transient droop state 
% u=x(3);     %pilot servomotor output 
% wm=x(4);    %angular speed [rad/sec] 
% lS=x(5);    %Length of water column in the surge shaft 
% mdotC=x(6); %Mass flow rate of water in the conduit 
% mdotHWDO=x(7); %Mass flow rate of water in the penstock interface at HW 
% mdotTWUO=x(8); %Mass flow rate of water in the penstock interface at TW 
% S=x(9:2*N+5);  %Penstock state vector 
LP=PPENSTOCK.LP; 
N=PPENSTOCK.N; 
deltax=LP/N; 
p0=(5+28/N:28/N:5+28-28/N)'*1e5; 
mdot0=28000*ones(N-2,1); 
x0=[0.7;0;0;500*2*pi/60;55;28000;28000;28000;p0;mdot0]; 
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tspan=[0 500]; 
options=odeset('MaxOrder',5,'RelTol',1e-9,'AbsTol',1e-9); 
[T_ie,X_ie] = ode15s(@ODEWaterwayInelastic,tspan,x_ie0,options); 
[T,X] = ode15s(@ODEWaterway,tspan,x0,options); 

  

  
lT=length(T_ie); 
X_ie2=zeros(lT,6); 
for i=1:lT 
    t=T_ie(i); 
    xi=X_ie(i,1:3); 
    Ygvi=X_ie(i,4); 
    wmi=X_ie(i,7); 
    PowerDemandi=ActivePowerDemand(t); 
    [~,pHWDOi,pTWUOi,Hti,EFFti,Pti]=WaterwayInelasticOutputs(xi,Ygvi,wmi); 
    X_ie2(i,:)=[pHWDOi pTWUOi Hti EFFti Pti PowerDemandi]; 
end 

  

  
lT=length(T); 
X2=zeros(lT,6); 
for i=1:lT 
    t=T(i); 
    xi=X(i,:); 
    YGV=xi(1);   %guide vane openning 
    wm=xi(4);    %angular speed [rad/sec] 
    xHW=xi(5:7); 
    mdotTWUO=xi(8); %Mass flow rate of water in the penstock interface at TW 
    S=xi(9:2*N+5);  %Penstock state vector 
    pTWUI=S(N-1); 
    pHWDI=S(1); 
    PowerDemandi=ActivePowerDemand(t); 
    [~,pTWUOi,Hti,EFFti,Pti]=TailWaterOutputs(mdotTWUO,pTWUI,YGV,wm,deltax); 
    [~,pHWDO]=HeadWaterOutputs(xHW,pHWDI,deltax); 
    X2(i,:)=[pHWDO pTWUOi Hti EFFti Pti PowerDemandi]; 
end 

  
figure(1);grid on; 
plot(T, sin(PHEADWATER.ThetaS)\X(:,5),'b-');hold on; 
plot(T_ie, sin(PHEADWATER.ThetaS)\X_ie(:,1),'r-.');hold off; 
grid;xlabel('Time [sec]');ylabel('Height [m]'); 
title('Water column height in the surge shaft'); 
legend('Elastic Penstock','Inelastic Penstock'); 

  
figure(2);grid on; 
plot(T, X(:,6),'-b');hold on;plot(T_ie, X_ie(:,2),'-.r');hold off; 
grid;xlabel('Time [sec]');ylabel('Flow rate [Kg/sec]'); 
title('Water mass flow rate in the conduit'); 
legend('Elastic Penstock','Inelastic Penstock'); 

  
figure(3);grid on; 
plot(T, X(:,8),'-b');hold on;plot(T_ie, X_ie(:,3),'-.r'); 
grid;xlabel('Time [sec]');ylabel('Flow rate [Kg/sec]'); 
title('Water mass flow rate in the turbine'); 
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legend('Elastic Penstock','Inelastic Penstock'); 

  
figure(4);grid on; 
plot(T, X(:,1),'-b');hold on;plot(T_ie, X_ie(:,4),'-.r');hold off; 
grid;xlabel('Time [sec]');ylabel('Guide vanes opening [p.u.]'); 
title('Guide vanes opening'); 
legend('Elastic Penstock','Inelastic Penstock'); 

  
figure(5);grid on; 
plot(T, X(:,4)*50/PTURBINE.wm_design,'-b');hold on; 
plot(T_ie, X_ie(:,7)*50/PTURBINE.wm_design,'-.r'); 
grid;xlabel('Time [sec]');ylabel('Frequency [Hz]'); 
title('Electric frequency'); 
legend('Elastic Penstock','Inelastic Penstock'); 

  
figure(6);grid on; 
plot(T, X2(:,1),'-b');hold on;plot(T_ie, X_ie2(:,1),'-.r');hold off; 
grid;xlabel('Time [sec]');ylabel('Pressure [Pa]'); 
title('Pressure at the surge shaft junction'); 
legend('Elastic Penstock','Inelastic Penstock'); 

  
figure(7);grid on; 
plot(T, X2(:,2),'-b');hold on;plot(T_ie, X_ie2(:,2),'-.r');hold off; 
grid;xlabel('Time [sec]');ylabel('Pressure [Pa]'); 
title('Pressure at the turbine inlet'); 
legend('Elastic Penstock','Inelastic Penstock'); 

  
figure(8);grid on; 
plot(T, X2(:,3),'-b');hold on;plot(T_ie, X_ie2(:,3),'-.r');hold off; 
grid;xlabel('Time [sec]');ylabel('Head [m]'); 
title('Turbine head'); 
legend('Elastic Penstock','Inelastic Penstock'); 

  
figure(9);grid on; 
plot(T, X2(:,4),'-b');hold on;plot(T_ie, X_ie2(:,4),'-.r');hold off; 
grid;xlabel('Time [sec]');ylabel('efficiency [%]'); 
title('Turbine efficiency'); 
legend('Elastic Penstock','Inelastic Penstock'); 

  
figure(10);grid on; 
plot(T, X2(:,5),'- b',T,X2(:,6),'-.b');hold on; 
plot(T_ie, X_ie2(:,5),'-.r');hold off; 
grid;xlabel('Time [sec]');ylabel('Power [W]'); 
title('Active power demand vs Turbine power'); 
legend('Elastic Penstock','Demand','Inelastic Penstock'); 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

 

% Main_parameters.m 
% defines parameters for simulation of plant with inelastic and elastic 
% models with transient droop controller and a disturbance torque 
% on turbine which consumes constant active power 
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global CONSTANTS; 
CONSTANTS=[]; 
CONSTANTS.rho_atm=1000; %Water density at atmospheric pressure [Kg/m3] 
CONSTANTS.g=9.8;        %gravity acceleration [m/sec2] 
CONSTANTS.p_atm=1e5;    %Atmospheric pressure [Pa] 
CONSTANTS.beta=4.5e-10; %water compressibility 

  
global PTURBINE; %Turbine parameters 
PTURBINE=[]; 
PTURBINE.Qrated=36;             %Rated descharge [m3/sec] 
PTURBINE.Hdesign=330;           %Design head [m] 
PTURBINE.wm_design=500*2*pi/60; %Design angular speed 

  
global PCONTROLLER; %Controller Parameters 
PCONTROLLER=[]; 
PCONTROLLER.J=850000; %Generator rotor and turbine moment of inertia 

  
% PCONTROLLER.YGV_ref=0.6; %Operating point openning for guide vane [p.u] 

  
PCONTROLLER.Tp=0.04; %pilot servomotor time constant [sec] 
PCONTROLLER.Tg=0.2;  %main servomotor integration time [sec] 
PCONTROLLER.Tr=1.75;  %transient droop time constant [sec] 
PCONTROLLER.delta=0.04; %transient droop 
PCONTROLLER.droop=0.10; %droop [p.u.] 
PCONTROLLER.YGVMax=1;   %Max guide vane opening [p.u.] 
PCONTROLLER.YGVMin=0.3; %Min guide vane openning [p.u] 
PCONTROLLER.YGVdotMax=0.05;   %Max guide vane opening rare [1/sec] 
PCONTROLLER.YGVdotMin=0.2; %Max guide vane closing rate [1/sec] 

  
global PHEADWATER; %Parameters for head water system 
PHEADWATER=[]; 
PHEADWATER.hR=40;      %Head water reservoir water level [m] 
PHEADWATER.LC=4500;    %Conduit length [m] 
PHEADWATER.AC=25;      %Condit cross-section area [m2]         
PHEADWATER.ThetaC=0.2*pi/180; %Conduit slope [radians] 
PHEADWATER.fC=0.04;    %Fanning friction factor for the conduit 
PHEADWATER.AS=10;      %Surge shaft cross-section area [m2]         
PHEADWATER.ThetaS=60*pi/180;  %Surge shaft slope [radians] 
PHEADWATER.fS=0.04;    %Fanning friction factor for the surge shaft 

  
global PPENSTOCKINTERFACE %Penstock interface (head water and tail water) 

parameters 
PPENSTOCKINTERFACE=[]; 
PPENSTOCKINTERFACE.A2=7;      %Penstock cross-section area head water [m2] 
PPENSTOCKINTERFACE.A2N=7;      %Penstock cross-section area tail water [m2]   
PPENSTOCKINTERFACE.ThetaP=45*pi/180;  %Penstock slope [radians] 
PPENSTOCKINTERFACE.fP=0.04;    %Fanning friction factor for the penstock 

  
global PPENSTOCK; %Parameters for  penstock 
PPENSTOCK=[]; 
PPENSTOCK.LP=400;     %Penstock length [m] 
PPENSTOCK.AP=7;      %Penstock cross-section area [m2]         
PPENSTOCK.ThetaP=45*pi/180;  %Penstock slope [radians] 
PPENSTOCK.fP=0.04;    %Fanning friction factor for the penstock 
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% PPENSTOCK.N=50;       %No of deltax length along the penstock 
PPENSTOCK.N=25;       %No of deltax length along the penstock 

  
PPENSTOCK.beta_eq=2.04e-9; %penstock wall elasticity 

  
global PTAILWATER; %Parameters for tail water system 
PTAILWATER=[]; 
PTAILWATER.hDT=5;      %Draft tube height [m] 
PTAILWATER.LTWT=300;   %Tail water tunnel length [m] 
PTAILWATER.ATWT=25;    %Tail water tunnel cross-section area [m2]         
PTAILWATER.ThetaTWT=0.5*pi/180;%Tail water tunnel slope [radians] 
PTAILWATER.fTWT=0.04;   %Fanning friction factor for Tail water tunnel 
PTAILWATER.hTW=10;      %Tail water reservoir water level [m] 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

 

function dxdt=ODEWaterwayInelastic(t,x) 

  
% This function calculates time derivatives for all of the states in 
% waterway, controller and the swing. 
% inputs are the time and the state vector x consisting of: 
% lS=x(1);    %Length of water column in the surge shaft 
% mdotC=x(2); %Mass flow rate of water in the conduit 
% mdotP=x(3); %Mass flow rate of water in the penstock 
% YGV=x(4);   %guide vane openning 
% xr=x(5);    %transient droop state 
% u=x(6);     %pilot servomotor output 
% wm=x(7);    %angular speed [rad/sec] 

  
global PCONTROLLER; 

  
YGV=x(4);   %guide vane openning 
wm=x(7);    %angular speed [rad/sec] 

  
J=PCONTROLLER.J; %Generator rotor and turbine moment of inertia 
% YGV_ref=PCONTROLLER.YGV_ref; 
YGV_ref=YGVREFERENCE(t); 

  

  
[dxWWdt,~,~,~,~,Pt]=WaterwayInelasticOutputs(x(1:3),YGV,wm); 
dxCONdt=ControllerOutputs(x(4:6),wm,YGV_ref); 
dwmdt=(J*wm)\(Pt-ActivePowerDemand(t)); 

  
dxdt=[dxWWdt;dxCONdt;dwmdt]; 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

 

function [dxdt,pHWDO,pTWUO,Ht,EFFt,Pt]=WaterwayInelasticOutputs(x,YGV,wm) 
%This function returns time derivative of the parameters of a waterway with 
%inelastic penstock.Inputs are: 
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%state vector x: 
% lS=x(1);    %Length of water column in the surge shaft 
% mdotC=x(2); %Mass flow rate of water in the conduit 
% mdotP=x(3); %Mass flow rate of water in the penstock 
% guide vane opening YGV [p.u.] 
% angular speed of turbine wm [rad/sec] 
% outputs are 
% time derivative of the state vector 
% pressure at conduit-surgeshaft-penstock junction pHWDO [Pa] 
% pressure at turbine inlet pTWUO [Pa] 
% Turbine head [m] 
% Turbine efficiency 
% Turbine power [Watt] 

  
%State variables: 
lS=x(1);    %Length of water column in the surge shaft 
mdotC=x(2); %Mass flow rate of water in the conduit 
mdotP=x(3); %Mass flow rate of water in the penstock 

  
%Parameters and constants: 
global PHEADWATER PPENSTOCK PTAILWATER CONSTANTS PTURBINE; 

  
hR=PHEADWATER.hR;            %Head water reservoir water level [m] 
LC=PHEADWATER.LC;            %Conduit length [m] 
AC=PHEADWATER.AC;            %Condit cross-section area [m2]         
ThetaC=PHEADWATER.ThetaC;    %Conduit slope [degrees] 
fC=PHEADWATER.fC;            %Fanning friction factor for the conduit 
AS=PHEADWATER.AS;            %Surge shaft cross-section area [m2]         
ThetaS=PHEADWATER.ThetaS;    %Surge shaft slope [degrees] 
fS=PHEADWATER.fS;            %Fanning friction factor for the surge shaft 

  
LP=PPENSTOCK.LP;            %Penstock length [m] 
AP=PPENSTOCK.AP;            %Penstock cross-section area [m2]         
ThetaP=PPENSTOCK.ThetaP;    %Penstock slope [degrees] 
fP=PPENSTOCK.fP;            %Fanning friction factor for the penstock 

  
hDT=PTAILWATER.hDT;          %Draft tube height [m] 
LTWT=PTAILWATER.LTWT;        %Tail water tunnel length [m] 
ATWT=PTAILWATER.ATWT;         %Tail water tunnel cross-section area [m2]         
ThetaTWT=PTAILWATER.ThetaTWT; %Tail water tunnel slope [degrees] 
fTWT=PTAILWATER.fTWT;         %Fanning friction factor for Tail water tunnel 
hTW=PTAILWATER.hTW;           %Tail water reservoir water level [m] 

  
rho_atm=CONSTANTS.rho_atm;  %Water density at atmospheric pressure [Kg/m3] 
g=CONSTANTS.g;              %gravity acceleration [m/sec2] 
p_atm=CONSTANTS.p_atm;      %Atmospheric pressure [Pa] 

  
Qrated=PTURBINE.Qrated;             %Rated descharge [m3/sec] 
Hdesign=PTURBINE.Hdesign;           %Design head [m] 
wm_design=PTURBINE.wm_design; %Design angular speed 

  
PC=2*sqrt(pi*AC);   %Perimeter of conduit (circular cross-section) [m] 
PS=2*sqrt(pi*AS);   %Perimeter of surge shaft [m] 
PP=2*sqrt(pi*AP);   %Perimeter of penstock [m] 
PTWT=2*sqrt(pi*ATWT);   %Perimeter of tail water tunnel [m] 
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%K coefficients as defined in the text 
KC=fC*LC*PC*sign(mdotC)/(2*AC^2*rho_atm); 
KS=fS*lS*PS*sign(mdotP-mdotC)/(2*AS^2*rho_atm)+1/(AS*rho_atm); 
KP=fP*LP*PP*sign(mdotP)/(2*AP^2*rho_atm); 
KTWT=fTWT*LTWT*PTWT*sign(mdotP)/(2*ATWT^2*rho_atm); 

  
pCI=p_atm+rho_atm*g*hR; 
pTWTX=p_atm+rho_atm*g*hTW; 

  
Qt=mdotP/rho_atm; %turbine volumetric flow rate [m3/sec] 
Qt_percent=Qt*100/Qrated; %turbine volumetric flow rate [% rated flow] 
Qt_eq=Qt_percent*wm_design/wm; %equivalent turbine volumetric flow rate [% 

rated flow] in design speed 
Ht_eq=H_Turb(YGV,Qt_eq);       %equivalent turbine head [% design head] in 

design speed  
Ht=Ht_eq*(Hdesign/100)*(wm^2/wm_design^2); %turbine head [m] at wm 
EFFt=Eff_Turb(YGV,Ht_eq); %Turbine efficiency [%] 
Pt=rho_atm*g*(EFFt/100)*Ht*Qt; %Turbine power [Watt] 

  
c1=AC/LC+AS/lS; 
c2=AP/LP; 
c3=LC\AC*pCI+lS\AS*p_atm... 
   +rho_atm*g*(AC*sin(ThetaC)-AP*sin(ThetaP)+AS*sin(ThetaS))... 
   -LC\KC*mdotC^2-lS\KS*(mdotP-mdotC)^2+LP\KP*mdotP^2; 
c4=AP*LTWT/(ATWT*LP); 
c5=rho_atm*g*(Ht-hDT)+pTWTX... 
   +rho_atm*g*LTWT*(sin(ThetaTWT)+sin(ThetaP)*AP/ATWT)... 
   +(KTWT-KP*LTWT/LP)*mdotP^2/ATWT; 

  
pTWUO=(c3*c4+c1*c5+c2*c5)/(c1+c2+c1*c4); 
pHWDO=(c3+c3*c4+c2*c5)/(c1+c2+c1*c4); 

  
dlSdt=(AS*rho_atm)\(mdotC-mdotP); 
dmdotCdt=LC\(-AC*(pHWDO-pCI)+rho_atm*g*LC*AC*sin(ThetaC)-KC*mdotC^2); 
dmdotPdt=LP\(-AP*(pTWUO-pHWDO)+rho_atm*g*LP*AP*sin(ThetaP)-KP*mdotP^2); 

  
dxdt=[dlSdt;dmdotCdt;dmdotPdt]; 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

 

function dxdt=ControllerOutputs(x,wm,YGV_ref) 
%calculates time derivatives of transient droop controller 

  
global PTURBINE; 
wm_design=PTURBINE.wm_design; 

  
global PCONTROLLER; 
Tp=PCONTROLLER.Tp; %pilot servomotor time constant [sec] 
Tg=PCONTROLLER.Tg;  %main servomotor integration time [sec] 
Tr=PCONTROLLER.Tr;  %transient droop time constant [sec] 
delta=PCONTROLLER.delta; %transient droop 
droop=PCONTROLLER.droop; %droop [p.u.] 
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YGVMax=PCONTROLLER.YGVMax;   %Max guide vane opening [p.u.] 
YGVMin=PCONTROLLER.YGVMin; %Min guide vane openning [p.u] 
YGVdotMax=PCONTROLLER.YGVdotMax;   %Max guide vane opening rare [1/sec] 
YGVdotMin=PCONTROLLER.YGVdotMin; %Max guide vane closing rate [1/sec] 

  
%state variables; 
YGV=x(1);   %guide vane openning 
xr=x(2);    %transient droop state 
u=x(3);     %pilot servomotor output 

  
d=delta*YGV-xr; 
e=droop*(YGV_ref-YGV)-(wm/wm_design-1)-d; 

  

  
if (YGV<=YGVMin)&&(u<0) 
    dYGVdt=0; 
elseif (YGV>=YGVMax)&&(u>0) 
    dYGVdt=0;     
elseif (u/Tg)>=YGVdotMax 
    dYGVdt=YGVdotMax; 
elseif (u/Tg)<=-YGVdotMin 
    dYGVdt=-YGVdotMin; 
else 
    dYGVdt=u/Tg; 
end 
dxrdt=Tr\d; 
dudt=Tp\(e-u); 

  
dxdt=[dYGVdt;dxrdt;dudt]; 

 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

 

function y=ActivePowerDemand(t) 

  
%This function simulates a time varying active load which can be used as 
%load disturbance. 

  
ybase=100e6; 
t1=2; 
t2=2; 
y1=0.8*ybase; 
y2=0.5*ybase; 
y3=0.8*ybase; 

  
if t<500, 
    y=y1; 
elseif (t>=500)&&(t<=500+t1) 
    y=y1+t1\(t-500)*(y2-y1); 
elseif (t>=500+t1)&&(t<=1000) 
    y=y2; 
elseif (t>=1000)&&(t<=1000+t2) 
    y=y2+t2\(t-1000)*(y3-y2); 
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else 
    y=y3; 
end 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

 

function y=YGVREFERENCE(t) 

  
if t<300 
    y=0.6; 
else 
    y=0.4; 
end 

 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

 

function dxdt=ODEWaterway(t,x) 

  
% This function calculates time derivatives for all of the states in 
% waterway, controller and the swing. 
% inputs are the time and the state vector x consisting of: 
% YGV=x(1);   %guide vane openning 
% xr=x(2);    %transient droop state 
% u=x(3);     %pilot servomotor output 
% wm=x(4);    %angular speed [rad/sec] 
% lS=x(5);    %Length of water column in the surge shaft 
% mdotC=x(6); %Mass flow rate of water in the conduit 
% mdotHWDO=x(7); %Mass flow rate of water in the penstock interface at HW 
% mdotTWUO=x(8); %Mass flow rate of water in the penstock interface at TW 
% S=x(9:2*N+5);  %Penstock state vector 

  
global PCONTROLLER PPENSTOCK; 
LP=PPENSTOCK.LP;     %Penstock length [m] 
N=PPENSTOCK.N;       %No of deltax length along the penstock 
deltax=LP/N; 

  
YGV=x(1);   %guide vane openning 
wm=x(4);    %angular speed [rad/sec] 
xHW=x(5:7); 
mdotTWUO=x(8); %Mass flow rate of water in the penstock interface at TW 
S=x(9:2*N+5);  %Penstock state vector 
pHWDI=S(1); 
pTWUI=S(N-1); 
mdotHWI=xHW(3); 
mdotTWI=mdotTWUO; 

  
J=PCONTROLLER.J; %Generator rotor and turbine moment of inertia 
% YGV_ref=PCONTROLLER.YGV_ref; 
YGV_ref=YGVREFERENCE(t); 
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[dxHWdt,~]=HeadWaterOutputs(xHW,pHWDI,deltax); 
[dmdotTWUOdt,~,~,~,Pt]=TailWaterOutputs(mdotTWUO,pTWUI,YGV,wm,deltax); 
dSdt=penstock(S,mdotHWI,mdotTWI); 

  
dxCONdt=ControllerOutputs(x(1:3),wm,YGV_ref); 
dwmdt=(J*wm)\(Pt-ActivePowerDemand(t)); 

  
dxdt=[dxCONdt;dwmdt;dxHWdt;dmdotTWUOdt;dSdt]; 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

 

function [dxHWdt,pHWDO]=HeadWaterOutputs(xHW,pHWDI,deltax) 
% This function calculates time derivative of the state vector (xHW) and 
% pressure at the junction of the conduit,  
% surge shaft and penstock interface/penstock (pHWDO).  
% The inputs are: 
% the state vector of the head water system (xHW) 
% the pressure at downstream of the penstock interface/penstock (pHWDI) 
% the length of the penstock interface (deltax) 

  
%State variables: 
lS=xHW(1);    %Length of water column in the surge shaft 
mdotC=xHW(2); %Mass flow rate of water in the conduit 
mdotHWDO=xHW(3); %Mass flow rate of water in the penstock interface/penstock 

  
% parameters and constants: 
global PHEADWATER CONSTANTS PPENSTOCKINTERFACE; 

  
rho_atm=CONSTANTS.rho_atm;  %Water density at atmospheric pressure [Kg/m3] 
g=CONSTANTS.g;              %gravity acceleration [m/sec2] 
p_atm=CONSTANTS.p_atm;      %Atmospheric pressure [Pa] 

  
hR=PHEADWATER.hR;            %Head water reservoir water level [m] 
LC=PHEADWATER.LC;            %Conduit length [m] 
AC=PHEADWATER.AC;            %Condit cross-section area [m2]         
ThetaC=PHEADWATER.ThetaC;    %Conduit slope [degrees] 
fC=PHEADWATER.fC;            %Fanning friction factor for the conduit 
AS=PHEADWATER.AS;            %Surge shaft cross-section area [m2]         
ThetaS=PHEADWATER.ThetaS;    %Surge shaft slope [degrees] 
fS=PHEADWATER.fS;            %Fanning friction factor for the surge shaft 

  
A2=PPENSTOCKINTERFACE.A2;         %Penstock cross-section area [m2]         
ThetaP=PPENSTOCKINTERFACE.ThetaP; %Penstock slope [degrees] 
fP=PPENSTOCKINTERFACE.fP;         %Fanning friction factor for the penstock 

  
PC=2*sqrt(pi*AC);   %Perimeter of conduit (circular cross-section) [m] 
PS=2*sqrt(pi*AS);   %Perimeter of surge shaft [m] 
P2=2*sqrt(pi*A2);   %Perimeter of penstock [m] 

  
KC=fC*LC*PC*sign(mdotC)/(2*AC^2*rho_atm); 
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KS=fS*lS*PS*sign(mdotHWDO-mdotC)/(2*AS^2*rho_atm)+1/(AS*rho_atm); 
KHW=fP*deltax*P2*sign(mdotHWDO)/(2*A2^2*rho_atm); 

  
pCI=p_atm+rho_atm*g*hR; 
pHWDO=(AC/LC+A2/deltax+AS/lS)\((LC\AC*pCI+deltax\A2*pHWDI+lS\AS*p_atm)+... 
rho_atm*g*(AC*sin(ThetaC)-A2*sin(ThetaP)+AS*sin(ThetaS))-... 
LC\KC*mdotC^2-lS\KS*(mdotHWDO-mdotC)^2+deltax\KHW*mdotHWDO^2); 

  
dlSdt=(AS*rho_atm)\(mdotC-mdotHWDO); 
dmdotCdt=LC\(-AC*(pHWDO-pCI)+rho_atm*g*LC*AC*sin(ThetaC)-KC*mdotC^2); 
dmdotHWDOdt=deltax\(-A2*(pHWDI-pHWDO)+rho_atm*g*deltax*A2*sin(ThetaP)... 
            -KHW*mdotHWDO^2); 
dxHWdt=[dlSdt;dmdotCdt;dmdotHWDOdt]; 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

 

function 

[dmdotTWUOdt,pTWUO,Ht,EFFt,Pt]=TailWaterOutputs(mdotTWUO,pTWUI,YGV,wm,deltax) 
% This function calculates pressure at the turbine inlet (pTWUO), 
% turbine head, efficiency and power and time derivative of the state  
% variable mdotTWUO . The inputs are: 
% the state variable (mdotTWUO) 
% the pressure at upstream of the penstock interface(pTWUI) 
% the length of the penstock interface (deltax) 
% turbine angular speed (wm) 
% guide vane opening (YGV) 

  
% parameters and constants: 
global PTAILWATER CONSTANTS PPENSTOCKINTERFACE PTURBINE; 

  
rho_atm=CONSTANTS.rho_atm;  %Water density at atmospheric pressure [Kg/m3] 
g=CONSTANTS.g;              %gravity acceleration [m/sec2] 
p_atm=CONSTANTS.p_atm;      %Atmospheric pressure [Pa] 

  
hDT=PTAILWATER.hDT;           %Draft tube height [m] 
LTWT=PTAILWATER.LTWT;         %Tail water tunnel length [m] 
ATWT=PTAILWATER.ATWT;         %Tail water tunnel cross-section area [m2]         
ThetaTWT=PTAILWATER.ThetaTWT; %Tail water tunnel slope [degrees] 
fTWT=PTAILWATER.fTWT;         %Fanning friction factor for Tail water tunnel 
hTW=PTAILWATER.hTW;           %Tail water reservoir water level [m] 

  
A2N=PPENSTOCKINTERFACE.A2N;         %Penstock cross-section area [m2]         
ThetaP=PPENSTOCKINTERFACE.ThetaP; %Penstock slope [degrees] 
fP=PPENSTOCKINTERFACE.fP;         %Fanning friction factor for the penstock 

  
Qrated=PTURBINE.Qrated;             %Rated descharge [m3/sec] 
Hdesign=PTURBINE.Hdesign;           %Design head [m] 
wm_design=PTURBINE.wm_design; %Design angular speed 

  
P2N=2*sqrt(pi*A2N);   %Perimeter of penstock [m] 
PTWT=2*sqrt(pi*ATWT);   %Perimeter of tail water tunnel [m] 

  
KTW=fP*deltax*P2N*sign(mdotTWUO)/(2*A2N^2*rho_atm); 
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KTWT=fTWT*LTWT*PTWT*sign(mdotTWUO)/(2*ATWT^2*rho_atm); 

  
pTWTX=p_atm+rho_atm*g*hTW; 

  
Qt=mdotTWUO/rho_atm; %turbine volumetric flow rate [m3/sec] 
Qt_percent=Qt*100/Qrated; %turbine volumetric flow rate [% rated flow] 
Qt_eq=Qt_percent*wm_design/wm; %equivalent turbine volumetric flow rate [% 

rated flow] in design speed 
Ht_eq=H_Turb(YGV,Qt_eq);       %equivalent turbine head [% design head] in 

design speed  
Ht=Ht_eq*(Hdesign/100)*(wm^2/wm_design^2); %turbine head [m] at wm 
EFFt=Eff_Turb(YGV,Ht_eq); %Turbine efficiency [%] 
Pt=rho_atm*g*(EFFt/100)*Ht*Qt; %Turbine power [Watt] 

  
pTWUO=(1+LTWT*A2N/(deltax*ATWT))\(rho_atm*g*(Ht-hDT)... 
      +pTWTX+pTWUI*LTWT*A2N/(deltax*ATWT)... 
      +rho_atm*g*LTWT*(sin(ThetaTWT)+sin(ThetaP)*A2N/ATWT)... 
      +(KTWT-KTW*LTWT/deltax)*mdotTWUO^2/ATWT); 

   
dmdotTWUOdt=deltax\(-A2N*(pTWUO-pTWUI)+rho_atm*g*deltax*A2N*sin(ThetaP)... 
            -KTW*mdotTWUO^2);  

 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

D. Simulation of inelastic waterway with generator connected to the infinite bus 

 

%main program for simulation of inelastic model of the plant with  
%transient droop controller and generator connected to an infinite bus  

  

  
clc 
% clear all 
close all 
Main_parameters %run to define parameters 
TurbineData %run to generate turbine data 

  
InitializeGenerator; %returns generator state-vector initial values  
% and determines Vtr 
%Generator state vector: 
% XG0(1)=EEd_op;   %E'd 
% XG0(2)=EEq_op;   %E'q 
% XG0(3)=DELTA_op; %Electrical rotor angle 
% XG0(4)=Ef_op;    %Ef 
% XG0(5)=Vstabilizer_op; 

  
%initial state vector for inelastic system: 
% lS=x_ie(1);    %Length of water column in the surge shaft 
% mdotC=x_ie(2); %Mass flow rate of water in the conduit 
% mdotP=x_ie(3); %Mass flow rate of water in the penstock 
% YGV=x_ie(4);   %guide vane openning 
% xr=x_ie(5);    %transient droop state 
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% u=x_ie(6);     %pilot servomotor output 
% wm=x_ie(7);    %angular speed [rad/sec] 
x_ie0=[55;28000;28000;0.79;0;0;500*2*pi/60]; 

  
X0=[x_ie0;XG0];    

  
tspan=[0 1000]; 
options=odeset('MaxOrder',5,'RelTol',1e-7,'AbsTol',1e-7); 
[T_ie,X_ie] = ode15s(@ODEWaterwayInelastic,tspan,X0,options); 

  
lT=length(T_ie); 
X_ie2=zeros(lT,11); 

  
for i=1:lT 
    t=T_ie(i); 
    xi=X_ie(i,1:3); 
    xG=X_ie(i,8:12); 
    Ygvi=X_ie(i,4); 
    wmi=X_ie(i,7); 
    YGVRefi=YGVREFERENCE(t); 
    [~,pHWDOi,pTWUOi,Hti,EFFti,Pti]=WaterwayInelasticOutputs(xi,Ygvi,wmi); 
    [Pe,Qe,Vt,It,~]=ODEGenerator(t,xG,wmi); 
    X_ie2(i,:)=[pHWDOi pTWUOi Hti EFFti Pti 0 YGVRefi Pe Qe Vt It]; 
end 

  
figure(1);grid on;plot(T_ie, sin(PHEADWATER.ThetaS)\X_ie(:,1));grid; 
xlabel('Time [sec]');ylabel('Height [m]'); 
title('Water column height in the surge shaft'); 

  
figure(2);grid on;plot(T_ie, X_ie(:,2));grid;xlabel('Time [sec]'); 
ylabel('Flow rate [Kg/sec]');title('Water mass flow rate in the conduit'); 

  

  
figure(3);grid on;plot(T_ie, X_ie(:,3));grid;xlabel('Time [sec]'); 
ylabel('Flow rate [Kg/sec]');title('Water mass flow rate in the penstock'); 

  

  
figure(4);grid on;plot(T_ie, X_ie(:,4),'-b',T_ie, X_ie2(:,7),'-

r');grid;xlabel('Time [sec]'); 
ylabel('Guide vanes opening [p.u.]');title('Guide vanes opening'); 
legend('YGV','YGV_ref'); 

  
figure(5);grid on;plot(T_ie, 

X_ie(:,7)*50/PTURBINE.wm_design);grid;xlabel('Time [sec]'); 
ylabel('Frequency [Hz]');title('Electric frequency'); 

  
figure(6);grid on;plot(T_ie, X_ie2(:,1));grid; 
xlabel('Time [sec]');ylabel('Pressure [Pa]'); 
title('Pressure at the surge shaft junction'); 

  
figure(7);grid on;plot(T_ie, X_ie2(:,2));grid; 
xlabel('Time [sec]');ylabel('Pressure [Pa]'); 
title('Pressure at the turbine inlet'); 
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figure(8);grid on;plot(T_ie, X_ie2(:,3));grid; 
xlabel('Time [sec]');ylabel('Head [m]'); 
title('Turbine head'); 

  
figure(9);grid on;plot(T_ie, X_ie2(:,4));grid; 
xlabel('Time [sec]');ylabel('efficiency [%]'); 
title('Turbine efficiency'); 

  
figure(10);grid on;plot(T_ie, X_ie2(:,5),'- b',T_ie,X_ie2(:,8),'-.r');grid; 
xlabel('Time [sec]');ylabel('Power [W]'); 
title('Generator active power vs Turbine power'); 
Legend('Turbine Power', 'Pe'); 

  
figure(11);grid on;plot(T_ie, X_ie(:,10)*180/pi);grid;xlabel('Time [sec]'); 
ylabel('delta electric [degree]');title('Rotor electric Angle'); 

  
figure(12);grid on;plot(T_ie, X_ie2(:,9));grid;xlabel('Time [sec]'); 
ylabel('Reactive Power [VAR]');title('Reactive Power'); 

  
figure(13);grid on;plot(T_ie, X_ie2(:,10));grid;xlabel('Time [sec]'); 
ylabel('Terminal RMS Voltage [V]');title('Terminal Voltage'); 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

% Main_parameters.m 
% defines parameters for simulation of plant with inelastic  
% models with transient droop controller and generator connected to the 
% infinite bus 

  
global CONSTANTS; 
CONSTANTS=[]; 
CONSTANTS.rho_atm=1000; %Water density at atmospheric pressure [Kg/m3] 
CONSTANTS.g=9.8;        %gravity acceleration [m/sec2] 
CONSTANTS.p_atm=1e5;    %Atmospheric pressure [Pa] 
CONSTANTS.beta=4.5e-10; %water compressibility 

  
global PTURBINE; %Turbine parameters 
PTURBINE=[]; 
PTURBINE.Qrated=36;             %Rated descharge [m3/sec] 
PTURBINE.Hdesign=330;           %Design head [m] 
PTURBINE.wm_design=500*2*pi/60; %Design angular speed 

  
global PCONTROLLER; %Controller Parameters 
PCONTROLLER=[]; 
PCONTROLLER.J=850000; %Generator rotor and turbine moment of inertia 

  
% PCONTROLLER.YGV_ref=0.6; %Operating point openning for guide vane [p.u] 

  
PCONTROLLER.Tp=0.04; %pilot servomotor time constant [sec] 
PCONTROLLER.Tg=0.2;  %main servomotor integration time [sec] 
PCONTROLLER.Tr=1.75;  %transient droop time constant [sec] 
PCONTROLLER.delta=0.04; %transient droop 
PCONTROLLER.droop=0.10; %droop [p.u.] 
PCONTROLLER.YGVMax=1;   %Max guide vane opening [p.u.] 
PCONTROLLER.YGVMin=0.3; %Min guide vane openning [p.u] 
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PCONTROLLER.YGVdotMax=0.05;   %Max guide vane opening rare [1/sec] 
PCONTROLLER.YGVdotMin=0.2; %Max guide vane closing rate [1/sec] 

  
global PHEADWATER; %Parameters for head water system 
PHEADWATER=[]; 
PHEADWATER.hR=40;      %Head water reservoir water level [m] 
PHEADWATER.LC=4500;    %Conduit length [m] 
PHEADWATER.AC=25;      %Condit cross-section area [m2]         
PHEADWATER.ThetaC=0.2*pi/180; %Conduit slope [radians] 
PHEADWATER.fC=0.04;    %Fanning friction factor for the conduit 
PHEADWATER.AS=10;      %Surge shaft cross-section area [m2]         
PHEADWATER.ThetaS=60*pi/180;  %Surge shaft slope [radians] 
PHEADWATER.fS=0.04;    %Fanning friction factor for the surge shaft 

  
global PPENSTOCKINTERFACE %Penstock interface (head water and tail water) 

parameters 
PPENSTOCKINTERFACE=[]; 
PPENSTOCKINTERFACE.A2=7;      %Penstock cross-section area head water [m2] 
PPENSTOCKINTERFACE.A2N=7;      %Penstock cross-section area tail water [m2]   
PPENSTOCKINTERFACE.ThetaP=45*pi/180;  %Penstock slope [radians] 
PPENSTOCKINTERFACE.fP=0.04;    %Fanning friction factor for the penstock 

  
global PPENSTOCK; %Parameters for  penstock 
PPENSTOCK=[]; 
PPENSTOCK.LP=400;     %Penstock length [m] 
PPENSTOCK.AP=7;      %Penstock cross-section area [m2]         
PPENSTOCK.ThetaP=45*pi/180;  %Penstock slope [radians] 
PPENSTOCK.fP=0.04;    %Fanning friction factor for the penstock 

  
% PPENSTOCK.N=50;       %No of deltax length along the penstock 
PPENSTOCK.N=25;       %No of deltax length along the penstock 

  
PPENSTOCK.beta_eq=2.04e-9; %penstock wall elasticity 

  
global PTAILWATER; %Parameters for tail water system 
PTAILWATER=[]; 
PTAILWATER.hDT=5;      %Draft tube height [m] 
PTAILWATER.LTWT=300;   %Tail water tunnel length [m] 
PTAILWATER.ATWT=25;    %Tail water tunnel cross-section area [m2]         
PTAILWATER.ThetaTWT=0.5*pi/180;%Tail water tunnel slope [radians] 
PTAILWATER.fTWT=0.04;   %Fanning friction factor for Tail water tunnel 
PTAILWATER.hTW=10;      %Tail water reservoir water level [m] 

  

  
global PGENERATOR PNETWORK; 

  
PGENERATOR=[]; 
PGENERATOR.Ra=0.01; %Phase winding resistance [Ohms] 
PGENERATOR.Re=0.1;     %Equivalent network resistance [Ohms] 
PGENERATOR.xd=12;      %d_axis reactance [Ohms] 
PGENERATOR.xq=12;     %q_axis reactance [Ohms] 
PGENERATOR.xxd=1.7;   %d_axis transient reactance [Ohms] 
PGENERATOR.xxq=1.7;   %q_axis transient reactance [Ohms] 
PGENERATOR.xe=1.4;      %Equivalent network reactance [Ohms] 
PGENERATOR.TTdo=6;    %d_axis transient open-circuit time constant [sec] 
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PGENERATOR.TTqo=0.1;  %q_axis transient open-circuit time constant [sec] 
PGENERATOR.KE=400;      %Excitation system gain 
PGENERATOR.Efmin=50000; %Min field voltage [V] 
PGENERATOR.Efmax=50000;  %Max field voltage [V] 
PGENERATOR.TE=0.05;     %Excitation system time constant [sec] 
PGENERATOR.KF=0.025;    %Stablizer gain 
PGENERATOR.TFE=1;       %Stablizer time constant [sec] 
PGENERATOR.Vtr=0;     %Terminal Voltage Reference [V]  (Will be assigned  
% value during initialization) 
PGENERATOR.np=12; 
PGENERATOR.Wm_op=100*pi/6; 
PGENERATOR.M=170000; 
PGENERATOR.D=0; 

  
PNETWORK.Vs=15000;        %Network rms voltage [V] 

 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%InitializeGenerator.m 

  
P_op=80e6; %Active power drawn from generator at SS operating condition 
Q_op=50e6;  %Reactive power drawn from generator at SS operating condition 

  
PHI_op=atan(Q_op/P_op); %Power angle at steady_state [radian] 

  
I_op=(3*PNETWORK.Vs)\sqrt(P_op^2+Q_op^2); %RMS current (per phase) of 

generator  

  
DELTA_op=atan((I_op*(PGENERATOR.xq+PGENERATOR.xe)*cos(PHI_op)-I_op*... 
    (PGENERATOR.Ra+PGENERATOR.Re)*sin(PHI_op))/... 
    (PNETWORK.Vs+I_op*(PGENERATOR.Ra+PGENERATOR.Re)*cos(PHI_op)+... 
    I_op*(PGENERATOR.xq+PGENERATOR.xe)*sin(PHI_op))); 

  
Id_op=-I_op*sin(DELTA_op+PHI_op); 
Iq_op=I_op*cos(DELTA_op+PHI_op); 

  
Ef_op=PNETWORK.Vs*cos(DELTA_op)+(PGENERATOR.Ra+PGENERATOR.Re)*Iq_op-... 
    (PGENERATOR.xd+PGENERATOR.xe)*Id_op; 

  
Vt_op=sqrt((PNETWORK.Vs+I_op*PGENERATOR.Re*cos(PHI_op)+... 
    I_op*PGENERATOR.xe*sin(PHI_op))^2+... 
    (I_op*PGENERATOR.xe*cos(PHI_op)-I_op*PGENERATOR.Re*sin(PHI_op))^2); 

  
PGENERATOR.Vtr=PGENERATOR.KE\Ef_op+Vt_op; 

  
Vstabilizer_op=0; 

  
EEd_op=(PGENERATOR.xxd-PGENERATOR.xq)*Iq_op; 

  
EEq_op=Ef_op+(PGENERATOR.xd-PGENERATOR.xxd)*Id_op; 

  
XG0=zeros(5,1); 
XG0(1)=EEd_op; 
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XG0(2)=EEq_op; 
XG0(3)=DELTA_op; 
XG0(4)=Ef_op; 
XG0(5)=Vstabilizer_op; 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

function dxdt=ODEWaterwayInelastic(t,x) 

  
% This function calculates time derivatives for all of the states in 
% waterway, controller , the swing and generator. 
% inputs are the time and the state vector x consisting of: 
% lS=x(1);    %Length of water column in the surge shaft 
% mdotC=x(2); %Mass flow rate of water in the conduit 
% mdotP=x(3); %Mass flow rate of water in the penstock 
% YGV=x(4);   %guide vane openning 
% xr=x(5);    %transient droop state 
% u=x(6);     %pilot servomotor output 
% wm=x(7);    %angular speed [rad/sec] 
%Generator state vector: 
% x(8)=EEd_op;   %E'd 
% x(9)=EEq_op;   %E'q 
% x(10)=DELTA_op; %Electrical rotor angle 
% x(11)=Ef_op;    %Ef 
% x(12))=Vstabilizer_op; 

  

  
global PCONTROLLER; 

  
YGV=x(4);   %guide vane openning 
wm=x(7);    %angular speed [rad/sec] 
XG=x(8:12); 

  
J=PCONTROLLER.J; %Generator rotor and turbine moment of inertia 
% YGV_ref=PCONTROLLER.YGV_ref; 
YGV_ref=YGVREFERENCE(t); 

  

  
[dxWWdt,~,~,~,~,Pt]=WaterwayInelasticOutputs(x(1:3),YGV,wm); 
dxCONdt=ControllerOutputs(x(4:6),wm,YGV_ref); 

  
[Pe,~,~,~,dXGdt]=ODEGenerator(t,XG,wm); 

  
dwmdt=(J*wm)\(Pt-Pe); 

  
dxdt=[dxWWdt;dxCONdt;dwmdt;dXGdt]; 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

 

function [Pe,Qe,Vt,It,dXdt]=ODEGenerator(t,X,W) 

  
global PGENERATOR PNETWORK; 
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EEd=    X(1); 
EEq=    X(2); 
DELTA=  X(3); 
Ef=     X(4); 
Vstabilizer= X(5); 

  
    Temp=[PGENERATOR.Ra+PGENERATOR.Re PGENERATOR.xxd+PGENERATOR.xe;-

PGENERATOR.xxd-PGENERATOR.xe PGENERATOR.Ra+PGENERATOR.Re]; 
    Idq=Temp\[EEd+PNETWORK.Vs*sin(DELTA);EEq-PNETWORK.Vs*cos(DELTA)]; 
    Id=Idq(1);Iq=Idq(2); 
    Vt=sqrt((EEd-PGENERATOR.Ra*Id-PGENERATOR.xxd*Iq)^2+(EEq-

PGENERATOR.Ra*Iq+PGENERATOR.xxd*Id)^2); 

  

  
It=sqrt(Id^2+Iq^2); 

  
Pe=3*(EEd*Id+EEq*Iq); 

  
Qe=sqrt(9*Vt^2*It^2-Pe^2); 

  
dEEd=PGENERATOR.TTqo\(-EEd+(PGENERATOR.xxd-PGENERATOR.xq)*Iq); 

  
dEEq=PGENERATOR.TTdo\(-EEq+(PGENERATOR.xd-PGENERATOR.xxd)*Id+Ef); 

  
dDELTA=(W-PGENERATOR.Wm_op)*PGENERATOR.np/2; 

  
dEf=PGENERATOR.TE\(-Ef+PGENERATOR.KE*(PGENERATOR.Vtr-Vt-Vstabilizer)); 
if ((Ef>=PGENERATOR.Efmax)&&(dEf>0)) 
    dEf=0; 
elseif ((Ef<-PGENERATOR.Efmin)&&(dEf<0)) 
    dEf=0; 
end 

  
dVstabilizer=PGENERATOR.TFE\(-Vstabilizer+PGENERATOR.KF*dEf); 

  
dXdt=[ 
dEEd; 
dEEq; 
dDELTA; 
dEf; 
dVstabilizer;     
]; 

  

  

 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

function y=YGVREFERENCE(t) 

  
% y=.79; 
if t<200 
    y=0.79; 
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else 
    y=0.4; 
end 

 

 


