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Abstract: 

This report is the result of my master thesis, which was performed to improve the production planning in 

hydropower system, based on forecasting runoff/inflow of water to a reservoir in a catchment area. For fulfilling 

thesis tasks, a new reformulated runoff/inflow hydrological model was introduced based on mass balance, physical 

laws and functional model description that was developed for whole catchment area. The model was implemented 

in MATLAB programming and was validated for both created and available data. Observability of the system was 

checked, which showed some parts of the system were not structurally observable. That led to selection of 

nonlinear least squares method as an alternative estimation method instead of Ensemble Kalman filtering. 

The model uses many parameters, which were determined for the catchment system by few measurements. The 

model has been updated before simulation by changing the most important parameters. Sensitivity analysis and 

identifialbility analysis  were conducted to find the most important identifiable parameters.  

Automatic model updating (model calibration) was performed to estimate parameters and states of the system 

simultaneously.  Estimator performance was verified by feeding estimated parameters and states to model and 

confirming good-fit between model runoff and real one.   

This report provides an overview on what different kind of information Skagerak Kraft needs to use in the 

hydrological model in MATLAB and automating computation of this information including XML as proper data 

storage format. 

During this master thesis and based on what was done in modeling part, one conference paper submitted with 

“Prediction of daily runoff from hydrological catchment area” title in 54rd SIMS conference in Bergen, Norway.  

Telemark University College accepts no responsibility for results and conclusions presented in this report. 
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Nomenclature 

m  mass flow rate          [ sec/kg ] 

V  volume rate         [ sec/3mm ] 

  density          [
3/ mmkg ] 

A  area          [ 2mm ] 

V  volume         [ 3mm ] 

V   volume per unit area        [ mm] 

T  temperature         [ C ] 

TT  threshold temperature        [ C ] 

pV   precipitation          [ daymm ] 

spV ,
  precipitation in mainland in the form of snow     [ daymm ] 

rpV ,
  precipitation in mainland in the form of rain     [ daymm ] 

dsV .
  dry snow         [ mm] 

ssV .
  soggy snow         [ mm] 

wdV .2.
  melting rate from dry snow form to water snow form   [ daymm ] 

dwV .2.
  freezing rate from water snow form to dry snow form   [ daymm ] 

gsV .2.
  runoff rate from snow zone to ground zone     [ daymm ] 

L  lake surface fraction         dimensionless 

mk   melting factor                  [ dayCmm .3  ]  

wgV .
  water content in ground zone       [ mm] 

Tg  ground saturation threshold        [ mm] 

gsV .2.
  runoff from snow zone to ground zone     [ daymm ] 

sgV .2.
  runoff rate from ground zone to soil zone     [ daymm ] 

egV .
  evapotranspiration rate from ground zone      [ daymm ] 

  snow surface fraction        dimensionless 

w  saturation coefficient        dimensionless 

  ground zone shape coefficient      dimensionless 

gepotV   potential evapotranspiration rate      [ daymm ] 
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wsV .
  water content in soil zone       [ mm] 

bsV .2.
  runoff rate from soil zone to base zone     [ daymm ] 

srsV .2.
  runoff rate from soil zone to surface runoff     [ daymm ] 

frsV .2.
  runoff rate from soil zone to fast runoff     [ daymm ] 

Ts  soil zone saturation threshold       [ mm] 

PERC  percolation         [ daymm ] 

1  discharge frequency for surface runoff     [
1day ] 

2  discharge frequency for fast runoff      [
1day ] 

3  discharge frequency for base runoff      [
1day ] 

wbV .
  water content in base zone       [ mm] 

plV   precipitation in lake        [ daymm ]

brbV .2.
  runoff rate from base zone to base runoff     [ daymm ] 

elV .
  rate of evapotranspiration from lake      [ daymm ]
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1 Introduction 

Despite that many attempts have been done during the past decades on developing hydrological 

models, they are still imprecise because they have been developed based on physical laws such 

as mass balance and energy balance. These models typically contain parameters the exact 

values of which are not known.Consequently, the uncertainties of parameter values influence 

hydrological model performance. (Dong, 2009) As a result optimal estimation of model 

parameters (calibration) is essential to improve the predictability and accuracy of the  

hydrological model. 

Manual calibration is trial-and-error method is time consuming procedure that often requires 

needs broad knowledge of hydrology, while automatic calibration uses optimization of an 

appropriate objective function to seek best-fit parameter possibilities. It is faster and more 

straightforward in cases with complex nonlinear system and a large number of parameters (Liu, 

2010). However, automatic calibration methods do not take any uncertainties such as input data 

and model error into account (Chen, 2012). 

From 1990s, sequential data assimilation methods such as Ensemble Kalman filtering 

(Moradkhani, 2005) have been applied in hydrology and became more popular for its capability 

to handle various sources of uncertainties, especially, for nonlinear hydrological model due to 

computational efficiency, straightforward implementation and its ability to estimate time 

varying parameters and simultaneous estimation of states (Chen, et al., 2012). 

This master thesis is continuous of one of Telemark University College’s group project with 

“Hydrological modeling for Runoff/inflow forecasting to hydropower system” title and 

attempts to implement automatic updating of hydrological model to obtain more accurate future 

runoff/inflow based on weather forecasting by discussing two methods of model calibration 

(Ensemble Kalman filtering and nonlinear least squares) to select and test better one, based on 

model structure and available data . 
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1.1 Background 

Regard to deregulation and linearization of electricity market in the Nordic countries the 

Nordic electricity exchange was established to run the leading power market and offers three 

different  as is shown in Table  1-1. 

Table  1-1: Three different Nordic electricity exchange markets (Nord Pool Spot, 2012) 

Market name Validation time Adjustability Market share 

Elspot market 1day before delivery Yes 70% 

Elbas market 1hour before delivery Yes 
30% 

Balancing market Close to delivery Yes 

 

Skagerak Kraft generates significant part of electricity production from hydro power stations, 

consequently, interested in a hydrological model for runoff forecasting as a desirable tool that 

is capable of estimating how much water could be available next days for obtaining the 

maximum profit of its available water resources based on defined cost function and considering 

operational constraints. Skagerak Kraft is interested in minimizing waste of its water resources 

and try to feed the turbine as much as possible. However variation in precipitation and a lag of 

runoff from catchments cause variation in the amount of water that flows through the turbines. 

In addition discharge limitations to satisfy the required maximum and minimum flow in rivers 

for safety reasons such as preventing flood, etc. and environmental concerns such as water need 

for fishery, etc. should be considered as constraints simultaneously.  

1.2 Previous work 

Adjusting model parameters to find unique and conceptually realistic parameters that results in 

an acceptable match between model prediction and observed data is an important but difficult 

step in model development. As a result, automatic updating of hydrological models for 

runoff/inflow forecasting to hydropower system is needed as a good water resource 

management tool for production planning and utilize as much as possible of available water at 

any time. 

Automatic calibration has been developed using different schemes. A few examples are the 

models by Bergström (1976), Sugawara (1979), Sorooshian and Dracup (1980), Gupta and 

Sorooshian (1985), Zhang (1988), and Harlin (1991). The common problems in automatic 

calibration are interdependency between the model parameters; indifference of the objective 

function to the values of inactive parameters, (Jain, 1993) and ignoring the model and input 

data uncertainty (Chen, et al., 2012) and (Xingnan & Lindström, 1997). 
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1.3 Overview of thesis 

The reformulated hydrological model for runoff/inflow forecasting which is presented here is 

based on mass balance and physical laws which I learned during Modeling and simulation of 

dynamic systems course. I should point out that this model is based on concepts that are similar 

to HBV-3 model (Bergström, 1973). I have used different symbols and formulations which 

make it more meaningful and comprehensible. The model is simulated in MATLAB 

programming language. Model validation is performed using created data and also available 

information from a real catchment region.  

The main purpose of this study is discuss methods of model calibration and check the 

feasibility of EnKF 
1
, and test out the nonlinear least squares method as a selected calibration 

method and updating the model with available data. Sensitivity analysis is also conducted to 

find out how many parameters and which of them should be selected during the calibration 

procedure. 

                                                 

 

1
 Ensemble Kalman Filter 
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2 Process description 

2.1 Current Skagerak Kraft’s model and software 

Currently, Skagerak is using the LANDPINE model which is implemented inside a framework 

as license-based software to predict the runoff from catchments and it is called PINE, Windows 

NT based. The model is hidden inside the framework without access to the source code, which 

makes it impossible for users to make modifications in the program. It is desirable for Skagerak 

to use an open source framework where they have some knowledge about details of the model 

and its parameters. The Skagerak Kraft is interested in looking into the possibility of 

developing a hydrological model with an open source code which makes the company able to 

use it for runoff prediction in catchments (Shafiee, et al., 2012). 

2.2 Model Hypothesis 

The core feature of any hydrological study is the hydrological cycle which is shown in 

Figure  2-1.Hydrological cycle describes how water in solid, liquid and gas forms move above 

and below the surface of the Earth continuously (Moreda, 1999). The hydrological model 

which we want to develop for prediction of runoff for hydroelectric power station is also based 

on this water cycle (one direction).  

 

Figure  2-1: Hydrological cycle (Encyclopædia Britannica, 2008) 
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The term catchment is used to refer to a hydrological unit area where any source of water like 

precipitation and surface water converge and ends up points that could be a river, lake, 

reservoir and sea. A catchment could be further be divided into sub catchments depends on its 

characteristics.  

According to process concepts and functional model description, each hydrologic unit 

(catchment or subcathment) accepts precipitation and temperature as inputs, operates on them 

internally, and generates total runoff as output as indicated in Figure  2-2, which represents the 

system operation. 

 

Figure  2-2: Schematic of catchment system operation 

As illustrated in Figure  2-3, which describes the hydrological cycle, the condensed vapor water 

precipitates in snow or rain forms depending on atmospheric temperature. According to 

environmental temperature and land vegetation, precipitation could be stored as solid form 

(snow/ice) or liquid form (water) on the upper soil level zone. Accumulated water in upper soil 

level can increase to the saturation level by precipitation as rain or melting snow, then water 

can runoff to the soil level zone.  

The upper soil level runoff, which reaches to the soil level zone, could disappear due to 

evapotranspiration or infiltration into porous soil layer. If the water content in soil is equal to 

the soil saturation value, it streams up to the upper ground zone. Evapotranspiration in soil 

level is also correlated with soil moisture and upper soil level runoff, which is why maximum 

evapotranspiration could be reached when the soil moisture is more than soil saturation level.      

The infiltration runoff which is coming out from soil level zone constitutes the Surface flow, 

Fast runoff, Percolation runoff and storage. In the other word, infiltrated water could be 

percolated to the ground zone, flows down the slope as surface flow, streams as Fast runoff 

which feeds river or either stored as the water content in the upper ground zone.  

Percolated water is coming into ground zone, emerges as spring and constitutes the last 

compartment of total runoff or store as water content in ground zone. Lakes also play an 

important non-dynamic role in hydrological models due to water transformation that it has with 

ground zone as the last layer. It is reasonable to assume that the maximum evapotranspiration 

should be considered for the lake. (Moreda, 1999)   

The advantages of using modeling method outlined above is as following: 

 It is constructed based on conceptual foundations 

 Semi-distributed model applicable by use of elevation coefficient   

 It is understandable for users 

 Water content in each layer are known as states of the system   
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Figure  2-3: Hydrological components of catchment model (Emily Youcha, n.d.) 

2.3 Model functional description 

According to hydrological components of catchment model and model hypothesis, the 

schematic of the catchment system operation could be represented as detailed in Figure  2-4. 

Each module is characterized by inputs and outputs. 

 

  Figure  2-4: Functional description of catchment hydrologic model 
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3 Model development 

3.1 Model zones 

As shown in Figure  2-4, the whole model consist of snow zone, ground zone, soil zone and 

basement zone that are connected to each other in cascade form. Each zone has its own model 

which connects inputs to outputs by a specific sub-model which is obtained based on mass 

balance. 

 outputinput mm
dt

dm
   ( 3-1) 

                                  dVm     Vm    ( 3-2) 

By assuming a constant density, (  =constant) we have: 

 outputinput VV
dt

Vd  



)(

 ( 3-3) 

 outputinput VV
dt

dV    ( 3-4) 

Since in hydrology and meteorology the amount of precipitation is defined with meter per day, 

I rewrite the precipitation relationship as follow:  

 AVV    ( 3-5) 

It is also convenient to operate with volume per area 

Where,  

 V  is volume of water with 3m dimension 

 V  is volume of water per unit area with m dimension 

 A  is area of water with 2m dimension 

Consequently, mass balance in new form expressed as: 

 

 outputinput VV
dt

Vd


   ( 3-6) 
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3.1.1 Snow zone 

By considering the ambient temperature ( ) in comparison with threshold temperature (  ), 

and implementing water balance on snow zone model which is given in Figure  3-1 we have: 

 

 

Figure  3-1: Snow zone model (Magne Fjeld, 1980) 

           

gswddwrp
ss

wddwsp
ds

VVVV
dt

Vd

VVV
dt

Vd

.2..2..2.,
.

.2..2.,
.











 ( 3-7) 

Here: 

 
T

TpL

sp
TT

TT

if

ifV
V









 


0

)1(
,


 

 ( 3-8) 

 sppLrp VVV ,, )1(     
( 3-9) 

 

 0

0

)( .

.2.





 

 dsTTm

wd

VandTT

otherwise

ifTTk
V  

( 3-10) 

 
0

0

)( .

.2.





 

 ssTTm

dw

VandTT

otherwise

ifTTk
V  ( 3-11) 

 0).(

0.

0

0

)1( ..

..

.,.2.

,

.2. 





















dswss

dsss

ss

T

rpwdw

rp

gs VV

VV

and

and

V

TT

otherwise

if

if

VV

V

V  



  ( 3-12) 

 

Where, 
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 
pV   : precipitation  

 
spV ,
  : precipitation in mainland in the form of snow 

 
rpV ,
  : precipitation in mainland in the form of rain 

 T : ambient temperature 

 TT : threshold temperature 

 wdV .2.
 : melting rate form 

     w

2

d

form snowwater  - to - form snowdry   

 dwV .2.
 : freezing rate form    form snowdry - to -form snowwater 

d

2

w     
 

 
gsV .2.

 : runoff rate from 

 g

2

s

zone ground - to - zone snow   

 dsV .
  : dry snow (water equivalent of accumulated snow)  

 ssV .
 : soggy snow (free water stored in snow zone)  

Water content in the snow zone includes dry accumulated snow ( ds. ) and soggy snow ( ss. ) 

which are known as two state variables of this layer. When the amount of free water in the 

snow zone reaches to saturation level ( dsw . ), it can’t be stored as soggy snow, hence causes

gsV .2.
 . (Magne Fjeld, 1980)   

On the other hand, the melting rate of snow between dry snow and soggy snow is dependent on 

many factors such as snow density and topography, but for simplicity a linear correlation 

between ambient temperature and melting rate of snow (          could be assumed as a 

good estimation (Göran Lindström, 1997). 
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3.1.2 Ground zone 

By implementing water balance on ground zone as displayed in Figure  3-2 we have: 

 

Figure  3-2: Ground zone model 

 
egsggs

wg
VVV

dt

Vd
..2..2.

.
)1( 


   ( 3-13) 

Here: 

 0).(

0.

0

0

)1( ..

..

.,.2.

,

.2. 





















dswss

dsss

ss

T

rpwsw

rp

gs VV

VV

and

and

V

TT

otherwise

if

if

VV

V

V  



  ( 3-14) 

 

 

Twg

Twg

gs

gs

T

wg

sg gV

gV

if

if

V

V
g

V

V









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( 3-15) 
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Where, 

 wgV .
 : water content in ground zone 

 Tg : ground saturation threshold 

 
gsV .2.

 : runoff rate from 

 g

2

s

zone ground - to - zone snow  
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 
sgV .2.

 : runoff rate from 

 s

2

g

zone soil - to - zone groungd  

 
egV .
 : evapotranspiration rate from ground zone  

In ground zone the evapotranspiration just happens to that surface of area which is not covered 

by snow. To account for fractional snow coverage, the average fraction snow covered area, w  

is defined. In the ground zone when the amount of water, gw  is equal to its saturation value, 

Tg the water will flow on to the Soil zone. In this situation potential amount of 

evapotranspiration, epotV   occurs. On the other hand, if ground water value is less than saturation 

value, the runoff could be represented by gs

T

wg
V

g

V
.2.

.










 


. (Magne Fjeld, 1980) 

3.1.3 Soil zone 

By implementing water balance on soil zone model as displayed in Figure  3-3, we have: 

 

Figure  3-3: Soil zone model (Magne Fjeld, 1980) 

 

 frssrsbssg

ws VVVV
dt
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.2..2..2..2.

. 
   ( 3-17) 

Here: 
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 ( 3-18) 

 

 PERCaV Lbs  )1(.2.
  ( 3-19) 
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 )( .2.2. wsfrs VaV   ( 3-21) 

Where, 

 wsV .
 : water content in soil zone 

 
sgV .2.

 : runoff rate from 

 s

2

g

zone soil - to - zone groungd  

 
bsV .2.

 : runoff rate from 

 b

2

s

zone base - to - zone soil  

 
srsV .2.

 : runoff rate from 

   sr

2

s

runoff surface - to - zone soil  

 
frsV .2.

 : runoff rate from 

 s

2

s

runofffast  - to - zone soil  

 Ts : soil zone saturation threshold 

If the water content in the soil zone becomes more than its saturation level, Ts then surface 

runoff flows as one compartment of total runoff, otherwise only fast runoff flows in the soil 

zone. Parameters 1a  and 2a represent as the discharge frequencies for surface runoff and fast 

runoff respectively. Furthermore, based on hydrological concepts, for simplification purpose 

the rate of bsV .2.
  is considered as a constant parameter when 

wsV .
 is larger than zero. bsV .2.

 varies 

depending on soil materials which means the rocky soil should have smaller value as compared 

to sandy soil.   

3.1.4 Basement zone 

By implementing water balance on base zone model as displayed in Figure  3-4 we have: 

 

Figure  3-4: Base zone model 
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 elbrbplbs

wb VVVV
dt

Vd
..2..2.

. 
   ( 3-22) 

Here: 

PERCaV Lbs  )1(.2.
  

pmLpl VaV    

)( .3.2. wbbrb VaV   

epotLel VaV  .  

Where, 

 wbV .
  : water content in base zone 

 
plV   : precipitation in lake 

 
bsV .2.

 : runoff rate from 

 b

2

s

zone base - to - zone soil  

 
brbV .2.

 : runoff rate from 

 br

2

b

runoff base - to - zone base  

 elV .
 : rate of evapotranspiration from lake 

In the lowest layer beside base zone, there are lakes that are assumed to link in a nondynamic 

connection with basement zone. Therefore the optimal amount of evapotranspiration will 

happen where we have lakes. Parameter L is a coefficient that illustrates the fractional area 

covered by lakes and 3a is discharge frequency for base runoff.  

3.1.5 Total runoff  

The total catchment runoff rate is obtained by summing brbV 2
 , 

frsV 2
 and srsV 2

 as in what follow: 
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 ( 3-23) 

 

Where, 

  A : total catchment area.  
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3.2 Implementation of developed model 

This section will simulate and implement the developed HBV model for the Eggedal 

catchment. According to given data the distribution of elevations on the surface of Eggedal 

catchment, 10 different elevations are defined that each of them has 10% of whole area. 

Figure  3-5 shows the schematic of catchment based on hypsography and topographic map, the 

red hatched zones in all levels have same area.  

    

Figure  3-5: Schematic of catchment based on hypsography and topography map 

Since temperature will changes depending on altitude change, each altitude range that is shown 

in Figure  3-5, has its own dry snow and soggy snow values which are known as snow zone 

states ( dsV .
 , ssV .

 ). The other states ( wgV .
 , wsV .

 , wbV .
 ) are similar for all altitudes. As Figure  3-6 

illustrates, for simplicity it assume that the precipitation in all altitudes is equal, but the 

difference in temperature causes different dry snow and soggy snow in each altitude.  

 

 

Figure  3-6: Distributed snow zone according to elevation 
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Consequently, total runoff from the snow zone to the ground zone is obtained by summation of 

the runoff for all altitudes. With this assumption of dividing catchment into 10 different altitude 

ranges, we will have 23 states (20 for snow zone and 3 for the other zones). 

Table  3-1: Model components (states, parameters and inputs) 

State Description State Description Parameter Description 

dsV .
 _h1 Dry snow in h1 dsV .

 _h7 Dry snow in h7 )
.

(
3

dayC

m
km



 melting factor 

 

ssV .
 _ h1 

Soggy snow in h1 
ssV .
 _ h7 

Soggy snow in h7 )( CTT   threshold temperature 

 

dsV .
 _h2 

Dry snow in h2 
dsV .
 _h8 

Dry snow in h8    saturation coefficient 

 
ssV .
 _ h2 

Soggy snow in h2 
ssV .
 _ h8 

Soggy snow in h8   snow surface fraction 

 

 
dsV .
 _h3 

Dry snow in h3 
dsV .
 _h9 

Dry snow in h9 )(mmgT
 ground saturation threshold 

 
ssV .
 _ h3 

Soggy snow in h3 
ssV .
 _ h9 

Soggy snow in h9   ground zone shape coefficient 

dsV .
 _h4 

Dry snow in h4 
dsV .
 _h10 

Dry snow in h10 )(mmsT  
soil saturation threshold 

 

ssV .
 _ h4 

Soggy snow in h4 ssV .
 _ h10 

Soggy snow in h10    lake surface fraction 

dsV .
 _h5 Dry snow in h5 wgV .

  
Ground zone 

water 

      
    discharge frequency 

for surface runoff 

 
ssV .
 _ h5 Soggy snow in h5 wsV .

  Soil zone water        
    discharge frequency 

for fast runoff 

 
dsV .
 _h6 Dry snow in h6 wbV .

  Base zone water   (      ) discharge frequency 

for base runoff 

 
ssV .
 _ h6 

Soggy snow in h6   )( 2kmA  
catchment area 

 

    )(
day

mm
PERC

 

percolation from soil zone to base 

zone 

 

3.2.1  Model verification based on created data  

In order to make sure that the model is working in a reasonable manner and also correct 

implementation in MATLAB, it is necessary to verify the results to check the model matches 

the specifications and assumption according to model concept. For more simplicity and better 

analysis, one year set of data was created by separating precipitation and temperature of given 

data from 01/08/1978 to 31/07/1979 and assuming the average precipitation and temperature in 

each month. As indicated in Figure  3-7, during September (day 30 to day 60) there is a small 

runoff due to precipitation rise, but from the first of October to end of March (day 60 to day 

240) because of cold weather, precipitation will be stored as dry snow in snow zone, 

consequently the snow zone runoff is become zero. The maximum amount of runoff was 

reached during May, while it can’t be continued in June because of high amount of 
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evapotranspiration. Because of  high precipitation in July and warm weather, all rain 

contributes to making runoff that is obvious from Figure  3-7.    

 

Figure  3-7: Simulated runoff variation with respect to precipitation and temperature change 

3.2.2 Model validation based on real catchment information  

As a part of model development the accuracy of the model as a representation of the real 

system should be checked to find out how much the simulated model is imitating the real 

system.  

Table  3-2 contains parameter values that are used in order to get a good approximate result. 

Some parameters could be found by studying the catchment area ( A ,  ,  ), some of the other 

could be estimated based on hydrological knowledge (average variation in temperature as a 

function of altitude (
mk ,   , TT ), and finally, rest of them are those parameters that could be 

estimated from other catchment studies like Tg ,  ,   ,    and      (Magne Fjeld, 1980). 
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Table  3-2: Parameters value 

Parameter symbol Value Unit Description 

mk  5.2 
dayC

m

.

3



 melting factor 

TT  0.8 C  threshold temperature 

   0.08 - saturation coefficient 

   - snow surface fraction 

Tg  50 mm  ground saturation threshold 

  2 - ground zone shape coefficient 

Ts  
20 mm  soil saturation threshold 

   0.032 - lake surface fraction 

   0.547       discharge frequency for surface runoff 

   0.489       discharge frequency for fast runoff 

   0.0462       discharge frequency for base runoff 

A  

309.42 2km  catchment area 

PERC  0.25 
day

mm  
percolation from soil zone to base zone 

 

Results of snow zone simulation which is shown in Figure  3-8, indicates that dry snow ( dsV .
 ) is 

accumulating when the temperature falls to below C8.0 through autumn, winter and first month 

of spring (day 30 to day 240). During the rest of spring, when the temperature value becomes 

more than C8.0 , an increase of soggy snow ( ssV .
 ) can be observed. In the summer season, 

since there is no area covered by snow, it seems reasonable that the dry snow and soggy snow 

become zero, therefore all precipitation that comes as rain without the presence of snow will 

continue its path to the ground zone. 
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Figure  3-8: Snow zone simulation regards to average temperature 

 

As illustrated in Figure  3-9, during August and September the water content in ground zone 

wgV .
  is  affected  by evapotranspiration and small amount of snow zone runoff, while from 

October to end of March it is going to reach the ground zone threshold ( mmgT 50 ), but it is 

not happening due to non-zero value of evapotranspiration. Small amount of precipitation 

during May and June lead to small gsV .2.
 and drastic ground water drop.  On the other hand, the 

ground water has been increased since of gsV .2.
 rise from day 330 to day 360.  
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Figure  3-9: Ground zone simulation 

 

Figure  3-10: Simulation of soil zone and base zone 

 

As indicated in Figure  3-10, and with more detail investigation it could be found that soil water 

( wsV .
 ) is highly affected by ground zone runoff ( sgV .2.

 ), that is caused by the ground water ( wgV .


) change. In other words, both wsV .
  and wgV .

 have the same break points and peaks, which seems 

logical, and corresponds to the  model concepts and equations.  
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In summery, from first of October to end of March and during August and September (day 0 to 

day 60), because of cold weather and low snow zone runoff respectively, we expect to have a 

constant value (around zero) for soil water ( wsV .
 ). On the other hand during spring season (day 

240 to day 300) because of high sgV .2.
 and warm weather, more wsV .

  expected. 

As indicated in Figure  3-10, the water content of base zone is somewhat stable after September, 

but it has a little drop during the spring season due to lower precipitation with compared to 

Summer time and more evapotranspiration compared winter and autumn. 

It can be concluded from  Figure  3-11 that the simulated runoff is similar to the real runoff 

from the Eggedal catchment.  

 

Figure  3-11: Comparing the real runoff with simulated runoff in the catchment area 

 

The simulation was carried out with guessed parameters as listed in Table  3-2. It can be seen 

that most of the main trends in the real data are predicted by the simulation.  

In part of runoff simulation (day 100 to day 240), some undesirable fluctuations were observed. 

By more careful investigation of temperature as an input of system, it is found that the fast sign 

change of temperature (from negative to positive and then to positive) causes snow melting and 

snow zone runoff increment is part of the most probable reason. As a solution to this problem it 
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is recommended to increase the number of measured temperature and precipitation in order to 

have a more smooth data. The other difference between simulated runoff and real runoff  are 

due to inaccurate values of some parameters which have been used in the model. In order to 

achieve a more accurate result, the model parameters need to be calibrated further.  
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4 Model calibration 

As discussed previously, it may be reasonable to conclude that simulated model inaccuracy is 

caused by parameter values which were obtained from HBV model in other catchment areas. 

Consequently, parameters tuning is necessary for Eggedal catchment model.  

For nonlinear systems, parameters could be estimated by applying different calibration methods 

like, least squares, maximum likelihood and PEM
2
 (where any different kinds of Kalman 

filtering are included).   

4.1 Available measurements  

The accuracy of the runoff prediction depends on the accuracy of data obtained by Skagerak. 

Currently Skagerak gathers measurements on precipitation (measured based on accumulated 

rain or snow over 24 hours), temperature (given as average daily value), and runoff density 

(field variable measured in 
sec

3m
). 

4.2 Structural Observability  

Necessary condition for implementing any Kalman filtering is observability check to make sure 

that the system is observable. In our case since the precise linear models cannot describe the 

catchment (because of lack of knowledge of the plan from nonlinear or time-varying 

properties) some system properties such as Observability can be investigated without knowing 

precise system parameters, and can be hold for a large variety of parameter values. Therefore, if 

system is Structurally Observable then system becomes Observable (Lunze, 1991). 

Structural observability is checked for nonlinear system by doing following steps: 

1) Model linearization to reach 




linear

DuCxy

BuAxx








 from 




nonlinear

uxgy

uxfx









),(

),(
  

2) Construct Structure matrices ( dcba SSSS ,,, ) based on CBA ,, and D . 

                                                 

 

2
 Prediction error method 
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Where, n  is the number of states and m is the number of outputs. 

For each element of structure matrices of nonzero value, a path connect the correlated 

elements to each other.  

3) Check system to satisfy both following conditions: 

 Output-connectable (at least 1 path have to existed between state and output ) 

 Rank of 








c

a

S

S
 should be equal to n  (state number) 

Model observability should be checked based on states of the system and runoff as the only 

measurable output. By considering this fact that model is divided into five cascade zones, the 

effects of all states are transfered to last zone’s output by means of each zone’s runoff. Thus, by 

investigating the structural observability of each layer separately, the whole system 

observability could be checked. (Shafiee, et al., 2012) 

According to aforementioned method, one may conclude that none of the snow zone’s states (

dsV .
 , ssV .

  ) are observable, while the other states of the system ( wgV .
 , wsV .

  , wbV .
 ) are structurally 

observable. Fortunately, since our system is detectable (unobservable modes are stable), by 

considering this fact that after the summer season dsV .
  and ssV .

  are zero, we can use the snow 

zone model to estimate these state values in an open-loop manner. (Magne Fjeld, 1980)      

4.3 Identifiability analysis  

In hydrological systems, setting up the experiments to measure all state variables might not 

possible. In other words, when only some of the state variables are measurable, it is possible 

that some parameter’s effects cannot influence the measured state variables, so such 

parameters are unidentifiable. 

To be identifiable, the parameter subset has to meet two conditions. First, the model output has 

to be enough sensitive to each parameter’s change (sensitivity). Second, changes in the model 

output that is caused by single parameter change are not compensated by the other parameter 

changes (collinearity) (Roland Brun, 2002). 

Sensitivity analysis could be helpful to find out which parameters are the most important ones 

and how model runoff can be affected by each parameter change.  
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In general, the sensitivity function for each parameter could be obtained by calculating the 

model output twice with the prior parameter set, and after changing the parameter by specific 

arbitrary increment as following: 

 
i

iii

i p

pTrppTr

p

Tr



 )()( 





 ( 4-1) 

Where, 

Tr - Total model runoff 

ip - Parameter  

ip - Arbitrary parameter increment 

As listed in Table  3-2, there are 13 parameters in our model, but for conducting the sensitivity 

analysis just 9 of them were selected (especially those parameters which values are almost not 

known, but estimated ranges exist from studies of other catchment areas).  

In the begging step, the sensitivity indexes were calculated based on equation ( 4-1) by 

considering 5% of the nominal value increment for each parameter.  

As illustrated in Figure  4-1, in specific periods of time the model output are more sensitive to 

specific parameters which means that such parameters play a crucial role in comparison to the 

other parameters. Consequently, it is reasonable to assume that both identifiability and 

sensitivity are time-variant characteristics. In general, dynamic nature of sensitivity should be 

accounted to find out the specific periods where parameters have higher identifiability and 

crucial role in representing model runoff (Nibret A. Abebe, 2010). 

Monthly or seasonally implementation of sensitivity analysis might be helpful for finding the 

most dominant parameters in a specific time period that will be investigated and studied in next 

section.  
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Figure  4-1: Normalized sensitivity index plot for 9 identifiable parameters of August in a year 

(01/08/1973 - 31/07/1974)  

4.3.1 Sensitivity analysis by PCA
3
 

This method has been developed to discard nonsignificant parameters by ranking all of them 

first, and then determining them which one is identifiable or unidentifiable according to their 

ranks. This method was implemented in following manner: 

1.  Construct normalized sensitivity matrix: 

 
j

ki

i

ji

jk
p

ptTr

Tr

p
S




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),(
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Where  

i - denotes the index of system outputs 

j - denotes the index of parameters 

k - denotes the index of measurement time points 

                                                 

 

3
 Principle Component Analysis 
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2. Run the PCA for each month to find out nonsignificant parameters by ranking all 

parameters according to their component coefficients. 

Table  4-1 shows parameters importance ranking with respect to time-variant characteristic 

(monthly analysis). Second and third columns indicate the most important parameters (from left 

to right) for each principal component. 

Table  4-1: Parameter importance rankings 

Month 
Parameters importance ranking during   

01/08/1973 - 31/07/1974 (1st year) 

Parameters importance ranking during 

01/08/1973 - 31/07/1974 (2nd year) 

August PC1 (89%): 
 ,

Tg ,  ,
Ts ,

1 ,
2 ,

3 , PERC ,
mk    PC1 (89%): 

 ,
Tg ,

Ts ,
1 ,

3 , PERC ,  ,
2 ,

mk    

September PC1 (89%): 
Ts ,

1 ,
3 ,

 , PERC ,
2 ,

Tg , ,
mk  PC1 (82%): PERC ,

 ,
3 , ,

1 ,
Tg ,

2 ,
Ts ,

mk  

October PC1 (89%): PERC ,
Ts ,

1 ,
3 ,  ,

 ,
Tg ,

2 ,
mk  

PC1 (66%): 
Ts ,

3 ,
1 , ,

Tg ,
 , PERC ,

2 ,
mk  

PC2 (14%): 
mk ,

2 ,
Tg , PERC ,  ,

1 ,
 ,

Ts ,
3  

November PC1 (78%): 
Ts ,

1 ,
3 ,

 ,  ,
Tg ,

2 ,
mk , PERC  

PC1 (50%): 
 ,

mk ,  ,
Tg , PERC ,

2 ,
Ts ,

1 ,
3

PC2 (32%): 
1 ,

Ts ,
3 ,

Tg , PERC ,  ,
2 ,

 ,
mk   

December PC1 (71%):  ,
1 ,

Ts ,
3 ,

Tg ,
 ,

2 ,
mk , PERC  

PC1 (48%): 
Tg ,  ,

 ,
mk , PERC ,

2 ,
3 ,

1 ,
Ts

PC2 (33%): 
Ts ,

1 ,
3 ,

2 , PERC ,  ,
 ,

mk
Tg  

January PC1 (70%): 
Tg ,  ,

Ts ,
1 ,

3 ,
mk , PERC ,

2 ,
  

PC1 (59%): 
Tg ,

Ts ,
1 ,

3 ,  ,
mk ,

2 ,
 , PERC   

PC2 (28%): 
 , PERC ,

mk , ,
2 ,

3 ,
1 ,

Ts ,
Tg  

February PC1 (75%): 
Tg ,

 ,
Ts ,

1 ,
2 ,

3 ,
mk , , PERC  PC1 (99%): 

mk ,
 ,

Tg , ,
Ts ,

1 ,
2 , PERC ,

3  

March PC1 (85%): 
1 ,

Ts ,  ,
Tg ,

mk ,
2 ,

3 , PERC ,
  PC1 (89%): 

mk ,
 ,

Tg , ,
Ts ,

1 ,
2 , PERC ,

3

  
April 

PC1 (55%):  ,
Ts ,

3 ,
 ,

1 ,
2 ,

mk , PERC ,
Tg  

PC2 (28%): PERC ,
Tg ,

mk ,
3 ,

Ts ,
1 ,

 , ,
2  

PC1 (56%): 
Tg ,  ,

Ts , PERC ,
1 ,

 ,
2 ,

mk ,
3  

PC2 (19%): 
3 ,

1 ,
2 ,

 ,
Ts ,  ,

mk , PERC ,
Tg   

May 

PC1 (31%): PERC ,  ,
mk ,

 ,
3 ,

2 ,
Tg ,

1 ,
Ts  

PC2 (28%): 
Tg ,

Ts ,
1 , PERC ,

2 ,  ,
 ,

mk ,
3  

PC3 (16%): 
3 ,

1 ,  ,
2 ,

 ,
Ts ,

mk ,
Tg , PERC  

PC1 (42%): 
3 ,

1 ,
mk ,

2 ,  ,
 ,

Ts , PERC ,
Tg   

PC2 (24%): PERC ,
Ts ,  ,

Tg ,
2 ,

1 ,
3 ,

 ,
mk   

PC3 (18%): 
 ,

Tg ,  ,
Ts ,

2 , PERC ,
mk ,

3 ,
1   

June 
PC1 (45%):  ,

mk ,
Tg , PERC ,

2 ,
3 ,

Ts ,
 ,

1  

PC2 (32%): 
1 ,

 ,
Ts ,

3 ,
2 , PERC ,

Tg , ,
mk  

PC1 (68%): 
Ts ,

1 ,
3 ,

Tg ,  ,
 , PERC ,

mk ,
2   

PC2 (23%): 
2 ,

mk , PERC ,
 ,  ,

Tg ,
3 ,

1 ,
Ts   

July 
PC1 (55%): 

Ts ,
mk ,

 ,
1 ,

2 ,
Tg ,

3 , PERC ,   

PC2 (27%):  ,
3 ,

Tg , PERC ,
1 ,

mk ,
 ,

Ts ,
2  

PC1 (79%): 
mk ,

 ,
Ts ,

1 ,  ,
Tg , PERC ,

3 ,
2  

Note: The percentage value in front of each principal component explains the corresponding 

variances of the original variance along each principle component.  
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4.3.2 Collinearity analysis based on PCA  

Interpretation of loading plot indicates the importance and also the correlation between model 

variables (parameters). For instance in a 2-vector loading plot, those variables which lie far 

away from the origin and close to PC
4
 axis are the significant variables for that PC; while those 

variables which lie near the origin are the less important ones. It can be also identified if the 

variables lie on the same side of the origin, they have positive correlation, but if they lie on 

opposite sides of the origin (more or less along a straight line through the origin), they are 

negatively correlated. It can be inferred that those variables which are located at 90 degrees to 

each other through the origin of loading plot are independent. (Esbensen, 2001)     

According to explained method, those parameters which are satisfying three following 

conditions should be selected as desirable identifiable parameters: 

1. Not negatively correlated with other parameters  

2. Lie far from the origin  

3. Located close to the PC axis 

Detailed information and related plots on running PCA to find the best parameter set can be 

found in Appendix 2.  

 

4.3.3 Identifiability analysis based on PCA  

By considering both parameters importance ranking (Table  4-1) and parameters collinearity, 

identifiable parameters could be found as listed in Table  4-2.   

                                                 

 

4
 Principle component  
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Table  4-2: Identifiable parameters 

Month Identifiable parameters (1st year) Identifiable parameters (2nd year) 

August 
 , Tg ,  , Ts , 1 , 2 , 3 , PERC     , Tg , Ts , 1 , 2 , PERC ,  , 2  

September 
Ts , 1 , 3 ,  , PERC , 2 , Tg ,   PERC ,  , 3 , , 1 , Tg , 2 , Ts  

October PERC , Ts , 1 , 3 , ,  , Tg , 2  Ts , 3 , 1 , ,  , Tg , mk  

November 
Ts , 1 , 3 ,  ,    , PERC , Ts , 3  

December 
1 , Ts , 3   Tg , mk , 1 , Ts  

January 
 , Ts , 1 , mk , PERC  Tg , Ts , 1 , 3 , PERC  

February 
 , Ts , 3  mk ,  , Tg , , Ts , 1 , 2 , PERC  

March 
1 , Ts , 2  mk ,  , Tg , , Ts , 1 , 2 , PERC  

April  , 2 , Tg , PERC  

 

Tg , Ts , 1 , 3  

May 
mk , Tg , 3 , Ts , 1  3 , 1 , mk ,  , PERC , Ts  

June 
mk , 1 ,   Ts , 1 , 3 , 2   

 July 
Ts , mk ,  , 1 ,   mk ,  , Ts , 1 ,  , Tg , 3  

 

It is evident that identifiable parameters for the same month in two consecutive years are 

different. The seasonally identifiability analysis is also lead to the same result. This result is in 

line with Abebe (2010) study which has confirmed that optimum parameters are not constant in 

time and range of optimum parameter values varies with time. Consequently, the dynamic 

identifiability analysis should be conducted based on forecasted temperature and precipitation 

to find higher identifiable parameters for future days.        

4.4 Parameters and states estimation  

After finding identifiable parameters for each month such as they were listed in Table  4-2 and 

considering this assumption that the initial states of the system are equal to zeros on 1st of 

August, the corrected parameters could be estimated in August at 1973 (1st year) by knowing at 

least 8 future measurements (temperature, precipitation and real runoff). This number of 

measurements that is needed to estimate the initial parameters is called estimation interval or 

estimation horizon which is equal to 8 since there are 8 unknown parameters.  

In our case and based on this fact that obtained identifiable parameters in August, September 

and October are same, the optimum values of parameters could be estimated. Subsequently, by 

knowing optimal parameters and state estimation horizon which is equal to 23 for August 1973 

(since there are 23 unknown states), the initial states of the system could be estimated by 

implementing optimization method.  
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In the other words, at each estimation interval an estimator algorithm attempts to decrease the 

difference between simulated runoff and real runoff by manipulating previous variables 

(parameters or states) adjustment. The estimated variables are then sent into the model, and the 

entire calculation is repeated at subsequent estimation intervals. For each iteration the 

estimation horizon is moving forward in time and the estimator again estimate the variables as 

are represented in Figure  4-2 for one state as an example.  

 

Figure  4-2: Variable estimation with considering estimation horizon (Ne) 

 

The basic structure of the estimator is shown in Figure  4-3. 

 

Figure  4-3: Basic structure of estimator 
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The main point of this estimation problem is to compute a new variable vector, to be fed to the 

system, and at the same time take variable constraints into consideration (e.g., states have not to 

be negative). 

Among many of the methods used in the optimization Toolbox of MATLAB software I used 

the constrained multivariables function to find the minimum of  variable vector by starting at an 

initial estimate. It attempts to return a vector of optimal variables with respect to process 

constraints. Because of having if condition situations in our model the optimization method 

used the Nelder-Mead algorithm which is a well-defined numerical method when derivatives 

are not known and it makes problem. Nelder-Mead algorithm uses Lagarias search method 

instead of using numerical or analytic gradient. (Anon., n.d.)   

For verifying the estimator performance, August of 1973 is chosen as a sample duration. By 

implementing nonlinear least squares optimization method, optimum estimated parameters and 

states of the system were found. Figure  4-4 shows the comparison of real runoff, simulated 

runoff with and without estimating states and parameters. It can be seen in Figure  4-4 that the 

estimator gives acceptable parameters and states that provide a good fit between simulated 

runoff and real one.  

 

 

Figure  4-4: Comparison between real runoff and simulated runoff before and after state 

estimation  
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Obtained results prove that the automatic model updating and model calibration could be done 

accurately, based on automatic states estimation and parameters adjusting respectively. 

Table  4-3 shows calibrated and original parameter comparison in August of 1973. 

Table  4-3: Calibrated and original parameters comparison 

Parameter symbols Unit Original Parameters  Calibrated Parameters 

   - 0.08 0.1454 

Tg  mm  50 87 

  - 2 3.7 

Ts  
mm  20 23 

         0.547 0.399 

         0.489 0.240 

         0.0462 0.0004 

PERC  
day

mm  
0.25 0.125 

 

Since, hydrological model calibration is done based on automatic parameters and states 

adjusting according to search scheme and numerical measures of the goodness-of-fit, it requires 

more availability of observed data and takes more time based on the objective function.   

For reducing calculation time in estimation procedure and reaching to the shorter estimation 

horizon, new measurements could be added.  

Snow density measurements could be a possible solution. Snow density measurements will 

help to define the state of water content in snow, and snow quality. By adding each snow 

density measurement, two states of the system were calculated directly and consequently 

estimation horizon decreases two steps.   



 

 40 

5 Required Information and automating 

computation of needed information 

In order to get more realistic parameter estimation, it is neseccary to know the reasonable 

estimation intervals where each parameter could be adjusted in that range. Among 13 

parameters which were listed in Table  3-2, some of them such as lake surface fraction (  ), 

total area ( A ) and snow surface fraction ( ) could be found by studying catchment area with 

satellite pictures and maps. Second group of parameters are those that strongly depend on the 

environmental conditions (average variations in temperature and precipitation) like melting 

factor ( mk ), saturation coefficient (  ), and threshold temperature (
TT ). In our model these 

kind of parameters should be defined based on physical concepts.  The last group of parameters 

could be found based on geological studies such like ground zone shape coefficient ( ), ground 

saturation threshold ( Tg ), soil saturation threshold ( Ts ), percolation rate ( PERC ) and discharge 

frequencies (         ). Consequently, performing pre study on parameter possibilities could be 

helpful to find more realistic parameters before implementing any calibration.  

The accuracy of the runoff prediction depends on the accuracy of data obtained by Skagerak. 

Currently Skagerak gathers measurements of precipitation, temperature, and runoff  from the 

catchments by specific measurement devices and send them automatically to the Skagerak 

office each day.  

The third kind of needed information is snow density that was discussed previously. The 

current practice of Skagerak Kraft is to manually measure snow depth and snow density at 

certain points in the catchment zone. The snow density measurement is done by inserting a 

hollow cylinder of known volume and mass into the snow and thereby extracting a core sample. 

The cylinder is then weighed and the mass of the cylinder subtracted. The density of the core 

sample is then calculated by 

 

 

                  

         
       

 

( 5-1) 

 

The main benefit of automatic measurements and recording equipment is the ability of these 

methods and equipment to be used in real-time systems and lead to provide more observations 

for hydrological purposes.  

Problems of manual hydrological measurements could be solved by applying automatic 

computation of needed information. For instance in manual level measuring,  gauging station 

are used that could be replaced by automatic level recorders, where the head and pressure of 

liquid are measured by piezometers and pressure gauges. The flow velocity of water commonly 

measured by current meters, tubes, vanes, thermal measurement devices and electronic and 
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mechanical instruments in manual forms; while in automatic method it is measured under 

laboratory conditions with kinematography method which is also considering turbulence flow.  

Automatic measuring instruments and methods have their own drawbacks. They must be 

exercised in usage, because automatic equipments are highly variable by comparison with most 

manual ones. Moreover automatic devices need power to operate sensors, so battery or power 

lines should be provided. 

Among any different data storage format, XML as a standard file format could be a good 

choice by providing following advantages: 

1. Allow hydrologic engineers to leverage many of the existing XML technologies 

2. Increasing productivity and accuracy 

3. Hydrologic model would be human intelligible, beside machine readable 

4. Providing flexibility to incorporate future industry advancements    

Figure  5-1, shows the structure of automatic computation of needed information that should be 

repeated each day. 

 

Figure  5-1: Structure of automatic computation of needed information 
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 Inputs: it consists of field measurement sensors to measure real runoff value, 

precipitation data, and temperature. 

 DAQ: It consists of Data acquisition system for gathering data input section and 

prepare suitable data format. 

 Collect data: Data center to provide a database in proper format (XML). 

 Read File: Read data in xls format 

 PCA Analysis: Run principle component analysis to remove outliers.  

 Establish important parameters: Finding most important identifiable parameters in 

specific date. 

 States & Parameters estimation: Nonlinear least squares to find states and parameters.   

 Predict future behavior: Feed parameters and states to hydrological model. 

 Store data: Logging data in xls format. 

 Output: Displaying future behavior in proper method (GUI).   
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6 Conclusion 

In order to improve the production planning in a hydropower system, based on forecast 

runoff/inflow water to a reservoir, a new runoff /inflow hydrological model was introduced  in 

this master thesis. This model was obtained by reformulating the HBV-3 model based on mass 

balance and physical laws by using model functional description for one altitude. The model 

was developed for all altitudes by considering hypsography concept. More accurate results 

could be reached by increasing number of elevations to get smoother function between snow 

surface fraction and elevation. More computations and data availability in estimation procedure 

is the main drawback of  aforementioned suggestion. 

MATLAB programming language was used to solve state equations and model 

implementation. Model verification was done based on created data, on Fjeld & Aam 

parameters. Both model verification and model validation improved the accuracy of prediction, 

that was discussed in detail through sections  3.2.1 and  3.2.2.  

Model inaccuracy has been compensated by conducting Ensemble Kalman Filtering and Non-

linear least squares as two different methods of model calibration. Observability of the system 

as a necessary condition of implementing of any Kalman filtering was discussed and it was 

found that states of the snow zone were not structurally observable. This result led to select 

nonlinear least squares as an alternative estimation method.  

To find the most important parameters for estimation procedure, sensitivity analysis and 

identifiability analysis was done based on principal component analysis. Identifiability analysis 

indicated that identifiable parameters were not constant in time and the range of optimum 

parameter varies with time. For simplicity and getting more reasonable result, parameters were 

assumed to be constant in a month. The parameter’s estimation horizon was defined according 

to the number of unknown identifiable parameters in each month. On the other side, the state’s 

estimation horizon was also defined based on number of unkown states of the system that was 

constant for all the time.  

Parameters and state estimation were carried out in August of 1973 (as a sample duration). 

Afterwards, estimated parameters and states fed to the model for testing procedure. Comparison 

between simulated runoff with and without estimated variables (parameters and states ) verified 

the estimator performance. 

During this master thesis and based on what was done in modeling part, one conference paper 

submitted with “Prediction of daily runoff from hydrological catchment area” title in 54rd 

SIMS conference in Bergen, Norway. 
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Future work: 

 To decrease the estimation horizon and computation time, measurements need to be 

added. 

 Combination of Augmented Kalman filtering (for observable part) and nonlinear least 

squares (for non observable parts) could be studied as an alternative method for states 

and parameters estimation.  

 Model predictive control can be implemented using the model introduced in this report. 
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8 Appendices 

 

Appendix 1: Thesis task description 
 

 

FMH606 Master’s Thesis 
 

Title: Automatic updating of hydrological models for runoff/inflow forecasting to hydropower 

system 

 

TUC supervisor: Bernt Lie 

 

 

External partner: Skagerak Kraft, dr. Beathe Furenes 

 

 

Task description: 

 

Based on a project work on a model for forecasting of runoff/inflow of water from catchments 

to hydropower reservoirs, the following is to be studied. 

 

1. Give an overview of model requirements: what will the model be used for, and what 

must it give information about. (Based on 3rd semester project.) 

2. Describe the HBV model in detail. Implement the model in a suitable programming 

language (MATLAB, Python, Modelica, or similar). Validate the model. (Based on 3
rd

 

semester project.) 

3. Discuss available information (measurements), whether the model is observable, and 

whether the model is identifiable. Validate the model using available information from 

a real catchment region. (Based on 3rd semester project.) 

4. Discuss methods of model calibration (model fitting, parameter estimation), and test out 

a selected method for the model/available data. 

5. Discuss methods for updating the model with available measurements (state 

estimation), and consider flow predictions using weather forecast. 

6. Give an overview of the kind of information Skagerak Kraft needs in a hydrological 

model, and how to compute this information. 

7. Discuss automating the computation of the needed information (MATLAB, Python?), 

including storage formats for the data (gs2-format, or other). 

8. Document the work in a report. 
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Task background: 

 

In order to improve the production planning in a hydropower system, forecast/prediction of 

runoff/inflow of water to a reservoir in a catchment is important. The HBV model (HBV = 

Hydrologiska Byråns Vattenbalansavdelning, developed in Sweden in the 1970s), is a lumped 

precipitation-runoff model, and is extensively used for making runoff/inflow forecasts to 

hydropower systems on most continents. The model has many tuning parameters, and the 

catchment system is characterized by few measurements. To get realistic forecasts, it is 

important to update the model before simulation – today the models are usually updated 

manually by manipulating the inputs until the model match the measured output. Well-known 

estimation techniques have been tested in the past, e.g. the Kalman filter, but are not commonly 

used due to problems with observability and identifiability. Alternative estimation methods 

have led to more abstract formulations of the HBV model (i.e. less based on physical 

reasoning). With modern formulations of estimation techniques (e.g. the EnKF = Ensemble 

Kalman Filter) combined with more available measurements (e.g. the use of GIS = 

Geographical Information Systems, etc), it is of interest to re-investigate some standard/modern 

estimation techniques in combination with a physically based model (HBV model) to see how 

the model can be used for on-line estimation/forecast of runoff/inflow to water reservoirs. 
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Appendix 2: Principle component coefficients  
 
1st year (blue asterisk) and 2nd year (red asterisk) 
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Appendix 3: Principle component loading plots  
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Appendix 3: MATLAB Code 
 

clc 

clear all 

filename='catchment_data_from_Eggedal_area1.xls'; 

sheet=3; 

xlRange='A582:A982';% Date 

xlRange_T_mean='Q582:Q982';%Average temperature 

Average_temperature(:,1)=xlsread(filename,sheet,xlRange_T_mean); 

xlRange_P='B582:B982';%Precipitation 

u(:,1)=xlsread(filename,sheet,xlRange_P); 

xlRange_T_h1='F582:F982';%Temperature in 283.5 m.a.s.l 

u(:,2)=xlsread(filename,sheet,xlRange_T_h1); 

xlRange_T_h2='G582:G982';%Temperature in 480.5 m.a.s.l 

u(:,3)=xlsread(filename,sheet,xlRange_T_h2); 

xlRange_T_h3='H582:H982';%Temperature in 627 m.a.s.l 

u(:,4)=xlsread(filename,sheet,xlRange_T_h3); 

xlRange_T_h4='I582:I982';%Temperature in 735.5 m.a.s.l 

u(:,5)=xlsread(filename,sheet,xlRange_T_h4); 

xlRange_T_h5='J582:J982';%Temperature in 813.5 m.a.s.l 

u(:,6)=xlsread(filename,sheet,xlRange_T_h5); 

xlRange_T_h6='K582:K982';%Temperature in 879 m.a.s.l 

u(:,7)=xlsread(filename,sheet,xlRange_T_h6); 

xlRange_T_h7='L582:L982';%Temperature in 937.5 m.a.s.l 

u(:,8)=xlsread(filename,sheet,xlRange_T_h7); 

xlRange_T_h8='M582:M982';%Temperature in 985.5 m.a.s.l 

u(:,9)=xlsread(filename,sheet,xlRange_T_h8); 

xlRange_T_h9='N582:N982';%Temperature in 1041 m.a.s.l 

u(:,10)=xlsread(filename,sheet,xlRange_T_h9); 

xlRange_T_h10='O582:O982';%Temperature in 1268.5 m.a.s.l 

u(:,11)=xlsread(filename,sheet,xlRange_T_h10); 

xlRange_Runoff='D582:D982';%Runoff 

output(:,1)=xlsread(filename,sheet,xlRange_Runoff); 

q=size(u,1); 

Vdppepot=[0.1 0.2 0.7 1 2.3 3.5 3.5 2.3 1 0.7 0.2 0.1]; 

[date txt]=xlsread(filename,sheet,xlRange,'Date'); 

pa=read_date(txt,Vdppepot,q); 

u(:,12)=pa; 

N=size(u,1); 

tspan=0:0.01:1; 

x_ini=zeros(1,23); 

p=[5.2 0.8 0.08 0.001 50 2 20 0.032 0.547 0.489 0.0462 309420 0.25]; 

sT=p(7); %soil zone's saturation threshold 

alfa_L=p(8); %fractional area covered by lakes 

a_1=p(9); % discharge frequency for surface runoff 

a_2=p(10); % discharge frequency for fast runoff 

a_3=p(11); % discharge frequency for base runoff 

A=p(12); % catchment area 

X = zeros(N,length(x_ini)); 

for j=1:1:N-1 

    uj=u(j,:)'; 

    sm_r=@(t,x)sub_model_runoff(t,x,uj,p); 

    [t,x]=ode45(sm_r,tspan,x_ini,[]); 

    for i=1:size(x_ini,1) 
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    x(end,i) = max(0,x(end,i)); 

    end 

     

    %%%%%%%%%%%%%%%%%%%%TOTAL RUNOFF%%%%%%%%%%%%%%%%%%%%%% 

if  x(end,22)>sT 

    Tr(j)=(a_1*( x(end,22)-sT)+a_2* x(end,22))*(1-

alfa_L)*A+A*(a_3)*x(end,23); 

else 

    Tr(j)=a_2* x(end,22)*(1-alfa_L)*A+A*(a_3*x(end,23)); 

end 

    x_ini = x(end,:)'; 

    X(j,:) = x_ini'; 

end 

  

%%%%%%%%%%% SNOW ZONE SIMULATION FOR AVERAGE ALTITUDE %%%%%%%%%%%%% 

figure (1) 

c=1; 

Dry_Snow_Sim_average = zeros (size(u),1); 

Wet_Snow_Sim_average = zeros (size(u),1); 

for i=1:2:20 

Dry_Snow_Sim_average =(X(:,i)+Dry_Snow_Sim_average)/c; 

Wet_Snow_Sim_average =(X(:,i+1)+Wet_Snow_Sim_average)/c; 

c=c+1; 

end 

plot(Dry_Snow_Sim_average,'r') 

hold on 

plot(Wet_Snow_Sim_average,'b') 

hold on  

plot(Average_temperature,'g') 

legend('Vppsd(average)','Vppss(average)','Temperature(average)',4);  

xlabel('Day') 

ylabel('milimeter') 

  

%%%%%%%%%%%%%%%% SNOW ZONE STATE SIMULATON IN ALL ALTITUDES %%%%%%%%%%%%%%% 

figure (2) 

c=1; 

for i=1:2:20 

Dry_Snow_Sim =X(:,i); 

Wet_Snow_Sim =X(:,i+1); 

subplot(5,2,c); 

plot(Dry_Snow_Sim,'r') 

hold on 

plot(Wet_Snow_Sim,'b') 

hold on  

plot(u(:,c+1),'g') 

hold on  

legend(['Vppsd in h',num2str(c)],['Vppss in h',num2str(c)],['Temperature in 

h',num2str(c)]);         

xlabel('Day') 

ylabel('milimeter/Celsius') 

c=c+1; 

end 
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%%%%%%%%%%%%%%%%%%%%%%%%%% GROUND ZONE SIMULATION %%%%%%%%%%%%%%%%%%%%%%%%% 

figure (3) 

plot(X(:,21),'r') 

hold on 

plot(Average_temperature,'g') 

legend('Vppgw','Temperature(average)',4); 

xlabel('Day') 

ylabel('milimeter/Celsius') 

  

%%%%%%%%%%%%%%%%%% SOIL ZONE AND BASE ZONE SIMULATION %%%%%%%%%%%%%%%%% 

figure (4) 

plot(X(:,22),'B') 

hold on 

plot(X(:,23),'r') 

legend('Vppsw','Vppbw',1); 

xlabel('Day') 

ylabel('milimeter') 

 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

figure (5) 

xlRange3='D582:D982'; 

Total_runoff_Real(:,1)=86400*xlsread(filename,sheet,xlRange3); 

Total_runoff_Sim=Tr; 

plot(Total_runoff_Real,'r') 

hold on 

plot(Total_runoff_Sim,'b') 

legend('Total runoff Real','Total runoff Simulation') 

xlabel('Day') 

ylabel('mm3/s') 

 

%%%%%%%%%%%%%%%%%%%%%%%%%%%% SENSITIVITY ANALYSIS %%%%%%%%%%%%%%%%%%%%%%%% 

u_new=u(1:366,:); 

N_new=size(u_new,1); 

x_ini_new=X(1,:); 

p=[5.2 0.8 0.08 0.001 50 2 20 0.032 0.547 0.489 0.0462 309420 0.25]; 

for k=1:13 

    p_new = p; 

    delta=p(k)/20; 

    p_new(k)=p(k)+delta; 

    X_new = zeros(N_new,length(x_ini_new)); 

    for v=1:1:N_new-1 

        uj_new=u_new(v,:)'; 

        sm_r_new=@(t,x_new)sub_model_runoff(t,x_new,uj_new,p_new); 

        [t,x_new]=ode45(sm_r_new,tspan,x_ini_new,[]); 

        for f=1:size(x_ini_new,1) 

            x_new(end,f) = max(0,x_new(end,f)); 

        end 

 

        %%%%%%%%%%%%%%%%%%%% NEW TOTAL RUNOFF%%%%%%%%%%%%%%%%%%%%%% 

        if  x_new(end,22)>p_new(7) 

            Tr_new(v)=(p_new(9)*( x_new(end,22)-

p_new(7))+p_new(10)*x_new(end,22))*(1-

p_new(8))*p_new(12)+p_new(12)*p_new(11)*x_new(end,23); 

        else 



 

 57 

            Tr_new(v)=p_new(10)*x_new(end,22)*(1-

p_new(8))*p_new(12)+p_new(12)*(p_new(11)*x_new(end,23)); 

        end 

        x_ini_new = x_new(end,:)'; 

        X_new(k,:) = x_ini_new'; 

        dTrdp(v,k)=(Tr_new(v)-Tr(v))/delta; 

        %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

    end 

end 

  

dTrdp_new=[dTrdp(:,1) dTrdp(:,3) dTrdp(:,5) dTrdp(:,6) dTrdp(:,7) dTrdp(:,9) 

dTrdp(:,10) dTrdp(:,11) dTrdp(:,13)]; 

dTrdp=dTrdp_new; 

color=[0 0 1;0 0 0;0 1 0;0 1 1;1 0 0;1 0 1;0 0.3 0;0.9412 0.4706 0;1 0.502 

0.502]; 

stdr = std(dTrdp); 

sr = dTrdp./repmat(stdr,size(dTrdp,1),1); 

figure(6) 

for i=1:9 

    plot(sr(:,i), 'color', color(i,:)) 

    hold on 

end 

legend('km','alfa_w','gT','beta','sT','a_1','a_2','a_3','PERC') 

xlabel('Day') 

ylabel('Normalized sensitivity') 

 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% PCA METHOD %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

 

% AUGUST 1973 

dTrdp_AUG=dTrdp(1:31,:); 

stdr_AUG = std(dTrdp_AUG); 

sr_AUG = dTrdp_AUG./repmat(stdr_AUG,size(dTrdp_AUG,1),1); 

[coefs_AUG,scores_AUG,variances_AUG,t2_AUG] = princomp(sr_AUG); 

percent_explained_AUG = 100*variances_AUG/sum(variances_AUG); 

figure (7) 

subplot(4,3,1); 

pareto(percent_explained_AUG) 

xlabel('Principal Component for August') 

ylabel('Variance Explained (%)') 

  

% SEPTEMBER 1973 

dTrdp_SEP=dTrdp(32:61,:); 

stdr_SEP = std(dTrdp_SEP); 

sr_SEP = dTrdp_SEP./repmat(stdr_SEP,size(dTrdp_SEP,1),1); 

[coefs_SEP,scores_SEP,variances_SEP,t2_SEP] = princomp(sr_SEP); 

percent_explained_SEP = 100*variances_SEP/sum(variances_SEP); 

subplot(4,3,2); 

pareto(percent_explained_SEP) 

xlabel('Principal Component for September') 

ylabel('Variance Explained (%)') 

% OCTOBER 1973 

dTrdp_OCT=dTrdp(62:92,:); 

stdr_OCT = std(dTrdp_OCT); 

sr_OCT = dTrdp_OCT./repmat(stdr_OCT,size(dTrdp_OCT,1),1); 
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[coefs_OCT,scores_OCT,variances_OCT,t2_OCT] = princomp(sr_OCT); 

percent_explained_OCT = 100*variances_OCT/sum(variances_OCT); 

subplot(4,3,3); 

pareto(percent_explained_OCT) 

xlabel('Principal Component for October') 

ylabel('Variance Explained (%)') 

  

% NOVEMBER 1973 

dTrdp_NOV=dTrdp(93:122,:); 

stdr_NOV = std(dTrdp_NOV); 

sr_NOV = dTrdp_NOV./repmat(stdr_NOV,size(dTrdp_NOV,1),1); 

[coefs_NOV,scores_NOV,variances_NOV,t2_NOV] = princomp(sr_NOV); 

percent_explained_NOV = 100*variances_NOV/sum(variances_NOV); 

subplot(4,3,4); 

pareto(percent_explained_NOV) 

xlabel('Principal Component for November') 

ylabel('Variance Explained (%)') 

  

% DECEMBER 1973 

dTrdp_DEC=dTrdp(123:153,:); 

stdr_DEC = std(dTrdp_DEC); 

sr_DEC = dTrdp_DEC./repmat(stdr_DEC,size(dTrdp_DEC,1),1); 

[coefs_DEC,scores_DEC,variances_DEC,t2_DEC] = princomp(sr_DEC); 

percent_explained_DEC = 100*variances_DEC/sum(variances_DEC); 

subplot(4,3,5); 

pareto(percent_explained_DEC) 

xlabel('Principal Component for December') 

ylabel('Variance Explained (%)') 

  

% JANUARY 1974 

dTrdp_JAN=dTrdp(154:184,:); 

stdr_JAN = std(dTrdp_JAN); 

sr_JAN = dTrdp_JAN./repmat(stdr_JAN,size(dTrdp_JAN,1),1); 

[coefs_JAN,scores_JAN,variances_JAN,t2_JAN] = princomp(sr_JAN); 

percent_explained_JAN = 100*variances_JAN/sum(variances_JAN); 

subplot(4,3,6); 

pareto(percent_explained_JAN) 

xlabel('Principal Component for January') 

ylabel('Variance Explained (%)') 

  

% FEBRUARY 1974 

dTrdp_FEB=dTrdp(185:212,:); 

stdr_FEB = std(dTrdp_FEB); 

sr_FEB = dTrdp_FEB./repmat(stdr_FEB,size(dTrdp_FEB,1),1); 

[coefs_FEB,scores_FEB,variances_FEB,t2_FEB] = princomp(sr_FEB); 

percent_explained_FEB = 100*variances_FEB/sum(variances_FEB); 

subplot(4,3,7); 

pareto(percent_explained_FEB) 

xlabel('Principal Component for February') 

ylabel('Variance Explained (%)') 

% MARCH 1974 

dTrdp_MAR=dTrdp(213:243,:); 

stdr_MAR = std(dTrdp_MAR); 

sr_MAR = dTrdp_MAR./repmat(stdr_MAR,size(dTrdp_MAR,1),1); 
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[coefs_MAR,scores_MAR,variances_MAR,t2_MAR] = princomp(sr_MAR); 

percent_explained_MAR = 100*variances_MAR/sum(variances_MAR); 

subplot(4,3,8); 

pareto(percent_explained_MAR) 

xlabel('Principal Component for March') 

ylabel('Variance Explained (%)') 

 

% APRIL 1974 

dTrdp_APR=dTrdp(244:273,:); 

stdr_APR = std(dTrdp_APR); 

sr_APR = dTrdp_APR./repmat(stdr_APR,size(dTrdp_APR,1),1); 

[coefs_APR,scores_APR,variances_APR,t2_APR] = princomp(sr_APR); 

percent_explained_APR = 100*variances_APR/sum(variances_APR); 

subplot(4,3,9); 

pareto(percent_explained_APR) 

xlabel('Principal Component for April') 

ylabel('Variance Explained (%)') 

  

% MAY 1974 

dTrdp_MAY=dTrdp(274:304,:); 

stdr_MAY = std(dTrdp_MAY); 

sr_MAY = dTrdp_MAY./repmat(stdr_MAY,size(dTrdp_MAY,1),1); 

[coefs_MAY,scores_MAY,variances_MAY,t2_MAY] = princomp(sr_MAY); 

percent_explained_MAY = 100*variances_MAY/sum(variances_MAY); 

subplot(4,3,10); 

pareto(percent_explained_MAY) 

xlabel('Principal Component for May') 

ylabel('Variance Explained (%)') 

  

% JUNE 1974 

dTrdp_JUN=dTrdp(305:334,:); 

stdr_JUN = std(dTrdp_JUN); 

sr_JUN = dTrdp_JUN./repmat(stdr_JUN,size(dTrdp_JUN,1),1); 

[coefs_JUN,scores_JUN,variances_JUN,t2_JUN] = princomp(sr_JUN); 

percent_explained_JUN = 100*variances_JUN/sum(variances_JUN); 

subplot(4,3,11); 

pareto(percent_explained_JUN) 

xlabel('Principal Component for June') 

ylabel('Variance Explained (%)') 

  

% JULY 1974 

dTrdp_JUL=dTrdp(335:365,:); 

stdr_JUL = std(dTrdp_JUL); 

sr_JUL = dTrdp_JUL./repmat(stdr_JUL,size(dTrdp_JUL,1),1); 

[coefs_JUL,scores_JUL,variances_JUL,t2_JUL] = princomp(sr_JUL); 

percent_explained_JUL = 100*variances_JUL/sum(variances_JUL); 

subplot(4,3,12); 

pareto(percent_explained_JUL) 

xlabel('Principal Component for July') 

ylabel('Variance Explained (%)') 
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%%%%%%%%%%%%%%%%%%%%%%%%%%%% PARAMETER RANKING %%%%%%%%%%%%%%%%%%%%%%%%%%%% 

LABELS1 = {'PC1 Loading (AUGUST)'; 'PC1 Loading (SEPTEMBER)'; 'PC1 Loading 

(OCTOBER)';'PC1 Loading (NOVEMBER)';'PC1 Loading (DECEMBER)'; 'PC1 Loading 

(JANUARY)';'PC1 Loading (FEBRUARY)';'PC1 Loading (MARCH)'}; 

COEFS1 = [coefs_AUG(:,1) coefs_SEP(:,1) coefs_OCT(:,1) coefs_NOV(:,1) 

coefs_DEC(:,1) coefs_JAN(:,1) coefs_FEB(:,1) coefs_MAR(:,1)]; 

figure (8) 

for i=1:8 

  subplot(2,4,i) 

  plot(COEFS1(:,i), 'b*') 

xlabel(LABELS1(i)) 

end 

LABELS2 = {'PC1 Loading (APRIL)'; 'PC2 Loading (APRIL)'; 'PC1 Loading 

(MAY)';'PC2 Loading (MAY)';'PC3 Loading (MAY)';'PC1 Loading (JUNE)'; 'PC2 

Loading (JUNE)';'PC1 Loading (JULY)';'PC2 Loading (JULY)'}; 

COEFS2 = [coefs_APR(:,1) coefs_APR(:,2) coefs_MAY(:,1) coefs_MAY(:,2) 

coefs_MAY(:,3) coefs_JUN(:,1) coefs_JUN(:,2) coefs_JUL(:,1) coefs_JUL(:,2)]; 

figure (9) 

for i=1:9 

  subplot(3,3,i) 

  plot(COEFS2(:,i), 'b*') 

xlabel(LABELS2(i)) 

end 

  

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% COLINEARITY %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

vbls = {'km','alfa_w','gT','beta','sT','a_1','a_2','a_3','PERC'}; 

TITLES = {'AUGUST'; 'SEPTEMBER'; 

'OCTOBER';'NOVEMBER';'DECEMBER';'JANUARY';'FEBRUARY';'MARCH'}; 

COEFS = [coefs_AUG(:,1:2) coefs_SEP(:,1:2) coefs_OCT(:,1:2) coefs_NOV(:,1:2) 

coefs_DEC(:,1:2) coefs_JAN(:,1:2) coefs_FEB(:,1:2) coefs_MAR(:,1:2)]; 

j=1; 

for i=1:8 

    figure (9+i) 

    biplot(COEFS(:,j:j+1),'varlabels',vbls); 

    title(TITLES(i)) 

    j=j+2; 

end 

figure (18) 

subplot(2,2,1) 

biplot(coefs_APR(:,1:2),'varlabels',vbls); 

title('APRIL') 

subplot(2,2,2) 

biplot(coefs_MAY(:,1:3),'varlabels',vbls); 

title('MAY') 

subplot(2,2,3) 

biplot(coefs_JUN(:,1:2),'varlabels',vbls); 

title('JUNE') 

subplot(2,2,4) 

biplot(coefs_JUL(:,1:2),'varlabels',vbls); 

title('JULY') 

 

  

%%%%%%%%%%%%% DUAL PARAMETER & STATE ESTIMATION ON AUGUST %%%%%%%%%%%%%%%%% 

% By knowing higher idendifiable parameters in each month, and considering 
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% zero values as initial states of model on 1st of August(starting point),  

% the Augmented nonlinear Least squares methodand can be implemented to 

estimate 

% both states and parameters simultaniously such as following: 

%%%%%%%%%%%%%%%%%%%%%% PARAMETER ESTIMATION ON AUGUST %%%%%%%%%%%%%%%%%%%%% 

input_aug_for_param=u(1:8,:); 

output_aug_for_param=output(1:8,:); 

X_est(1,:) = zeros(1,23); 

states_ini=[0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0]; 

S_aug_est(:,1)=states_ini; 

P_aug=[0.08;50;2;20;0.547;0.489;0.0462;0.25]; 

P_aug_LB=[0.08*0.5;50*0.01;2*0.5;20*0.01;0.547*0.01;0.489*0.01;0.0462*0.01;0

.25*0.5]; 

P_aug_UB=P_aug*2; 

options = optimset('Display','iter','MaxFunEvals',1000); 

[P_aug_est(:,1) P_fval] = fminsearchbnd(@(P) 

LSCostFunction_for_param(P,states_ini,input_aug_for_param,output_aug_for_par

am),P_aug,P_aug_LB,P_aug_UB,options); 

 

%%%%%%%%%%%%%%%%%%%%%%%% STATES ESTIMATION ON AUGUST %%%%%%%%%%%%%%%%%%%%%% 

x_ini=states_ini'; 

p=[5.2 0.8 P_aug_est(1,1) 0 P_aug_est(2,1) P_aug_est(3,1) P_aug_est(4,1) 

0.032 P_aug_est(5,1) P_aug_est(6,1) P_aug_est(7,1) 309420 P_aug_est(8,1)]; 

uj=u(1,:)'; 

sm_r=@(t,x)sub_model_runoff(t,x,uj,p); 

[t,x]=ode45(sm_r,tspan,x_ini,[]); 

for i=1:size(x_ini,2) 

    x(end,i) = max(0,x(end,i)); 

end 

x_ini = x(end,:); 

states_ini=x_ini'; 

param=P_aug_est(:,1); 

input_aug_for_state=u(1:23,:); 

output_aug_for_state=output(1:23,:); 

S_aug_LB=[0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0]; 

S_aug_UB=[10;0.8;10;0.8;10;0.8;10;0.8;10;0.8;10;0.8;10;0.8;10;0.8;10;0.8;10;

0.8;100;100;100]; 

options = optimset('Display','iter','MaxFunEvals',500); 

[S_aug_est(:,1) fval] = fminsearchbnd(@(S) 

LSCostFunction_for_states(S,param,input_aug_for_state,output_aug_for_state),

states_ini,S_aug_LB,S_aug_UB,options); 

 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%% STATES OF 2nd OF AUGUST %%%%%%%%%%%%%%%%%%%%% 

for k=1:1:31 

x_ini=S_aug_est(:,k)'; 

p=[5.2 0.8 P_aug_est(1,1) 0 P_aug_est(2,1) P_aug_est(3,1) P_aug_est(4,1) 

0.032 P_aug_est(5,1) P_aug_est(6,1) P_aug_est(7,1) 309420 P_aug_est(8,1)]; 

uj=u(k+1,:)'; 

sm_r=@(t,x)sub_model_runoff(t,x,uj,p); 

[t,x]=ode45(sm_r,tspan,x_ini,[]); 

for i=1:23 

    x(end,i) = max(0,x(end,i)); 

end 

x_ini = x(end,:); 
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states_ini=x_ini'; 

param=P_aug_est(:,1); 

input_aug_for_state=u(k+1:k+23,:); 

output_aug_for_state=output(k+1:k+23,:); 

S_aug_LB=[0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0]; 

S_aug_UB=[10;0.8;10;0.8;10;0.8;10;0.8;10;0.8;10;0.8;10;0.8;10;0.8;10;0.8;10;

0.8;100;100;100]; 

options = optimset('Display','iter','MaxFunEvals',1000); 

[S_aug_est(:,k+1) fval] = fminsearchbnd(@(S) 

LSCostFunction_for_states(S,param,input_aug_for_state,output_aug_for_state),

states_ini,S_aug_LB,S_aug_UB,options); 

End 

 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

p=[5.2 0.8 P_aug_est(1) 0 P_aug_est(2) P_aug_est(3) P_aug_est(4) 0.032 

P_aug_est(5) P_aug_est(6) P_aug_est(7) 309420 P_aug_est(8)]; 

sT=p(7); %soil zone's saturation threshold 

alfa_L=p(8); %fractional area covered by lakes 

a_1=p(9); % discharge frequency for surface runoff 

a_2=p(10); % discharge frequency for fast runoff 

a_3=p(11); % discharge frequency for base runoff 

A=p(12); % catchment area 

 

%%%%%%%%%%%%%%% TOTAL RUNOFF WITH ESTIMATED PARAMETERS AND STATES%%%%%%%%%% 

for j=1:1:31 

if  S_aug_est(22,j)>sT 

    Tr_est(j)=(a_1*( S_aug_est(22,j)-sT)+a_2* S_aug_est(22,j))*(1-

0.032)*309420+309420*a_3*S_aug_est(23,j); 

else 

    Tr_est(j)=a_2* S_aug_est(22,j)*(1-

0.032)*309420+309420*a_3*S_aug_est(23,j); 

end 

end 

 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

figure  

xlRange3='D582:D982'; 

Total_runoff_Real(:,1)=86400*xlsread(filename,sheet,xlRange3); 

Total_runoff_Sim=Tr; 

Total_runoff_est=Tr_est(1:31); 

plot(Total_runoff_Real,'r') 

hold on 

plot(Total_runoff_Sim,'b') 

hold on 

plot(Total_runoff_est,'g') 

legend('Real runoff','Simulated runoff without estimation','Simulated runoff 

with estimation') 

xlabel('Day') 

ylabel('mm3/s') 

 

 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%% FMINSEARCHBND FUNCTION %%%%%%%%%%%%%%%%%%%%% 
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function [x,fval,exitflag,output] = 

fminsearchbnd(fun,x0,LB,UB,options,varargin) 

% created by John D’Emico 

% 11 Aug 2005 and updated on 6th of Feb 2012 

% Reference: 

% http://www.mathworks.com/matlabcentral/fileexchange/8277-fminsearchbnd-

%fminsearchcon 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%  LB - lower bound vector or array, must be the same size as x0 

% 

%       If no lower bounds exist for one of the variables, then 

%       supply -inf for that variable. 

% 

%       If no lower bounds at all, then LB may be left empty. 

% 

%       Variables may be fixed in value by setting the corresponding 

%       lower and upper bounds to exactly the same value. 

% 

%  UB - upper bound vector or array, must be the same size as x0 

% 

%       If no upper bounds exist for one of the variables, then 

%       supply +inf for that variable. 

% 

%       If no upper bounds at all, then UB may be left empty. 

% 

%       Variables may be fixed in value by setting the corresponding 

%       lower and upper bounds to exactly the same value. 

% 

  

% size checks 

xsize = size(x0); 

x0 = x0(:); 

n=length(x0); 

  

if (nargin<3) || isempty(LB) 

  LB = repmat(-inf,n,1); 

else 

  LB = LB(:); 

end 

if (nargin<4) || isempty(UB) 

  UB = repmat(inf,n,1); 

else 

  UB = UB(:); 

end 

  

if (n~=length(LB)) || (n~=length(UB)) 

  error 'x0 is incompatible in size with either LB or UB.' 

end 

  

% set default options if necessary 

if (nargin<5) || isempty(options) 

http://www.mathworks.com/matlabcentral/fileexchange/8277-fminsearchbnd-%25fminsearchcon
http://www.mathworks.com/matlabcentral/fileexchange/8277-fminsearchbnd-%25fminsearchcon
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  options = optimset('fminsearch'); 

end 

  

% stuff into a struct to pass around 

params.args = varargin; 

params.LB = LB; 

params.UB = UB; 

params.fun = fun; 

params.n = n; 

% note that the number of parameters may actually vary if  

% a user has chosen to fix one or more parameters 

params.xsize = xsize; 

params.OutputFcn = []; 

  

% 0 --> unconstrained variable 

% 1 --> lower bound only 

% 2 --> upper bound only 

% 3 --> dual finite bounds 

% 4 --> fixed variable 

params.BoundClass = zeros(n,1); 

for i=1:n 

  k = isfinite(LB(i)) + 2*isfinite(UB(i)); 

  params.BoundClass(i) = k; 

  if (k==3) && (LB(i)==UB(i)) 

    params.BoundClass(i) = 4; 

  end 

end 

  

% transform starting values into their unconstrained 

% surrogates. Check for infeasible starting guesses. 

x0u = x0; 

k=1; 

for i = 1:n 

  switch params.BoundClass(i) 

    case 1 

      % lower bound only 

      if x0(i)<=LB(i) 

        % infeasible starting value. Use bound. 

        x0u(k) = 0; 

      else 

        x0u(k) = sqrt(x0(i) - LB(i)); 

      end 

       

      % increment k 

      k=k+1; 

    case 2 

      % upper bound only 

      if x0(i)>=UB(i) 

        % infeasible starting value. use bound. 

        x0u(k) = 0; 

      else 

        x0u(k) = sqrt(UB(i) - x0(i)); 

      end 
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      % increment k 

      k=k+1; 

    case 3 

      % lower and upper bounds 

      if x0(i)<=LB(i) 

        % infeasible starting value 

        x0u(k) = -pi/2; 

      elseif x0(i)>=UB(i) 

        % infeasible starting value 

        x0u(k) = pi/2; 

      else 

        x0u(k) = 2*(x0(i) - LB(i))/(UB(i)-LB(i)) - 1; 

        % shift by 2*pi to avoid problems at zero in fminsearch 

        % otherwise, the initial simplex is vanishingly small 

        x0u(k) = 2*pi+asin(max(-1,min(1,x0u(k)))); 

      end 

       

      % increment k 

      k=k+1; 

    case 0 

      % unconstrained variable. x0u(i) is set. 

      x0u(k) = x0(i); 

       

      % increment k 

      k=k+1; 

    case 4 

      % fixed variable. drop it before fminsearch sees it. 

      % k is not incremented for this variable. 

  end 

   

end 

% if any of the unknowns were fixed, then we need to shorten 

% x0u now. 

if k<=n 

  x0u(k:n) = []; 

end 

  

% were all the variables fixed? 

if isempty(x0u) 

  % All variables were fixed. quit immediately, setting the 

  % appropriate parameters, then return. 

   

  % undo the variable transformations into the original space 

  x = xtransform(x0u,params); 

   

  % final reshape 

  x = reshape(x,xsize); 

   

  % stuff fval with the final value 

  fval = feval(params.fun,x,params.args{:}); 

   

  % fminsearchbnd was not called 
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  exitflag = 0; 

   

  output.iterations = 0; 

  output.funcCount = 1; 

  output.algorithm = 'fminsearch'; 

  output.message = 'All variables were held fixed by the applied bounds'; 

   

  % return with no call at all to fminsearch 

  return 

end 

  

% Check for an outputfcn. If there is any, then substitute my 

% own wrapper function. 

if ~isempty(options.OutputFcn) 

  params.OutputFcn = options.OutputFcn; 

  options.OutputFcn = @outfun_wrapper; 

end 

  

% now we can call fminsearch, but with our own 

% intra-objective function. 

[xu,fval,exitflag,output] = fminsearch(@intrafun,x0u,options,params); 

  

% undo the variable transformations into the original space 

x = xtransform(xu,params); 

  

% final reshape to make sure the result has the proper shape 

x = reshape(x,xsize); 

  

% Use a nested function as the OutputFcn wrapper 

  function stop = outfun_wrapper(x,varargin); 

    % we need to transform x first 

    xtrans = xtransform(x,params); 

     

    % then call the user supplied OutputFcn 

    stop = params.OutputFcn(xtrans,varargin{1:(end-1)}); 

     

  end 

  

end % mainline end 

  

% ====================================== 

% ========= begin subfunctions ========= 

% ====================================== 

function fval = intrafun(x,params) 

% transform variables, then call original function 

  

% transform 

xtrans = xtransform(x,params); 

  

% and call fun 

fval = feval(params.fun,reshape(xtrans,params.xsize),params.args{:}); 
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end % sub function intrafun end 

  

% ====================================== 

function xtrans = xtransform(x,params) 

% converts unconstrained variables into their original domains 

  

xtrans = zeros(params.xsize); 

% k allows some variables to be fixed, thus dropped from the 

% optimization. 

k=1; 

for i = 1:params.n 

  switch params.BoundClass(i) 

    case 1 

      % lower bound only 

      xtrans(i) = params.LB(i) + x(k).^2; 

       

      k=k+1; 

    case 2 

      % upper bound only 

      xtrans(i) = params.UB(i) - x(k).^2; 

       

      k=k+1; 

    case 3 

      % lower and upper bounds 

      xtrans(i) = (sin(x(k))+1)/2; 

      xtrans(i) = xtrans(i)*(params.UB(i) - params.LB(i)) + params.LB(i); 

      % just in case of any floating point problems 

      xtrans(i) = max(params.LB(i),min(params.UB(i),xtrans(i))); 

       

      k=k+1; 

    case 4 

      % fixed variable, bounds are equal, set it at either bound 

      xtrans(i) = params.LB(i); 

    case 0 

      % unconstrained variable. 

      xtrans(i) = x(k); 

       
      k=k+1; 
  end 
end 

  
end % sub function xtransform end 

 


