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Due to the lack of complete data from real plants, validation of simulations in this work was not
possible by comparing to real plant operations data. However in the simulations of the water
hammer effect, the amounts of pressure rises were compared to the charts available in the
literature. Due to the lack of time, implementing of an advanced controller which had been
considered as an option in the thesis task description was not possible. However model of a

classic controller was used to simulate the whole plant.



Nomenclature

Symbol

Pj

Pi

atm
Ap

atm

atm

CVai41

Description

Mass flow rate

Pressure

Index referring to the penstock
Penstock length

Cross-section area of penstock with inelastic walls (constant

through the whole length of the penstock)
Water pressure along the penstock at location X = X;

Water density along the penstock at location X =X; as a

function of pressure p;

Cross-section area of penstock with elastic walls at location
X = X; as a function of water pressure p; inside the penstock at

that location.

Cross-section area of penstock with elastic walls when pressure
inside and outside of the penstock is equal to atmospheric
pressure, i.e. empty penstock (constant through the whole

length of the penstock)
Atmospheric pressure

Water density at atmospheric pressure

Control volume enclosed between penstock cross-sections at

10

Units
[Kg/sec]

[Pa]

[Pa]

[Kg/m?]



Symbol

CVait2

HWDI

HWDO

TWUI

TWUO

B;;otal

Description

locations X,; and X,;,, for applying mass conservation rule (for

i=1,...,N-1)

Control volume enclosed between penstock cross-sections at
locations X,;41 and X5, 3 for applying momentum conservation

rule (for i=1,...,N-1)
Volume

Index referring to the interface variables between elastic
penstock and head water system. “HW” refers to head water,
“D” refers to “at downstream of HW” and “I” indicates that the

variable is an input to HW system.

Index referring to the interface variables between elastic
penstock and head water system. “HW” refers to head water,
“D” refers to “at downstream of HW” and “I” indicates that the

variable is an output from the HW system.

Index referring to the interface variables between elastic
penstock and tail water system. “TW” refers to tail water, “U”
refers to “at the upstream of TW” and “I” indicates that the

variable is an input to TW system.

Index referring to the interface variables between elastic
penstock and tail water system. “TW” refers to tail water, “U”
refers to “at the upstream of TW” and “I” indicates that the

variable is an output from the TW system.

total compressibility due to water compressibility and pipe shell

elasticity
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Units

[Pa™"]



Symbol

eq

Vpi

l:p,2i+2

FGais2

FE2it2

EZi+2

Description
equivalent compressibility due to the pipe shell elasticity
Compressibility of water

Mass flow rate through a cross-section of penstock at location

[13%4]

X = X; (in direction of increasing “i”” or simply X direction.)

Velocity of water along penstock wall at location X = X; (in

(T34 2]

direction of increasing “i” or simply X direction.)

The force acting on the water column inside the control volume

CV,;,, due to pressure difference at both ends

The gravity force acting on the water column inside the control

volume CVy;, 5

The friction force acting on the water column inside the control

volume CVy;, 5

A friction factor. Friction force applying on the control volume

CVyiyz is given by &i42Vp2it2

Fanning friction factor

Internal perimeter of the penstock cross section at X = X,
Hydraulic power available for conversion by turbine

Mass flow rate of water through turbine

Pressure drop across turbine inlet and outlet

Mechanical output power of the turbine
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Units
[Pa™']

[Pa™"]

[Kg/sec]

[m/sec]

[N]

[N]

[N]

[N.sec/m]

[-]
[m]
[W]

[Kg/sec]
[Pa]

[W]



Symbol

Nt

Hp (Hy)

Qc

design

W

P

Ntd

H®9 and Q°

Description
Efficiency of the turbine

Turbine head

Turbine volumetric discharge

Guide vanes opening

Turbine mechanical rotation speed

Turbine Specific Speed

Turbine design speed

Turbine design speed

Turbine design power

Turbine design head

Turbine efficiency at design head and rated power and

discharge

Equivalent head and discharge as defined in Section 2.2.2

Head (in some cases through the report is used as values of

turbine head)

Volumetric flow rate (in some cases through the report is used

as values of turbine discharge)

Index indicating that property belongs to conduit

Units
(-]
[m] or [%]

[m3/sec] or

[%]
[% or degrees]
[rad/sec]
[-]
[rpm]
[Rad/sec]
(kW]

[m]

[-]

[m] and

[m3 /sec]

[m]

[m3 /sec]



Symbol

1S

a,b,c

F,D,Q

0,, and 6,

Description

Index indicating that property belongs to surge shaft
Length of the water column in the surge shaft

Index which refers to one of the stator coils

Index which refers to one of the rotor coils. “F” is the coil in
which the field (magnetizing) current flows. “D” and “Q” are

the damper windings.

Self-inductance of the coil “x” where x refers to one of the

indices a, b, ¢, F, D and Q.

(Y32

Mutual inductance between the “x” and “y” coils where x and y
refer to the indices a, b, ¢, F, D and Q. The equality Lyy = Lyx
always holds.

Number of the poles of the generator
Rotation frequency of the rotor

Frequency of induced voltage in the stator coils (f, = Npf,,/2)

Rotor rotation angular speed (w,, = 2rfy,)

Angular speed of the induced voltage in the stator coils

(we = 2mfe)

The rotor angle 6.(t) = w,t+ 0,(0) is the rotor position
measured in a reference frame fixed to the stator. The rotor
electrical angle 0.(t) is defined by 0.(t) = wet + 0.(0) =
NpO,,(t)/2. The initial angle 6,.(0) depends on the measuring
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Units

[m]

[-]

(-]

[H]

[H]

[Hz]

[Hz]

[rad/sec]

[rad/sec]

[rad]



Symbol

Description

points on the rotor and the stator and is usually chosen in such a
way that the open circuit terminal voltage of the “a” stator coils

becomes proportional to sinf, (t).

Average value of any of the quantities L, , L, and L. taken over

the rotor electrical angle (8,) values between 0 and m [rad].

Absolute value of the average of any of the quantities
Lap, Lac and Ly, taken over the rotor electrical angle (8,) values

between 0 and m [rad].

Absolute value of maximum deviation of any of the quantities
L,, Ly, Le, Lap, Lye and Ly, from their average value when the

rotor electrical angle (8, ) varies between 0 and  [rad].

Absolute value of maximum of any of the quantities
Lar, Lpr, Lcg when the rotor electrical angle (0.) varies

between 0 and 2 [rad].

Absolute value of maximum of any of the quantities
Lap, Lpp , Lep when the rotor electrical angle (0,) varies

between 0 and 27 [rad].

Absolute value of maximum of any of the quantities
Laq ,» Lbq,Leq When the rotor electrical angle (6,) varies

between 0 and 27 [rad].
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Units

[H]

[H]

[H]

[H]

[H]

[H]



Chapter 1 Introduction

1.1 Background

Hydropower systems are extensively studied in the literature. Some of the literature in this field
or at least some of their references dates back at 1920’s. In 1992 IEEE published a paper in
which various models for hydropower generation units existing at that time was gathered in one
place (IEEE, 1992). An enormous effort has been taken recently for advanced modeling,

optimization and control of hydropower production units (Kishor, 2007).

A high head hydropower generation unit typically consists of reservoir, waterway (head-race
tunnel, surge shaft, penstock, turbine case and draft tube, and tale-race), turbine, and generator.
The overall system is highly non-linear and its controller is usually designed for stability and
best performance at the best-efficiency operating point using a linearized model. For having a
stable operation and acceptable performance at the other operating points it may be necessary to

change the controller parameters when the operating point of the system changes.

It is important to be able to model and simulate the system as accurately as possible. With an
accurate model, a designed controller can be tested more reliably for stability and performance in
different operating points. Different models with different degrees of complexity have been
published (Kishor, 2007). The simple models consider rigid penstock walls with incompressible
water column in the penstock. A more accurate model can be obtained if a penstock with elastic
walls and compressible water column in the penstock is considered. Such a penstock can be
modeled by two nonlinear partial differential equations. These equations can be linearized and
solved by the Method of Characteristics (MOC) (Warnick, 1984). Numerical methods can also
be used for solving these equations. Some software solutions such as WHAMO (WHAMO,
1998) and Hydro-Plant Library (Modelon, 2010) are available for numerical simulations.

In Telemark University College a research group is established to study around hydropower. In
this direction some projects and theses are defined and done previously like (Shresta, 2010) and
(Thoresen, 2010). A Phd student is currently working on the subject of modeling and control of

hydropower plants. This Thesis is also about the modeling of the hydropower systems.

1.2 Task Description

16



The complete task description of this thesis is included in the Appendix 1. For fulfillment of the
tasks, a complete model for the hydropower generation unit is introduced which takes the
compressibility of the water and elasticity of the penstock walls into account. It is shown how to
enter data available in the performance charts of the Francis turbine into MATLAB and make an
interpolation function for estimation of the turbine head and efficiency. The penstock model is
validated by the charts available in the literature. A classic controller is used to show the closed
loop operation of the introduced models and finally it is shown how to include the synchronous
generator with voltage control loop in the overall model and simulate the whole system. (Due to

lack of time the generator is only simulated with the inelastic model)

Due to the lack of complete data from real plants, validation of simulations in this work was not
possible by comparing to real plant operations data. Also because of time shortage,
implementing of an advanced controller which had been considered as an option in the thesis

task description was not possible.

1.3 Structure of the report
The report has two main chapters:

Chapter 1 includes the models and simulations of the hydraulic system. In Section 2.1 penstock
model with considering compressibility and elasticity effects has been studied. In section 2.2
Francis turbine, similarity laws and turbine performance charts are discussed. In Section 2.3
models available for other parts of the waterway are extended to include an interface part to
elastic penstock. In Section 2.4 a classic controller is introduced to use with closed loop
simulations. In Section 2.5.1 the elastic penstock model is validated against available charts and
finally in Section 2.5.2 the closed loop system (without generator) is simulated for both cases of
the waterway with an inelastic penstock and the waterway with elastic penstock. (Elastic
penstock in this report refers to the model of penstock with considering water compressibility

and elasticity of penstock walls.)

Chapter 3 is devoted to study of the synchronous generator. In sections 3.1.1 to 3.1.3 structure of
a multi-pole salient poles generator is discussed. In section 3.1.4 the self and mutual inductances
of various windings in the machine are studied. Sections 3.1.5 to 3.1.7 the Park’s transform and

machine equations in the rotor reference frame are discussed. The power term in the swing
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equation which is relevant to the generator active power is discussed in Section 3.1.8. In Sections
3.1.9 to 3.1.11 available simplified models for the synchronous generator are introduced and it is
shown how to relate the variables of these models to the network variables through the “phasors”
concept. Finally a generator connected to an infinite bus is simulated with the waterway model

(without elasticity).

Relevant simulations and discussions necessary for each chapter are included in the same
chapter. No separate results chapter is included. Only a short conclusion will be given in the

Chapter 4.

MATLAB code of the simulations in this report is included in the Appendix III.
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Chapter 2 The Hydraulic System

The hydraulic system in a high-head hydropower plant will be modeled in this chapter. This
system consists of all the components in the waterway plus the turbine and its auxiliaries. The
interface of this system with the electrical parts of the plant is the turbine-generator shaft. The
turbine-generator shaft rotating speed and the mechanical output power of the turbine are the
quantities which are needed to be controlled within this system. However measurement of the
turbine mechanical output power is easier if it’s done indirectly by measuring the electric active
power delivered at the generator terminals and dividing it by the generator efficiency or
alternatively, by estimation given the guide vanes opening and the current gross head of the

plant.

Governing equations for water flow inside the tunnels and pipes (head-water, penstock and tail-
water) are an important part of the hydraulic system model. In the Section 2.1 a general model
for the penstock will be derived. This model assumes compressible water and elastic penstock
walls. Models for the head-water and tail-water tunnels and surge-shaft are similar to the
penstock but usually there’s no need to consider compressible water and elastic walls for these
models due to the lower pressures. Simpler model for the penstock is also available by neglecting
the compressibility and elasticity effects. Models for Francis turbine are discussed in the
section 2.2. In the section 2.3 differential equations governing the whole head-water system
(reservoir, head-water tunnel, surge-shaft and an interface part to the elastic penstock model) and
the whole tail-water system (interface to the elastic penstock model, turbine, draft tube, tail-water
tunnel and reservoir) will be summarized. The turbine controller model which will be used for
simulations throughout this report is given in the section 2.4. Finally in the section 2.5 simulation
results of the hydraulic system, with turbine output mechanical power considered as a constant

disturbance, for the both cases of elastic penstock and inelastic penstock will be included.
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2.1 General Penstock Model

2.1.1 Introduction

Having a model for hydropower station which is as complete as possible is very important. It’s
true because simulation of the controller performance in a wide range of operating points
becomes possible. For this purpose all the nonlinearities, delays and dominant higher order
effects (like higher order differential equations) shall be considered in the model. In this section a
model for the penstock will be derived which considers effects of compressibility of the water
and elasticity of penstock walls. “Finite volume method” (Versteeg & Malalasekera, 1995) of
computational fluid dynamics (CFD) will be used to derive a set of ordinary differential

equations as the penstock model.

2.1.2 Problem Definition

Compressible water flow inside a penstock with elastic walls is governed by a partial differential
equation (Warnick, 1984) (Lie, 2011). This PDE is obtained by applying the mass and
momentum conservation laws to a 1D infinitely small control volume along the penstock axis.
(Parmakian, 1963). Solving such equation numerically needs both temporal and spatial
discretization. Software such as WHAMO (US Army Corps of Engineers, 1998) which is a tool
for simulation of water flow in pipe networks uses a finite difference scheme for discretizing the
governing differential equations. In this scheme, the partial derivative terms in the differential
equations are replaced by their equivalent “difference relations” and so the differential equations
turn into difference equations. There is an alternative scheme reffered to as the “finite volume
method” or simply “FVM” which is more straight forward. This method (applied to a 1D
problem such as fluid flow in a pipe) avoids the partial differential equations from the beginning
by dividing the whole pipe volume into several control volumes along the pipe axis and then
applying conservation laws to derive two differential equations for each control volume: One of
the equations is an exact representation of the conservation of mass (continuity equation) and the
other one is an exact representation of the conservation of momentum (Versteeg & Malalasekera,

1995). “Advantage of FVM is that the discredited governing equations retain their physical
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interpretation, rather than possibly distorting the physics due to numerical discrimination of each

derivative term.” (Chung, 2002)

The idea of control volumes in FVM is better described by refering to the Figure (2-1). The
whole penstock length is devided into 2N equal segments. The first segment is between the
locations X;and X, and the last segment is located between X,y and X,n4q. It’s possible to
define the volume determined by each two adjacent pipe segments located between X,;,4 and
X,it+3 (1=1,...,N-2) as a control volume for application of both mass and momentum conservation
laws, but this can cause the discretized momentum equations have unrealistic behaviour for
spatially oscillating pressures (Versteeg & Malalasekera, 1995). The solution to this possible
problem which is suggested in that reference is to use a so called “staggered grid”. Stggered grid
for the penstock in the Figure (2-1) means to define the volume determined by each couple of
pipe segments located between X,;,;and X,z (for i=1,...,N-2) as a control volume for
application of the momentum conservation and define the volume determined by each couple of
pipe segments located between X,; and X, (for i=I,...,N-1) as a control volume for

application of the mass conservation.

The state variables along the pipe which usually appear in the literature of CFD is mass density
and velocity of fluid particles. In this report however it’s been decided to use static pressure and
mass flow rate as the state variables. The later variables are more interesting than the former
ones in a hydropower application. In addition, choosing the mass flow rate as the state has the
advantage that in the steady-state condition mass flow rate in the whole waterway of the plant
will be the same (surge shaft level will be constant in the steady-state condition and hence mass
flow rate in the conduit and penstock will also be the same). Hence determining the steady-state
value of the states will be much easier. In (Lie, 2011) it is shown that a one to one relation exists
between water static pressure and mass density. Later in this report it will be shown that there’s
also a one to one relation between water velocity and mass flow rate at a particular location

along the penstock.

The state “pressure” will be considered spatially constant along the whole length of a control
volume for mass conservation and the state “mass flow rate” will be treated as being spatially
constant along the whole length of a control volume for application of the momentum

conservation. In (Versteeg & Malalasekera, 1995) alternatively “density” and “velocity” is
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considered to be spatially constant inside the control volume. These states are indicated at the
center of their related control volumes in Figure (2-1). Pressures are shown by bold dots and
mass flow rates are shown by bold arrows. The differential equations governing these states will
be introduced in the section 2.1.4. Cross-section area of penstock when pressure inside and
outside of the penstock is equal to the atmospheric pressure (e.g. when the penstock is empty)
will be considered constant throughout this report. Amount of variations of penstock cross-

section area due to water pressure inside the penstock will be discussed in the next section.

Inputs from Upstream
(Head Water)

Outputs to Upstream
(Head Water)

Control Volume
for Momentum Eq.

Control Volume
for Continuity Eq.

Outputs to Downstream
(Tail Water)

Inputs from Downstream 4:,,
(Tail Water) My

Figure (2-1) Control Volumes for Application of Mass and Momentum Conservation Laws in a
Penstock

The pressure and mass flow rate variables at locations Xj,X,, X,y and X,y are shown with
hollow dots and arrows. This means that these variables will not be governed by penstock
equations. They will be determined by head/tail water system models and will be treated as
inputs in the penstock model. States of the penstock model at locations
X3, X4, Xon-2 and X, will be available as outputs to the neighboring systems (head/tail water).

They are named after their neighboring systems:
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HWDI: Input to the head water system
HWDO: Output from the head water system
TWUI: Input to the tail water system

TWUO: Output from the tail water system
2.1.3 Water Density and Pipe Cross-Section Area as a Function of
Pressure

Relationship between water density and pressure is given in (Lie, 2011). Compressibility S for

fluids is defined as:

B= 1% (2-1)
pdp
Where p stands for density and p stands for pressure
p= Density (Kg/m?]
p= Pressure [Pa]
B= Compressibility (Pa~1]

If pa'"™ and p3'™ withstand for atmospheric pressure and water density at atmospheric pressure

respectively, the following formula can be used to calculate fluid density at other pressures:
p= patmeB(p—patm) (2-2)

A typical value of the water compressibility is f# = 4.5 X 1071° [1/Pa] which can be considered

constant at the range of pressures and temperatures which occur in a hydropower application.

Relationship for changes in the pipe inner radius (AR) and changes in the pipe cross-section area
(AA) against difference in the inside and outside pressure of the pipe (Ap ) is given in

(Parmakian, 1963) for a pipe which is anchored against longitudinal movement:
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AA AR  D(1—p?

AR cE e-3)
Where

R = Pipe inner radius [m]
D= Pipe inner diameter [m]
A= Pipe cross-section area [m]
e= Pipe thickness [m]
E= Young’s Modulus of Elasticity [Pa]
n= Poisson’s ratio [-]

Here new parameters can be defined as “equivalent compressibility due to the pipe shell

elasticity” and “total compressibility due to water compressibility and pipe shell elasticity™:

10A D1 —12)
PP Adp eE

o1 = (Equivalent compressibility [Pa~1])

2-4)
plotal = g1 4 B (Total compressibility [Pa~!])

Speed of sound in water inside the pipe is related to B5°** as follows: (Parmakian, 1963)

1
Speed of sound = 2:5)

total

P Bp

TNlustrative values for B can be calculated having the speed of sound in the water inside a

particular pipe. Illustrative values for speed of sound inside various pipes can be found in the

same reference. As another example, the following calculations give an illustrative value for
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fiberglass pipes series SN10000, DN1400 and PN32 manufactured by Fibrelogic Pipe Systems
Pty Ltd'. According to datasheet of this manufacturer, stiffness of the pipe is defined by:

S = Ee3
~ 12D3

[N/m per metre length of pipe] (2-6)

Specifications of the selected pipe are:

S =10000 [N/m/m] (SN1000O series of pipes)

D =1.388 [m]
e =0.0227 [m]
n=0.22t00.29

Using (2-4) and (2-6) with a Poisson’s ratio p = 0.29 will result in:

12SD3 12 x 10000 x 1.3883
E = = = 2.74329 x 10%° [Pa]

e 0.02273
1AA  D(1—p?) 1.388 x (1 —0.29?)
p=o—= = =2.04 x107° [Pa~?
P T Adp eE 0.0227 X 2.74329 x 1010 [Pa™]

Speed of sound in water inside this pipe calculated using (2-5) will be equal to 633 [m/sec].
Similar of the Equation (2-2) can be written for the cross-section area (A) and the product (Axp):
A = A3tmgBp’ (p-p*t™)

(2-7)
Axp= Aatmpatmeﬁff’tal(p—patm)

Where

A¥™M = Cross section area of the pipe when pressures inside [m?]

atm

and outside of the pipe both are equal to p

! Datasheet available at the following web address (accessed 06.2011):

http://www.fibrelogic.com/pdfs/Fibrelogic Flowtite Engineering Guidelines DES M-004.pdf
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Now it’s interesting to know how much error will be involved if someone uses a linear
approximation for the exponential functions in (2-2) and (2-7):
total (,,_ ..atm
e (p—p*™) _ 1 = B%otal(p — patm)

eBE ! (p-patm)

Max percentage of error =

If Max (B§*!) = 1072 [Pa~!] and Max (p — p*™) = 107 [Pa] , then maximum percentage of

error will be:
Max percentage of error = 0.005%

So in the range of pressures and elasticity applicable in hydropower one can easily assume that

values of A, p or the product A X p linearly change with pressure.

p~p*™[1+B(p—p*™)]
A~ A1+ B (p — p*™)] (2-8)

A X p = Aatmpatm[1 + B}Dotal(p _ patm)]

2.1.4 Governing Equations

In this section governing differential equations for (compressible) water flow inside the penstock

with elastic walls will be formulated by:

e Applying the mass conservation law for the control volumes each enclosed between
penstock cross-sections at locations X,; and X,i,, (for i=1,...,N-1) which results in N-1
ordinary differential equations for the “pressure” states.

e Applying the momentum conservation law for the control volumes each enclosed between
penstock cross-sections at locations X,i;1 and Xji,3 (for i=1,...,N-2) which results in N-2

ordinary differential equations for the “mass flow rate” states.

Continuity Equation
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Continuity equations by applying the mass conservation rule to the control volumes CV,i;
enclosed between penstock cross-sections at locations X,; and X5, (for i=1,...,N-1) will be

given in this section.

Mass conservation law simply states that the rate of change of the fluid mass inside the control
volume with time is equal to the rate of mass flow into the control volume with time. In CFD this
fact usually is stated by the following equation which is applicable to a fluid element. A fluid
element is the smallest volume in which fluid retains its macroscopic properties. (Versteeg &

Malalasekera, 1995)

0
—+ V. =0 2-9
it + V. (pv) (2-9)
Where
p= Density of the fluid as a function of the location with [Kg/m3]
Cartesian coordinates (x,y,z) and the time t
V= Velocity vector field as a function of the location (x,y,z) [m/sec]
and the time t
V.(pv) = Divergence of the vector field pv [Kg/m3/sec]

It can be shown that integrating (2-9) inside the control volume CV,;,; enclosed between
penstock cross-sections at locations X,; and X,i;, (for i=1,...,N-1) will result in the same
statement as the mass conservation law for that control volume but one should be very careful
when evaluating the volume integrals and applying the Gauss’ theorem® to the divergence term
because those boundries of the control volume which coinside with the penstock walls are

moving with pressure and hence are moving with time.

The mass of water inside the control volume CV,;,is given by the following relation:

* http://en.wikipedia.org/wiki/Divergence theorem (accessed 06.2011)
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X2i+2

Myjtq = f P2i+1Ap2i+1dX = P2iy1Ap 2it18X (2-10)
X=Xzi

Remember from section 2.1.2 that pressure and hence density and cross section area are
considered spatially constant inside the control volume. In (2-10) these values are set to be equal

to their value at the central location Xy, 4.

It’s of great importance for the later analysis that the value of A X p at the boundaries of the
control volume for continuity be considered equal to the mean value of that function in the two

adjacent control volumes (Bold dotes shown in the Figure (2-2)).

AP

[ ] |
. f f
Xoi2 Xoi1 X5 Kol iz %o %o

Figure (2-2) Values of the Product Axp Inside the Control Volumes for Mass Conservation and
at the Boundary Points of the Control Volumes

So applying mass conservation to (2-10) will result in the following differential equation for the

control volume CV,;, :

d : : :
Ax a(021+1AP,21+1) =My — My (I=1,..,N—-1) (2-11)

Where

m,; =  Mass flow rate into the control volume CV,;,, at [Kg/sec]
location X,; (according to the conventional flow

direction shown in the Figure (2-1))
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m,;,, = Mass flow rate out of the control volume CV,;,, [Kg/sec]
at location X,;4, (according to the conventional

flow direction shown in the Figure (2-1))

As discussed in section 2.1.2 it is of interest to represent the Equation (2-11) in terms of the
pressure inside the control volume. According to the discussion in Section Chapter 12.1.2, cross-
section area of penstock only changes with pressure ( (aAPIZM / ax) = 0). So by also using

(2-8) the derivative term in (2-11) can be written as the following:

d d dp2it1
T (AP,2i+1p2i+1) = m (AP,2i+1p2i+1) d—:
(2-12)
dpy;
__ ptotal patm ~atm i+1
= A Tt
Bp P P dt
From (2-11) and (2-12) the final form of the continuity equations will be as follows:
total patm ~atm dpai+s . . .
AX BRFHARFMpAMM — = = iy — 1y, (i=1,..,N—1) (2-13)

dt

Momentum Equations

A preliminary form of the momentum equations will be given in this section. The final form of

the momentum equations will be given in the next subsection (The Upwind Difference Scheme).

Momentum conservation for the control volume CV,i,, enclosed between penstock cross-
sections at locations X,i;1 and X,i,3 (for i=1,...,N-2) states that rate of change (with time) of the
momentum (in the X direction i.e. conventional direction of the water flow) of the water flowing
inside the control volume at a particular time t is equal to the rate of the net momentum flowing
into the control volume by mass transport at boundary surfaces X = X5i,¢ and X = X,i,3 plus
sum of the forces that apply to the water column inside the control volume at the X direction

along the penstock axis at that time.
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Like the mass conservation case, there is an equation which is applicable to a fluid element:

(Versteeg & Malalasekera, 1995)

d dp
3t (pv) + V. (pvv) = — I + Smy (2-14)
Where
V= Component of the velocity vector field v in the X direction [m/sec]

as a function of the location (X,y,z) and the time t
p= Pressure as a function of the location (X,y,z) and the time t [Pa]

Sm, = Body forces (friction/viscous and gravity) per unit volume [N/m’]

in the X direction

It can be shown that integration of the above equation over the control volume CVy;,, will result
in the momentum conservation statement above. Again one should be careful in performing the
volume integration and shall consider movement of those boundaries of the control volume

which coincide with the penstock wall.

Amount of momentum of the water column in the control volume CV,;,, is as follows:

Momentum of the water Column =

CV21+2 CV2i+2 CV2i+2 CV21+2

In deriving the above relation it’s being assumed that mass flow rate in X direction inside the
control volume is spatially constant (as mentioned in Section 2.1.2) and equal to my;,,. This
assumption is indicated in Figure (2-3). By this assumption velocity throughout the control
volume will be piecewise constant because the product Axp is assumed to be piecewise constant

between X,i;; and X,i,3 (see Figure (2-2)). The velocity at X,i4, can be considered equal to
r'nP,21+2/(AP,21+2 p21+2)-

Net momentum in the X direction along the penstock which is flowing into the control volume

CV,;4, due to mass transport is equal to:
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Mp 2i+1Vp2i+1 — Mp2i+3Vp2is3 (2-16)

Velocity

X201 X5 Xoitl i % %o Xoiss

Figure (2-3) Variations of Mass Flow Rate and Velocity inside Control Volumes for Momentum

Forces that act on the water column are due to pressure difference between locations X,;1 and
X2it+3, weight of the water column and friction between water and penstock wall. Amount of the

force due to pressure difference at locations X,;,; and X,;, 3 is given in the following relation:

Fp2itz = Ap2is (P2i+1 — Pzi+3) (2-17)

Relations giving the amount of gravity and friction forces for the water column inside control

volume CVy;,, are as follows:

Fgairz = AX Apiyo P2it2 gSINO
(2-18)

Froiy2 = EZi+2VP,2i+2
Where

Fgoi42=  Gravity force applied to the control volume [N]
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Fr,i+2=  Friction force applied to the control volume [N]

A friction coefficient of the control volume

(always negative) given by the following formula:

2i42= Erinz = [N.sec/m]
- EfP Ax ITp zi+2 P2i+2 Sign(VP,ZHZ) Vp2i+2

fp = Fanning friction factor [-]
Internal perimeter of the penstock cross section at

Mp 2142 = [m]

X = Xsis2

Average of the product Axp is used in the relation for gravity force and average velocity is used

in the relation for friction.

Now the momentum conservation law can be formulated for the control volume CV,;,, using

(2-15) to (2-18):

dmp 5;
2i42 . .
Ax—dt = Mpi41Vp2is1 — Mp2i+3Vpits T Fpiva + Feoivz + Fraite (2-19)

This is not the final form of the momentum equations. Before obtaining the final form, this
question shall be answered: What shall be substituted for values of mp and vpat
locations X5i;1 and X,;;3? Answer to this question and final form of the momentum

equations are given in the next subsection (The upwind difference scheme).

The Upwind Difference Scheme

For determining values of mp and vp at locations X,;,; and X,;,3, it’s necessary to rewrite

(2-19) in terms of (dvp 5i4,/dt):
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dip 2i42 _ d

dt  dt ( Api+2 P2i+2 VP,Zi+2)
d Vp itz d
= Apjis2 P2it2 —dt + Vpoit2 a(AP,ZHZ p21+2) (2-20)
_ d Vp2it2 d (Apit1 P2it1 T Ap2i+3 P2i+3
= Appit2 P2i+2 —dt Vp,2i42 at 2

By substituting the terms of the form d(Ap p)/dt from (2-11) into (2-20) the following relation

will be concluded:

(2-21)

dip i A 0 d Vp2it2 + v (mP,Zi_ mp,21+4)
dt P,2i+2 M2i+2 dt P,2i+2 2 AX

By substituting (2-21) into (2-19), the continuity equation in the form of differential equation for

Vp 2i+2 Will be obtained as follows:

d Vp 2is2 + (mp,zi — Mpitq
2

AX Apiyz P2it2 I - Ezi+2> Vpoit2 T

(2-22)

Mp 2i+3Vp 2i+3 — Mp2i+1Vp2i+1 = Fgoitz T Fpaitz

In Equation (2-22) values of vp and mp at X,;,; and X,;,3 shall be determined. One possibility

known as Central Differences Scheme (Versteeg & Malalasekera, 1995) could be as follows:

: _ Mpyi + Mpyiio _ Vpoit Vpit2
Mp 2i41 = 2 » VP2i+1 = - 5
(2-23)
. _ Mppjyz + Mpoig _ Vpoit2 T Vp2ita
Mp 2i4+3 = ) » VPp2i+3 = )
In this case (2-22) can be re-written as follows:
d vp ,;
P,21+2 12 _ 7
AX Appitz P2ivz = T A2i42 VP2i+2 = A2iVp2i
de (2-24)

!
Apira VPita T Fo2ivz + Fp2itz
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Where

ay; =  Mppj+ Mpyiy
4
, . .
Aippy = Mppi — Mpoits £,
4 2142
, . .
Azizz =  Mp2i42 + Mp2it4
4

It can be shown that at inviscid flows with large Peclet numbers the above choice does not
guarantee stability of the variables. (Versteeg & Malalasekera, 1995) One sufficient condition for
(2-22) to have a stable answer for steady-state velocity values in case of known pressures is (the

same reference):

1. All the three coefficients ay; , a,;,, and a,;,, should be positive

2. The following condition shall be satisfied:

Ao+ Ay {g 1 forall i=1,2,..,N (2-25)

-2
AYitn <1 atleastforonei=1,2,...,N—2

When the system reaches the steady state condition, all m values become equal and the first

condition obviously isn’t satisfied in (2-24).

One solution known as “Upwind Difference Scheme” is available to the above problem. In this
solution the values of vp and mp at X,;,; and X,i;3 for use with (2-22) are determined as
below:

. _ Mpoj + Mpojy . _ Mpojtp + Mppjg
Mp2i+q1 = 2 » Mpojy3 = >

. . (2-26)
If p i + Mp i, = 0= Vpaiyr = Vpajand Vpiys = Vp iy

If hp i, + Mpits < 0= Vpiiyr = Vpoitz aNd Vp itz = Vpits

Then ay;, ayi,, and ay;,, in (2-24) will be given by the following table:
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if Mp; + Mpjiyp =0 if Mp i, + Mp e <0

Mp i + Mp it Mp 2i+2 + Mpjts

!
A2it2 — &, _ E.
; Mp o + Mp it
a,; 0
2

_ Mp2it2 + Mp2it4

!
A2ita 0 >

So the coefficients will always be nonnegative and the following condition will be satisfied:

! !
Azi T Azigg
!

<1 (inpresence of friction)
Azi+2

The relation (2-24) with the coefficients determined by the upwind differences will make the

final form of the momentum equation. It’s desirable to change back (2-24) as an ODE in terms of
(dmmi“ / dt) . Using (2-19) and (2-26) the final form of the momentum equations will be

obtained as follows:

de 2i+2 {2i+2} {2i+2} {2i+2}
AXT itz VPitz = Ay Vit Ayiyy Vpita T Fgaivo + Fpoivo
(2-27)
(i=12.....N-2)
Where agzii+2}' aézij_?} and aézii?} are obtained from the following table:
if mp,; + Mpyi4, =0 if Mpji4p + Mpois <0

(2i+2} Mp 5i42 + Mpitg Mp 7 + Mp i
Aziz2 5 — S2it2 - 5 — $2i42 (2-28)

(2i+2) Mp; + Mp iy 0
a'Zi 2
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{2i+2} 0 Mp 2i+2 + Mp2i4+4

a’2i+4- 2

Fg2it2, Fp itz and &34, are given in (2-17) and (2-18).

2.1.5 Summary Penstock Model
In this section penstock model will be summarized based on the equations developed in the
previous section, but before that, some definitions shall be made:

The state vector: The state vector of the penstock S € R?N~3 (where N is number of the pipe
segments with equal length of Ax along the penstock) contains pressures at the center of the
control volumes CV,;,; (control volumes located between X,; and X,;,, for i=1, 2, ..., N-1) and
mass flow rates at the center of the control volumes CV,;,, (control volumes located

between X,;,, and X,;,3 fori=1, 2, ..., N-2) as shown in the Figure (2-1):
s(e RN = [P]
p (E RN_l) = [pp3(= Puwbp1) Pps Pp7 - Pp2n-3 Pp2n-1(Z pTWUI)]T (2-29)

m (€ RN72) = [thpy(= Mywp) Mpg Mpg .. Mpyy_g Hpon—z(= Mipywyp)]T

Extended pressure and mass flow rate vectors: These vectors are the same as p and m defined
above except that they include input pressures and mass flow rates from the neighboring systems

(Head water and tail water):

Pext (E RNH) = [pp,1(= Puwpo) Pp3(= Puwpi) Pps Pp7
Pp,2N-3 pP,zN—1(= Prwur) pP,2N+1(= pTWUO)]T
(2-30)

Mgy (€ RV) = [thp, (= ywpo) Mp4s(= Mywp) TMpe Ipg

MpoN_g MpoN_z(= Mrwy) Mpon(= Mrwyo)]”
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For Friv Fp ext and Fy exe ¢ The vector Fp oy contains the products (area X density) at the
center of the control volumes CV,;, (i=1,2, ..., N-1) as well as at the end points (X; and X,n41)-
The vector Fy; exe contains the products (area X density) at the center of the control volumes

CVyi4p (1=1,2, ..., N-2) as well as at the end points (X, and X;,y).
Fpext(ERNTY) =[Ap1 X p1 Ap3Xps .. Apan-1XPan-1 Apani1 X Pans1]T
Frinext(ERN) =[Apz Xp2 ApsaXps - Apan—z XPan—z Apan X P2n]T

Since penstock is going to connect to systems with incompressible water and inelastic walls
models, it’s easier to consider the same conditions (incompressible water and inelastic walls) at

locations X1, Xy, X,y and Xpn41. Then Fpy ey and Fy e Will be as follows:
T
Tp_ext — [A%tm X patm T{)‘ A%tm X patm]

T
Frinext = [A%tm X patm TTn‘l A X patm]

Where (2_31)
Fo(e RNY) =[Apz X p3 .. Apan-1 X pan-1]T
Fi(ERN2)=[ApaXps . Apan—z X pan-2]T

As a consequence of considering incompressible water and inelastic walls at locations X, X,, X,y
and X,n41, Pext (including pywy and prwi) defined in (2-30) will not be used anymore and p defined in

(2-29) is enough in the penstock model.

Vectors containing velocities and cross-section areas at the center of the control volumes

CV,;,2 (i=1,2, ..., N-2) as well as at the end points (X, and X,y):

An’l_ext(E RN) = [Agtm A?ﬁ Agtm]T
An(ERN"Y) =[Aps Aps .. Apan—z]” (2-32)
(Area at locations X, and X,y is considered not changing with pressure i.e. inelastic

walls)
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Vi ext(E RN) = [VP2 Vpa - Vpan-2  Vpan]T

Vectors containing densities and pipe perimeters at center of the control volumes CV;,,

(i=1,2,...,N-2):

Pi(ERN2) =[ps Ps - Pan-2]T
(2-33)
N(eRN"2) =[llps Mpe ... Ipon_z]T

Vectors containing densities and cross-section areas at the center of the control volumes

CVZi+1 (i=1,2, coey N'l):

pp(E RN ) =[p3 Ps - Pan-1]”
(2-34)
A, (€ RN"Y) =[Apz Aps .. Apan-1]T
Pressure at the center of the control volumes CV,;,, (i=1,2, ..., N-2):
Pm(€ RN"2) = [Ppa Pps - Ppan-2]T (2-35)

Gravity and pressure gradient forces acting on the control volumes CV5;,, (i=1,2, ..., N-2):

Fom (€ RN"?) = [Fea Fge - Fgan-z]”
(2-36)
Fp (eRN2)=[Fps Fpe o Fpan2]?
Vector of friction coefficients for the control volumes CV,;,, (i=1,2, ..., N-2):
En(ERND =18 & .. Gno2l” (2-37)
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The matrix for coefficients of velocities in the momentum equations: This matrix includes

the time varying coefficients of the velocity terms in (2-27) and with relations given in (2-28):

T aff} aézl} a{64} 1
_ aé6} a;{f} aé6}
A€ RN-2x3] = s s s (2-38)

__{2N-4} _{2N-4} _{2N-4}
Arn-4 v AaN—2

(2N-2}  _{2N-2} _{2N-2}
L=AoN—2  An-a Gy

Now a step by step procedure can be defined for calculation of time derivative of the state vector

S. This procedure is summarized in Table (2-1).

Table (2-1) Summary Penstock Model

1.

Input N, S, mywpo and mrywyo (Elements of S and the other three variables defines in Figure (2-1)

2.

p =S(1:N—1) and m = S(N:2N — 3)
3.
Mey = [ywpo mMmT  thrwyol”

4. Vector form of continuity equations given in (2-13):
dp total patm at . .

E = (AX BPO “ A?)mpa m)\[mext(l: N — 1) - mext(Z: N)]
5. According to (2-8) and (2-31):
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F, ~ Ap"patm [ones(N -1+ Bfftal(p — p®™ x ones(N — 1,1))]

Fi = 2\[Tp(1: N—-2)+Fp(2:N— 1)] (Averaging as mentioned in Section 2.1.4)
Tn'l_ext — [ A&ll)tm x patm TTn’l Aé}l)tm x patm]T

6. Definition in (2-39):

Vin_ext = Mext -/ Friy ext (. / £ pointwise division)

7. From (2-29), (2-41) and averaging according to (Versteeg & Malalasekera, 1995): (In fact
in that reference averaging is done on density at center of the control volumes for

momentum)
Pm = 2\(p(1:N —2) + p(2:N — 1))

8. From (2-8), (2-32) and (2-33):
P = p2™ X [ones(N — 2,1) + B X (py — p*™ X ones(N — 2,1))]

Ap = Frp./ P

Il; = sqrt (4mA L)
9. From (2-18) and (2-37): (.* denotes point wise multiplication)
1 .
&m = (—Efp AX) [l'lm 4 P ¥ Sign (vmm(z: N — 1)) * Vi ext (21N — 1)]
10. From (2-17), (2-29), (2-32) and (2-36):
Fpn = A+ (p(LN—2)— p(2:N - 1))

11. From (2-18) and (2-36):

FG,m = Ax g Sinep X Tm_ext(ZI N — 1)
12. The matrix Ay, defined by (2-38) and (2-28) shall be calculated with a loop for i=1:N-2.

13. Finally momentum equations from (2-27):
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dm
Ax—= = A (1) X Vi (2:N = 1) + A (:,2) X Vi (1: N = 2) +

d‘lm(i ;3) X Vm_ext(g: N) + FG,m + Fp,n'l

2.1.6 Special Case: Neglecting Compressibility and Elasticity
Effects

If compressibility of water and elasticity of the walls in a Penstock are neglected, a first order
model can be derived. Conservation of mass in this case ensures that mass flow rate from the
pipe cross section is constant with axial position everywhere along the pipe length. Furthermore
if the pipe cross-section area is constant along the pipe length, axial velocity of the water will be
constant with axial position. Momentum conservation can be applied to the whole mass of the
water inside the pipe with considering the whole pipe as the control volume. Then the differential
equation for the mass flow rate can be directly concluded from (2-17) to (2-19):

my

B AP Patm

Vp
(2-39)

drh : 1 :
Lp _dtp = —Ap (ppx — Pp1) + Lp Ap parm 8 Sinbp — > fe L Ilp parm sign(ve) V3

2.2 Francis Turbine

2.2.1 Introduction

Hydraulic power available to be converted into mechanical power by the turbine is given by the

following equation (Kjglle, 2001):

1

Pth = pa_tm my Ape

Where
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PP: Hydraulic power available for conversion by turbine [W]
m;: Mass flow rate of water through turbine [Kg/sec]

Apy: Pressure drop across turbine inlet and outlet [Pa]

The above equation can be investigated using the Bernoulli equation with following

assumptions:

Incompressible water with inelastic turbine case walls are assumed so that the mass flow
rate is the same at the inlet and outlet of the turbine. This is also the reason why in this
case the water density is considered to be constant and equal to p2™,

Power used for accelerating the water inside the turbine case is neglected so that the
steady-state turbine equations can be used to describe turbine operation in general case
and hence the Bernoulli equation can be applied (considering the huge amount of water in
the waterway other than the turbine case, this assumption is acceptable.)

Difference between the turbine inlet and outlet diameters is neglected. Since the axial
velocity of water at both the inlet and the outlet is about a few meters per second, this
will cause a small error in estimation of the pressure drop across the turbine which is
acceptable for high-head plants. In fact a rotational component is also present at the water
leaving the turbine runner which is vanished across the draft tube and so its effect is
partly recovered. The remaining effect of the rotational speed is considered in the

efficiency of turbine by the manufacturer.

The mechanical output power of the turbine is then given by the following equation:

Where

Ne .
P = ——1h, Ap (2-40)
atm
P™ = Mechanical output power of the turbine [W]
N =  Overall efficiency of the turbine [-]

42



2.2.2 Turbine Efficiency and Similarity Laws’

. - . . . A .
Turbine efficiency is a function of pressure head across the turbine H,, = gp% [m] , volumetric
flow rate Q; = pI:—tfn [m3/sec] , turbine rotational speed w,, [rad/sec] , turbine guide-vane

opening Ygy[% or degrees] and turbine mechanical output power P™[W]. These five variables
are interrelated and if any three of these variables are known, then the other two variables and
also efficiency of the turbine can be found using detailed datasheets if provided by the turbine
manufacturer. The key datasheet information for this purpose are the so called “hill curves”. For
using the hill curves one often should be familiar with some terminology, definitions and rules

which will follow hereinafter.
Output Power Equation of the Turbine

Figure (2-4) shows trajectory of a water particle that leaves the guide vanes at the point a,, enters

in one of the water passages of the runner at the point a; and leaves the runner at the point a,.

3 This chapter is based on materials from (Farell, 1987), (Kjglle, 2001), (Selecting Hydraulic Reaction Turbines,
1976) and (Thoresen, 2010)
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runner

Figure (2-4) Trajectory of a water particle in the turbine (based on (Kjglle, 2001))

Descriptions of the various variables shown in the figure are as follows:
u: Peripheral velocity of the runner
c: Absolute velocity of the water particle measured in a reference frame fixed to the turbine case

v = ¢ —u : Relative velocity of the water particle measured in a reference frame fixed to the

runner
c€: Circumferential component of the velocity ¢
c™: Meridional component of the velocity ¢

The torque induced on the turbine by the water flow is given by:

Ty = e (rycf — rpc3) (2-41)
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In the above equation it’s assumed that all the water flowing through the turbine runs through the
runner passages (in fact ideal sealing is impossible). The turbine mechanical output power will

then be equal to:

PM = Tiw,,
= M (r1 0y, C] — r;0,C3) (2-42)

= mt(ulcf - Uzcg)

Mechanical losses due to friction are neglected in (2-42). The efficiency equation can be found

from (2-40) and (2-42):

atm (u;cf — uycs)

(2-43)
Ap¢

M= P
The efficiency found by (2-43) is in fact the “hydraulic efficiency” of the turbine because
mechanical losses like friction losses are not considered in (2-42). If these losses be shifted to the
generator side (which has a common shaft with turbine), then n; in (2-43) can be considered as

the overall efficiency of the turbine.
Similar Operating Conditions

Similar operating conditions for the same turbine means conditions under which water particle
trajectories inside the turbine casing, runner passages and the draft tube will be the same. For this
purpose all the velocities shall be proportional and all the directions (angles) shall be the same
when the two operating conditions are being compared. The angle a, in Figure (2-4) is
considered to be constant for all operating conditions under the same guide vane opening and is
determined by the angle that guide vanes make with the circumferential direction at radius ry.
The angle 3, is also considered to be constant and determined by the angle that the runner blades
make with the circumferential direction at radius r,. It’s expected that meridional component of
water absolute velocity in between the guide vanes and the runner is proportional to reciprocal of
the radius. If travel of water particles in this area be assumed frictionless then water maintains its
rotational momentum and hence circumferential component of velocity will also be proportional

to reciprocal of the radius. Hence a; = o and therefore o4is also nearly constant for all
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operating conditions with fixed guide vane opening. Figure (2-5) shows the same turbine

operating in a different condition in which the turbine speed and water flow is reduced.

runner

Figure (2-5) Turbine Operating in Different Operation Conditions (Continued from Figure (2-4))

For the two operating conditions shown in the Figure (2-4) and the Figure (2-5) to be similar, the

following conditions shall be met:

! ! ! ! ! !
Bi=Pr.og=q t=t===2=2 (2-44)

It can be shown that only satisfaction of the following relation is enough for the two conditions

to be similar:

u, ¢
=2 (2-45)
U €
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! !
Proof: The equality % = 3—2 is obvious. Since a4is constant for all operating conditions, the
1 2

equalities 87 = ; and % = % can be concluded from (2-45). It only remains to prove that
1 1

ci

2 will be proved already (since
Cq Co

equality 2_1 = % holds by which satisfaction of a; = a, and
1 2

B, is constant). The water volumetric flow rate inside the runner passage in Figure (2-4) is given
by A;c* = A,v, where A; is the circumferential area of the runner passage inlet and A,is the
cross section area of the passage outlet perpendicular to v,. The same holds for the Figure (2-5):

Ac™ = A,v5 (B, is constant so cross section area normal to v is also A,). Then it follows:

! m !

. G _ G V2
(oyis constant) = — =——=— (2-46)

Cq Cq1 Vs

And this completes the proof.

From the above discussion a sufficient condition for similarity can be stated as below (Farell,

1987):

& = constant (2-47)
(*)m

Then for similar operating conditions all the velocities are proportional to w,,. It is expected that

similar operating conditions result in equal efficiencies. So from (2-43) it follows that for similar

operating conditions the following holds:

Ap¢
g patm

Pm
— = constant, t—3 = constant,n; = constant where H, = (2-48)
m

Wi

Since it’s expected that under the conditions of fixed speed and fixed guide vane opening, each
. . H
head value corresponds to one and only one discharge value, then the relation w—; = constant

m

can be used as an equivalent sufficient condition for similarity.

Turbine Efficiency Charts
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Turbine efficiency charts or the so called “hill charts” or “hill curves” indicate the constant
efficiency loci on (Q; , H,) or (B, Hy,) plane for design operating speed. Figure (2-6) shows an
example for the “hill chart”. This chart gives efficiency as a function of the turbine volumetric
flow and head at design speed for a specific series of turbines. If the values for design head and
design power for a particular turbine in this series are known, then the design speed for that
turbine can be found by the parameter Ng. The parameter Ny is the so called “Specific Speed”

and defined in the metric system as:

N, = Niq (Ptds)%
(Hea)*
Where
Niq: Turbine design speed [rpm]
P.q: Turbine design power [kW]
Hiq: Turbine design head [m]

The series of turbines with the hill chart shown in the Figure (2-6) have a specific speed equal to
111 in metric system. So if a particular turbine of this series is designed for operating in 100MW

output power and 333m design head, then its design speed will be 500 rpm.
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Figure (2-6) An Example of Hill Chat for a Turbine with Ny = 111 with Percent Discharge as

the Horizontal Axis (Selecting Hydraulic Reaction Turbines, 1976)
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The Figure (2-7) shows the hill chart for the same series of turbines in terms of head versus
power. The 100 percent turbine discharge point shown in the Figure (2-6) coincides with the 100
percent design power point in Figure (2-7). If a particular turbine of this series is designed for
operating in 100MW output power and 333m design head, then its 100% discharge can be found

as follows:

Prg = NtaP8HwaQta
100 x 106[Watt] = 0.85 x 1000[Kg/m?3] x 9.8[m/sec?] X 333[m] X Q.q[m3/sec]
Qua = 36 [m?/sec]

Normally design power is chosen so that best efficiency power is equal to 80% of the design

power.

The dashed sloped lines in Figure (2-6) show head variations with discharge for different guide
vane openings at the design speed. Knowing two out of the three variables (discharge, head and
guide vane opening) for the turbine running with the design speed, the third variable and the
efficiency of the turbine can be found using the chart shown in the Figure (2-6). Also the turbine

power can be determined using (2-40) or from the Figure (2-7).

The question of interest is that if the turbine operated in a speed other than the design speed, how
the chart shown in the Figure (2-6) could be used for finding efficiency in the new operating
condition. Let’s consider that turbine discharge and head at a speed N [rpm] which is different
from Ny, (design speed) are equal to Q [m3/sec] and H [m] respectively. Let’s denote this
operating condition by (H,Q,N). A similar operating point (H®9, Q®9, N.4) can be found using
(2-47) and (2-48):

H9 H Q9 Q

LI T, 2-49
NZ N2’ Ny N (2-49)

Since operating points (H,Q,N) and (H®4,Q®9,N.q) are similar, they should have equal
efficiencies. So efficiency for the off-design operating point can be found by using the equivalent

head and discharge values H®? and Q9 in Figure (2-6).
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In Figure (2-6) by knowing the values of head and discharge at the design speed one can find the
corresponding guide vane opening which resulted in that operating condition. What can be said
about the guide vane opening at the operating condition (H, Q, N) where N is off-design speed?
Since similarity conditions are obtained under assumption of geometric similarity of the flows in
scroll case, guide vanes, turbine and draft tube, so it’s expected that guide vane opening will be
the same for similar conditions. So the corresponding guide vane opening for the operating point
(H,Q,N) can be found by using the equivalent head and discharge H®? and Q®? in Figure (2-6).

That means that: Yg;} =Ygy

2.2.3 Simulation of Turbine in Matlab

For being able to simulate a turbine in Matlab, data of the “hill chart” for that particular turbine
(or series of similar turbines) shall be input into Matlab. For this purpose, an area (will be
referred to as “interpolation area” throughout this report) in the hill chart shall be defined which

has the following properties:

- Hill chart data shall be defined in allover the interpolation area (for example, this area
shouldn’t extend beyond the “full gate opening” locus where obviously no head-
discharge relationship or efficiency is defined for that area.)

- The interpolation area shall cover as many operating points as possible (including the
operating points with higher turbine efficiencies which are the most usual areas of the
turbine operation)

- It shall be able to define a uniform grid for the interpolation area (for example if the
interpolation area is a rectangle with sides parallel to H and Q axes, grid points can be

defined by the following instruction in Matlab: meshgrid (Q,: AQ: Q,, H;: AH: H,) )

After deciding on the shape and size of the interpolation area, data (efficiency and/or guide vane
opening) at some sample points inside that area can be entered into Matlab. Obviously these
sample data points will be scattered and off-grid (no data available at every point). As many
sample points as possible shall be chosen. Then data at uniform grid points can be found by 1D
interpolation as described in the next paragraph. After data was estimated at the uniform grid
points, uniform interpolation functions in Matlab (such as interp2) can be used for further

interpolations. The function “interp2” in Matlab requires uniform grid points like the ones
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created by the “meshgrid” command and also requires that data be available at all the grid points
which these requirements are reflected in the required properties for the interpolation area listed

above.

¢ Efficiency as a function of Head and Guide-Vane opening: Examining Figure (2-6) shows
that the area defined by inequalities 0.3 < Ygy < 1 and 65% < H < 125% if mapped into a
rectangular area in the Ygy — H Cartesian coordinates can be a suitable interpolation area. A
uniform grid can be defined for that mapped area. The available data in the form of (Ygy, H,n)
extracted from Figure (2-6) are listed in Appendix II. The data are scattered, i.e. there are not the
same number of data points for different guide-vane openings and head values (H) are not the
same for each data set corresponding to one guide vane opening value. Using a 1D spline
interpolation for each set of data corresponding to a fixed guide vane opening, efficiency at fixed
head values can be estimated for each guide vane opening. So an interpolated sample data at
uniform grid points (like meshgrid(0.3:0.1:1,65:5:125) ) will be obtained. Then using a 2D
interpolation function (like “interp2”) a set of data at finer grid points (like
meshgrid(0.3:0.01: 1,65:1: 125) ) can be generated. This way a look-up table with fine grid
has been created. “Spline” or “cubic” interpolation methods are available as options with interp2
function. The look-up table further can be used to build the function n = Eff Turb(Ygy, H). This
function interpolates (or extrapolates) the data of the look-up table to give efficiency at the new
point (Ygy, H). Matlab codes for simulation of turbine are given in the Appendix III. Figure (2-8)
shows a sketch of the reproduced efficiency values based on the sample data for different guide
vane and head values. Figure (2-9) gives a sketch of isocontours of the reproduced efficiency

function in the Ygy — H plane.
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f Hill Chart Data
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¢ Head as a function of Discharge and Guide-Vane opening: From Figure (2-6) it’s possible
to find turbine discharge as a function of head and guide vane opening and use an interpolation
function as described in the above paragraph to create a look-up table for discharge values. Since
water flow is inertial and cannot change discontinuously, it’s desirable to find head as a function
of discharge and guide vane opening. One possible solution is to use a search function to find the
head value corresponding to a given discharge and guide-vane opening from the above
mentioned look-up table. This process might be slow in simulations. Alternatively another

method is suggested in the following which is applicable to the chart in Figure (2-6).

Figure (2-11) shows that fixed guide-vane head-discharge loci in the chart of the Figure (2-6) are
almost straight lines (in the range of variations of the head) which have a common intersection
point. So a polar coordinate can be introduced for which fixed guide-vane head-discharge loci lie
in the same direction as the “fixed-0” lines. Figure (2-11) is created by importing and scaling the
hill chart (image) in the AutoCAD environment. Relationship between position data
(R[%], 6 [degree]) of a particular point in the hill chart and corresponding (Q=percent
discharge, H=percent head) values are as follows (0 is measured from the 100% give-vane

opening loci in counterclockwise direction):

Rcos(72.04" +0) =32.2+Q

134 (2-30)
Rsin(72.04° +8) = 331.6 + (H — 60) X —0
Figure (2-12) shows the angle 0 for different guide vane openings as tabulated below:
0 [degrees] 0 0.64 | 1.50 | 2.56 | 3.30 | 5.30 | 6.76 | 8.16 | 10.09

Guide vane opening [p.u] 1 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2

These data can be interpolated to give 0 as a function of guide vane opening. Then from (2-50)
with a known Q, the corresponding H value can be determined as the function H_Turb(Ygy, Q) .
A sketch of the angle 6 versus guide-vane opening found by interpolation is given in Figure

(2-10).
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Figure (2-10) Interpolating 0 values as a function of Ygy (See text)

If the fixed guide-vane head-discharge loci have more curvature then using the straight line
approximations would have less accuracy. In fact discharge of turbine for a given guide vane
opening is proportional to the square root of difference between the head and the turbine
motoring head. Turbine motoring head varies between 15% and 40% of the design head
(Selecting Hydraulic Reaction Turbines, 1976). In the head ranges that turbine operates (between
65% and 125% of the design head) discharge variations with head might be considered almost
linear. The accuracy of course might vary for different turbines. Extrapolations for head values
outside the range between 65% and 125% of the design head might also have large errors and
should be treated carefully.

In most of the literature like in (Machowski, 2008) it’s been assumed for simplicity that for
constant guide vane opening turbine discharge varies with square root of turbine head. This
assumption simply neglects the turbine motoring head discussed in the above paragraph. This
assumption implies that the discharge coefficient defined by the following formula for a given

guide vane opening is independent of turbine head:
Q¢
\ 28H¢

The accuracy of this assumption can be investigated for the diagram of Figure (2-6). For the full

Cy = (discharge coefficient)

guide vanes opening, discharge values for 65%, 100% and 125% of design head are 79%, 100%
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and 117% respectively. Calculation of discharge coefficient at these conditions will result in

discharge coefficient values equal to:

. _ _Qu
' V2gHi
H=Hq
. _ 079Qu 0.98 Qa
v - - .
H=oesty Y 2g(0.65 Hyq) v 28Hw
. _ 117Qu 1.05 Qta
v _ -_ .
A J2g(1.25 Hyy) J2gHy

As evident, assuming ¢, being constant with turbine head can cause up to 7% error in calculation
of turbine discharge at full guide vane opening when turbine head varied between its minimum

and maximum values.
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Figure (2-11) Relationship between Turbine Head and Discharge for Fixed Guide Vane
Openings
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Figure (2-12) Same as Figure (2-11) with More Details
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2.2.4 Summary Turbine Model in Matlab

The turbine model is summarized in Table (2-2) below:

Table (2-2) Summary Turbine Model

Q;: volumetric discharge given [%]

Q¢ i
Q’t ==t « w;iestgn
Wm

H,E = H_Turb(Y(;v; Q’t)
1 = Eff Turb(Yey, Hp)

HI
H; = —tz X wZ  head [%]
design
(@

P = patm gntH¢ Q¢ (H¢in[m]and Q;in [m3/sec])

2.3 Models for Head-Water and Tail-Water

In this section models in the form of differential equations are introduced for head water and tail

water systems. These models are available in the literature like in (Lie, 2011). Here the models

are further developed to interface elastic penstock. Head water system consists of reservoir,

intake, conduit, surge shaft and finally the penstock. Tail water system consists of turbine, draft

tube, tail water tunnel and tail water reservoir. For simplicity it’s assumed that level of water in

both reservoirs doesn’t change (for example because of make-up water flowing into the head

water reservoir or water flowing out from the reservoir in tail water. Incompressible water and

inelastic walls are assumed everywhere except for the penstock. First models for the case in

which elastic penstock is considered will be given. Then the model for inelastic penstock case

can be obtained as a special case.

2.3.1 Local Pressure Losses
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Local pressure losses (hence energy losses) take place at the intake, bends, joints, orifices (surge
shaft) and cross-section area widening or reduction in different places along the waterway. The
total inertia of the water flowing in locations that these losses take place can be neglected
compared to the inertia of the huge amount of water that flows in the whole waterway. So
steady-state (instead of dynamic) models of these losses can be used in the dynamic model of the
whole waterway with enough accuracy. The equations available as models for these losses are
described in (Thoresen, 2010). Due to relatively low speed of water inside the waterway these
losses are not very important in a high head plant. So they will be ignored in models that will be

introduced in the next two subsections.

2.3.2 Head Water System

Figure (2-13) shows the components of the head water system that are considered in the model in

this subsection.

61



Local Losses

VIEW A
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l Mo Local Losses
: hg
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Area=A, Outputs to Downstream S T
Penstoc LA
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(Penstock) Conventional
flow
Surge Shaft direction

Inelastic Penstock

Figure (2-13) Head Water System with Interface to Elastic Penstock

Three subsystems can be recognized for modeling: Reservoir-conduit, surge shaft and finally

penstock interface. These subsystems join together at a T-junction. Conservation of mass will

result in the following relationship between mass flow rates in the conduit, surge shaft and

penstock interface:

Mywpo = M¢ + Mg

(2-51)
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If local losses and velocity heads are neglected at the conduit-surge shaft- penstock junction, the

following approximation can be concluded:

Pcx ® Psx = PHWDO (2-52)

¢ Reservoir-conduit Subsystem: It’s assumed that water is added to the reservoir surface to
keep hy constant. Horizontal components of the water velocity inside the reservoir are not
modeled and it’s assumed that vertical component of the water velocity is the same at all
locations inside the reservoir. Axial mass flow rate m¢ in the conduit is assumed to be equal to
the mass flow rate across the horizontal cross-section area of the reservoir due to the assumption
that make-up water is added just to the surface and there is just one intake where water flows out
and also incompressible water assumption. Intake losses are neglected. Wall frictions inside the
reservoir are neglected too. Writing the momentum equation (2-39) for the volume of water

inside the reservoir and also for the conduit will result:

dm
hRd—tC = —Ar(pcr — p*™) + p?™ghrAg (2-53)
difig (2-54)

L¢ T —Ac(pex — pep) + p*™g Le Ac sin O, — K mg

Where

fc Lc Mg sign(re)
= 2 A%; patm

(o

When Ar — o0, the reservoir can be considered as a fixed head source and the Equation (2-53)

will change to the following approximate algebraic relation:

pa = p*™ + p?™ ghy (2-55)
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e Surge Shaft: By applying the momentum conservation for the water volume inside the surge

shaft using the equations (2-17) to (2-19) and (2-39) will result in the following equation:

dring
S dt

dl

. . fs Is I sign(rhg)
TMsar T —As(psx — p*™) + p*™Mgls Agsin 65 — 5

2 A% patm mg

(2-56)

Is

. dlg) . . .
The term (— g E) in the above equation is because one of the boundaries for the control

volume for momentum equation is moving with time by a speed equal to:

ds _ __1s 2-57
dt — As patm (2-57)
Substituting % from (2-57) into (2-56) will result in the following equation:

de .2 .
I a + Ksth§ = —As(psx — p*™) + p*™gls Ag sin B
Where (2-38)

_ fs ls HS Sign(rhs) 1
s = 2 Aé patm Ag patm

¢ Conduit Interface: An equation of the form (2-39) can be developed for the volume enclosed

between the axial positions X; and X3 in Figure (2-13):

drh
Ax SHWDO _
dt

Where

HW — 2 A% patm

= —A;(Puwp1 — Puwp0) + Patm 8 AX A, sin 0p — Ky Miwpo

(2-59)

fp Ax II, sign(thpwpo)
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Equations (2-54), (2-58) and (2-59) are for variables which are linearly dependent according to

(2-51). So the headwater subsystem’s order actually is three. It’s possible to omit the equation

(2-58) to find pgwpo in terms of other variables:

Ac Ay A Ac A, As ..
—+t—=+— Is Puwpo = ({7—Pc1 + == Puwb1 T 1_

Le = Ax Lc Ax

X
Patm & (Ac sinB; — A, sinBp + Agsin Og) — L_C M2 —
C

Ks
Is

— (ywpo —

K
me)? +

(2-60)

So the Equations (2-51), (2-52), (2-54), (2-55), (2-57), (2-59) and (2-60) define the model for the

head water system. It’s possible to replace for the variables mg, pcx and psx from equations

(2-51) and (2-52) to get the final set of equations for the head water system as summarized in

Table (2-3).

Table (2-3) Summary Head Water System Model

_ fs Is Mg sign(thywpo — mc) 1
s~ 2 A% patm Ag patm
fc L M sign(nc)
c= 2 A% patm
_ fp Ax T, sign(thywpo)
Kuw =

2 A% patm
—_ atm atm h
P =p" +p7 T ghgr

Ac A, A)‘l[(A A,

PHwWDO = (L_c+ Ax g L Pc +— Ax Puwpi T

K¢
Patm 8 (AC sin eC - A2 sin ep + AS sin© ) — L—mc
C

% — IhC - IhHWDO
dt Aspatm
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dring
LC? = —Ac(Puwpo — Pc1) + P

atmg [, Acsin B, — Kmé

dmywpo
AX———

. —A,(Puwp1 — Puwpo) + p?™g Ax A, sin 0p — Ky fwpo

2.3.3 Turbine, Draft Tube and Tail Water System

The model discussed in this subsection consists of an interface to penstock, turbine, draft tube,
tail water tunnel and tail water reservoir. Tail water tunnel always has a positive slope in the
direction of water flow to insure submergence of the turbine in water and prevent cavitation

problems. Like the head water, here also three subsystems can be verified:

¢ Interface to Penstock: The equation is similar to (2-59):

diirwpo _

AXT = —A;n(Prwuo — Ptwul) + P

atm : 2
g Ax Az sin Bp — Ky itwpo

Where (2-61)

P fp Ax [,y sign(thrwpo)
™ =
2 A%N patm

¢ Turbine and draft tube: Turbine equations are given in Table (2-2). Dynamics of the draft
tube is neglected in here to avoid complexity, but static pressure of the water column inside the
draft tube may be accounted for in the model. So the following relationship will be held for the

pressures from the turbine inlet to the draft tube outlet:

Prwuo = p*™g H; — p*™ghpr + Prwry (2-62)
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Figure (2-14) Tail Water System with Interface to Elastic Penstock

o Tail Water Tunnel and Reservoir: Like the reservoir at the head water if the horizontal

cross section area of the tail water reservoir be quite large, then pressure at outlet of the tail water

tunnel can be considered to be fixed:

prwrx = P*™ + p?'™ g hrwy

(2-63)

The water flow rate in the tail water tunnel is equal to the water flow rate at the penstock

interface (Penstock interface is inelastic and so is the whole of the downstream of the interface).

So the pressure drop at the both ends of the head water tunnel can be determined from the

following differential equation:

dmrywpo

_ atm : <2
Lrwr ——— = —Arwr(Prwrx — Prwt) — P*"™& Lywr Arwr Sin 81wt — Krwritwpo

dt

Where
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frwr Lrwr Hrwr sign(thrwpo)
2 AZTWT patm

Krwr =

Solving (2-61), (2-62) and (2-64) for prwyo Will give:

-1

Lrwr Azn Lrwr Azn
P = (1 + —) ( atmg (4, — h + +
TWUO AX Arwr p™™Mg (H, pr) + PTwTx AX Arwr
. AN Lrwr mfwpo
Patm & Lrwr (sm Orwr + sin 9P> + (j(TWT - fKTW)
Atwr Ax Atwr

Prwur +

(2-65)

(2-66)

Relations given in Table (2-2) together with Equations (2-61), (2-63) and (2-66) define the tail

water system model which is summarized in Table (2-4) for convenience:

Table (2-4) Summary Tail Water Model

fpwyo 100

Q¢ = -
Patm Ele51gn

Turbine volumetric discharge [%]

eq _ Qt design
T X0y
Wm

H{* = H_Turb(Ygy, Q7Y
n¢ = Eff Turb(Ygy, Hy )

eq design
H; H

= [—— x w?, | x — '
H, W 100 Turbine head [m]

P = patm €Mt He Q¢ Turbine power [Watt]

atm + atm
p

Ptwtx = P g hrw
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frwr Lrwr Hpwr sign(thrwyo)

Horwr = 2 Afyr P2t
_ fp Ax T,y sign(thrwyo)
mwe 2 AZZN patm
Lrwr Aan \ Lrwr Aan
Prwuo = (1 + Ax m) (Patmg (He —hpr) + prwrx + FWPTWUI +
. AN Lrwr mfwuo
Patm & Lrwr (sm Orwr + —sin 9P> + (KTWT - 7CTW>
Arwr Ax Atwr
dmirwyo . .
AXT = —A;n(Prwuo — Prwun) + pP™g Ax A,y sin 0p — Ky iwuo

2.3.4 Waterway Model with Inelastic Penstock

The waterway Model with inelastic penstock walls and incompressible water inside the penstock
consists of the equations in Table (2-3) and Table (2-4) except for the last equation in each table.
Instead a differential equation based on the Equation (2-39) can be developed for mass flow rate

in the penstock:

Ldmp—A( ) + Lp Ap sin 0p — Kprn?
P T = —Ap\Ptwuo — PHwDO Patm & Lp Ap SINUp — ApMp
(2-67)

fp Lp Ip sign(rip)
P = 2 A%, patm

Also in other equations of Table (2-3) and Table (2-4):
mrwpo and mywpo Will be replaced with mp

Ax will be replaced with Lp

A, and A,y will be replaced with Ap

[1, and II,y will be replaced with Ilp

Kuyw and Kry, will be replaced with Kp
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puwpi Will be replaced with prwuo
prwur Will be replaced with pgwpo
puwnpi in Table (2-3) will changed to prwuo

Moreover, pywpo and prwuo can be found by solving the following set of equations:

(C1 + C2)puwpo — C2Ptwuo = C3
—C4Puwpo + (1 + C4)prwuo = Cs
Where
A A _
e, =bc B (2-68)
Lc s
Ap
¢, =
A A K,
Cs; = —CpCI 4+ Zpatm 4 p?™Mg (Acsin B, — Ap sin Op + Ag sin 0g) — i & —
LC ls LC
K. K,
_S(mp — mc)z + —Pmlz;,
I Lp
Lrwr Ap
Ca Lp A
p Arwr
. Ap |
Cs = p*™g (H; — hpr) + prwrx + P8 Lrwr (sm Orwr + sin 9P> +
Atwr
Lrwr mp
K - K )
( Twr — = He J

2.4 Turbine Controller

A transient droop governor which has been used extensively in the hydropower installations will
be considered for simulations in this chapter. First concepts of “swing equation” and “speed

droop” shall be introduced.

70



Swing Equation: The mechanical energy stored in the rotating parts of the hydropower
generation unit (turbine and generator rotor) is given by the following equation where J is the

moment of inertia of the rotating body:

Rate of change of this stored energy is equal to the net power entering the system of rotating

body. That means:

J

(*)E = Pin — Ploss — Pout

Where
P,:  Hydraulic power transferred to turbine (2-69)

Pout:  Active electric power output at terminals of the generator

Poss =: Power losses through turbine and generator

The equation (2-69) is known as the swing equation of the generator. The term Pj,q¢ may be
considered equal to (1 - ng) X Py, if all the mechanical losses of the turbine-generator body and
resistive losses at the generator armature are accounted for in the generator efficiency (ng) in

which case the equation (2-69) will become:

d
Jo =2 =g Pin = Pour = NgNepgHQe — Pout (2-70)

Speed Droop: According to the above paragraph electrical frequency in an interconnected
network of generators and loads is a function of the stored energy in the rotating bodies of
generators in that network. So changes in the electrical frequency depend on the balance between
the total generated and consumed power in that network. If frequency drops below a reference
value, each generator in that network will try to correct the frequency by increasing their active
output power. This correction action is one of the turbine governor’s duties. The frequency-
power characteristic of a generator is a straight line with negative slope as shown in the Figure

(2-15).

71



Figure (2-15) Turbine Governor Freq.-Speed Characteristics (Schavemaker, 2009)

Absolute value (in percent) of the negative slope of the frequency-speed characteristics of a
generation unit when the power and the frequency are given in per unit system is known as the

droop or regulation and can be expressed as (Schavemaker, 2009):

Where
S: droop [%] @-71)
fref: desired frequency of the network [Hz]

Sg: rated power of the generator [MVA]

If generation units in an interconnected network have zero droop (it means that each generation
unit would increase its output power until frequency corrected exactly) then faster generation
units would increase their output power after a decrease in the frequency more than generation
units with slower response and this will cause the network load be distributed between the
generation units randomly (Schavemaker, 2009) . Another unwanted scenario is also likely to
occur (Warnick, 1984): It’s impossible for the generation units to have exactly the same
frequency set point (or better to say it’s impossible for these units to have the same error pattern
in measuring the frequency, some might have negative errors whilst others might have positive
errors). Units with higher set point will try to increase the network frequency to their set point

until they achieve this goal or reach their maximum power. If they be able to increase the
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network frequency, the units with lower set point will decrease their load to lower the frequency.
This will continue until the units with higher set point will take the entire network load to

themselves (if they have enough capacity) and the other units will go to the standby mode.

Unwanted situations discussed above are resolved by assigning negative speed droops to the
generation units. If a unique value is assigned as droop to all the generation units, then each unit
will take part in the frequency correction with an amount of power which is proportional to its

rating output power.

Transient Droop Governor: Governing system for hydropower turbines usually has two
servomotors: Pilot servomotor and main servomotor. The pilot servomotor operates a relay valve
which in turn operates the high power main servomotor. The main servomotor changes the guide
vanes opening position. These servomotors usually are hydraulic devices and operate with

hydraulic oil pressure. (Machowski, 2008)

A typical block diagram of the so called “transient droop controller” is shown in the Figure
(2-16). The pilot servomotor is models as a first order system. The main servomotor is modeled
as an integrator with limit on the output and also on the rate of change of the output in both
directions (increasing or decreasing). Limits on the rate of change of the guide vanes position are
necessary for preventing high pressure surges due to the water hammer effect. These limits can
be different when the guide vane closing and opening. Guide vanes should be able to close fast

so that over speed of the turbine is prevented in case of a large load rejection. (Thoresen, 2010)

MAIN SERVO

Figure (2-16) Block Diagram of Transient Droop Controller (Machowski, 2008)
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Yev and Ygy ref vary between O and 1 (per unit values). Integral action of the main servomotor is
used in the control. This action in the steady state will cause the error G(YGV—ref - YGV) +

(1 —f/f.ef) vanish. So if the output power of turbine be proportional to Ygy, then o could

8Tys
causes
1+Ts

actually be considered as the per unit value of the droop. The differentiating block

lower rate of change in Ygy right after a disturbance and then rate of change increases gradually.

This allows the water column velocity in the penstock to catch up the guide vanes movements.

(Machowski, 2008)

The signal conditioning part of the block diagram in Figure (2-16) might be implemented
mechanically or electrically. One disadvantage of the transient droop governor as is evident from
the Figure (2-16) is that the feedback for implementing the static (steady state) droop is taken
from the guide vanes position instead of generator output active power. This can cause
deviations in power delivered to the network (Thoresen, 2010) . In (Thoresen, 2010) and
(Johansson, 2009) controller configurations for using the feedback from the generator output
active power are given. In (Johansson, 2009) also more complicated models for the pilot and

main servomotors considering backlash and friction are introduced.
Typical values for parameters of a transient droop controller are given in (Machowski, 2008):
Tp = 0.04 [sec] , Ty = 0.2 [sec] , T, = 5Ty, , 6 = 2.5Ty, /T,

Lp Q;)per.point ]wgm
. 13 . . ’ —
——perpome 18 called “water starting time” and Ty, = S

Where Ty, =
Ap g Ht

is called “Mechanical

time constant. Typical values for the static droop ¢ are given as 3 to 6 percent in (Machowski,

2008) and 10 percent for Norway in 2010 in (Thoresen, 2010).

Set of equations modeling the controller shown in Figure (2-16) is given in Table (2-5).

Table (2-5) Transient Droop Controller Model

d= SYGV — Xr
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f
e= G(YGv_ref - YGV) - (f_f - 1) —d
re

Xr

Tr E + Xy = SYGV
T du +u=
P dt u=e
( 0 ifYGV <0 or YGV =>1
Gy, | A (/) 2 v
dt - _ yvmin : __ymin
GV lf (U/Tg) < GV
L u/Tg else

2.5 Simulation Results

2.5.1 Validation of the General Penstock Model

In this section the model of penstock with elastic walls and compressible water will be validated
by application to the classic problem of reservoir-penstock-valve. Consider the system shown in
the Figure (2-17). When the valve closes suddenly, pressure before the valve increases and a
pressure wave travels back to the reservoir. When this wave reaches the water surface at the
reservoir, becomes reflected as a negative wave and travels toward the valve. The time that takes
for the pressure wave to travel from the valve to the reservoir and then back to the valve is equal
to:

2 X Lp
Speed of the pressure wave

The height hryy of the reservoir is considered to be much less than the length Lp of the penstock

in deriving the above relation. Speed of the pressure wave inside penstock is equal to the speed
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of sound inside the water in penstock which a relation was given for it in (2-5). (Parmakian,

1963) This can be one of the criteria for validation of the penstock model. Time for traveling of

the pressure waves (and hence speed of the waves) can be found from the results of simulations

and then it can be compared to the value obtained from (2-5).

Figure (2-17) The Classic Penstock-Valve Problem

Maximum pressure rises before the valve when the valve starts closing from the steady-state

condition with a uniform rate and reaches the complete closed position are tabulated by Allievi

(Warnick, 1984). One of these charts is shown in Figure (2-18). This chart can be used as other

criteria for validation of the penstock model. The maximum pressure rise found by simulation

can be compared to the chart. Various parameters used for defining the axes of the chart in

Figure (2-18) are as follows:

Where

av, aT Max. head before the valve

= , , Z= - 2-72
2gh, ) Lp z Operating head before the valve ( )

k= Time constant [-]
n= Pipe line constant [-]
a= Speed of the sound inside the penstock [m/sec]
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Vo, = Speed of water in steady-state condition before the [m/sec]

valve closure
h, =  Gross head as shown in Figure (2-17) [m]

T= Valve closure time [sec]

Details of the reservoir and valve with penstock interfacing parts are shown in Figure (2-19) and
Figure (2-20) respectively. Following similar procedures of Sections 2.3.2 and 2.3.3 the

equations governing these two systems can be obtained as follows:

The Reservoir:

Pawo = P*™ + p?™ ghyw

driigwo (2-73)
=4 —A¥™(puwi — Pawo) + p*™g Ax AY™ sin 0p

Terms due to friction are neglected in the second equation of (2-73). Also the height hyyy is

considered to be constant (for example due to make-up water flow to the reservoir.

The Valve:
Apyaivs = Mrwo |2rhTWO|
patm*Cy?
Prwo = p*™ + ApyaLve (2-74)
dﬁ:j# = —AF™ (Prwo — Prw) + p*™ g Ax AF™ sin Bp

Again, Terms due to friction are neglected in the last equation.
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H,+ h
_ Pressura rise 22. 2 __

Figure (2-18) Allievi Chart Tabulating Maximum Pressure Rise before the Valve when Closing
with Uniform Rate (Warnick, 1984)
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Figure (2-19) Details of the Reservoir with Penstock Interface
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Figure (2-20) Details of the Valve with Penstock Interface

Simulation: Four different scenarios will be considered for simulation of the Penstock-Valve

problem. The following parameters are the same for all the four scenarios:

Lp = 1000 [m] , hy,=100[m] , hgw =0[m] , a= 1000 [m/sec]

Valve closing times and steady-state initial velocity of water (hence the parameters k and n

introduced in (2-72)) will be different for each scenario as follows:
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Table (2-6) Scenarios for Simulation of the Penstock-Valve

Z (from Figure
T [sec] v, [m/sec] k n
(2-18))
Scenario #1 1 1 0.5 0.5 2
Scenario #2 3 1 0.5 1.5 1.6
Scenario #3 52 1 0.5 2.6 1.3
Scenario #4 3 4 2 1.5 3.8

Valve starts closing at t=50 second in each scenario. Result of simulation for the above scenarios
is included in Figure (2-21) to Figure (2-24) respectively. In Figure (2-21) to Figure (2-23) the

values of head rise are in close agree with z values in the above table.

The result of simulation for the fourth scenario however is different. The value of head rise in
this case is more than expected (3.47E+6/7.7E+5=4.5 whereas a value of 3.8 is expected from
Allievi chart). The reason maybe because of the higher velocity which causes higher loses due to
friction. The steady state value of the head before valve (before the time 50 sec when valve starts
to close) is less than the other cases. For examining this guess, the case is simulated again with
zero friction and the result is given in Figure (2-25). It appears that with zero friction the head
rise 1s exactly in agree with Allievi chart. 4 m/sec here is an illustrative value and might not be a
normal operating condition. In addition, the author of this report doesn’t have any clue about the

normal range of the friction factors for the penstock.

As mentioned earlier another criteria for validating the penstock model could be finding speed of
the pressure waves from the simulation. MATLAB code for simulations in this part is included in
the appendix III. In the code, value of Bioa is calculated from the desired speed of sound. Then
simulation is done with the calculated value of Biyt5- SO the simulation results shall reflect this
value of the pressure Waves. In the Figure (2-21) to the Figure (2-25) the time difference
between two consecutive peaks is 2 seconds (except for the peaks that coincide with valve

closure) and this agrees with the value 2Lp/a.
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Figure (2-21) Result of Simulation of the Penstock-Valve for Scenario #1 (T
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Figure (2-22) Result of Simulation of the Penstock-Valve for Scenario #2 (T
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Figure (2-24) Result of Simulation of the Penstock-Valve for Scenario #4 (T
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Figure (2-25) Result of Simulation of the Penstock-Valve for Scenario #4 (T=3 sec and v,= 4
[m/sec] with fp = 0)

Pressure and Mass Flow Rate at the middle and entrance (in Head Water Side) of the
Penstock: Pressure and mass flow rate variations at different locations in the penstock is shown
in the Figure (2-26). Range of variations of mass flow rate is almost constant through the
penstock length but range of variations of the pressure reduces at closer locations to the head
water as was expected. Mass flow rate at the valve is given in Figure (2-27). There is a small
flow after t=50 sec at the valve because the valve just closes to 0.001(p.u). This is done on

purpose to prevent divide by zero error (see the code in Appendix III).
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Figure (2-26) Variations of Pressure and Mass Flow Rate at different Locations of the Penstock
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Figure (2-27) Mass Flow Rate at the Valve for the Scenario #1 in Table (2-6)




Partial Valve Closure: Partial valve closure for scenario #1 in Table (2-6) is simulated in Figure
(2-28). The valve starts closing at time t=50 sec from full open position (with a rate of full

closure per one second) and closes until 0.9 (p.u.) open position.

x 10° Pressure before the valve [Pa]

Time [sec]

Figure (2-28) Simulation of Partial Valve Closure from 1 to 0.9 (p.u.) position

Options for ODE Solvers: All the simulations in Figure (2-21) to Figure (2-28) are done with
the MATLAB “ODEI15S” solver with the following options:

options=odeset ('MaxOrder',5, 'RelTol"',le-6, 'AbsTol"',le-6);

What happens if default options are used for “odel5s”? The simulations of Figure (2-21) and
Figure (2-28) are repeated with increased relative tolerance (‘RelTol’=1e-3) and the result is
given in Figure (2-29) and Figure (2-30) respectively. As can be seen, with increased relative
tolerance the “odel5s” encounters numerical errors which completely distort the solution in case

of small valve changes.
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Figure (2-30) Simulation of Figure (2-28) with the option ‘RelTol’




Number of Penstock Segments: In all the above simulations, number of penstock segments is
chosen to be 50. Figure (2-31) shows the result of the simulation for scenario #1 for two different
N values (N=25 and N=50). As can be seen, number of segments has influence on the frequency

of oscillations of the model.
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Figure (2-31) Simulation for Different Number of Penstock Segments

2.5.2 System with and without Compressibility and Elasticity
Effects

In this section the models obtained for the waterway (both with elastic and non-elastic penstock)
with transient droop controller are simulated simultaneously. The turbine load in these
simulations is considered as a disturbance which consumes constant power. The system response
when this disturbance changes to a new value or when the guide vanes opening reference value

changes are simulated.

Figure (2-32) to Figure (2-42) show the results when guide vane reference is constant and power

demand changes at t=400 sec and t=800 sec. Figure (2-32) shows that turbine power follows the
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Demand to keep the frequency stable whereas Figure (2-34) shows that the steady state value of
the frequency will not follow the frequency reference. This is due to the droop relation that its

satisfaction requires the power be decreased with increasing frequency and vice versa.

Figure (2-43) to Figure (2-45) show the results of a simulation in which the power demand is
constant during simulation but the reference value for guide vane changes at t=300 sec. Since
power demand has not changed the actual guide vane position returns to its previous value. As it
can be seen there are small differences between the responses of the elastic and inelastic models
this time but due to the time constants of the guide vanes movement still the differences are not

significant.

System parameters for these simulations can be found in Appendix III part C in the MATLAB

code Main_parameters.m.
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Figure (2-32) Simulation Results (ActivePower Demand changes to SOMW at t=400 sec and
changes back to 8OMW at t=800 sec)
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Active power demand vs Turbine power
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Figure (2-34) Simulation Results (Because of change in the active power demand and since the

droop relationship shall be satisfied, frequency doesn’t remain constant.)



Guide vanes opening

T T T T T T T I
I I I I I I
| | | |
| | | |
| | | |
| | | |
| | | I o
i Bttt T i At 2 m \\\\\ e ™ S
| | NI - ---1 % £
| | | 2 S B e
| R | | 53 o S 5
I | [ ) —~ a
f <] = wn (<) £
| | | | = 7] 2 2
\ 2 o Q @ <
| Y | | 3 ® 5 = [ s
N A w £ o |TT777 e —_ w £
N I |
>
—_— !
<
3 |
D) b S o S O g 5
o s T T
| |
o I
=] | |
< | |
) | |
T e R m O < I I
— (==} & | |
3 5) 2 | |
Rz ﬂ ) ! !
g k> - I
o = E | |
N e —— < 72 | |
Q | |
=} I |
| |
<
> | I
) i s
o | |
R A I M A O S e | £ -
| |
G o
Nl | |
» | |
= A
=3 I T T
i S e i El i E 3 w | | |
” ” ” S ” ” : ”
| | | 27 | | | |
| | | (o] | | | |
| | | o w | | |
| | | I . L= T
- - __ e | —
i i i i i i g m | | | | | N |
| | | | | | | | | | | | |
| | | | | | = | | | | | T |
” ” ” ” ” ” £ ” ” ” ” T ”
| | | | | | wn | | | | | [ |
| I I I I I —_ I I | | | | |
S S S E S S o E 8 § &8 § &5 8 8§ &
['n'd] Suruado souea apmn n/_~ [w] peoy
N—
0]
=
=
en
=

1100

1000

800

700
Time [sec]

90

600

400

Figure (2-36) Simulation Results (Turbine head)
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Water column height in the surge shaft
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Figure (2-42) Simulation Results (Conduit Mass Flow Rate)
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Figure (2-44) Simulation Results with fixed power demand and guide vanes reference change at
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Figure (2-45) Simulation Results with fixed power demand and guide vanes reference change at
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Chapter 3 Electrical System

This chapter is devoted to study of the synchronous generator. In sections 3.1.1 to 3.1.3 structure
of a multi-pole salient poles generator is discussed. In section 3.1.4 the self and mutual
inductances of various windings in the machine are studied. Sections 3.1.5 to 3.1.7 the Park’s
transform and machine equations in the rotor reference frame are discussed. The power term in
the swing equation which is relevant to the generator active power is discussed in Section 3.1.8.
In Sections 3.1.9 to 3.1.11 available simplified models for the synchronous generator are
introduced and it is shown how to relate the variables of these models to the network variables
through the “phasors” concept. Finally a generator connected to an infinite bus is simulated with

the waterway model (without elasticity).

3.1 Synchronous Generator

3.1.1 Typical Structure of a 12-Pole Machine

Figure (3-1) shows a radial cross-section sketch of a 12-poles synchronous generator. “Armature
windings” carrying the generator output current and producing terminal voltages are fixed in the
stator slots and are denoted by a, , a5, ..., a¢ for phase “a”. Similar notation is used for denoting
the phase “b” and phase “c” armature windings. Windings denoted by “F” are called “Field
Windings” and are electrically connected in series with each other. The “field current” or the
“rotor magnetizing current” flowing through these windings is a constant DC current in the
steady-state operation of the generator and produces a radial magnetic field at the pole shoes.
The field current is generated and controlled by circuits responsible for controlling the generator
terminal voltage. “Damper Windings” D and Q are short circuited windings which stabilize the
generator operation during rapid changes in the operating condition. A third damper winding
model “g” is also introduced in (Machowski, 2008) which actually is not a winding but is a
model of the currents induced in the rotor body. This “winding” is important in the high speed
turbo generators and the parameters relevant to it are not normally given for salient pole

generators.
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3.1.2 Conventional Directions

Direction of magnetic fields: Conventional direction for magnetic field is shown in Figure (3-2)
(a) and (b). Right-hand rule* can be used in the both cases to determine direction of the magnetic

field.

c6_axis

LEGEND

b6_axis Stator (X) Current flowing perpendicular
into the page

al_axis

% a6_axis (e) Current flowing perpendicular
outwards of the page
c5_axis | n, Number of poles
a2_axis

= m "S" Pole
Rotor = =
b2_axis E

b5_axis
"N" Pole
c2_axis a5_axis Direction
' of
Pole Shoe” Rotation
0 c4_axis
a3_axis

b3_axis

a4_axis

c3_axis

Figure (3-1) Cross-Section sketch of a 12-Poles Synchronous Generator based on 2-Poles
Machine Structures given in (Andersson, 2010) and (Machowski, 2008)

* http://en.wikipedia.org/wiki/Right_hand rule
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(b)

@ stands for a direction perpendicular to the page and towards the page.

Figure (3-2) Direction of the Magnetic field in (a) center of a winding carrying current i (b)
around a straight wire carrying current i

Direction of current, voltage and magnetic flux in two magnetically coupled windings:
Direction of the current in two windings is chosen so that the magnetic flux produced by the
windings will add to each other. In Figure (3-3) W;, is the flux produced by the current in the
second winding and passing through the first winding. Similarly, the flux W¥,, is part of the flux
produced by the current in the first winding which passes through the second winding. By
choosing currents flowing in the indicated directions, ¥;, and W, will be in the same direction in

the magnetic circuit of the two windings. It can be written:

¥, =¥, + Wi, = Liip + Lyaiy
(3-1)
W, =Wy + ¥y = Laqiy + Loip

The so called “mutual inductances” L;, and L,;depend on the number of turns in both the first
and second windings and also on properties of the magnetic circuit between the two windings. It
is a known fact that the equality L;, = L,; = M always holds. By the right choosing of the
conventional current directions in the two windings, M will become positive. This usually is
shown by two dots as indicated in Figure (3-3). If the conventional current direction is chosen
into the winding at the doted end of the two windings, then the fluxes will add to each other and

the M will be positive.
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Figure (3-3) Two Magnetically Coupled Windings, Conventional Current and Voltage Directions
In Figure (3-3), one of the windings is connected to a source and the other is connected to a load.
Note that conventional voltage directions in the load side and in the source side are different. It’s
because of the direction of energy flow. If the energy out of the source (v;i;) is positive, then the

energy given to the load (v,i,) should also be positive. This has a consequence on the voltage

equations:
Coaw, . diy,  di
vV, = R111 +T = R111 + Ll_t'l‘ ME
(3-2)
aw, o di,  di
V2 = _R212 _F = _R212 - Ma_ LZE

N and S poles of a magnet: Figure (3-4) shows a solenoid with a core made of magnetic
material. If current in the solenoid flows in the indicated direction then order of the “N” and “S”

poles of the magnet will be as shown in the figure.
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Figure (3-4) “N” and “S” Poles of a Magnet

N and S poles of the Rotor: If a dc current flows in the “F” windings of a synchronous
generator in the directions indicated in the Figure (3-1), then the “hatched” poles will act as “N”

poles of constant magnets and the other poles will be “S” poles.

Rotor Angle "0,,": The rotor angle "6,," is measured from any of the “a” axes to the nearest

“N” pole in counter-clockwise direction (direction of rotation). (See Figure (3-1))

3.1.3 Electrical Connections

In Figure (3-5) to Figure (3-7) a possible combination (illustrative based on (Chapman, 2005)) of
electrical connections for different windings of the generator are indicated. Note the difference
between defining conventional voltage polarities in the armature windings (Figure (3-5)) with
those of the field windings (Figure (3-6)). The field windings are considered to be on the source

side. (See section 3.1.2)

Conventional direction for current in the “F” and “D” windings are chosen such that when the
rotor angle is equal to 0, mutual inductance between “F’ (or “D”) and “a” windings will be

maximum positive.
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Conventional direction for current in the “Q” windings is chosen such that when the rotor angle
is equal to (m/np), mutual inductance between “Q” windings with “a” windings will be

maximum positive.

Figure (3-5) Illustrative Electrical Connections for “a” Windings (for other Armature Windings
will be Similar)
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Figure (3-7) Connections of “D” Windings (“Q” Windings will be Short Circuited as well)
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3.1.4 The Inductance Matrix

It is known from the theory of electromagnetism that the flux linkage in each of the machine
windings can be considered as a linear function of the machine currents (if saturation and

hysteresis effects can be neglected) (Machowski, 2008):

Y Lra Lpp Lpc Ler Lep  Lrq||i (3-3)
¥p Lpa Lpp Lpc Lpr Lpp Lpgl|'D

Y i
: po', Loa Lob Loe Lor Lgp  Lool s
L 1

The values for each element in the matrix “L” is given in (Machowski, 2008) and (Andersson,

2010) for a two-pole machine. The relations for a general machine with n, poles will be as

follows (Lie, 2011):
0. = (n,/2)0y, , 0, =0, —21/3 , 0 =6, + 21/3

L., = Lg + L, cos(26,)
Ly, = Lg + Ly, cos(26;)

Lec = Lg + Ly, cos(20¢)
TC
Lab = Lpa = =My — Ly, cos (26, + )
Lpe = L = —M — Ly, cos (29;, + —) (3-4)
rn T[
Lac = Lea = —M; — Ly, cos (267 + §)

Lar = Lpa = Mg cos(6,)
Lyr = Lpp = Mg cos(6g)

Lcg = Lpe = Mg cos(6g)
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Lap = Lpa = Mp cos(6,)
Lyp = Lpp = Mp cos(6¢)

Lep = Lpe = Mp cos(6¢)

LaQ = LQa = MQ Sin(ee)
LbQ = LQb = MQ sm(@é)

LCQ = LQC = MQ Sin(e,e,)

LFF = LF , LDD = LD ) LQQ = LQ

LFQ = LQF = LDQ = LQD = 0

Where Lg , Ly , Mg, Mg ,Mp ,Mq, Lg, Lp , L and Mg, are positive real values.

The relations for mutual inductances between the “Q” and the stator windings in (3-4) are in
agree with (Machowski, 2008) but different from those given in (Andersson, 2010). The reason

is the conventional direction of current in the “Q” winding is chosen differently.

In the following the relations (3-4) will be investigated intuitively for a multi-pole machine by
examining the magnetomotive forces” and flux line paths in each case and for various rotor

angles.

® L., : Self-inductance of “a” windings on the stator depends partly on the flux path through
the stator itself and partly on the flux path between the stator and rotor. Reluctance of the
rotor path is dependent on the rotor angle. Figure (3-8) shows the flux paths and
magnetomotive forces generated by a constant dc current in the “a” windings for different

rotor angles:

(2) B, = 2;‘—: k=01,..)

> http://en.wikipedia.org/wiki/Magnetomotive force (accessed 2011)
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_ k+D)m
==

(b) O, k=01,..)

In the case (a), the poles are located in the same direction as the magnetomotive forces
induced by “a” windings. So the rotor has the least reluctance seen by the “a” windings and
hence L,, has its maximum. In the case (b), due to symmetry no flux is generated in the
rotor and the rotor magnetic circuit has the largest reluctance. Hence L, has its minimum.

Lap : Figure (3-9) shows the flux path induced by dc currents in the “a” and “b”’windings for

two different rotor angles and current directions:

(@ 0, = (2k1'[+2?n) /np (k=0,1,...) and currents in the “a” and “b” windings are
equal and positive

(b) 8, = (ZkT[ - g) /np (k=1,..) and currents in the “a” and “b” windings are equal
but positive in “a” and negative in “b”

[P

In case (a), the flux induced by the current in winding “a” has a maximum positive linkage

with the winding “b”. In case (b), the flux linkage is maximum and negative.

Figure (3-8) Flux Lines Generated Merely by the Current in “a” Windings for Different Rotor
Positions
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Figure (3-9) Flux Lines Generated by Currents in “a” and “b” Windings for Different Rotor

Positions (Current in the “b” winding is negative in case (b).)

L,r and L,p : Figure (3-10) shows the flux path induced by just the positive dc current in
the “a” windings for different rotor angles:

(@ 0 = @km)/np (k=0,1,..)

(b) 0, = @kn+m)/np (k=0,1,..)

(c) 0 =Ukn+3m)/np (k=0,,..)

(d) 0, =Mkn+2m)/np (k=0,1,..)

In cases (a) and (d) the flux linkages in the “F’ windings are maximum in magnitude. In
case (a) the flux passes the “F” windings in the same direction that flux induced by the
“F” windings would have passed. So mutual inductance in this case is positive. However
In case (d) the flux direction is opposite and the mutual inductance will be negative. In

cases (b) and (c¢) due to symmetry there’s no flux linkage in the “F’ windings.
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Flux Lines
"a" Windings

Figure (3-10) Flux Lines Generated Merely by the Current in “a” Windings and Linking the “F”
Windings for Different Rotor Positions

® Laq LpgandLpq : Figure (3-11) shows the flux paths induced by just the positive dc
current in the “Q” windings for different rotor angles:

(@ 0y = 2kn/np (k=0,1,...)

(b) O = dkn+m)/np (k=0,1,..)

(c) Op = 4kn+3m)/np (k=0,1,..)

At first site it is clear that in no case there is a flux linkage between the “Q” and “F” or

between the “Q” and “D” windings. So values of Lgq and Lpq are always equal to zero. In
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case (b) the flux induced by the current in “Q” windings are in the same direction as the flux
induced by a current flowing into “a” windings would have been (see Figure (3-10) part (b)).
So the mutual inductance L,q will be positive. A same conclusion results for a negative Lyq
in case (c). It is obvious due to symmetry that no flux linkage exists between “a” and “Q”

windings in case (a).

3.1.5 The Park’s Transformation

Equations for the synchronous generator are best described by using the so called Park’s
transformation. Consider Figure (3-12) where np = 2. This special case can be considered as
when the area restricted to the al_axis and a2_axis in Figure (3-1) be mapped into a complete
circle by multiplying the angles with center at O by a factor of (np/2). For this reason the rotor

angle in Figure (3-12) is shown with np0,,/2.

The idea behind the Park’s transform is to formulate the rotating magnetic field produced by a 3-
phase sinusoidal current flowing in the armature windings in a coordinate system fixed to the
rotor. This new coordinate system in Figure (3-12) is denoted by the “d” and the “q” axes. In the
steady-state operation of the generator, the stator magnetic field will be stationary in the rotor
reference frame. Thus the stator magnetic field can be modeled as the result of fictitious
windings fixed to the rotor and carrying dc currents. An advantage of this transformation as will
be shown later in this section is that self-inductances of these fictitious windings and their mutual

inductance with rotor windings will no longer depend on the rotor angle.
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Flux Lines
O of "Q" Windings

Figure (3-11) Flux Lines Generated Merely by the Current in “Q” Windings and Linking the “a”
Windings for Different Rotor Positions

Figure (3-12) “d” and “q” Axes in a Two Poles Generator
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In the following the projection of the stator magnetomotive force onto the rotor frame will be

obtained. The resultant magnetomotive force in the stator frame at the rotor axis “O” is given by:

H = H,u, + Hyu, + Heou, (3-35)
Where
H = Resultant magnetomotive force vector at the rotor axis measured in the
stator reference frame [A. turns]
H,(Hp ,H.) = Resultant magnetomotive force of the current flowing in the “a” (“b”,
”c”) winding measured in the stator reference frame [A. turns]
u,(up,u.) = Unit vector along the “a” (“b”, ’c”) axis

H can be presented in the rotor reference frame as:
H = Hquq + Hyuq (3-6)
Where
Hy (ﬁq) = Magnitude of projection of H onto the “d” (“q”) axis [m?]
ug(ug) = Unit vector along the “d” (“q”) axis

For calculation of Hgand ﬁq, the unit vectors u,,u, and u. shall be written in terms of

uy and ug:
u, = CoS (np6m> uq + sin 1pOim u
ar 2 ) 2 )
npo 2 npo 21
ub:cos< sz—?> ud+sin( sz—?) ug (3-7)
npo 2 npO 21
U, :cos< P2m+?> ud+sin( P2m+?) Uy
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From (3-5) and (3-7) it can be concluded:

H
P npO 21 npo 27
=[Hacos( )+Hbcos( Zm—?>+HCcos( 2m+?>]ud
Ha (3-8)
npo 2m npo 2m
+[Hasm( ? >+ Hbsm( sz —?> + Hcsm( P m ?”uq
ﬁq
Or:
npo np0 2m npo 2
i cos( pzm) cos( sz—?> cos( > +—) H, _[Ha
IJ‘] = Hy| = P |H, (3-9)
Hq ] (npem> (npem 2n> . (npe 2 H H
sin sin - sin +—= c c
2 2 3
It can be shown that:
> 0 1
ppr=|2 .| and P H =[] (3-10)
0 = 1
2
This suggests the following orthonormal transformation from R3 to R3:
1 1 1
2 2 V2
P = 2 (np9m> (npem Zn) (npem N 27r>
3[c0s|— cos {— 3 cos | — 3
sin (npem) sin (npem - 2—n> sin (npem + Z—H) (3-1)
| 2 2 3 2 3/
1 0 O
PPT=PTP=(0 1 0
0 0 1
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Ha
By applying the transform P to the vector |Hyp | one can get:
Hc
1
§ (Ha + Hb +Hc)
HO 2 Ha
Hd = _ﬁd =P Hb (3-12)
3
Hq H.
2
31

At the following operating condition the sum H, + Hp+H, will be equal to zero:

® The armature windings are star connected without ground connection
¢ No saturation effect or no imbalance armature currents
So values of the set (H,,Hy,H.) at any time instant are uniquely determined if the values of the

set (ﬁd,ﬁq) are known and vice versa.

Hq4 and Hg in (3-12) will preserve the direction of the stator magnetic field measured in the rotor
H,
Hy
Hc

frame and preserve its strength if a correction factor of \E is applied. is ideally proportional

Iy
to the armature currents vector [ib]. So the transform P can be used to study the effects of a three
ic

phase sinusoidal current flowing in the armature windings on the magnetic field seen by the
rotor. Voltages across the armature windings can also be transformed by P into the rotor frame
and the transformed currents, voltages and fluxes can be associated to fictitious windings “d” and
“q” fixed to the rotor frame as shown in the Figure (3-13). In the next section relations for the
self-inductances of these fictitious windings and the mutual inductance between them and the
rotor windings will be derived. In section O relations for voltages across these fictitious windings

will be found so that the inverse transform of these voltages will give the terminal voltages of the

generator.

112



The relation for matrix P in (3-11) is in agrees with (Machowski, 2008) but differs from that of
(Andersson, 2010). The reason is that in (Machowski, 2008) and here the “q” axis is chosen to
lag “d” axis. According to (Machowski, 2008) this is the configuration recommended by IEEE.
According to the same reference when studying equations transformed into “d-q” frame, one

should always note which Park’s transform has been used.

Figure (3-13) Reproduction of the Stator Magnetic Field by Fictitious Rotor Windings “d” and

[IP=l)

q

Using notations from (3-4) the Park’s transform matrix can be written in the following form:

1 1 1

| — |
2l vz V2 V2 |

Z 3-13
3 lcos(ee) cos(0;,) cos(0;) (3-13)
sin(0,) sin(6,) sin(0))
3.1.6 Flux Linkage Equations in the 0dq Frame
An extended Park’s transformation matrix is defined by:
P —[P Om] PL.P, =P, PL =1 (3-14)
ext — 03)(3 13><3 extfext — texttext — -

Applying the extended transform to (3-3) will result:
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I{Jd le 1p 14

b Y Y i i

LPE = Pext LIJ; = Py i:- = Pexti‘ P(;rxt i(l: (3-15)
_IPQ_ lPQ_ lQ ]Q

L, is the new inductance matrix in the rotor frame and can be shown to be independent from

rotor angle. The flux linkage equations then will become:

W1 be O 0 0 0 0 i
l‘pd 0 Ld 0 kMF kMD 0 1q
wl [0 0 Ly, 0o 0 kMl

Lg Mg 0 ||ir (3-16)

Where
Lo = Lg — 2Mq, Ld=LS+MS+k2Lm,

Lq=Ls+M; =KLy k= |-

3.1.7 Voltage Equations

Consider electrical connections of Figure (3-5) to Figure (3-7). Especially the conventional
direction for currents and voltages shall be noticed. Regarding the discussion in section 3.1.2 and
the voltage directions, the equation (3-2) applies in here. Sign of the mutual inductances depends

on the rotor angle:
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[ Va r _ia_ -LIJa-
Vb r ib l'IJb
ve [_ r ic B i .
—Vg| g g dt|¥r
[ 0 J I'p %D ¥p
0 | rQ— _1Q_ _LIJQ_
R v
Applying the extended transform to (3-17) will result:
Va [1a] [Wa)
\ i d Y
_;F = —(PexR ngt) ilc: — Pext a ngt LIJIC:
0 ip Yy
0 [iq] [Wq |
o] —l.po— Yo o '1?0“
id llJd l{.}d id l'IJd
i Yol o [W i ¥
= _(PeXtR ngt) 12 — Pext ngt LIJ: + ngt l_pE =-R 1;: - lp:
D Wp $D D W
_] ] . | ] _1 | .
Q (W, Q Q Py |
It can be shown that:
0 0 O
p _pr. _[PPT 0¥3]_l0 0 -1 0¥¢| (db
ext® ext — 03%3 (3%3 1o 1 0 dt
03X3 03)(3 we
So the voltage equations become:
(Yo [r 0 0 0 0 Oy Fo 0
| va | 0r 0 0 0 o0fia| |Ya we ¥,
Vg |_ 0 0r 0 0 O0l]lig 3 ¥y | —w ¥y
—veg|l™ |10 0 0 rg O O]}fig 8 0
[ 0 J 0 00 0 rp O iD ¥, 0
0 0 0 0 0 0 rqolligl @ L o
R Q- PextPL ¥
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3.1.8 The Swing Equation

The swing equation first was introduced in Chapter 2. Here it is repeated for convenience:

dwp,
]me = Pin — Pioss — Pout = T]gntngtQt — Pout
(3-19)
_dbp,
L T:
Where
P, = Hydraulic power transferred to turbine [W]
P,ut = Active electric power output at terminals of the generator [W]
Poss = Power losses through turbine and generator [W]
H; =  Turbine head [m]
Q.=  Turbine volumetric discharge [m3/sec]
Ne =  Overall efficiency of turbine (hydraulic and mechanical)
ng =  Overall efficiency of generator
The relation giving the Py, is as follows:
Pout = Vala + Vpip + Vi
va17T [ia v,1T i, vo1T [ig (3-20)
= |Vb| |ip| = [Vb| PTP|ip|=|Vda| |la| = voig + v4iq + Vqiq
vel i Ve i Val |iq

According to Figure (3-14) the amount of power losses within the generator can be categorized

in four groups:
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e Armature resistive losses with an instantaneous value equal to r(i2 + if + i2) or equivalently
r(ij +i3 +i%)

e Core losses: These losses are due to Eddy currents and hysteresis and depend on the
generator load and frequency

® Mechanical losses: These losses are due to friction and windage and are a function of the
rotational speed (Pposs—mech = Kpw?2,)

e Stray losses: Losses that cannot be categorized in other groups. “For most machines, stray
losses are taken by convention to be one percent of full load.” (Chapman, 2005)

The efficiency of generator may vary by the generator load. Sometimes the armature resistive

losses and/or mechanical losses are treated separately in the relevant equations as appear in the

literature in general.

Pin Tapp m F:mt= Vala+‘%lb+vclc

I
Core Losses Armature

Mechanical Resistive
Stray e

Losses Losses
Losses

Figure (3-14) Power Flow Diagram of a Synchronous Machine (Chapman, 2005)

The flux linkage equations (3-16), the voltage equations (3-18), the Park’s transform (3-13), the
swing equation (3-19) and differential equations governing the waterway in a hydropower

generation unit will make the complete model for the hydropower generation unit.

3.1.9 Simplified Generator Models®

Usually the following assumptions are made to reduce order of the model given by equations

(3-13), (3-16), (3-18) and (3-19):

® Material of this section are mostly taken from (Machowski, 2008).
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|Pa| < |wePq| + |Wq| < |we¥yl (3-21)

The new model will be obtained by ignoring the terms ‘Pd and ‘Pq in (3-18). Under the
assumptions of balanced currents and voltages, vy and iy and hence W, and W, will always be
equal to zero. So actually the flux linkage and the voltage equation along the “0” axis can also be
removed to reduce the model order further. It is also customary to ignore existence of one or both
of the damper windings to obtain simpler models. And finally the dynamics for the changes in
the field current can be ignored by ignoring the term W in (3-18) to obtain the steady-state

voltage-current relationship for the generator. (Machowski, 2008)

By application of the assumptions (3-21) and ignoring the terms ¥, and ‘Pq in (3-18), equations

for vq and v regarding (3-16) and (3-18) will become as the following:

KRS [

——[r 0] [id] +[ ~ 0 (Lqiq + kMgiq)
0 r iq We (Ldid + kMFiF + kMDlD)

(3-22)

Frequency of the generator (w,), when operating stably in a large network, is not normally fixed
and has zero-mean small oscillations around the system center of inertia frequency fg(t).
Normally fs(t) has very slow variations (and can be regarded constant if the time duration for
studying the generator dynamics is not too long) (Andersson, 2010). The rotor electrical angle of

the generator then can be written in the form:

0e(t) = 2mf,t + 8, (L)
(3-23)

t

8.(t) =6.,(0) + j [we(T) — 2mfg]dt = 6,.(0) + ftA(,oe(T)dT
0 0

For stable operation of the generator, §,(t) should be bounded and hence frequency fluctuations

Aw,(t) should have zero mean. For simplification purposes in (3-22), it is assumed that:
[Awe ()| K wg = 2mfy , fg: system frequency (almost constant) (3-24)

With the above assumption, (3-22) turns into:
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[Vd] __ [ r Xq] [id] 4 [ —wskMgyiq
Vq —Xd r iq (,k)skMFiF + (DSkMDiD

X4 = (*)sLd » Xq = (DSLq

(3-25)

Note that Awe(t), when its effect accumulated in time as in (3-23), still affects the system
model’s voltage-current relationship through changes in the Park’s transform. Consider generator

be paralleled with an ideal three-phase voltage source so that its terminal voltages are given by:

2m 21
v,(t) = Vsinwgt, v, (t) = Vsin (u)st — ?) ,  Ve(t) =Vsin (u)st + ?)

V .
In this case the transformed voltages will become as [Vd] — [Vsind

al Vcosé‘] and hence Aw,(t) affects

v
[VZ] by changing the rotor angle.

Steady-state Operation of the Generator:

The steady state value of the field current ig is equal to vg/rg . If the transient term in the field

current is denoted by Aig, i.e. i = vg/rg + Aig , then (3-25) can be rewritten as:

i .
[Vd] _ _[ r Xq 0 ] id N [ —(,oskMQlQ (3-26)
Vq —Xq I —wgkMg/rg v?: wgkMpAip + wkMpip

The equation (3-26) is the output equation for a linear system with three inputs, two outputs and
three states (ip,ig and Aip which tend to zero as the system reaches a steady-state condition).
Any of the combinations (iq, iq, Vi), (Vg, iq, VEg), (id,Vq,VF) or (Vd,Vq,VF) can be chosen as
independent variables (inputs). The other two variables out of ig, ig, V4, Vg, Vg Will be the outputs
in each case. It’s possible that (ig,iq) will be correlated with (vq, vq) through the load dynamics.
The field voltage vg will also be correlated with (vg, vq) through the excitation system. So it’s
expected that after any disturbance in the system all the variables in (3-26) experience a change
in their values. If the cause of disturbance is in the form of a step change (for example in the
load), then system will reach a new steady-state condition as the induced currents ip, ig and Aig
decay and vanish. Then the steady-state values of ig,iq, Vg, Vg, Vg shall satisfy the following

equation:

119



[vd] [ r  Xq 0 ] %d
=— i
Vq —Xq I —wgkMg/rg v?:

Or in another notation:

=1 Il +le)

eq = 0 , eq = ef = (,OskMFVF/rF

(3-27)

Equation (3-27) along with the swing equation ((3-19) and (3-20)) and Park’s transform
(3-13) together define the simplest generator model in which the transient currents induced
in the field and damper windings are neglected. Equation (3-27) can also be used for

determining the steady state operating point of the generator.

Transient and Subtransient Operations:

The following assumptions are vital for the discussion that follows:

After any disturbance system will reach a new steady-state condition as the induced

currents ip, iq and Aig in (3-26) decay and vanish:

e Induced currents in the damper windings decay faster than any other
phenomena in the generator (with a time constant of order 0.01 to 0.1 second).
During this time duration variables other thanipandig in (3-26) can be

considered almost constant. Generator dynamics within this time interval is (3-28)
referred to as “subtransient operation”.

® Time constant for transients in the field windings (Aig) has an order of 1 to 10
seconds. Dynamics of generator after damper currents are vanished until

generator reaches the new steady state is referred to as the “transient operation”

of generator.

The time separation effect introduced by assumption (3-28) results in sort of simplification when

studying each effect.
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Generator dynamics with transient phenomenon: It’s possible to get a model more detailed
than (3-27) by considering the effect of transient field current Aig on the voltage-current

characteristics of the generator. From (3-25) by neglecting the damper currents it’s concluded:

] = -1, ¥ [iﬂ + oo (3-29)

The field current ir can be calculated from (3-16) by neglecting the damper current ip and from

(3-18) as follows:

. . . 1 kMg
lPF = kMFId + LFlF = I = _l'IJF ——14
Lp Lg
(3-30)
. . i Vg 1 .
VF:I'FIF+LPF :>1F:_—_lPF
Irp TIF

Substituting i from the first equation in (3-30) into (3-29) will give the voltage equation as

follows:

el =[5, o]+ L

Xqg = wsky ,  Xg=Xq
o K2M2 (3-31)
d= b T
, , kMg
eq =0, e =ws—W
Lr

A differential equation can be obtained for e, by eliminating ir from the first and second

equations in (3-30):

A% 1 . . 1 kMF
I'g I'g B LF F LF d
Multiplying both sides by wgkMg will result:
LF kMF . kMF kZM%‘ Vg
E(DSL—FLPF+(DSL—FWF—(DS LF ld_wskMFE
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In another notation regarding (3-27) and (3-31):

!

T4o d_tq = —eg + e, + (xq — Xg)ig
, _Lr 3-32
Tgo = E ( )

Assumption: wg = 0

In deriving (3-32) it’s assumed that the system frequency wg is almost constant so that the

. deg d
equality — =% (ws

LW, ) = @y E W will be held.

Lp Lp

Equations (3-31) and (3-32) and definitions of x4, x,, €4 and e, from (3-25) and (3-27)
along with the swing equation ((3-19) and (3-20)) and Park’s transform (3-13) together
define the model of generator in which transient variations of the field current is taken into

account.

Generator dynamics with both transient and subtransient phenomena: Now let’s consider
(3-26) complete without neglecting any terms. From (3-16) it’s possible to compute i, ip and iq
in terms of iq,ig, W, Wp and Wy:

1 kMg

LgLp — Mg
= —Mg(Wg — kMgig) + Lp(Wp — kMpig)
l > LgLp — Mg

. Lp(Wp — kMgiq) — Mp(Wp — kMpig) (3-33)
Wp = kMgig + Lyip + MRiD} IF =
=

IPD = kMDid + MRiF + LDiD

Substituting i, ip and iq from the above relations into (3-26) will result:
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V4 r o Xq|[ia ey
[V ] = - " i )
q —Xd r q eq

kM kM
1" Q " Q
Lq—Lq——, ed——ws—lPQ

X” — w L”
q S
Lq Lq

q )
(3-34)

X§ = wgly , L’é=Ld—k2<

MgLp — MpM MpLy — MM
e(’]’zwsk F-D DZR l'pF+(Dsk DF FZR LPD
LeLp — M2 LeLp — M3

LpM2 + LgM2 — 2MgMpMy
LgLp — M3

Again e; and e; each are a solution of a differential equation. Substituting the relations for
ip, ip and ig from (3-33) into the equations for W, Wy and ‘PQ in (3-16) and using the definitions
in (3-31) and (3-34) will result in the following differential equations for e; and ey’:

r
T4 _deq =eq —eq +ig(xg —xq)
do dt q q d\2d d

n de(’i’ ! rn . A rn
qo?= €q —€q — 1q(Xq —Xq
- (L. - Mi)1 (3-35)
do D LF rp
rn Q
T ==
© =1y

Assumption: wg = 0

Equations (3-32), (3-34), (3-35), definitions of x;, x;, e; and e;; from (3-31) and definitions
of x4, x4, €4 and e, from (3-25) and (3-27) along with the swing equation ((3-19) and (3-20))

and Park’s transform (3-13) together define the most complete generator model.

3.1.10 System Reference Frame
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Let fs be an agreed reference frequency in the power system which is fixed or varies slowly (like
the frequency of center of inertia of the system (Andersson, 2010)). Also consider a particular
time instant as the reference for measuring of the time t for all the system (for example the
instant that a particular voltage within the system reaches its maximum positive value compared

to the ground voltage). Any current or voltage signal within the system which is of the form

2T

s(t) = VZS(t) [cos <2nfst 3 + a(t))
|cos (21Tfst + 2?“ + a(t)) |

cos(2mfst + a(t)) }

can be indicated uniquely by its phasor w = S()e*® in the complex plane (Chapman, 2005).
It’s assumed that variations of S(t) and a(t) are slow enough so that the signal still maintains its

sinusoidal shape. S(t) is the “root mean square” (rms) value of each of the entries of the vector
s(t).

In a single machine system in which a synchronous generator supplies an isolated load, it’s
possible to study the load and the generator together in the rotor reference frame of the generator.
In a multi-machine system however another reference frame should be used for all the system
components. The best reference frame in this case is the complex plane. So it’s desirable to

derive equations like (3-35) for phasors of the terminal voltages and currents of the generator.

As stated in the previous section, frequency of a generator when operating stably in a large
network has zero-mean small oscillations around a reference frequency fs. The rotor electrical
angle of the generator however can be written in the form (3-23) and repeated below for

convenience:

0,(t) = 2mfot + 8,(¢)

¢ (3-36)
[we(T) — 2nfi]dt = 6,(0) + f Aw,(7)dr

0

t

8.(5) = 5,(0) + f

0

For stable operation of the generator, §,(t) should be bounded and hence frequency fluctuations

Aw, (1) should have zero mean. Consider generator terminal voltage be given by the following
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relations: (From now on time dependency of phasors will not be indicated explicitly for

simplicity)

\%
Va [Vz \/—V|51n<2nft——+(x
ac_ -

sin(2mfst + o) ]

|

Ve |
|

2T
[sm (21‘[f t+—+ oc)

Applying the Park’s transform P(0,(t)) to generator terminal voltage will result:

Vo 0
Vodg = [Vd —\/—V sin(—6 + ) (3-37)
Vq cos(—8 + a)

It’s desirable to be able to write Vg, = Vgej“ = Vgcosa +j Vgsina (which is the phasor of vy,
in the system reference frame (complex plane)) in terms of v and v. The quantities Vgcosa and

Vgsina can be found in terms of v4 and v from (3-37):

Vgcosa] [cosS sinSe] Vgeos(=8, + )] T vq/V3
Vgsina sind cosSe Vgsin(=8. +a) |~ |y, /v/3 (3-38)

The matrix T in (3-38) is a phase shift operator which rotates any point in the complex plane
around the origin with an angle §,. Note that this is different from the unitary matrix defined by

the equation (3.121) in (Machowski, 2008). Regarding (3-38), the phasor V. in the system

reference frame (complex plane) can be considered as the complex number v /N3 +ijve/V3

which is rotated around the origin with an angle .. In other words:
Vabe = €%¢(vo/V3 + jvq/V3) (3-39)

The phasor for terminal currents of the generator can be found in terms of the quantities iy and iq
in a similar way.
Regarding (3-39) it’s customary to divide d_axis and q_axis variables in (3-27), (3-31), (3-32),

(3-34) and (3-35) by v/3 and denote them by capital letters to emphasize that these variables are

real or imaginary part of a phasor.
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Application and usefulness of the concept presented in this section will be shown later in

Section 0, but first summary of the generator models will be given in next section.

3.1.11 Summary Generator Models

Summary of generator models presented in Section 3.1.9 will be gathered here for convenience.
According the discussion in the previous section, d_axis and q_axis variables in (3-27), (3-31),
(3-32), (3-34) and (3-35) will be divided by V3 and denoted by capital letters to emphasize that

these variables are real or imaginary part of a phasor.

Generator Model in the Steady State: This is the simplest model that neglects transient
phenomena after a disturbance in the currents and voltages of generator. This model can also be
used to find the steady-state operating point of the generator in the network if the swing equation

also be considered in the steady state condition. The model is given in Table (3-1).

Table (3-1) Generator Model with the Steady State Voltage-Current Relationship

Vd _ r Xq Id Ed
Vq] - [_Xd r ] [Iq] + [Eq]
where

Eq=0 , Eg=Ef= eq/\/§= wSkMFVF/(\ErF) , Xqg = wglg , Xq = gLy
V, = elde (Vg +JVa) (Phasor of terminal voltage in the system reference frame)

I, = elde (I +jla) (Phasor of output current in the system reference frame)
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Pout = 3(Valg+Vglg)  (From (3-20), assuming v, = i, = 0 and considering that V4 = vq/V3

and the same is true for the other currents and voltages)

The Swing Equation:
dwy, np dde
]me = NgNePEH Qe — Pout » We = 7(’0111 ‘ Awe = e — w5 = dt

The Swing Equation in the Steady-State:

Pout = NgNepgH Qe 8, = constant

Generator Model in the Transient State: This model takes the transient phenomenon in the
field windings into account. This model is the same as the one used in Heffron-Phillips

formulation (Andersson, 2010). The model is given in Table (3-2).

Table (3-2) Generator Model in the Transient State

!

d—tq = —E;j+ E,+ (xq — xDlg

Tgo
! ! 1
Tio = Le/ve , Ey = () 0s(kMg/Lg) W

1 ’ 1 !
E,=Ef = (ﬁ) wskKMgVE/Tp , Xq = wglg , Xq = wsLy , Ly = Ly —k*ME/Lg

Vd] B [ r xa] Id] N [E,;]
Vq —xg r|lql " lEg
where xq = xXq = wsLq and E; =0

[IP=l)

(in (Machowski, 2008) E/ is not 0 because there a third damper winding “g” has been

considered which as stated before does not apply to salient pole machines)

V, = elde (Vq +JVa) (Phasor of terminal voltage in the system reference frame)

I, = eld (I +jlg) (Phasor of output current in the system reference frame)
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Pout = 3(Valg+Vglg)  (From (3-20), assuming v, = i, = 0 and considering that V4 = vq/V3

and the same is true for the other currents and voltages)

The Swing Equation:
dwy, np dde
]me = NgNePEH Qe — Pour » We = 7(’0111 ! Awe = e — w5 = dt

Generator Model in the Subtransient State: This model takes the subtransient phenomenon in
the damper windings “D” and “Q” into account. This model is the most complete one. The model

is given in Table (3-3).

Table (3-3) Generator Model in the Subtransient State

" dE(,l, 1 " 1 "
TdOT = Eq - Eq + Id(Xd - Xd

" d‘Ea’ 1 " / "
TqOT = Ed - Ed - Iq(Xq - Xq
Where

kM
Tio = (Lo = MR/Le)/rp . Too =Lo/Tq . X§ = wlg , Lg=Lq— 2. x{ = o5l

"o__
Lg =

Ly LpMZ + LgM2 — 2MgMpMg
d LeLp — M2

Xq = Xq = WsLq , xg = wsly , Ly = Lg —k*Mg/Lg

E; =0 (in (Machowski, 2008) E/ is not 0 because there a third damper winding “g” has been

considered which as stated before does not apply to salient pole machines)

!

dE
1 q 1 ’
Tdo W = —Eq + Eq + (Xd - Xd)Id

1 1
Tho = Lp/rp, Eq = B = (ﬁ) wkMpvp/rp and xg = wglg
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Vg r Xq|[lq E}
A Rt I [ RS
q —Xgq T q q
V, = elde (Vg +jVa) (Phasor of terminal voltage in the system reference frame)

I = eld (I3 +jla) (Phasor of output current in the system reference frame)

Pout = 3(Valg+Vglg)  (From (3-20), assuming v, = i, = 0 and considering that V4 = va/V3

and the same is true for the other currents and voltages)

The Swing Equation:
dwp, np dé,
]me = T]g.rltngtQt — Pout » We = 7(’0m ) Awe = We — g = E

All the above models assume that resistive losses in armature windings are included in the

generator efficiency 1. If this is not the case, then these losses can be added to Pyy:
Pour = 3[Valg+Vylg + r(13 +12)] (3-40)

By evaluating the above formula for different Voltage-Current relationships for the three models

the following relations can be concluded:
Pout = 3[Eala+Eqlq + (xa —Xq)lalq]  (For the Model in Table (3-1))
Pout = 3[Egla + Egly + (x§ —x{)lalq]  (For the Model in Table (3-2)) (3-41)

Pout = 3[Ef1q + Ef1q + (x§ —x{)laly]  (For the Model in Table (3-3))

3.1.12 Simulation of Generator connected to an Infinite Bus

Figure (3-15) shows the generator which is connected to an infinite bus. Equivalent impedance
I'e + ] Xe 1S assumed between the generator and the bus (Demiroren, 2002). This impedance

could be for example the transformer impedance or equivalent impedance of a transmission line
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(Machowski, 2008). The system reference frame (Section 0) can be considered to be the bus in
which case the phasor of the bus voltage will be the positive real number V. A transient model
for the generator (Table (3-2)) will be assumed. An exciter which controls the voltage across the

field winding with following transfer function will be assumed (Demiroren, 2002):

KEg
Eq =Ef= 1+sTy (Vir = Ve = Vstabilizer)
(3-42)
SKF
Vstabilizer = 1+ sTeg

Limiters can also be considered for the Eq(= Ef). Vi, is the voltage reference set point for the
exciter. In (Demiroren, 2002) it’s been shown how to determine the net mechanical power
delivered to generator by turbine and Vi, in exciter so that at the steady-state condition a certain
amount of active and reactive power (with controlled proportion) be injected into the network

(infinite bus).

V, cos(2mfit)

V, cos(2mf t-27/3)
V, cos(2mf t+27/3)

Figure (3-15) Generator on Infinite Bus

Steady-State Operation, Requirements and Determining V. (Reference

Voltage) and P,,,, (Net Turbine Output Power): It is of interest to find suitable values

for Vi and P, so that at the steady state condition an active power equal to P, and a reactive
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power equal to Q, be delivered to the infinite bus. The bus voltage is constant and equal to Vg
and bus frequency is constant and equal to fg. Table (3-1) can be used for relationships in the
steady-state. The procedure will be as follows (In the following the subscript “o” denotes the

steady state or operating point): (Demiroren, 2002)

I4o and Ig4:
/PZ + 2 .
Ito = (;,TQO’ ©, = arctan% , It_o = Itoe_]‘Po (3-43)
S o
Where
lio, = RMS value of terminal phase current at steady
state [A]
I, = Phasor of output current of generator at steady
state [A]

Substituting for I;, from Table (3-1) will result:
Itoe_j(po = el%o (Iqo + jlao)
Which in turn will give the relations for I, and Ig,:
lgo = —ltosin(p, + 8¢,) and lgo = ltocos(@o + 8ep) (3-44)

l4o and Ig, can be determined if 8., is known. An independent relation for 8., will be given in

(3-50) below.
RMS value of the Terminal Voltage:

The relationship between bus voltages and generator terminal voltages and currents in the system

reference frame can be written as follows:
Vio = Vs + Lo (re +j xe) (3-45)

Where
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V;, =  Phasor of bus voltage [V]

Vio = Phasor of terminal voltage of generator at steady

state [V]

As mentioned Vg is equal to real number V. By substituting for I;, from (3-43), RMS value of

terminal voltage can then be found as follows:

Vio = /Vto Vi, (“*” denotes for complex conjugate) (3-46)

8,:
Substituting for V,, and I;, from Table (3-1) will result:

VS = ej(seo (qu + jvdo) — ejaeo (Iqo + jldo)(re + ] Xe)

Separating the real and imaginary parts of the above equation will result in the following set of

equations:

Vdo]_ I'e [Ido] [VsinSeo (3-47)

Vo V.cos &,

V.
A relation for [Vdo] can also be found from Table (3-1):
qo

Vd r Id Ed
( VqZ] = — [—Xd ; [ 0] [ O] where Edo = 0) = Vdo = —-r Ido — XquO (3-48)
Eliminating Vg, from the first equation in (3-47) and the resultant relation in (3-48) will give:
Vs sinSeO = (I‘ + I'e) Ido + (Xq + Xe)Iqo (3-49)

Substitution from (3-44) into (3-49) and solving for &, will result in the following relation:
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Lio (xq + xe) COS Py — Lo (r + 1) sin @,

8., = arctan 3-50
e Vs + Lo (r + re) cos @ + It (Xq + xe) sin @, (3-30)
Efo(= Eqo):
Can be found by eliminating Vg, from (3-47) and (3-48):
Efy = Vs €058, + (r+1e) Igo — (Xg + Xe)lgo (3-51)

Pro:

P can be set equal to the air gap power as first relation in (3-41). This way the resistive losses
in the armature windings are accounted for but other losses within the generator are neglected. If

efficiency of the generator is available, it can be applied in here:

Pro = 3[E01(,1010+qulqo + (Xd - Xq)ldolqo] (Only armature resistive losses are accounted for)

Or

Pho = i [led +Vqlq] (If ng accounts for all the losses within the generator)

Or

Pro = Pmo = ;—g[VdId+Vqu] + 3r(1§ + Ié) (If ng accounts for all the losses except for the

armature resistive losses)

And finally V,,:

Vir can be found from (3-42) in the steady state:

Vtr = VtO + — (3'52)
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Dynamic Equations:

The dynamic equations for transient operation will be the ones in the Table (3-2) plus the
alternative active power relations (3-40) and (3-41) (whichever is applicable) and also (3-47)

which is applicable in the transient operation of generator also:

Val [ Te Xel[la —Vssind,
Vq] - [_Xe re] [Iq] + [Vscos S, (3-53)

V. |
By eliminating [Vd] from the above relation and the voltage-current relation in Table (3-2), [Id]
q q

can be found:

Vd . I'e Xe Id —Vssinse _ r Xél Id E(,i
Vq] - [_Xe I‘e] Iq] + [Vscos Sl |-x) r [Iq] + E,’J (3-54)
re+r  Xe+Xq [Id] [ V,sin§, ] [E&]
= ] 3-55
—(Xe + X)) Tedtr ] Ig —V,cos 8, + E; (3-55)

Simulations: In this part the generator is simulated along with the waterway with inelastic
penstock and the transient droop controller introduced in Chapter 2. The generator is connected
to an infinite bus so it is supposed that rotor electrical frequency do not alter much from the bus
frequency. The simulation is done for a guide vane opening change at the time t=200 sec.
Parameters for simulation are given in Appendix III part D in the Main_parameters.m and

InitializeGenerator.m.
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Figure (3-16) Simulation of generator connected to an infinite bus (guide vane closes at t

Generator active power vs Turbine power

Turbine Power

Time [sec]

Figure (3-17) Simulation of generator connected to an infinite bus (Since frequency cannot
change much, due to droop relation guide vane opening and hence the powers of turbine and

generator follow the guide vane reference)
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Electric frequency

Time [sec]

Figure (3-18) Frequency disturbance at the time of guide vanes closing
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Rotor electric Angle
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Figure (3-20) Simulation of generator connected to an infinite bus (disturbance in terminal
voltage due to guide vanes closing)
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Chapter 4 Conclusion

Modeling of a high-head hydropower generation unit was considered in this work. It’s been
shown how to use the “Finite Volume Method” and MATLAB to simulate the behavior of a
penstock when elasticity of the penstock walls and compressibility of the water is taken into
account. “Staggered grid” is used for spatial discretization of the variables along the penstock.
This way a set of ODEs as a model for the penstock can be obtained. The “odel5s” ODE solver
in MATLAB was used for solving this set of equation. It was shown that under default options,
especially the default relative tolerance, the solution will have some numerical errors which will

distort the solution completely.

The model introduced for the elastic penstock was validated in a classic penstock-valve problem
with uniform valve closing. The responses of the model for different conditions were compared
to Allievi charts (Warnick, 1984). It was found that except for high water velocities (higher than
one or two m/s) the results almost agree. It was doubted that the value considered as Fanning
friction factor (0.04) is more than usual for a penstock. However an illustrative value for

penstock was not available.

It was shown how to enter Francis turbine efficiency data from its hill chart into MATLAB to
create a suitable interpolation function. It was shown that the “square root of head” criteria for
the discharge of turbine under constant guide vanes opening might not be accurate enough and
the reason was guessed to be the motoring head of the turbine which varies for different heads (at

least for the head ranges between %65 and %125 of design head)

Available models for the other parts of the waterway (inelastic) were extended to include an

interface to the elastic penstock model.

The whole waterway model (with both elastic and inelastic penstock sub-models) was simulated
in MATLAB using a classic transient droop controller for a given time-varying active-power-
consuming turbine load. No significant difference between the responses of the two models was

observed.

Simulation was also carried out with constant turbine load and time varying reference signal for

the guide vanes opening. This time some effect of the moving waves could be observed in the
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surge-shaft downstream pressure. However due to the controller action and more importantly due
to the sluggish behavior of the guide vanes actuator the observed effects were not significant

either.

Simplified synchronous generator models available in the literature were studied and applied to
the whole hydropower generation unit considering the inelastic penstock model. Synchronous
operation of the hydropower generation unit was then simulated when generator connected to an
infinite bus. The difference in the feature of the response in this case compared to the case when
turbine was connected to the active load was studied. Without a dynamic generator model this

was impossible.
Simplified models of the generator are used for two reasons:

- Variations of Af, is much less than f, (like SOHz against 0.01 Hz). See Figure (3-17).
- The phenomena within generator and power network are described using these simplified

models in almost all the literature like (Machowski, 2008).

Future Work:

- The methods described in this report can be extended to the units working in parallel.

- If enough data from real plants become available, the methods can be validated against
real data

- Operation of an advanced controller can be simulated using the models introduced in this
report

- No significant diversion between the responses of the elastic and inelastic models (when

operating in the closed loop) was observed in this work. This needs more investigation.
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Appendix | THESIS TASK DESCRIPTION

FMHG606 Master Thesis

Title: Modeling For Control of Hydropower Systems
Student: Behzad Rahimi Sharefi
Supervisor: Bernt Lie, PhD, Professor, HiT

Co-supervisor:

Task description:

The following tasks should be carried out:

1. An overview of hydropower systems is to be given, with special emphasis on storage based systems.

2. Description of a model library for simulation of storage type hydropower systems with Francis
turbine should be given, with models suitable for prediction and control of the various units.

3. Parameters for an illustrative hydropower plant (e.g. Sundsbarm) with grid are to be given.

4. A model for the chosen hydropower plant is to be implemented in MATLAB and the simulation model
is to be validated.

5. If there is time, a control structure is to be developed for the simulated system, and the suggested
structure is to be compared with a standard control structure for such systems.

6. The work is to be reported in a thesis.

Task background:

A hydropower system of storage type consists of a reservoir, a waterway, turbine gate + turbine,
generator, transmission lines/grid, and consumer loads. The inlet tunnel from the reservoir to the penstock
typically has a varying cross sectional area. In fact: several inlet tunnels may be joined in manifolds.
Surge volumes of different types may be present. The system may have manifolds with several penstocks
to several turbines, and the water may exhibit compressibility in the penstock + the penstock walls may
exhibit elasticity. Governors of various types may be used to control the turbine gate operation. Salient-
pole synchronous generators with a different number of pole pairs may be used. Several generators
connected to a grid have restrictions on the frequency, etc. It is of interest to give as complete a
description in the form of a dynamic model as possible of the various units in a hydropower system. As
the various models may operate on different time scales, it is of interest to rationally develop simplified
models that are suitable on the chosen time scale. As an example, simplified models of generators are
needed, and it is useful with a rational development of simplified models in the time domain based on
standard generator models from Kirchhoff’s laws, etc.

The developed models are meant for controller design/operational analysis, and illustrative realistic
parameters should be chosen.

Practical information (where, how, available equipment etc.):
The work will be carried out at Telemark University College.
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Supervisor's signature and date:

144



Appendix Il  TurBINE EFFICIENCY DATA

#|YGV | H | n #/YGV | H | 7 #/YGV | H | n
1| 03 | 650|700 31| 0,4 [125,0( 85,0 61| 0,7 | 73,0 | 89,0
2|03 [660 710 32| 05 | 650 | 80,0 62| 0,7 | 78,0 | 90,0
3|03 [680]720 33| 05 | 655 | 81,0 63| 0,7 | 835 | 91,0
4103|700 730 34| 05 | 665 | 82,0 64| 0,7 | 91,0 | 92,0
5|03 [705 |740 35( 0,5 | 68,0 | 83,0 65| 0,7 [110,0| 92,0
6|03 |715 750 36| 0,5 | 69,0 | 84,0 66| 0,7 [118,0| 91,0
7|03 |735 760 37| 0,5 | 70,5 | 85,0 67| 0,8 | 67,5 | 86,0
8| 03 [760|77,0 38| 05 | 725 | 86,0 68| 0,8 | 70,0 | 87,0
9| 03 [80,0 780 39| 05 | 750 | 87,0 69| 0,8 | 74,5 | 88,0
10| 0,3 | 83,0790 40| 0,5 | 79,0 | 88,0 70| 0,8 | 78,0 | 89,0
11| 0,3 | 86,0 | 80,0 41| 0,5 | 82,0 | 89,0 71| 0,8 | 84,0 | 90,0
12| 03 | 92,0 | 81,0 42| 0,5 | 87,0 | 90,0 72| 0,8 | 92,5 | 91,0
13| 0,3 |114,0| 81,0 43| 0,5 [100,0| 91,0 73| 0,8 [108,5| 91,0
14| 0,3 |121,0| 80,0 44| 0,5 [109,0| 91,0 74| 0,8 [121,0| 90,0
15| 0,3 |125,0| 79,5 45| 0,5 [120,5| 90,0 75| 0,8 [125,0| 89,0
16| 0,4 | 650 | 75,0 46| 0,5 |125,0| 89,0 76| 0,9 | 65,0 | 85,0
17| 0,4 | 66,0 | 76,0 47| 0,6 | 650 | 84,0 77| 0,9 | 70,0 | 86,0
18| 04 | 67,0 | 77,0 48| 0,6 | 66,0 | 85,0 78| 0,9 | 74,0 | 87,0
19| 0,4 | 685 | 78,0 49| 0,6 | 67,0 | 86,0 79| 0,9 | 82,0 | 88,0
20| 0,4 | 705 | 79,0 50| 0,6 | 69,5 | 87,0 80| 0,9 | 88,0 | 89,0
21| 0,4 | 71,0 | 80,0 51| 0,6 | 72,0 | 88,0 81| 0,9 |111,0| 89,0
22| 0,4 | 73,0810 52| 0,6 | 750 | 89,0 82| 0,9 |118,0] 88,0
23| 0,4 | 745 | 82,0 53| 0,6 | 79,0 | 90,0 83| 0,9 |123,0| 87,0
24| 0,4 | 77,0 | 83,0 54| 0,6 | 84,0 | 91,0 84| 0,9 |125,0] 86,0
25| 0,4 | 785 | 84,0 55| 0,6 | 90,5 | 92,0 85| 1,0 | 70,0 | 85,0
26| 0,4 | 815 | 85,0 56| 0,6 [113,0] 92,0 86| 1,0 | 73,0 | 86,0
27| 0,4 | 845 | 86,0 57| 0,6 [121,0( 91,0 87| 1,0 | 78,0 | 87,0
28| 0,4 | 90,0 | 87,0 58| 0,7 | 66,0 | 86,0 88| 1,0 |113,0| 87,0
29| 0,4 [116,0| 87,0 59| 0,7 | 68,0 | 87,0 89| 1,0 |117,0| 86,0
30| 0,4 [121,0 86,0 60| 0,7 | 70,5 | 88,0 90| 1,0 |118,5| 85,0
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Appendix lll  maTLAB copes

A. Simulation of turbine

o\

TurbineData.m

This program determines necessary data to be used by the functions
H_Turb and Eff_ Turb for interpolation of turbine head and turbine
efficiency.

o® o

o

YGV= [ 0.2; 0.3; 0.4; 0.5; 0.6; 0.7; 0.8; 0.9; 1.0];
Theta=[ 10.09; 8.16; 6.76; 5.30; 3.30; 2.56; 1.50; 0.64; 071;

global YGV_PP;
YGV_PP=spline (YGV, Theta) ;

figure (1)

YGVI=0.2:0.01:1;

ThetaI=ppval (YGV_PP,YGVI) ;

grid on;

plot (YGV, Theta, 'o',YGVI, Thetal);
grid;xlabel ('YGV');ylabel ('Theta');

Turb_Data_Table3=]
0.3 65.0 70.0;
0.3 66.0 71.0;
0.3 68.0 72.0;
0.3 70.0 73.0;
0.3 70.5 74.0;
0.3 71.5 75.0;
0.3 73.5 76.0;
0.3 76.0 77.0;
0.3 80.0 78.0;
0.3 83.0 79.0;
0.3 86.0 80.0;
0.3 92.0 81.0;
0.3 114.0 81.0;
0.3 121.0 80.0;
0.3 125.0 79.5];
Turb_Data_Tabled=[
0.4 65.0 75.0;
0.4 66.0 76.0;
0.4 67.0 77.0;
0.4 68.5 78.0;
0.4 70.5 79.0;
0.4 71.0 80.0;
0.4 73.0 81.0;
0.4 74.5 82.0;
0.4 77.0 83.0;
0.4 78.5 84.0;
0.4 81.5 85.0;
0.4 84.5 86.0;
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0.4 90.0 87.0;
0.4 116.0 87.0;
0.4 121.0 86.0;
0.4 125.0 85.0];
Turb_Data_Tableb=][
0.5 65.0 80.0;
0.5 65.5 81.0;
0.5 66.5 82.0;
0.5 68.0 83.0;
0.5 69.0 84.0;
0.5 70.5 85.0;
0.5 72.5 86.0;
0.5 75.0 87.0;
0.5 79.0 88.0;
0.5 82.0 89.0;
0.5 87.0 90.0;
0.5 100.0 91.0;
0.5 109.0 91.0;
0.5 120.5 90.0;
0.5 125.0 89.0];
Turb_Data_Table6=|
0.6 65.0 84.0;
0.6 66.0 85.0;
0.6 67.0 86.0;
0.6 69.5 87.0;
0.6 72.0 88.0;
0.6 75.0 89.0;
0.6 79.0 90.0;
0.6 84.0 91.0;
0.6 90.5 92.0;
0.6 113.0 92.0;
0.6 121.0 91.0];
Turb_Data_Table7=]
0.7 66.0 86.0;
0.7 68.0 87.0;
0.7 70.5 88.0;
0.7 173.0 89.0;
0.7 78.0 90.0;
0.7 83.5 91.0;
0.7 91.0 92.0;
0.7 110.0 92.0;
0.7 118.0 91.0];
Turb_Data_Table8=]
0.8 67.5 86.0;
0.8 70.0 87.0;
0.8 74.5 88.0;
0.8 78.0 89.0;
0.8 84.0 90.0;
0.8 92.5 91.0;
0.8 108.5 91.0;
0.8 121.0 90.0;
0.8 125.0 89.0;
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Turb_Data_Table9=]
0.9 65.0 85.0;
0.9 70.0 86.0;
0.9 74.0 87.0;
0.9 82.0 88.0;
0.9 88.0 89.0;
0.9 111.0 89.0;
0.9 118.0 88.0;
0.9 123.0 87.0;
0.9 125.0 86.0];
Turb_Data_TablelO=[
1.0 70.0 85.0;
1.0 73.0 86.0;
1.0 78.0 87.0;
1.0 100.0 88.0;
1.0 112.0 87.0;
1.0 116.5 86.0;
1.0 118.5 85.071;

Y1=0.3:0.1:1.0;

=(65:5:125)"
[gYl,gHl] = meshgrid(Y1l,H1l);
Vl=zeros (size(g¥l));
,1)=interpl (Turb_Data_ Table3
=interpl (Turb_Data_Table4
interpl (Turb_Data_Table5

), Turb_Data_Table3 (:,3) )
), Turb_Data_Tabled (:,3) )
), Turb_Data_Table5(:, 3) )
), Turb_Data_Table6(:,3),H1, 'spline');
), Turb_Data_Table7(:,3) i )
) (:,3) )
) (:,3) )
2

4

I4

V1(:
V1i(:,2)
v1(:,3)
V1(:,4)
V1(:,5)
Vl(: 6)
1(:,7)
1(:,8)

(:,2
( (:,2
( (:/,2
interpl (Turb_Data_Table6 (:,2
interpl (Turb_Data_Table7(:,2
( (:,2
( (:,2
(

4

interpl (Turb_Data_Table8 , Turb_Data_Table8
interpl (Turb_Data_Table9(:, , Turb_Data_Table9(:, ,H1, "spline'’
=interpl (Turb_Data_TablelO(:,2), Turb_Data_TablelO(:,3),Hl, 'spline');

4 4

4

4

Y2=0.3:0.01:1.0;

H2=(65:1:125)"

global Grid_Turb_YGV Grid_Turb_Head Efficiency_Turb_Interpolant;
[Grid_Turb_YGV,Grid_Turb_Head] = meshgrid(Y2,H2);
Efficiency_Turb_Interpolant =

INTERP2 (gY1l,gH1,V1l,Grid_Turb_YGV,Grid_Turb_Head, 'cubic');

figure(2);

grid on;

contour (Grid_Turb_YGV, Grid_Turb_Head, Efficiency_Turb_Interpolant);
grid;xlabel ('YGV') ;ylabel ('Head");

figure (3);
mesh (Grid_Turb_YGV, Grid_Turb_Head, Efficiency_Turb_Interpolant);
xlabel ('YGV'") ;ylabel ('Head');zlabel('Efficiency');

To o To %o To To To To To To To Fo To Fo Fo Fo Fo Fo Fo Fo Fo Fo Fo Fo Fo Fo Fo Fo Fo Fo Fo Fo Fo Fo Fo Fo Yo Yo Yo Fo Yo Yo
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function H=H_Turb(YGV, Q)
global YGV_PP;

Theta=ppval (YGV_PP, YGV) ;
Thetal=(72.04+Theta) *pi/180;

H=(70/134)*((Q+32.2)*tan(Thetal)-331.6+60*134/70);

Go %0 %0 %0 Yo Yo To To Fo Yo Yo To Fo Fo Yo Yo Yo To Fo Fo Yo T Yo Fo To Yo Yo Yo Fo Fo Fo Yo Yo To Fo Fo Yo Yo To To Fo Fo Yo Yo

function Efficiency=Eff_Turb(YGV, H)

global Grid_Turb_YGV Grid_Turb_Head Efficiency_Turb_Interpolant;

if H>125
H=125;
elseif H<65
H=65;
end

Efficiency=interp2 (Grid_Turb_YGV,Grid_Turb_Head,Efficiency_Turb_Interpolant,Y
GV,H, "cubic");

Go %o %0 %0 Yo Yo To To Fo %o Yo To Fo To Yo Yo Yo To Fo Fo Yo Yo Yo Fo Fo To Yo Yo Fo Fo Fo Yo Yo To Fo Fo Yo Yo To To Fo Yo Yo Yo

B. Simulation of elastic penstock + valve

$test.m main program for simulation of penstock-valve problem. Valve
$closure is determined by the function valveCV.m as a function of time.

clc
close all
clear all

tic;
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% Quick Simulation Parameters:
LP=1000; %Penstock Length [m]

VT=1; %Valve closure time [sec]
ho=100; %Gross head [m]

vo=1l; %$Initial Water Velocity [m/sec]
hHW=0; %Reservoir height [m]

a=1000; %Sound Velocity [m/sec]

global CONSTANTS;
CONSTANTS=1[];
CONSTANTS.rho_atm=1000; S%Water density at atmospheric pressure [Kg/m3]

CONSTANTS.g=9.8; $gravity acceleration [m/sec2]
CONSTANTS.p_atm=1le5; $Atmospheric pressure [Pa]

CONSTANTS .beta=4.5e-10; S%compressibility of water [1/Pa]

global PPENSTOCK; %Parameters for penstock
PPENSTOCK=1[];

PPENSTOCK.LP=LP; %$Penstock length [m]

PPENSTOCK.AP=7; %$Penstock cross-section area [m2]
PPENSTOCK.ThetaP=asin((ho-hHW) /LP); %Penstock slope [radians]
PPENSTOCK.fP=0.00; $Fanning friction factor for the penstock
PPENSTOCK.N=50; $No of deltax length along the penstock

PPENSTOCK.beta_eqg=1/ (CONSTANTS.rho_atm*a”~2)-CONSTANTS.beta; S%$penstock wall
elasticity

global PHEADWATER; %Parameters for head water system
PHEADWATER=[];

PHEADWATER.ho=ho; $Gross head [m]
PHEADWATER.hR=hHW; %$Head water reservoir water level [m]

global PTAILWATER; S%Parameters for tail water system
PTAILWATER=[];

PTAILWATER.VT=VT; %Valve closure time [sec]
PTAILWATER.vo=vo; %Initial Water Velocity [m/sec]

% Initial conditions:
N=PPENSTOCK.N;
rho_atm=CONSTANTS.rho_atm;
g=CONSTANTS.qg;
p_atm=CONSTANTS.p_atm;
AP=PPENSTOCK.AP;

pl=p_atm+rho_atm*g*hHW; S%pressure at the entrance of penstock (in head water)
deltap=rho_atm*g* (ho-hHW) /N;

PO=(pl+deltap:deltap:pl+ (N-1)*deltap)';

mdotO=rho_atm*AP*vo*ones (N-2,1);

X0=[rho_atm*AP*vo;rho_atm*AP*vo;P0;mdot0];

tspan=[0 100];

options=odeset ('MaxOrder',1, '"RelTol',le-6, 'AbsTol"',1le-6);
[T,X] = odelb5s(@overall, tspan,X0,options);

% [T,X] = oded5(Qoverall, tspan,X0);
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toc;

1T=length(T);

UV=zeros (1, 1T);

for i=1:1T
[~,UV(i)]=valveCV (T (i));

end

figure(l);grid on; plot(T,UV);axis([0,100,-0.1,1.11);
title('Cv of the valve [p.u]');grid;

figure(2);grid on; plot(T,X(:,N+1));xlabel ('Time [sec]');
title('pressure before the wvalve [Pa]');grid;

figure(3);grid on;plot(T,X(:,2*N-1));xlabel('Time [sec]'");
title('Mass flow rate at the valve [Kg/sec]');grid;

subplot (221) ;grid on; plot(T,X(:,2+floor (N/4)));xlabel('Time [sec]');
title('pressure at 1/4 length from head water [Pa]');grid;

subplot (222) ;grid on;plot(T,X(:,2+floor (N/4)+N-1));xlabel ('Time [sec]');
title('Mass flow rate at 1/4 length from head water [Kg/sec]');grid;

subplot (223) ;grid on; plot(T,X(:,3));xlabel('Time [sec]');
title('pressure at the head water interface [Pa]');grid;

subplot (224) ;grid on;plot(T,X(:,N+2));xlabel ('Time [sec]');

title('Mass flow rate at the head water interface [Kg/sec]');grid;

90 %0 %0 Fo Yo Fo Yo Yo Yo Yo Yo Yo To To o Yo Fo Yo Yo Yo Yo Yo Yo To Yo To Yo To Yo Yo Yo Yo Yo Yo To Yo Yo Yo
function dXdt=overall (t, X)

global PPENSTOCK CONSTANTS PHEADWATER;

LP=PPENSTOCK.LP; %$Penstock length [m]

AP=PPENSTOCK.AP; %$Penstock cross—-section area [m2]
ThetaP=PPENSTOCK.ThetaP; $Penstock slope [radians]
N=PPENSTOCK.N; %$No of deltax length along the penstock

deltax=LP/N;

rho_atm=CONSTANTS.rho_atm;
g=CONSTANTS.g;
p_atm=CONSTANTS.p_atm;

hHW=PHEADWATER.hR; %$Head water reservoir water level [m]
xR=X (1) ;
xV=X(2);

S=X(3:2*N-1);
PHWI=S (1) ;pTWI=S(N-1);
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pHWO=p_atm+rho_atm*g*hHW;
dxRdt=deltax\ (AP* (pHWO-pHWI) +rho_atm*g*deltax*AP*sin (ThetaP)) ;

deltap_valve=xV*abs (xV)/ (rho_atm*2*valveCV(t)"2);
PIWO=p_atm+deltap_valve;
dxvdt=deltax\ (-AP* (pTWO-pTWI)+rho_atm*g*deltax*AP*sin(ThetaP)) ;

dSdt=penstock (S, xR, xV) ;

dXdt=[dxRdt ; dxVdt;dsSdt];

9o %0 %0 Fo Yo Fo Yo Fo Yo Yo Yo Yo To Yo o Yo To Yo Yo Yo Yo Yo Yo Yo Yo To Yo To Yo Yo Yo Yo Yo Yo To Yo Yo Yo
function dSdt=penstock (S, mdotHWI, mdotTWI)
global CONSTANTS;

rho_a= CONSTANTS.rho_atm; $Water density at atmospheric pressure [Kg/m3]

g= CONSTANTS.g; $gravity acceleration [m/sec2]
Pa= CONSTANTS.p_atm; $Atmospheric pressure [Pa]
beta= CONSTANTS.beta; $compressibility of water [1/Pa]

global PPENSTOCK; %Parameters for penstock

Aa= PPENSTOCK.AP; $Penstock cross—-section area [m2]

theta= PPENSTOCK.ThetaP; $Penstock slope [radians]

fp= PPENSTOCK. fP; $Fanning friction factor for the penstock
N= PPENSTOCK.N; $No of deltax length along the penstock

deltax= PPENSTOCK.LP/PPENSTOCK.N;
beta_eg= PPENSTOCK.beta_eq; S%penstock wall elasticity

beta_tot=beta+beta_eqg;

pP=S(1:N-1);
mdot=S (N:2*N-3) ;

mdot_ext=[mdotHWI; mdot;mdotTWI];

dpdt=(mdot_ext (1:N-1)-mdot_ext (2:N))/(Aa*rho_a*deltax*beta_tot) ;
Fp=Aa*rho_a* (ones(N-1,1)+beta_tot* (p-Pa*ones(N-1,1)));

Fmdot=(Fp (1:N-2)+Fp(2:N-1))/2;

Fmdot_ext=[Aa*rho_a;Fmdot;Aa*rho_a]j;

vmdot_ext=mdot_ext./Fmdot_ext;

o %0 To o %o To Yo To To Yo To To To To Yo To To Yo To Yo To Fo o To To Yo To To To To Yo To To Yo To Yo To Yo

function coef=velocitycoef (mdot_2n_ext,kthi_2n)
$This function calculates the coefficients of the velocity variables in the
$momentum equation using upwind discretization:
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global PPENSTOCK;
N=PPENSTOCK.N; %¥No of deltax length along the penstock

coef=zeros (N-2,3);

for i=1:N-2
tl=(mdot_2n_ext (i)+mdot_2n_ext (i+1))/2;
t2=(mdot_2n_ext (i+1)+mdot_2n_ext (i+2))/2;
t3=(mdot_2n_ext (i+2)-mdot_2n_ext (i))/2;

if tl1>=0,
coef (i,1)=tl+t3-kthi_2n(i);
coef (i,2)=tl;
coef (i,3)=0;
elseif t2<=0,
coef (i,1)=-t2+t3-kthi_2n(i);

coef (1i,2)=0;
coef (i,3)=-t2;
else
coef(i,1l)=-kthi_2n(i);
coef (1i,2)=0;
coef (i,3)=0;
end

end

o %0 To o %o To Yo To To Yo To To To To Yo To To Yo To Yo To To Yo To To Yo To Yo To To Yo To To Yo To Yo To To Yo

function [y,uv]=valveCV(t)

global CONSTANTS PPENSTOCK PTAILWATER PHEADWATER;

rho_atm=CONSTANTS.rho_atm; %Water density at atmospheric pressure [Kg/m3]

g=CONSTANTS.g; $gravity acceleration [m/sec2]
AP=PPENSTOCK.AP; %$Penstock cross—-section area [m2]
ho=PHEADWATER.ho; $Gross head [m]

VIT=PTAILWATER.VT; %Valve closure time [sec]
vo=PTAILWATER.vo; %$Initial Water Velocity [m/sec]

Max_VolumetricFlowRate=AP*vo;
Max_DiffPressure=rho_atm*g*ho;

if t<50,
uv=1;
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else

uv=max (0.9, 1-VT\ (t-50)) ;
end

y=uv*Max_VolumetricFlowRate/sqrt (Max_DiffPressure);

o %0 To o %o To Yo To To Yo To To To To Yo To To o To Yo To Fo Yo To To Yo To Yo To To o To To Yo To Yo To To Yo

C. Simulation of waterway, turbine and controller (with and without Compressibility and
Elasticity Effects) and with a Torque Disturbance on Turbine Consuming Constant

Active Power

o

main program for simulation of inelastic and elastic models of the plant
with transient droop controller and disturbance as torque on turbine
consuming constant active power

o o

clc

clear all

close all

Main_parameters %run to define parameters
TurbineData %run to generate turbine data

$initial state vector for inelastic system:

% 1S=x_1e(1); $Length of water column in the surge shaft
% mdotC=x_1ie(2); %Mass flow rate of water in the conduit

% mdotP=x_1e(3); %Mass flow rate of water in the penstock

% YGV=x_1ie (4); %$guide vane openning

% xr=x_1ie(5); $transient droop state

% u=x_1ie(6); $pilot servomotor output

% wm=x_1ie (7); %$angular speed [rad/sec]

b

_1e0=[55;28000;28000;0.7;0;0;500*2*pi/60];

$initial state vector for elastic system:

% YGV=x(1); %$guide vane openning

& xr=x(2); $transient droop state

% u=x(3); $pilot servomotor output

% wm=x(4); $angular speed [rad/sec]

% 15=x(5); %$Length of water column in the surge shaft

% mdotC=x(6); %Mass flow rate of water in the conduit

% mdotHWDO=x(7); %Mass flow rate of water in the penstock interface at HW
% mdotTWUO=x(8); %$Mass flow rate of water in the penstock interface at TW

o\

S=x(9:2*N+5) ; %$Penstock state wvector
LP=PPENSTOCK.LP;

N=PPENSTOCK.N;

deltax=LP/N;

p0=(5+28/N:28/N:5+28-28/N) '*1e5;

mdot0=28000*%ones (N-2,1);
x0=[0.7;0;0;500*2*pi/60;55;28000;28000;28000;p0;mdot0];
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tspan=[0 500];

options=odeset ('MaxOrder',5, '"RelTol"',1le-9, 'AbsTol"',1e-9);
[T_ie,X _ie] = odelbs(@ODEWaterwayInelastic,tspan,x_ie0,options);
[T,X] = odelb5s(Q@ODEWaterway, tspan, x0,options);

1T=length(T_ie);
X_ie2=zeros(1T,06);
for i=1:1T
t=T_ie(1i);
xXi=X_ie(i,1:3);
Ygvi=X_ie (i, 4);
wmi=X_1ie(i,7);
PowerDemandi=ActivePowerDemand (t) ;
[~, pHWDO1i, pTWUOi, Hti,EFFti, Pti]=WaterwayInelasticOutputs (xi, Ygvi,wmi) ;
X_ie2 (i, :)=[pHWDOi pTWUOi Hti EFFti Pti PowerDemandi];
end

1T=length(T);
X2=zeros (1T, 6);

for i=1:1T
t=T(1);
x1=X (1, :);
YGV=xi(1); %$guide vane openning
wm=x1 (4) ; $angular speed [rad/sec]

xHW=x1(5:7) ;
mdotTWUO=x1 (8); %$Mass flow rate of water in the penstock interface at TW
S=x1(9:2*N+5); %Penstock state vector
pTWUI=S (N-1);
PHWDI=S (1) ;
PowerDemandi=ActivePowerDemand (t) ;
[~,pTWUOLi, Hti,EFFti,Pti]=TailWaterOutputs (mdotTWUO, pTWUI, YGV,wm,deltax) ;
[~, pPHWDO] =HeadWaterOutputs (xHW, pHWDI, deltax) ;
X2 (i, :)=[pHWDO pTWUOi Hti EFFti Pti PowerDemandil];
end

figure(l);grid on;
plot (T, sin(PHEADWATER.ThetaS)\X(:,5), 'b-");hold on;
plot(T_ie, sin(PHEADWATER.ThetaS)\X_ie(:,1),'r—.");hold off;
grid;xlabel('Time [sec]');ylabel('Height [m]");
title('Water column height in the surge shaft');
)

legend('Elastic Penstock', 'Inelastic Penstock');

figure(2);grid on;

plot (T, X(:,6),"'-b");hold on;plot(T_ie, X _ie(:,2),'- !
grid;xlabel ('Time [sec]');ylabel('Flow rate [Kg/sec]');
title('Water mass flow rate in the conduit');
legend('Elastic Penstock', 'Inelastic Penstock');

) ;hold off;

figure(3);grid on;

plot (T, X(:,8),"'-b'");hold on;plot(T_ie, X ie(:,3),'-.r");
grid;xlabel ('Time [sec]');ylabel('Flow rate [Kg/sec]');
title('Water mass flow rate in the turbine');
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legend('Elastic Penstock', 'Inelastic Penstock');

figure(4);g9rid on;

plot (T, X(:,1),"'-b");hold on;plot(T_ie, X ie(:,4),'—.r'");hold off;
grid;xlabel('Time [sec]');ylabel('Guide vanes opening [p.u.]");
title('Guide vanes opening');

legend('Elastic Penstock', 'Inelastic Penstock');

figure(5);grid on;

plot (T, X(:,4)*50/PTURBINE.wm_design, '-b');hold on;
plot(T_ie, X_ie(:,7)*50/PTURBINE.wm_design, '—.r");
grid;xlabel ('Time [sec]');ylabel('Frequency [Hz]"');
title('Electric frequency');

legend('Elastic Penstock', 'Inelastic Penstock');

figure(6);grid on;

plot (T, X2(:,1),"'-b");hold on;plot(T_ie, X_ie2(:,1),"'—.r'");hold off;
grid;xlabel ('Time [sec]');ylabel('Pressure [Pa]');
title('Pressure at the surge shaft junction');
legend('Elastic Penstock', 'Inelastic Penstock');

figure(7);g9rid on;

plot (T, X2(:,2),"'-b'");hold on;plot(T_ie, X_ie2(:,2),"'—-.r'");hold off;
grid;xlabel ('Time [sec]');ylabel('Pressure [Pa]');
title('Pressure at the turbine inlet');
legend('Elastic Penstock', 'Inelastic Penstock');

figure(8);grid on;

plot (T, X2(:,3),"'-b'");hold on;plot(T_ie, X_ie2(:,3),"'—-.r'");hold off;
grid;xlabel ('Time [sec]');ylabel('Head [m]");

title('Turbine head');

legend('Elastic Penstock', 'Inelastic Penstock');

figure(9);grid on;

plot (T, X2(:,4),'-b'");hold on;plot(T_ie, X_ie2(:,4),'—-.r');hold off;
grid;xlabel('Time [sec]');ylabel('efficiency [%]"');

title('Turbine efficiency');

legend('Elastic Penstock', 'Inelastic Penstock');

figure(10);grid on;

plot (T, X2(:,5),'- b',T,X2(:,6),"'-.b");hold on;
plot(T_ie, X_ie2(:,5),'—.r");hold off;

grid;xlabel ('Time [sec]');ylabel('Power [W]");
title('Active power demand vs Turbine power');
legend('Elastic Penstock', 'Demand', 'Inelastic Penstock');

o %0 To o %o To Yo To To Yo To To To To Yo To To Yo To Yo To Fo Yo To To Yo To To To To Yo To To Yo To Yo To Yo

o

Main_parameters.m

defines parameters for simulation of plant with inelastic and elastic
models with transient droop controller and a disturbance torque

on turbine which consumes constant active power

o o

o
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global CONSTANTS;
CONSTANTS=[];
CONSTANTS.rho_atm=1000; S%Water density at atmospheric pressure [Kg/m3]

CONSTANTS.g=9.8; $gravity acceleration [m/sec2]
CONSTANTS.p_atm=1le5; $Atmospheric pressure [Pa]

CONSTANTS.beta=4.5e-10; S%Swater compressibility

global PTURBINE; S%$Turbine parameters
PTURBINE=[];

PTURBINE.Qrated=36; $Rated descharge [m3/sec]
PTURBINE.Hdesign=330; %$Design head [m]

PTURBINE.wm_design=500*2*pi/60; %$Design angular speed

global PCONTROLLER; %Controller Parameters
PCONTROLLER=[];
PCONTROLLER.J=850000; %Generator rotor and turbine moment of inertia

\¢

% PCONTROLLER.YGV_ref=0.6; %Operating point openning for guide vane [p.u]

PCONTROLLER.Tp=0.04; %pilot servomotor time constant [sec]
PCONTROLLER.Tg=0.2; %main servomotor integration time [sec]
PCONTROLLER.Tr=1.75; S%transient droop time constant [sec]
PCONTROLLER.delta=0.04; S%$transient droop

PCONTROLLER.droop=0.10; %droop [p.u.]

PCONTROLLER.YGVMax=1; $Max guide vane opening [p.u.]
PCONTROLLER.YGVMin=0.3; %Min guide vane openning [p.u]
PCONTROLLER.YGVdotMax=0.05; $Max guide vane opening rare [1/sec]
PCONTROLLER.YGVdotMin=0.2; %Max guide vane closing rate [1/sec]

global PHEADWATER; %Parameters for head water system
PHEADWATER=[];

PHEADWATER.hR=40; %$Head water reservoir water level [m]
PHEADWATER.LC=4500; %$Conduit length [m]

PHEADWATER.AC=25; %$Condit cross—-section area [m2]
PHEADWATER.ThetaC=0.2*pi/180; %Conduit slope [radians]
PHEADWATER.fC=0.04; $Fanning friction factor for the conduit
PHEADWATER.AS=10; $Surge shaft cross-section area [m2]
PHEADWATER.ThetaS=60*pi/180; %$Surge shaft slope [radians]
PHEADWATER.£S=0.04; $Fanning friction factor for the surge shaft

global PPENSTOCKINTERFACE %Penstock interface (head water and tail water)

parameters

PPENSTOCKINTERFACE=[];

PPENSTOCKINTERFACE.A2=7; %$Penstock cross—-section area head water [m2]
PPENSTOCKINTERFACE .A2N=7; %$Penstock cross—-section area tail water [m2]
PPENSTOCKINTERFACE.ThetaP=45*pi/180; %Penstock slope [radians]
PPENSTOCKINTERFACE.fP=0.04; $Fanning friction factor for the penstock

global PPENSTOCK; %Parameters for penstock
PPENSTOCK=1[];

PPENSTOCK.LP=400; $Penstock length [m]

PPENSTOCK.AP=7; $Penstock cross-section area [m2]
PPENSTOCK.ThetaP=45*pi/180; $%$Penstock slope [radians]
PPENSTOCK.fP=0.04; $Fanning friction factor for the penstock
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% PPENSTOCK.N=50; %$No of deltax length along the penstock
PPENSTOCK.N=25; %$No of deltax length along the penstock

PPENSTOCK.beta_eqg=2.04e-9; %penstock wall elasticity

global PTAILWATER; %Parameters for tail water system
PTAILWATER=[];

PTAILWATER.hDT=5; $Draft tube height [m]
PTAILWATER.LTWT=300; %$Tail water tunnel length [m]
PTAILWATER.ATWT=25; $Tail water tunnel cross-section area [m2]

PTAILWATER.ThetaTWT=0.5*pi/180;%Tail water tunnel slope [radians]
PTAILWATER.fTWT=0.04; $Fanning friction factor for Tail water tunnel
PTAILWATER.hTW=10; %$Tail water reservoir water level [m]

o %0 To o %o To Yo To To Yo To To To To Yo To To Yo To Yo To Fo Yo To To Yo To To To To Yo To To Yo To Yo To Yo

function dxdt=ODEWaterwayInelastic(t, x)

o

This function calculates time derivatives for all of the states in
waterway, controller and the swing.
inputs are the time and the state vector x consisting of:

o\

o

% 15=x(1); %$Length of water column in the surge shaft
% mdotC=x(2); %Mass flow rate of water in the conduit

% mdotP=x(3); %Mass flow rate of water in the penstock

% YGV=x(4); %$guide vane openning

% xr=x(5); $transient droop state

% u=x(6); $pilot servomotor output

% wm=x(7); %angular speed [rad/sec]

global PCONTROLLER;

YGV=x(4) ; $guide vane openning
wm=x (7) ; %$angular speed [rad/sec]

J=PCONTROLLER.J; $%Generator rotor and turbine moment of inertia
% YGV_ref=PCONTROLLER.YGV_ref;
YGV_ref=YGVREFERENCE (t) ;

[dxWwdt, ~, ~,~,~,Pt]=WaterwayInelasticOutputs(x(1:3),YGV,wnm);
dxCONdt=ControllerOutputs(x(4:6),wm, YGV_ref);

dwmdt= (J*wm) \ (Pt—-ActivePowerDemand (t)) ;
dxdt=[dxWWdt ; dxCONdt ; dwmdt] ;

o o %o %o To To To Yo Yo To To Fo To Yo Yo To To To Yo Yo To To To To Yo To To Fo To Yo To To To To Yo Yo Yo Jo

function [dxdt,pHWDO, pTWUO, Ht, EFFt,Pt]=WaterwayInelasticOutputs (x, YGV, wm)
%$This function returns time derivative of the parameters of a waterway with
$inelastic penstock.Inputs are:
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%$state vector x:

1S=x(1); $Length of water column in the surge shaft
mdotC=x(2); %Mass flow rate of water in the conduit
mdotP=x(3); %Mass flow rate of water in the penstock
guide vane opening YGV [p.u.]

angular speed of turbine wm [rad/sec]

outputs are

time derivative of the state vector

pressure at conduit-surgeshaft-penstock junction pHWDO [Pa]
pressure at turbine inlet pTWUO [Pa]

Turbine head [m]

Turbine efficiency

Turbine power [Watt]

o o o° o A° o° o o° o° o°

o o\

%$State variables:

1S=x(1); $Length of water column in the surge shaft
mdotC=x(2); %Mass flow rate of water in the conduit

4
mdotP=x(3); %Mass flow rate of water in the penstock

%$Parameters and constants:
global PHEADWATER PPENSTOCK PTAILWATER CONSTANTS PTURBINE;

hR=PHEADWATER.hR; %$Head water reservoir water level [m]
LC=PHEADWATER.LC; %$Conduit length [m]

AC=PHEADWATER.AC; %$Condit cross—-section area [m2]
ThetaC=PHEADWATER.ThetaC; %$Conduit slope [degrees]

fC=PHEADWATER.fC; $Fanning friction factor for the conduit
AS=PHEADWATER.AS; $Surge shaft cross-section area [m2]
ThetaS=PHEADWATER.Thetas; $Surge shaft slope [degrees]
fS=PHEADWATER.fS; $Fanning friction factor for the surge shaft
LP=PPENSTOCK.LP; $Penstock length [m]

AP=PPENSTOCK.AP; %$Penstock cross—-section area [m2]
ThetaP=PPENSTOCK.ThetaP; $Penstock slope [degrees]

fP=PPENSTOCK. fP; $Fanning friction factor for the penstock
hDT=PTAILWATER.hDT; $Draft tube height [m]

LTWT=PTAILWATER.LTWT; %$Tail water tunnel length [m]
ATWT=PTAILWATER.ATWT; %$Tail water tunnel cross—-section area [m2]
ThetaTWT=PTAILWATER.ThetaTWT; %Tail water tunnel slope [degrees]
fTWT=PTAILWATER.fTWT; $Fanning friction factor for Tail water tunnel
hTW=PTAILWATER.hTW; $Tail water reservoir water level [m]

rho_atm=CONSTANTS.rho_atm; $Water density at atmospheric pressure [Kg/m3]

g=CONSTANTS.qg; $gravity acceleration [m/sec2]
p_atm=CONSTANTS.p_atm; $Atmospheric pressure [Pa]
Qrated=PTURBINE.Qrated; $Rated descharge [m3/sec]
Hdesign=PTURBINE.Hdesign; $Design head [m]

wm_design=PTURBINE.wm_design; %Design angular speed

PC=2*sqgrt (pi*AC) ; $Perimeter of conduit (circular cross-section) [m]
PS=2*sqrt (pi*AS); $Perimeter of surge shaft [m]

PP=2*sqrt (pi*AP) ; %$Perimeter of penstock [m]

PTWT=2*sqgrt (pi*ATWT) ; $Perimeter of tail water tunnel [m]
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%K coefficients as defined in the text
KC=fC*LC*PC*sign (mdotC)/ (2*AC"2*rho_atm) ;
KS=fS*1S*PS*sign (mdotP-mdotC) / (2*AS"2*rho_atm)+1/ (AS*rho_atm) ;
KP=fP*LP*PP*sign (mdotP)/ (2*AP"2*rho_atm) ;
KTWT=fTWT*LTWT*PTWT*sign (mdotP) / (2*ATWT"2*rho_atm) ;

pCI=p_atm+rho_atm*g*hR;
PTWTX=p_atm+rho_atm*g*hTW;

Qt=mdotP/rho_atm; %turbine volumetric flow rate [m3/sec]
Qt_percent=0t*100/Qrated; $turbine volumetric flow rate [% rated flow]
Qt_eqg=0Qt_percent*wm_design/wm; $equivalent turbine volumetric flow rate [%
rated flow] in design speed

Ht_eqg=H_Turb (YGV,Qt_eq) ; %$equivalent turbine head [% design head] in
design speed

Ht=Ht_eqg* (Hdesign/100)* (wm"2/wm_design”2); S%turbine head [m] at wm
EFFt=Eff_Turb (YGV,Ht_eq); %$Turbine efficiency [%]

Pt=rho_atm*g* (EFFt/100) *Ht*Qt; $Turbine power [Watt]

cl=AC/LC+AS/1S;
c2=AP/LP;
c3=LC\AC*pCI+1S\AS*p_atm...
+rho_atm*g* (AC*sin (ThetaC)-AP*sin (ThetaP)+AS*sin (ThetaS)) ...
—LC\KC*mdotC"2-1S\KS* (mdotP-mdotC) *2+LP\KP*mdotP"2;
c4=AP*LTWT/ (ATWT*LP) ;
cS5=rho_atm*g* (Ht-hDT) +pTWTX. ..
+rho_atm*g*LTWT* (sin (ThetaTWT) +sin (ThetaP) *AP/ATWT) . ..
+ (KTWT-KP*LTWT/LP) *mdotP"2/ATWT;

pTWUO= (c3*cd+cl*c5+c2*c5) / (cl+c2+cl*cd);
PHWDO= (c3+c3*cd+c2*c5) / (cl+c2+cl*cd);

dlsdt=(AS*rho_atm) \ (mdotC-mdotP) ;
dmdotCdt=LC\ (-AC* (pHWDO-pCI)+rho_atm*g*LC*AC*sin (ThetaC)-KC*mdotC"2) ;
dmdotPdt=LP\ (-AP* (pTWUO-pHWDO) +rho_atm*g*LP*AP*sin (ThetaP)-KP*mdotP"2) ;

dxdt=[d1lSdt;dmdotCdt;dmdotPdt] ;
9o %0 Yo %o Yo Yo To Yo Yo o To Yo o To Yo To Yo Yo To Yo Jo To Yo To Yo Fo Jo Yo To To Yo To Yo Yo To Yo Yo To Yo

function dxdt=ControllerOutputs(x,wm,YGV_ref)
%$calculates time derivatives of transient droop controller

global PTURBINE;
wm_design=PTURBINE.wm design;

global PCONTROLLER;

Tp=PCONTROLLER.Tp; %pilot servomotor time constant [sec]
Tg=PCONTROLLER.Tg; %main servomotor integration time [sec]
Tr=PCONTROLLER.Tr; S$transient droop time constant [sec]
delta=PCONTROLLER.delta; %transient droop
droop=PCONTROLLER.droop; %droop [p.u.]
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YGVMax=PCONTROLLER.YGVMax; $Max guide vane opening [p.u.]
YGVMin=PCONTROLLER.YGVMin; %Min guide vane openning [p.u]
YGVdotMax=PCONTROLLER.YGVdotMax; $Max guide vane opening rare [1/sec]
YGVdotMin=PCONTROLLER.YGVdotMin; $%Max guide vane closing rate [1/sec]

%$state variables;

YGV=x(1); %$guide wvane openning
xXr=x(2); $transient droop state
u=x(3); $pilot servomotor output

d=delta*YGV-xr;
e=droop* (YGV_ref-YGV) — (wm/wm_design-1)-d;

if (YGV<=YGVMin) && (u<0)
dyGvdt=0;

elseif (YGV>=YGVMax)&& (u>0)
dyYGvdt=0;

elseif (u/Tg)>=YGVdotMax
dYGVdt=YGVdotMax;

elseif (u/Tg)<=-YGVdotMin
dYGVdt=-YGVdotMin;

else
dyGvdt=u/Tg;

end

dxrdt=Tr\d;

dudt=Tp\ (e-u) ;

dxdt=[dYGVdt ;dxrdt;dudt];

o %0 To o %o To Yo To To Yo To To To To Yo To To Yo To Yo To To Yo To To Yo To Yo To To o To To Yo To Yo To To Yo

function y=ActivePowerDemand (t)

%$This function simulates a time varying active load which can be used as
%$load disturbance.

ybase=100e6;
tl=2;

t2=2;
y1=0.8*ybase;
y2=0.5*ybase;
y3=0.8*ybase;

if t<500,
y=y1l;

elseif (t>=500)&& (t<=500+t1)
y=y1l+t1\ (t-500)* (y2-y1);

elseif (t>=500+tl)&&(t<=1000)
y=YZ2;

elseif (t>=1000)&&(t<=1000+t2)
y=y2+t2\ (t-1000) * (y3-y2);
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else
y=vy3;
end

o o %o %o To To To Yo Yo To To To To Yo Yo To To Fo To Yo To To Fo To Yo Yo To To To To Yo To To Fo To Yo Yo To Jo

function y=YGVREFERENCE (t)
if t<300
y=0.6;

else
y=0.4;

Go %0 To o %o To o To To Yo To To To To Yo To To Yo To Yo To To Yo To To To To Yo To To Yo To Yo To To Yo Jo

function dxdt=ODEWaterway (t, x)

o

This function calculates time derivatives for all of the states in
waterway, controller and the swing.
inputs are the time and the state vector x consisting of:

o\

o

% YGV=x(1); %$guide vane openning

% xXr=x(2); $transient droop state

% u=x(3); $pilot servomotor output

% wm=x(4); %angular speed [rad/sec]

% 15=x(5); %$Length of water column in the surge shaft

% mdotC=x(6); %Mass flow rate of water in the conduit

% mdotHWDO=x(7); %Mass flow rate of water in the penstock interface at HW

o\

mdotTWUO=x (8) ; %Mass flow rate of water in the penstock interface at TW
S=x(9:2*N+5) ; %$Penstock state wvector

o\

global PCONTROLLER PPENSTOCK;

LP=PPENSTOCK.LP; $Penstock length [m]
N=PPENSTOCK.N; %$No of deltax length along the penstock

deltax=LP/N;

YGV=x(1); %$guide wvane openning
wm=x (4) ; %$angular speed [rad/sec]

xHW=x (5:7) ;

mdotTWUO=x(8); %Mass flow rate of water in the penstock interface at TW
S=x(9:2*N+5) ; %$Penstock state vector

PHWDI=S (1) ;

pTWUI=S (N-1) ;

mdot HWI=xHW (3) ;

mdot TWI=mdot TWUO;

J=PCONTROLLER.J; %Generator rotor and turbine moment of inertia
% YGV_ref=PCONTROLLER.YGV_ref;
YGV_ref=YGVREFERENCE (t) ;
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[dxHWdt, ~]=HeadWaterOutputs (xHW, pHWDI, deltax) ;
[dmdotTWUOdt, ~, ~, ~,Pt]=TailWaterOutputs (mdotTWUO, pTWUI, YGV, wm,deltax) ;
dSdt=penstock (S, mdotHWI, mdotTWI) ;

dxCONdt=ControllerOutputs(x(1l:3),wm,YGV_ref);
dwmdt= (J*wm) \ (Pt—-ActivePowerDemand (t)) ;

dxdt=[dxCONdt ; dwmdt ; dxHWdt ; dmdot TWUOdt ; dSdt] ;
90 %0 %0 Fo Yo Fo Yo Yo Yo Yo Yo Yo Do To Yo Yo Fo Yo Yo Yo Yo Yo Yo Yo Yo To Yo To Yo Yo Yo Yo Yo Yo To Yo Yo Yo

function [dxHWdt,pHWDO]=HeadWaterOutputs (xHW, pHWDI,deltax)

% This function calculates time derivative of the state vector (xHW) and
pressure at the junction of the conduit,

surge shaft and penstock interface/penstock (pHWDO) .

The inputs are:

the state vector of the head water system (xHW)

the pressure at downstream of the penstock interface/penstock (pHWDI)
the length of the penstock interface (deltax)

o° ol° o o o o\

o\

%$State variables:

1S=xHW (1) ; %$Length of water column in the surge shaft

mdotC=xHW (2); %$Mass flow rate of water in the conduit

mdotHWDO=xHW (3) ; %Mass flow rate of water in the penstock interface/penstock

% parameters and constants:
global PHEADWATER CONSTANTS PPENSTOCKINTERFACE;

rho_atm=CONSTANTS.rho_atm; $Water density at atmospheric pressure [Kg/m3]

g=CONSTANTS.g; $gravity acceleration [m/sec2]
p_atm=CONSTANTS.p_atm; $Atmospheric pressure [Pa]

hR=PHEADWATER.hR; %$Head water reservoir water level [m]
LC=PHEADWATER.LC; %$Conduit length [m]

AC=PHEADWATER.AC; %$Condit cross-section area [m2]
ThetaC=PHEADWATER.ThetaC; %$Conduit slope [degrees]

fC=PHEADWATER.fC; $Fanning friction factor for the conduit
AS=PHEADWATER.AS; $Surge shaft cross-section area [m2]
ThetaS=PHEADWATER.Thetas; %$Surge shaft slope [degrees]
fS=PHEADWATER.fS; $Fanning friction factor for the surge shaft
A2=PPENSTOCKINTERFACE.A2; $Penstock cross—-section area [m2]
ThetaP=PPENSTOCKINTERFACE.ThetaP; %Penstock slope [degrees]
fP=PPENSTOCKINTERFACE.fP; $Fanning friction factor for the penstock
PC=2*sqgrt (pi*AC) ; %$Perimeter of conduit (circular cross-section) [m]

PS=2*sqrt (pi*AS); $Perimeter of surge shaft [m]
P2=2*sqgrt (pi*A2); %$Perimeter of penstock [m]

KC=fC*LC*PC*sign (mdotC)/ (2*AC"2*rho_atm) ;
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KS=fS*1S*PS*sign (mdotHWDO-mdotC) / (2*AS*2*rho_atm)+1/ (AS*rho_atm) ;
KHW=fP*deltax*P2*sign (mdotHWDO) / (2*A2"2*rho_atm) ;

pCI=p_atm+rho_atm*g*hR;

PHWDO= (AC/LC+A2/deltax+AS/1S)\ ( (LC\AC*pCI+deltax\A2*pHWDI+1S\AS*p_atm)+. ..
rho_atm*g* (AC*sin(ThetaC)-A2*sin(ThetaP)+AS*sin(ThetalS))-...
LC\KC*mdotC*2-1S\KS* (mdotHWDO-mdotC) *2+deltax\KHW*mdotHWDO"2) ;

dlsdt=(AS*rho_atm) \ (mdotC—-mdot HWDO) ;

dmdotCdt=LC\ (-AC* (pHWDO-pCI) +rho_atm*g*LC*AC*sin (ThetaC)-KC*mdotC"2) ;

dmdotHWDOdt=deltax\ (-A2* (pHWDI-pHWDO) +rho_atm*g*deltax*A2*sin (ThetaP) ...
—KHW*mdot HWDO"2) ;

dxHWdt=[d1lSdt ;dmdotCdt; dmdot HWDOdt] ;
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function

[dmdot TWUOdt , pTWUO, Ht , EFFt, Pt]=TailWaterOutputs (mdot TWUO, pTWUI, YGV, wm,deltax)
This function calculates pressure at the turbine inlet (pTWUO),

turbine head, efficiency and power and time derivative of the state
variable mdotTWUO . The inputs are:

the state variable (mdotTWUO)

the pressure at upstream of the penstock interface (pTWUI)

the length of the penstock interface (deltax)

turbine angular speed (wm)

guide vane opening (YGV)

o o oP

o o oP

o o

o)

% parameters and constants:
global PTAILWATER CONSTANTS PPENSTOCKINTERFACE PTURBINE;

rho_atm=CONSTANTS.rho_atm; $%$Water density at atmospheric pressure [Kg/m3]

g=CONSTANTS.qg; $gravity acceleration [m/sec2]
P_atm=CONSTANTS.p_atm; %$Atmospheric pressure [Pa]

hDT=PTAILWATER.hDT; $Draft tube height [m]

LTWT=PTAILWATER.LTWT; %$Tail water tunnel length [m]
ATWT=PTAILWATER.ATWT; %$Tail water tunnel cross—-section area [m2]
ThetaTWT=PTAILWATER.ThetaTWT; %$Tail water tunnel slope [degrees]
fTWT=PTAILWATER.fTWT; $Fanning friction factor for Tail water tunnel
hTW=PTAILWATER.hTW; %$Tail water reservoir water level [m]
A2N=PPENSTOCKINTERFACE.A2N; $Penstock cross-section area [m2]
ThetaP=PPENSTOCKINTERFACE.ThetaP; %Penstock slope [degrees]
fP=PPENSTOCKINTERFACE.fP; $Fanning friction factor for the penstock
Qrated=PTURBINE.Qrated; %$Rated descharge [m3/sec]
Hdesign=PTURBINE.Hdesign; $Design head [m]

wm_design=PTURBINE.wm_design; %Design angular speed

P2N=2*sqrt (pi*A2N) ; $Perimeter of penstock [m]
PTWT=2*sqgrt (pi*ATWT) ; $Perimeter of tail water tunnel [m]

KTW=fP*deltax*P2N*sign (mdotTWUO) / (2*A2N"2*rho_atm) ;
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KTWT=fTWT*LTWT*PTWT*sign (mdotTWUO) / (2*ATWT"2*rho_atm) ;
PIWTX=p_atm+rho_atm*g*hTwW;

Qt=mdotTWUO/rho_atm; %turbine volumetric flow rate [m3/sec]
Qt_percent=Qt*100/Qrated; Sturbine volumetric flow rate [% rated flow]
Qt_eg=0Qt_percent*wm_design/wm; %$equivalent turbine volumetric flow rate [%
rated flow] in design speed

Ht_eqg=H_Turb (YGV,Qt_eq); %$equivalent turbine head [% design head] in
design speed

Ht=Ht_eg* (Hdesign/100) * (wm"2/wm_design”2); S%$turbine head [m] at wm
EFFt=Eff_Turb (YGV,Ht_eq); %$Turbine efficiency [%]

Pt=rho_atm*g* (EFFt/100) *Ht*Qt; $Turbine power [Watt]

PTWUO=(1+LTWT*A2N/ (deltax*ATWT) )\ (rho_atm*g* (Ht-hDT) ...
+pTWTX+pTWUI*LTWT*A2N/(deltaX*ATWT)...
+rho_atm*g*LTWT* (sin (ThetaTWT) +sin (ThetaP) *A2N/ATWT) . . .
+ (KTWT-KTW*LTWT /deltax) *mdot TWUO"2/ATWT) ;

dmdotTWUOdt=deltax\ (-A2N* (pTWUO-pTWUI)+rho_atm*g*deltax*A2N*sin (ThetaP) ...
—-KTW*mdot TWUO"2) ;
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D. Simulation of inelastic waterway with generator connected to the infinite bus

$main program for simulation of inelastic model of the plant with
$transient droop controller and generator connected to an infinite bus

clc
% clear all

close all

Main_parameters %run to define parameters

TurbineData %run to generate turbine data

InitializeGenerator; S%returns generator state-vector initial values
and determines Vtr
Generator state vector:

XG0 (1)=EEd_op; E'd

o° oP

o\
o\

% XG0 (2)=EEqg_op; SE'gq

% XG0 (3)=DELTA_op; %Electrical rotor angle
% XG0 (4)=Ef_op; SEf

% XG0 (5)=Vstabilizer_op;

o\

initial state vector for inelastic system:

$ 1S=x_1ie (1) ; %$Length of water column in the surge shaft
% mdotC=x_1e(2); %Mass flow rate of water in the conduit

% mdotP=x_1ie(3); %Mass flow rate of water in the penstock

% YGV=x_1ie (4); %guide vane openning

% xr=x_1ie (5); $transient droop state
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o\

u=x_1ie(6); $pilot servomotor output
wm=x_1ie (7) ; $angular speed [rad/sec]
x_1e0=[55;28000;28000;0.79;0;0;500*2*pi/601];

o\

X0=[x_1e0;XG0];

tspan=[0 1000];
options=odeset ('MaxOrder',5, 'RelTol',le-7, 'AbsTol"', le-7);
[T_ie,X _ie] = odel5s(Q@ODEWaterwayInelastic, tspan,X0,options);

1T=length(T_ie);
X_ie2=zeros (1T, 11);

for i=1:1T

t=T_ie(1i);

xi=X_ie(i,1:3);

xG=X_1ie(1,8:12);

Ygvi=X_ie (i, 4);

wmi=X_ie (i, 7);

YGVRefi=YGVREFERENCE (t) ;

[~, pHWDO1i, pTWUO1, Hti, EFFti,Pti]=WaterwayInelasticOutputs (xi, Ygvi,wmi) ;

[Pe,Qe,Vt,It,~]=0DEGenerator (t,xG,wmi) ;

X_ie2 (i, :)=[pHWDOi pTWUOi Hti EFFti Pti 0 YGVRefi Pe Qe Vt It];
end

figure(1l);grid on;plot(T_ie, sin(PHEADWATER.ThetaS)\X_ie(:,1));grid;
xlabel ('Time [sec]');ylabel ('Height [m]"');
title('Water column height in the surge shaft');

figure(2);grid on;plot(T_ie, X_ie(:,2));grid;xlabel ('Time [sec]');
ylabel ('Flow rate [Kg/sec]');title('Water mass flow rate in the conduit');

figure(3);grid on;plot(T_ie, X_ie(:,3));grid;xlabel ('Time [sec]');
ylabel ('Flow rate [Kg/sec]');title('Water mass flow rate in the penstock');

figure (4);grid on;plot(T_ie, X_ie(:,4),'-b',T_ie, X_ie2(:,7),"'-
r');grid;xlabel ('Time [sec]');

ylabel ('Guide vanes opening [p.u.]');title('Guide vanes opening');
legend ('YGV', '"YGV_ref');

figure(5);grid on;plot(T_ie,
X_ie(:,7)*50/PTURBINE.wm_design);grid;xlabel ('Time [sec]');
ylabel ('Frequency [Hz]');title('Electric frequency');

figure (6);grid on;plot(T_ie, X_ie2(:,1));grid;
xlabel ('Time [sec]');ylabel('Pressure [Pal]');
title('Pressure at the surge shaft junction');

figure(7);grid on;plot(T_ie, X_ie2(:,2));grid;

xlabel ('Time [sec]');ylabel('Pressure [Pa]');
title('Pressure at the turbine inlet');
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figure(8);grid on;plot(T_ie, X_ie2(:,
xlabel ('Time [sec]');ylabel ('Head [m]
title('Turbine head');

3))igrid;
")

figure(9);grid on;plot(T_ie, X_ie2(:,4));grid;
xlabel ('Time [sec]');ylabel('efficiency [%]");
title('Turbine efficiency');

figure (10) ;grid on;plot(T_ie, X ie2(:,5),'- b',T_ie,X ie2(:,8),"'—-.x");grid;
xlabel ('Time [sec]');ylabel ('Power [W]"');

title('Generator active power vs Turbine power');

Legend ('Turbine Power', 'Pe');

figure(1ll) ;grid on;plot(T_ie, X_ie(:,10)*180/pi);grid;xlabel('Time [sec]');
ylabel ('delta electric [degree]');title('Rotor electric Angle');

figure(12);grid on;plot(T_ie, X_ie2(:,9));grid;xlabel('Time [sec]');
ylabel ('Reactive Power [VAR]');title('Reactive Power');

figure (13);g9rid on;plot(T_ie, X _ie2(:,10));grid;xlabel('Time [sec]');
ylabel ('Terminal RMS Voltage [V]');title('Terminal Voltage');

o %0 To %o Yo To To To Yo Yo To To To To Yo To To To To To Yo To To Fo To Yo To To To To Yo Yo To To To To Yo Yo

o

Main_parameters.m

defines parameters for simulation of plant with inelastic

models with transient droop controller and generator connected to the
infinite bus

o° o

o\

global CONSTANTS;
CONSTANTS=[];
CONSTANTS.rho_atm=1000; S%Water density at atmospheric pressure [Kg/m3]

CONSTANTS.g=9.8; $gravity acceleration [m/sec2]
CONSTANTS.p_atm=1le5; $Atmospheric pressure [Pa]

CONSTANTS.beta=4.5e-10; %Swater compressibility

global PTURBINE; $Turbine parameters
PTURBINE=[];

PTURBINE.Qrated=36; %$Rated descharge [m3/sec]
PTURBINE.Hdesign=330; %$Design head [m]

PTURBINE.wm_design=500*2*pi/60; %$Design angular speed

global PCONTROLLER; %Controller Parameters
PCONTROLLER=[];
PCONTROLLER.J=850000; %Generator rotor and turbine moment of inertia

X

% PCONTROLLER.YGV_ref=0.6; %Operating point openning for guide vane [p.u]

PCONTROLLER.Tp=0.04; %pilot servomotor time constant [sec]
PCONTROLLER.Tg=0.2; %main servomotor integration time [sec]
PCONTROLLER.Tr=1.75; $%transient droop time constant [sec]
PCONTROLLER.delta=0.04; %transient droop
PCONTROLLER.droop=0.10; %droop [p.u.]

PCONTROLLER.YGVMax=1; $Max guide vane opening [p.u.]
PCONTROLLER.YGVMin=0.3; %Min guide vane openning [p.u]

167



PCONTROLLER.YGVdotMax=0.05; $Max guide vane opening rare [1/sec]
PCONTROLLER.YGVdotMin=0.2; %Max guide vane closing rate [1/sec]

global PHEADWATER; %Parameters for head water system
PHEADWATER=[];

PHEADWATER.hR=40; %$Head water reservoir water level [m]
PHEADWATER.LC=4500; %$Conduit length [m]

PHEADWATER.AC=25; %$Condit cross—-section area [m2]
PHEADWATER.ThetaC=0.2*pi/180; %Conduit slope [radians]
PHEADWATER.fC=0.04; $Fanning friction factor for the conduit
PHEADWATER.AS=10; %$Surge shaft cross—-section area [m2]
PHEADWATER.ThetaS=60*pi/180; %$Surge shaft slope [radians]
PHEADWATER.f£S=0.04; $Fanning friction factor for the surge shaft

global PPENSTOCKINTERFACE %Penstock interface (head water and tail water)

parameters

PPENSTOCKINTERFACE=[];

PPENSTOCKINTERFACE.A2=7; $Penstock cross—-section area head water [m2]
PPENSTOCKINTERFACE .A2N=7; $Penstock cross—-section area tail water [m2]
PPENSTOCKINTERFACE.ThetaP=45*pi/180; %Penstock slope [radians]
PPENSTOCKINTERFACE.fP=0.04; $Fanning friction factor for the penstock

global PPENSTOCK; %Parameters for penstock
PPENSTOCK=[];

PPENSTOCK.LP=400; $Penstock length [m]

PPENSTOCK.AP=7; $Penstock cross-section area [m2]
PPENSTOCK.ThetaP=45*pi/180; %Penstock slope [radians]
PPENSTOCK.fP=0.04; $Fanning friction factor for the penstock
% PPENSTOCK.N=50; %$No of deltax length along the penstock
PPENSTOCK.N=25; %No of deltax length along the penstock

PPENSTOCK.beta_eqg=2.04e-9; %penstock wall elasticity

global PTAILWATER; %Parameters for tail water system
PTAILWATER=[];

PTAILWATER.hDT=5; $Draft tube height [m]
PTAILWATER.LTWT=300; %$Tail water tunnel length [m]
PTAILWATER.ATWT=25; $Tail water tunnel cross-section area [m2]

PTAILWATER.ThetaTWT=0.5*pi/180;%Tail water tunnel slope [radians]
PTAILWATER.fTWT=0.04; $Fanning friction factor for Tail water tunnel
PTAILWATER.hTW=10; %$Tail water reservoir water level [m]

global PGENERATOR PNETWORK;

PGENERATOR=[];
PGENERATOR.Ra=0.01; %$Phase winding resistance [Ohms]

PGENERATOR.Re=0.1; %$Equivalent network resistance [Ohms]
PGENERATOR.xd=12; %d_axis reactance [Ohms]
PGENERATOR.xg=12; %g_axis reactance [Ohms]

PGENERATOR.xxd=1.7; %$d_axis transient reactance [Ohms]
PGENERATOR.xxqg=1.7; %g_axis transient reactance [Ohms]
PGENERATOR.xe=1.4; $Equivalent network reactance [Ohms]
PGENERATOR.TTdo=6; %d_axis transient open-circuit time constant [sec]
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PGENERATOR.TTgo=0.1; %g_axis transient open-circuit time constant [sec]
PGENERATOR.KE=400; $Excitation system gain

PGENERATOR.Efmin=50000; %Min field voltage [V]

PGENERATOR.Efmax=50000; $Max field voltage [V]

PGENERATOR.TE=0.05; $Excitation system time constant [sec]
PGENERATOR.KF=0.025; %$Stablizer gain

PGENERATOR.TFE=1; %$Stablizer time constant [sec]

PGENERATOR.Vtr=0; $Terminal Voltage Reference [V] (Will be assigned

o)

% value during initialization)
PGENERATOR.np=12;
PGENERATOR.Wm_op=100*pi/6;
PGENERATOR.M=170000;
PGENERATOR.D=0;

PNETWORK.Vs=15000; $Network rms voltage [V]

90 %0 %0 o Yo o Yo Fo Yo Yo Yo Yo Yo Yo Yo Yo To Yo Fo Yo Yo Yo Yo Yo Yo To Yo To Yo To Yo Yo Yo Yo To Yo Yo Yo Yo
$InitializeGenerator.m

P_op=80e6; %Active power drawn from generator at SS operating condition
Q_op=50e6; %Reactive power drawn from generator at SS operating condition

PHI_op=atan(Q_op/P_op); %Power angle at steady_state [radian]

I_op=(3*PNETWORK.Vs)\sqgrt (P_op”"2+Q_op"2); $%$RMS current (per phase) of
generator

DELTA_op=atan((I_op* (PGENERATOR.xg+PGENERATOR.xe) *cos (PHI_op)-I_op*...
(PGENERATOR .Ra+PGENERATOR.Re) *sin (PHI_op)) /...
(PNETWORK.Vs+I_op* (PGENERATOR.Ra+PGENERATOR.Re) *cos (PHI_op) +...
I_op* (PGENERATOR.xg+PGENERATOR.xe) *sin (PHI_op)));

Id_op=-I_op*sin(DELTA_op+PHI_op);
Ig _op=I_op*cos (DELTA_op+PHI_op) ;

Ef_op=PNETWORK.Vs*cos (DELTA_op) + (PGENERATOR.Ra+PGENERATOR.Re) *Iqg_op-...
(PGENERATOR . xd+PGENERATOR. xe) *Id_op;

Vt_op=sqgrt ( (PNETWORK.Vs+I_op*PGENERATOR.Re*cos (PHI_op)+...
I_Op*PGENERATOR.xe*sin (PHI_op))"2+...
(I_op*PGENERATOR.xe*cos (PHI_op)-I_op*PGENERATOR.Re*sin (PHI_op))"2);

PGENERATOR.Vtr=PGENERATOR.KE\Ef_op+Vt_op;
Vstabilizer_op=0;

EEd_op= (PGENERATOR . xxd-PGENERATOR. xq) *Iq_op;
EEq_op=Ef_op+ (PGENERATOR.xd-PGENERATOR.xxd) *Id_op;

XGO0=zeros (5,1);
XG0 (1)=EEd_op;
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XGO (2)=EEqg_op;

XGO (3)=DELTA_op;

XGO (4)=Ef_op;

XGO (5)=Vstabilizer_op;

oo %o %o To To To Yo Yo To To To To Yo Yo To To To To Yo To To Fo To Yo Yo To To To To Yo Yo To Yo

function dxdt=ODEWaterwayInelastic(t, x)

o\

This function calculates time derivatives for all of the states in
waterway, controller , the swing and generator.
inputs are the time and the state vector x consisting of:

o\

o\

% 15=x(1); %$Length of water column in the surge shaft
% mdotC=x(2); %Mass flow rate of water in the conduit

% mdotP=x(3); %Mass flow rate of water in the penstock

% YGV=x(4); %guide vane openning

% xr=x(5); $transient droop state

% u=x(6); $pilot servomotor output

$ wm=x(7); %angular speed [rad/sec]

o\

Generator state vector:
x (8)=EEd_op; $E'd

o

% x(9)=EEq_op; SE'q

% x(10)=DELTA_op; %$Electrical rotor angle
% x(11)=Ef_op; SEf

% x(12))=Vstabilizer_op;

global PCONTROLLER;

YGV=x(4) ; $guide vane openning
wm=x (7) ; %$angular speed [rad/sec]

XG=x(8:12);

J=PCONTROLLER.J; $%Generator rotor and turbine moment of inertia
% YGV_ref=PCONTROLLER.YGV_ref;
YGV_ref=YGVREFERENCE (t) ;

[dxWwdt, ~, ~,~,~,Pt]=WaterwayInelasticOutputs(x(1:3),YGV,wm);
dxCONdt=ControllerOutputs(x(4:6),wm, YGV_ref);
[Pe,~,~,~,dXGdt]=0ODEGenerator (t, XG, wm) ;
dwmdt= (J*wm) \ (Pt-Pe) ;

dxdt=[dxWWdt ; dxCONdt ; dwmdt ; dXGdt] ;
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function [Pe,Qe,Vt, It,dXdt]=0ODEGenerator (t,X, W)

global PGENERATOR PNETWORK;
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EEd= X(1);
EEq= X(2);
DELTA= X(3);
Ef= X (4);

Vstabilizer= X(5);

Temp= [PGENERATOR . Ra+PGENERATOR.Re PGENERATOR.xxd+PGENERATOR.xe; —
PGENERATOR . xxd-PGENERATOR.xe PGENERATOR.Ra+PGENERATOR.Re];

Idg=Temp\ [EEd+PNETWORK.Vs*sin (DELTA) ; EEg—-PNETWORK.Vs*cos (DELTA) ] ;

Id=Idqg (1) ;Ig=Idqa(2);

Vt=sqrt ( (EEd-PGENERATOR.Ra*Id-PGENERATOR.xxd*Iq) "2+ (EEq—
PGENERATOR.Ra*Ig+PGENERATOR. xxd*Id) ~2) ;

It=sqgrt (Id"2+Ig"2);

Pe=3* (EEd*Id+EEg*Iq) ;

Qe=sgrt (9*Vt"2*It"2-Pe”2);
dEEd=PGENERATOR.TTgo\ (-EEd+ (PGENERATOR. xxd-PGENERATOR. xq) *Iq) ;
dEEg=PGENERATOR.TTdo\ (-EEg+ (PGENERATOR.xd-PGENERATOR. xxd) *Id+Ef) ;
dDELTA= (W-PGENERATOR.Wm_op) *PGENERATOR.np/2;

dEf=PGENERATOR.TE\ (-Ef+PGENERATOR.KE* (PGENERATOR.Vtr-Vt-Vstabilizer)) ;
if ((Ef>=PGENERATOR.Efmax)&& (dEf>0))
dEf=0;
elseif ((Ef<-PGENERATOR.Efmin) && (dE£<0))
dEf=0;
end

dVstabilizer=PGENERATOR.TFE\ (-Vstabilizer+PGENERATOR.KF*dEf) ;

dXdt=[

dEEd;

dEEqg;

dDELTA;

dEf;
dVstabilizer;
1
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function y=YGVREFERENCE (t)

% y=.79;
if t<200
y=0.79;
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else
y=0.4;
end
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