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Sommario 

L’obiettivo di questa tesina è stato creare e testare in linguaggio Modelica una libreria di 

grandi modelli scalabili contenente diversi domini: meccanici, termici ed elettrici. Il dominio 

meccanico include la trave flessibile e la corda, quello termico include conduzioni e 

scambiatori di calore, mentre il dominio elettrico include modelli su linee di trasmissione. I 

modelli sono stati implementati in ambiente OpenModelica usando il linguaggio Modelica. 

Nonostante si sarebbero potuti utilizzare differenti applicazioni di Modelica è stato adoperato 

OpenModelica Compiler in quanto ritenuto più conveniente. Il progetto vuole mettere in luce 

la performance di Modelica Compliler rispettando la scalabilità, la quale significa un numero 

di equazioni in aumento, e intende contribuire a questi concetti chiave.  I  modelli  sono stati 

implementati discretizzando le loro equazioni differenziali parziali originali e/ o usando gli 

strumenti di Modelica Standard Library. Tutti i modelli sono stati discretizzati in N che 

rappresenta il numero di nodi, segmenti o elementi a seconda dei modelli. I modelli, in 

funzione di N, permettono che la loro discretizzazione possa essere ingrandita ed è stato 

possibile paragonare i risultati in dettaglio. Per verificare questi modelli sono state 

implementate soluzioni analitiche o metodi numerici. In questa tesina sono discussi i grafici 

dei modelli e sono fornite le prestazioni di OpenModelica Compiler in termini di tempi di 

compilazione e simulazione per valori di N in aumento. I grafici dei modelli hanno mostrato 

che, all’aumentare della discretizzazione, essi rispecchiano i risultati attesi. D’altra parte, i 

tempi di simulazione e compilazione crescono significativamente con l’aumentare della 

discretizzazione,  specialmente nel dominio meccanico. Inoltre è stato osservato che il 

compilatore e la simulazione sequenziale dovrebbero essere migliorati per supportare grandi 

modelli. Per rimanere in un limite di tempo ragionevole risultano importanti le strategie come 

i risolutori sparsi e multi rate o la parallelizzazione. 
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Abstract 

The purpose of this thesis work was to create and test a library of large scalable models in 

Modelica language which contains different domains: mechanical, thermal and electrical. 

Mechanical domain includes flexible beam and string, thermal domain includes heat 

conduction and heat exchanger, and electrical domain includes transmission line models. The 

models were implemented in the OpenModelica environment using Modelica language.  

OpenModelica Compiler (OMC) was used because of the convenience, different Modelica 

applications could also have been used. The work intends to highlight the performance of 

Modelica compiler with respect to scalability, which means increasing number of equations, 

in terms of compilation and simulation times, and it intends to contribute these key concepts. 

Models were implemented by discretizing their original partial differential equations (PDE) 

and/ or by the tools of Modelica Standard Library (MSL). All the models were discretized into 

N which is the number of nodes, segments or elements depending on the models. Models 

were function of N, therefore, discretization of the models could be enlarged and the results 

were compared in detail. In order to verify the models, analytical solutions or numerical 

formulas were implemented. In this thesis work, plots of the models are discussed and the 

performance of OMC are provided in terms of compilation and simulation times for increasing 

number of N values. Plots of the models have shown that as discretization increases, models 

reflect the expected results. However, compilation and simulation times grow significantly as 

discretization increases especially for the mechanical domain. It was observed that compiler 

and sequential simulation should be improved to support large models. Strategies such as 

sparse, multi rate solvers or parallelization become increasingly important to stay in 

reasonable time limits.  
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1. Introduction 

Modelica is an object oriented, declarative and multi-domain language for physical modeling 

of the complex systems. Object oriented physical modeling requires declarative models which 

provides the modularity. Therefore, the models of the systems are created by using their 

equations and the models can be used in different domains while building complex systems. 

Using connection equations, physical connection between the models are realized. Modularity 

of Modelica language enables high-reusability of models in different contexts and high-

readability of them since its structure is user friendly.   

The models were implemented in OpenModelica environment which is an open source 

Modelica based modeling and simulation environment for industrial, research and teaching 

usage. For the modeling purposes, OpenModelica Connection Editor (OMEdit) was used which 

enables modelers to create models both textually and graphically. OMEdit is an open source 

user interface that provides to build models, connection editing, and simulation of the models 

and plots of the results. OMEdit communicates with OpenModelica Compiler (OMC) and 

requests the model information and creates models based on the Modelica annotations. 

After the implementation of the models, OMC performs several steps for the simulation of 

the object oriented models. Firstly, from Modelica source code, parsing of the codes, type 

checking, class expansion and generation of connection equations are performed. Later, OMC 

flattens the object oriented models into a system of differential algebraic equations (DAE) and 

in order to reduce the size of the equations performs optimizations. Furthermore, it reduces 

index of the system for numerical solutions and minimal set of equations in state-space form 

are generated. Lastly, sequential C code is generated with a numerical solver to simulate the 

models. 

Object oriented modeling is getting more used and large scalable systems are being tackled 

using Modelica. However, the test cases present in the MSL are not specifically designed to 

test the ability of a Modelica compiler to cope with increasingly large models. Existing test 

suites are not designed to stress the large scale factor. Moreover, increasing complexity and 

dimensions of the models require parallelization that is partitioning the simulation code into 

several independent parts using task graph and data dependency graphs. Sequential 

simulation codes do not provide an effective solution in terms of the simulation time while 

dealing with some large systems. In this case, parallelization becomes important to be able to 

stay in reasonable time limits. Furthermore, parallelization algorithms for Modelica 

applications have been exploited in these days in order to provide speed-ups for multi-core 

CPUs as sequential codes does not allow speed-ups. Therefore, parallelization have become a 

growing research area for Modelica applications. 

Attempts have been done at generating scalable models to test Modelica compilers such as 

“Towards a Benchmark Suite for Modelica Compilers: Large Models” [14]. The paper stresses 
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the performance of some Modelica compilers for increasing number of equations which have 

different structural properties. However, physical modeling is not stressed.  

This thesis work was inspired from these reasons and tries to highlight and give more idea 

about how Modelica responses to large scalable physical models from different domains 

(different structure of equations) in the case of sequential simulation. In this work, electrical, 

mechanical and thermal domains were taken into account. To be more specific, for the 

electrical part, transmission line; for the mechanical part, flexible beam and string; for the 

thermal part, heat conduction and heat exchanger models were implemented. Depending on 

the system structure and model, they were implemented by discretizing their constituent 

equations and/ or using MSL. All the models were function of N which corresponds to number 

of nodes, number of elements or number of segments in the models. Furthermore, having 

gradually increased the discretization, therefore N, results were critically investigated. 

Investigation consisted of analysis of the plots of the models, analysis of the compilation and 

simulation times, and how OpenModelica responded to the enlarged models from different 

domains in terms of accuracy and time. 

Furthermore, the transmission line model was implemented both by its basic circuit equations 

and Modelica.Electrical library. And, transmission line circuit models were created in order to 

test response of the transmission line to a step input in the matched load impedance case. 

Transmission line models were verified by the calculated time delay between the ends of the 

transmission line.  

The Flexible beam and string models were implemented using Modelica.Mechanics.MultiBody 

library. As a flexible beam, a cantilever beam was considered and an analytical solution was 

implemented for the verification. String was considered to be fixed at one end while the other 

end was considered to be free. And, a pulse was applied from the fixed end. Purpose was to 

observe a travelling wave along the string model.  

For the heat conduction, two different cases were considered and implemented: a rod with 

fixed temperatures at its ends, and a rod with a fixed temperature at one end while the other 

end is insulated. They were implemented both by equations and Modelica.Thermal library. 

Moreover, analytical solutions were implemented for the both cases of heat conduction for 

verification. 

Lastly, two types of heat exchangers: cocurrent and countercurrent heat exchangers were 

implemented by equations. And, a steady state analysis was performed for the heat 

exchangers for verification.  

All the models were tested with gradually increasing N values. Plots of the results, compilation 

and simulation times were analyzed according to N values. Therefore, performance of 

OpenModelica to increasing number of equations from different domains is pointed out in the 

work. 
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The thesis consists of two main chapters being Chapter 2 and Chapter 3. In Chapter 2, 

implementation of the models by their equations, MSL are explained. And, for verification, 

analytical solutions or numerical formulas are provided. In Chapter 3, simulations of the 

models are provided for several N values. Simulations are discussed in terms of critical plots, 

and statistics of compilation and simulation times. And, Chapter 4 concludes the thesis with 

the comparison of the models and discussion about OpenModelica.  

2. Models 

In this chapter, models are provided which are Heat Conduction, Heat Exchanger, Flexible 

Beam, String and Transmission Line. Models are represented by their constituent equations 

and/ or by the MSL. Analytical solutions or numerical methods are explained for the model 

verification.  

2.1. Heat Conduction 

 

 

Figure 1: Uniform rod 
We considered a uniform rod of length L, height h and width of d. Uniform rod has the density 

ρ, specific heat capacity c and thermal conductivity λ which were all assumed to be constant. 

Moreover, the sides of the rod were assumed to be insulated. Two different models were 

considered in terms of the ends of the rod: in the first model, each end of the rod was exposed 

to fixed temperatures and in the second model, one end was exposed to a fixed temperature 

while the other end was insulated. In order to be consistent from now on, the first and the 

second model will be mentioned as HeatConductionTT (TT stands for two fixed temperatures) 

and HeatConductionTI (TI stands for fixed temperature and insulated end) respectively.  

Both models were implemented both by writing the discretized equations of one dimensional 

heat equation and by using Modelica.Thermal library. Furthermore, analytical solutions were 

implemented for the model verification. 

2.1.1. Heat Conduction by Equations 

We considered a small portion of the rod which has a width of ∆𝑥 from a distance 𝑥, and by 

considering the conservation of energy the equations were defined. According to the 

conservation of energy, difference between the heat in from left boundary and heat out from 

the right boundary has to be equal to the heat change at the portion at ∆𝑥 in time ∆𝑡.  
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Using Fourier’s law and arranging the equations:  

𝑐ℎ𝜌𝑇(𝑥, 𝑡 + 𝛥𝑡) − 𝑇(𝑥, 𝑡)

𝛥𝑡
=

−ℎ𝑑𝜆
𝜕𝑇(𝑥, 𝑡)

𝜕𝑥
𝛥𝑥

+   
ℎ𝑑𝜆

𝜕𝑇(𝑥 + 𝑑𝑥, 𝑡)
𝜕𝑥

𝛥𝑥
 

 

Taking the limits ∆𝑡 and ∆𝑥 goes to zero, we obtain the PDE of the heat equation; 

𝑐𝜌
𝜕𝑇 

𝜕𝑡
=  𝜆

𝜕2T

𝜕𝑥2
 

In order to be able to make the definition of the equations in OMEdit, instead of taking the 

limits we proceeded with the finite differences approximation. We approximated the 

derivatives of the function by finite difference approximation at discrete points. Therefore, 

the discretized equations were described in the following form:  

𝑐𝜌𝛥𝑥
𝑑𝑇𝑖

𝑑𝑡
=

−𝜆(𝑇𝑖 − 𝑇𝑖+1)

𝛥𝑥
+  

𝜆(𝑇𝑖−1 − 𝑇𝑖)

𝛥𝑥
 

where 𝑖 =  2, . . , 𝑁 − 1 and they correspond to temperature nodes along the rod excluding 

the temperature variables at the ends. Moreover, depending on the boundary conditions we 

defined T1 and TN which are the temperature variables at the ends of the rod. 

In HeatConductionTT, T1 and TN have constant temperature values. In our model we selected 

as: T1=300K, TN = 330K. 

In HeatConductionTI, TN has a constant temperature value and T1 is insulated. In our model 

we selected TN=300K and T1 has a boundary condition defined as: 

𝑐𝜌𝛥𝑥
𝑑𝑇1

𝑑𝑡
=

𝜆(𝑇2 − 𝑇1)

𝛥𝑥
 

Moreover, equations were defined in OMEdit as explained. And, for the definition of the 

parameters and the variables Modelica.SIunits library were used. 

2.1.2. Heat Conduction by Thermal Library 

Heat conduction models were implemented using Modelica.Thermal.HeatTransfer- 

.Components which is under Modelica.Thermal library. By connecting heat capacitors and 

thermal conductors and assigning appropriate parameter values for each capacitor and each 

conductor, which are function of N, models were created. In the models, N corresponds to 

number of nodes. In Figure 2, an example of a heat conduction model is shown. 
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Figure 2: HeatConductionTI example 

In Figure 2, a HeatConductionTI model with N=4 nodes is shown, in the same manner a larger 

model can be created. In the model, at each heat capacitor, a capacitance is defined which 

varies according to the mass. Moreover, between each heat capacitor a thermal conductor is 

placed which transports the heat without storing it.  

The difference between two models occurred because of the boundary conditions at the ends, 

thermal conductors and heat capacitors were defined in the same way. In Figure 3, a 

HeatConductionTT model with N=5 nodes is shown. 

   

Figure 3: HeatConductionTT example 

For the each thermal conductor element, conductance for a box geometry under the 

assumption that heat flows along the box length was calculated as follows for the both 

models: 𝐺 = 𝜆𝐴/𝑙  where 𝐴 is the area of box, 𝜆 is the thermal conductivity and 𝑙 is the length 

of each thermal conductor element. Moreover, heat capacity of the heat capacitors was 

calculated as follows for the both models: 𝐶 = 𝑐 ∗ 𝑚 where 𝑐 is the specific heat capacity and 

𝑚 is the mass of each heat capacitor. And, for the parameter and variable definitions 

Modelica.SIunits library was used. 
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2.1.3. Analytical Solutions of Heat Conduction Models 

Analytical solutions were based on the solutions in “Handbook of Linear Partial Differential 

Equations for Engineers and Scientists” by Andrei D. Polyanin [4]. 

If we consider one dimensional partial differential heat equation in the form: 

𝜕𝑤 

𝜕𝑡
=  𝑎

𝜕2w

𝜕𝑥2
 

According to the boundary conditions, solutions for 𝑤(𝑥, 𝑡) are found.  

Solution for the HeatConductionTT: 

As mentioned, in HeatConductionTT, the ends are maintained at fixed temperatures. 

Therefore, the following conditions are prescribed: 

𝑤 = 𝑓(𝑥)   𝑎𝑡   𝑡 = 0 (𝑖𝑛𝑖𝑡𝑖𝑎𝑙 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛)  

𝑤 = 𝑔1   𝑎𝑡   𝑥 = 0 (𝑏𝑜𝑢𝑛𝑑𝑎𝑟𝑦 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛) 

𝑤 = 𝑔2   𝑎𝑡   𝑥 = 𝑙 (𝑏𝑜𝑢𝑛𝑑𝑎𝑟𝑦 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛) 

where 0 ≤ 𝑥 ≤ 𝑙. 

Solution:  

𝑤(𝑥, 𝑡) =  
2

𝑙
∑ sin (

𝑛𝜋𝑥

𝑙

∞

𝑛=1

)exp (−
𝑎𝑛2 𝜋2 𝑡

𝑙2
)𝑀𝑛(𝑡) 

where 

 𝑀𝑛 (𝑡) =  ∫ 𝑓(𝜉)sin (
𝑛𝜋𝜉

𝑙

𝑙

0
)𝑑𝜉 +  

𝑎𝑛𝜋

𝑙
∫ exp (

𝑎𝑛2   𝜋2𝜏

𝑙2

𝑡

0
)[𝑔1 − (−1)𝑛𝑔2]𝑑𝜏 

one can transform the solution to: 

𝑤(𝑥, 𝑡) = 𝑔
1

+
𝑥

𝑙
[𝑔

2
− 𝑔

1
] +  

2

𝑙
∑ sin (𝜆𝑛𝑥)∞

𝑛=1 exp (−𝑎𝜆𝑛
2 𝑡)𝑅𝑛(𝑡),   𝜆𝑛 =

𝑛𝜋

𝑙
 

where 𝑅𝑛(𝑡) can be written according our boundary conditions: 

𝑅𝑛(𝑡) = ∫ 𝑓(𝜉)sin (𝜆𝑛

𝑙

0

𝜉)𝑑𝜉 −  
1

𝜆𝑛

[𝑔
1

− (−1)𝑛𝑔
2
] 
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Solution for HeatConductionTI: 

In HeatConductionTI, one end of the rod is exposed to a fixed temperature while the other 

end is insulated. At the insulated end, heat flux is zero therefore derivative of the temperature 

will be zero. 

The following conditions are prescribed for the model:  

𝑤 = 𝑓(𝑥)   𝑎𝑡   𝑡 = 0 (𝑖𝑛𝑖𝑡𝑖𝑎𝑙 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛) 

𝜕𝑥𝑤 = 𝑔1 = 0   𝑎𝑡   𝑥 = 0 (𝑏𝑜𝑢𝑛𝑑𝑎𝑟𝑦 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛) 

𝑤 = 𝑔2   𝑎𝑡   𝑥 = 𝑙 (𝑏𝑜𝑢𝑛𝑑𝑎𝑟𝑦 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛) 

Solution:  

 𝑤(𝑥, 𝑡) =  ∫ 𝑓(𝜉)𝐺(𝑥, 𝜉, 𝑡)𝑑𝜉 − 𝑎 ∫ 𝑔1𝐺(𝑥, 0, 𝑡 − 𝜏)𝑑𝜏 − 𝑎 ∫ 𝑔2
𝑡

0

𝑡

0

𝑙

0
𝐻(𝑥, 𝑡 − 𝜏)𝑑𝜏  

where 

𝐺(𝑥, 𝜉, 𝑡) =  
2

𝑙
∑ cos [

𝜋(2𝑛 + 1)𝑥

2𝑙
] cos [

𝜋(2𝑛 + 1)𝜉

2𝑙
]

∞

𝑛=0

𝑒𝑥𝑝 [−
𝑎𝜋2(2𝑛 + 1)2𝑡

4𝑙2
] 

𝐻(𝑥, 𝑡) =
𝜕

𝜕𝜉
𝐺(𝑥, 𝜉, 𝑡)⃒𝜉=𝑙 

Therefore, the solutions for each model were defined in OMEdit in order to verify the 

models and the results are discussed in Chapter 3. 

 

2.2. Heat Exchanger 

Heat exchangers are widely used in the chemical process industries. Two fluids flow through 

the heat exchanger and heat is transferred from hot fluid to the cold fluid. Heat exchangers 

can be implemented in several ways considering the flow of the fluids through the heat 

exchanger. In our case, two heat exchangers were implemented which are cocurrent heat 

exchanger and countercurrent heat exchanger. In cocurrent heat exchanger, fluids flow in the 

same direction, however, in countercurrent heat exchanger, fluids flow in the opposite 

directions. Cocurrent and countercurrent heat exchanger models consist of two channels A 

and B, and a separating heat transfer wall in between.  Fluids A and B are flowing in the 

channels A and B respectively. Heat exchangers were assumed to be insulated around the 

outside, therefore, heat transfer occurs just between the fluids A and B. Fluid B was 

considered as the hot fluid and fluid A was considered to be the cold fluid. 
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Figure 4: Countercurrent heat exchanger with fluid A and B flowing through the channels 

 

 

Figure 5: Cocurrent heat exchanger with fluid A and B flowing through the channels 

 

2.2.1. Heat Exchanger by Equations 

Heat exchanger mass balance equations for the fluids can be written as: 

𝜕𝜌𝐴

𝜕𝑡
+

𝜕𝑤

𝜕𝑥
= 0 
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where ρ is the density of the fluid, 𝐴 is the cross section and 𝑤 is the mass flow rate. Density 

and the cross section were assumed to be constant for the fluids, hence mass flow rate was 

considered constant along the channels. 

Heat exchanger energy balance equations were described considering a small portion 𝑙 =
𝐿

𝑁−1
 

on the channels where 𝐿 is the length of each channel, and 𝑁 is the number of nodes on the 

channels. Therefore, 𝑁 − 1 corresponds to the number of channel and wall segments. And, 

there are N-1 heat flow rates and N-1 temperature variables for the wall which are considered 

for the segments. 

Discretized energy balance equations for the countercurrent heat exchanger was described 

as: 

𝜌𝐴𝑙𝐴𝐴𝑐𝑝𝐴

𝑑𝑇𝐴(𝑗 + 1)

𝑑𝑡
+ 𝑤𝐴𝑐𝑝𝐴[𝑇𝐴(𝑗 + 1) − 𝑇𝐴(𝑗)] = 𝑄𝐴(𝑗) 

𝜌𝐵𝑙𝐴𝐵𝑐𝑝𝐵

𝑑𝑇𝐵(𝑁 − 𝑗)

𝑑𝑡
+ 𝑤𝐵𝑐𝑝𝐵[𝑇𝐵(𝑁 − 𝑗) − 𝑇𝐵(𝑁 − 𝑗 + 1)] = 𝑄𝐵(𝑁 − 𝑗) 

for 𝑗 = 1 … 𝑁 − 1 where 𝐴𝐴 and 𝐴𝐵 are the cross section areas of the channels, 𝜌𝐴 and 𝜌𝐵 are 

the densities, 𝑐𝑝𝐴 and 𝑐𝑝𝐵 are the specific heat capacities, 𝑤𝐴 and 𝑤𝐵 are the mass flow rates 

of the fluids A and B respectively. Moreover, 𝑇𝐴 and 𝑇𝐵 are the temperature variables of the 

fluids A and B respectively, entering and exiting the small portion 𝑙. And, 𝑄𝐴 is the heat flow 

rate from wall to channel A, and 𝑄𝐵 is the heat flow rate from channel B to wall. In addition 

to this, boundary conditions were defined for the first node for 𝑇𝐴 and for the node N for 𝑇𝐵. 

The wall between the channels was assumed to be very thin, so its thermal resistance was 

neglected. Heat transfer occurs from the fluid A in channel A to the wall and from the wall to 

the fluid B in channel B. Energy balance at the each wall segment: 

𝑄𝐴(𝑗) = 𝛾𝐴𝜔𝐴𝑙[𝑇𝑤(𝑗) − (𝑇𝐴(𝑗) + 𝑇𝐴(𝑗 + 1))/2] 

𝑄𝐵(𝑁 − 𝑗) = 𝛾𝐵𝜔𝐵[(𝑇𝐵(𝑁 − 𝑗) + 𝑇𝐵(𝑁 − 𝑗 + 1))/2 − 𝑇𝑤(𝑁 − 𝑗)] 

𝑐𝑤

𝑁 − 1

𝑑𝑇𝑤(𝑗)

𝑑𝑡
= −𝑄𝐴(𝑗) + 𝑄𝐵(𝑗) 

for  𝑗 = 1 … 𝑁 − 1 where 𝛾𝐴 and 𝛾𝐵 are the heat transfer coefficients of fluids A and B 

respectively, and 𝜔𝐴 and 𝜔𝐵 are the perimeter of the channels A and B respectively. 

Moreover, 𝑐𝑤 is the specific heat capacity of the wall and 𝑇𝑤 is the temperature variable of 

the wall segment.  

Energy balance equations for cocurrent heat exchanger is very similar to the equations of 

countercurrent heat exchanger. The difference occurs because of the flow direction of the 

fluid B, therefore, in cocurrent heat exchanger boundary condition of 𝑇𝐵 was described for 

the first node. And, boundary condition of 𝑇𝐴 remained again for the first node. 
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 Discretized energy balance equations for the cocurrent heat exchanger was described as: 

𝜌𝐴𝑙𝐴𝐴𝑐𝑝𝐴

𝑑𝑇𝐴(𝑗 + 1)

𝑑𝑡
+ 𝑤𝐴𝑐𝑝𝐴[𝑇𝐴(𝑗 + 1) − 𝑇𝐴(𝑗)] = 𝑄𝐴(𝑗) 

𝜌𝐵𝑙𝐴𝐵𝑐𝑝𝐵

𝑑𝑇𝐵(𝑗 + 1)

𝑑𝑡
+ 𝑤𝐵𝑐𝑝𝐵[𝑇𝐵(𝑗 + 1) − 𝑇𝐵(𝑗)] = −𝑄𝐵(𝑗) 

for 𝑗 = 1 … 𝑁 − 1. 

Energy balance at the each wall segment was modified in terms of temperature variables of 

fluid B: 

𝑄𝐴(𝑗) = 𝛾𝐴𝜔𝐴𝑙[𝑇𝑤(𝑗) − (𝑇𝐴(𝑗) + 𝑇𝐴(𝑗 + 1))/2] 

𝑄𝐵(𝑗) = 𝛾𝐵𝜔𝐵[(𝑇𝐵(𝑗) + 𝑇𝐵(𝑗 + 1))/2 − 𝑇𝑤(𝑗)] 

𝑐𝑤

𝑁 − 1

𝑑𝑇𝑤(𝑗)

𝑑𝑡
= −𝑄𝐴(𝑗) + 𝑄𝐵(𝑗) 

for 𝑗 = 1 … 𝑁 − 1. 

 

2.2.2. Steady State Analysis of Heat Exchanger  

In Figure 6, temperature distributions of the heat exchangers in cocurrent and countercurrent 

mode are given. 𝑇𝐻 and 𝑇𝑐represent the temperature of the hot fluid and the cold fluid, 

respectively.  

 

Figure 6: Cocurrent and countercurrent heat exchanger temperature distributions 

∆𝑇 represents the temperature difference between hot and cold fluids along the heat 

exchangers. And, 𝑥 is a point along the channels of the heat exchanger. In the countercurrent 
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mode, ∆𝑇 does not vary along the channels as much as the ∆𝑇 in the cocurrent mode. 

Moreover, in cocurrent mode, ∆𝑇 is very large at the inlet of the channels and getting smaller 

progressively. Countercurrent heat exchanger can be evaluated as more efficient with respect 

to cocurrent heat exchanger since countercurrent mode requires smaller heat transfer area 

to provide the same heat transfer rate. The efficiency of countercurrent mode can also be 

seen from the plots in Chapter 3. 

At the steady state, the total flow rates of 𝑄𝐴 and 𝑄𝐵 is equal to a steady state rate equation 

and it was used for the verification of the models. 

Steady state heat rate equation for a heat exchanger is written as follows:  

𝑄 = 𝑈𝐴∆𝑇𝑒𝑜𝑔 

where 𝑈 is the average overall heat transfer coefficient, 𝐴 is the area of the heat transfer 

surface and ∆𝑇𝑒𝑜𝑔 is the average temperature driving force. 

 𝑈𝐴 is described as: 

𝑈𝐴 = 𝐿𝜔
𝛾𝐴𝛾𝐵

𝛾𝐴 + 𝛾𝐵
 

where 𝐿 is the length, 𝜔 is the perimeter of the channels, 𝛾𝐴 and 𝛾𝐵 are the heat transfer 

coefficients of fluid A and B respectively. 

∆𝑇𝒆𝒐𝒈 is written as: 

∆𝑇𝒆𝒐𝒈 =  
∆𝑇𝐿 − ∆𝑇𝑜

log (
∆𝑇𝐿 

∆𝑇𝑜
)

 

where ∆𝑇𝐿 is the temperature difference of the fluids A and B at the outlet of the channels 

and ∆𝑇𝑜is the temperature difference of the fluids A and B at the inlet of the channels. 

Therefore, steady state rate equations were described in OMEdit in order to verify the 

models.  
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2.3. Flexible Beam 

As a flexible beam, a cantilever beam was modeled. Euler-Bernoulli theory was adopted to 

describe the beam bending which is considered to be acceptable for the thin beams. Thin 

beams imply that length of the beam is much greater than the height of it.  

 

Figure 7: A cantilever beam 

The flexible beam was implemented by using MSL and the model was verified by the analytical 

solution.  

2.3.1. Flexible Beam by MultiBody Library 

A flexible beam was created using Modelica.Mechanics.MultiBody library components. 

Flexible beam were approximated by the rigid bodies and joints coupled with springs and 

dampers. Flexible beam was discretized into N+1 body boxes and N revolute joints which 

provided the flexibility features to the model. And, N spring-damper components were placed 

to the revolute joints. The spring stiffness coefficients were determined depending on the 

material properties and the geometry of the flexible beam while damping coefficients were 

taken very small. 

Modeling was adopted from the paper “Modeling Flexible Bodies in SimMechanics” by Victor 

Chudnovsky, Arnav Mukherjee, Jeff Wendlandt and Dallas Kennedy [8] which was intended 

for MATLAB and Simulink environment. 

The beam was discretized into elements, and a single element was considered to be consisted 

of 2 body boxes and a revolute joint between these body boxes. If we assign length 𝑙  to a 

single element, each body box in this element will have the length of 𝑙/2.  By connecting each 

element together a flexible beam was obtained. Each element along the length of the beam 

was taken to be identical, therefore, the flexibility of the beam is uniform along its length. 

L 

H 

W 
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Figure 8: A single element of the flexible beam 

Moreover, in order to provide flexibility to the beam, at each revolute joint a spring and a 

damper was placed. Determination of the spring stiffness came from the equality of the 

infinitesimal work done by the end of the single element and the joint. Moreover, the angle 𝜃 

was considered to be very small and by the relation of the deflection, slope and moment, the 

spring constant in the form: 𝑘 =
𝐸𝐼

𝑙
 was obtained. In the equation, 𝐸 is the modulus of 

elasticity, 𝐼 is area moment of inertia and 𝑙 is the length of a single element. 

Therefore, the flexible beam was implemented depending on the characteristics as explained. 

At the fixed end of the flexible beam, the world component was placed. While using MultiBody 

library, it is mandatory to put the world component as it defines several features including 

gravity field for each component, as well as a fixed inertial frame of reference. In the model, 

zero gravity was selected and at the free end of the flexible beam a force component was 

placed in order to simulate the vibrations in the beam. 

 
Figure 9: A flexible beam example containing 2 elements 

 

2.3.2. Analytical Solution of Flexible Beam Model 

The partial differential equation describing the motion of the infinitesimal element is:  

𝐸𝐽
𝜕4𝑤

𝜕𝑥4
= −𝑚

𝜕2𝑤

𝜕𝑡2
 

where 𝑚 is the linear mass, 𝑤 is the displacement, 𝐸 is the young’s modulus and 𝐽 is the  

area moment of inertia. 

𝑙/2 + 𝑙/2𝑐𝑜𝑠𝜃 

𝜃 
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Assuming a stationary solution of the bending motion in the form:  

𝑤(𝑥, 𝑡) = 𝛼(𝑥)𝛽(𝑡) 

where 𝛼(𝑥) is a function of space alone describing the waveform of the stationary vibration 

and 𝛽(𝑡) is a time dependent vibration amplitude coefficient. 

By placing the stationary solution 𝑤(𝑥, 𝑡) into the PDE and later defining:  

𝛾4 =
𝑚𝜔2

𝐸𝐽
 

The natural frequencies and the modes of vibration of a beam in bending depend on physical 

parameters such as length, section, material and also boundary conditions. For the cantilever 

beam, there are four boundary conditions, two for the clamped end 𝑥 = 0 and two for the 

free end 𝑥 = 𝑙. 

𝑤(0, 𝑡) = 0   
𝜕𝑤

𝜕𝑥
|

𝑥=0
= 0 

𝜕2𝑤

𝜕𝑥2
|

𝑥=𝑙
= 0   

𝜕3𝑤

𝜕𝑥3
|

𝑥=𝑙
= 0 

The general solution becomes a linear combination of trigonometric equations: 

𝛼(𝑥) = 𝐴[𝑐𝑜𝑠(𝛾𝑥) + 𝑐𝑜𝑠ℎ(𝛾𝑥)] + 𝐵[𝑐𝑜𝑠(𝛾𝑥) − 𝑐𝑜𝑠ℎ(𝛾𝑥)]

+ 𝐶[𝑠𝑖𝑛(𝛾𝑥) + 𝑠𝑖𝑛ℎ(𝛾𝑥)] + 𝐷[𝑠𝑖𝑛(𝛾𝑥) − 𝑠𝑖𝑛ℎ(𝛾𝑥)] 

and after placing the boundary conditions into the function 𝛼(𝑥), we reduce the function 

into a new form. Moreover, from the boundary conditions it is obtained: 𝐴 = 𝐶 = 0 and; 

𝐷 = 𝐵
−𝑐𝑜𝑠(𝛾𝐿) − 𝑐𝑜𝑠ℎ(𝛾𝐿)

𝑠𝑖𝑛(𝛾𝐿) + 𝑠𝑖𝑛ℎ(𝛾𝐿)
 

Thus, it can be written in the form: 

𝛼(𝑥) = 𝐵{[𝑐𝑜𝑠(𝛾𝑥) − 𝑐𝑜𝑠ℎ(𝛾𝑥)] + [
−𝑐𝑜𝑠(𝛾𝐿) − 𝑐𝑜𝑠ℎ(𝛾𝐿)

𝑠𝑖𝑛(𝛾𝐿) − 𝑠𝑖𝑛ℎ(𝛾𝐿)
] [𝑠𝑖𝑛(𝛾𝑥) − 𝑠𝑖𝑛ℎ(𝛾𝑥)]} 

where 𝐵 = 1/2.  Moreover, by the boundary conditions, we obtain the frequency equation 

for the cantilever beam: cosh(𝛾𝑙) cos(𝛾𝑙) = −1. We have infinite number of solutions for  

𝛾𝑘   , 𝑘 = 1,2, … . And, we obtain the natural frequencies by using the equation: 

𝜔𝑘 = (𝛾𝑘)2√
𝐸𝐽

𝑚
 

By solving the frequency equation we obtained 𝛾𝑘𝑙 and 𝜔𝑘, values for the first 6 modes are 

given in the Table 1: 
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Table 1: Values for the first 6 modes  

k 𝜸𝒌 𝝎𝒌 𝑭𝒓𝒆𝒒𝒖𝒆𝒏𝒄𝒚(𝑯𝒛) 

1 1,875 410,4352 65,3228 

2 4,694 2,5723e3 409,4005 

3 7,855 7,2033e3 1,1464e3 

4 10,9955 1,4115e4 2,2464e3 

5 14,1371 2,3333e4 3,7135e3 

6 17,2787 3,4855e4 5,5473e3 

 

Therefore, for each frequency, there is a characteristic vibration: 

𝑤𝑘(𝑥, 𝑡) = 𝛼𝑘(𝑥)𝛽𝑘(𝑡) =  𝛼𝑘(𝑥)[𝐴𝑘 cos(𝜔𝑘𝑡)] 

An approximation for 𝐴𝑘 is given below according to 𝑃 which is force. It is calculated as if the 

beam starts vibration at t=0. 

𝐴𝑘 =
−4𝑃𝐿

𝐸𝐽𝑚𝛾𝑘
4(sin(𝛾𝑘𝐿) 𝑒𝛾𝑘𝐿 + 𝑒2𝛾𝑘𝐿 − 1)

∗ [3 sin(𝛾𝑘𝐿) (𝑒2𝛾𝑘 + 1) − 2(𝛾𝑘𝐿)3𝑒𝛾𝑘𝐿  

                                                                              +cos (𝛾𝑘𝐿)(3 − (𝛾𝑘𝐿)3(𝑒2𝛾𝑘𝐿 + 1) − 3𝑒2𝛾𝑘𝐿)] 

 

Therefore, this solution was used to verify the flexible beam implemented by MultiBody 

library and the results are provided in Chapter 3.  

 

2.4. String  

A string was modeled by considering the behavior of a travelling wave on a string. The 

prescribed transversal displacement at one end creates a wave on the string. From one end 

of the string model, a pulse was given and a travelling wave was observed along the string and 

it was modeled by using MultiBody library. 

2.4.1. String by MultiBody library 

In order to be able to observe the characteristics of a string, a pulse was given on the 

horizontal axis and while there was a uniform gravity on the vertical axis, movement of the 

pulse was observed along the created model. The main idea was to see a movement of the 

rigid bodies such that reflects a travelling wave when a pulse was given from one end of the 

string model. 

The main body of the string was created by body boxes and revolute joints coupled with 

dampers. The travelling wave is determined by the coupling between inertia and tension due 

to gravity. Moreover, by using necessary components of MSL a pulse was applied to the string. 
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With the world component gravity was applied on the vertical axis. The prismatic joint was 

coupled with a position component which provided a horizontal movement to the prismatic 

joint. And, position component was controlled with a pulse input which had 1 period.  

 

 

Figure 10: A string model example 

An example of a string model is given in Figure 10 when N=2 where N corresponds to the 

number of revolute joints in the model, therefore, there are N+1 body boxes. Position 

component enables one to filter the input signal in order to eliminate the high frequency 

components. Hence, in our model pulse signal was filtered by the position component in order 

to provide a slow pulse to the string and by that way the response of the body boxes was 

observed. 

Parameters were defined using Modelica.SIunits library. In Chapter3, plots and statistics for 

increasing N values are provided.  

2.5. Transmission Line 

A transmission line is used to carry an electrical signal from one point to another. Transmission 

lines are widely used in our daily lives. They can be used for many purposes such as connecting 

a transmitter or a receiver to an antenna, connecting the computers in a network and so on. 

Figure 11: Transmission Line example 

Node j-1 Node j Node j+1 
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In Figure 11, it is given an example of the transmission line that was implemented which 

consists of a resistor, an inductor and a capacitor within each segment. Moreover, the 

transmission line was implemented by connecting each segment together. In the figure, 

resistor1, inductor1 and capacitor1 describes the first segment and it is connected to second 

segment which has the same components as the first segment and so on. It transmits the 

electrical signal from a source to a load. Furthermore, the first segment will be connected to 

a voltage source or a filter which can be used eliminate the high frequency oscillations, and 

the last segment is connected to a load. 

In our case, a second order low pass filter was placed between a step voltage and the 

transmission line, and as a load, a matched load resistance was chosen.  

Transmission line was implemented both using Modelica.Electrical library and equations.  

 

2.5.1. Transmission Line Circuit by Electrical library 

The transmission line was implemented as it is explained in the section 2.5. Its parameters 

are N “number of segments”, r “resistance per meter”, l “inductance per meter”, c 

“capacitance per meter” and L “length of the transmission line”.  

 

Figure 12: Transmission Line parameters window 

Two pins were placed at the ends of the transmission line. Left pin was connected to the 

resistor of the first segment and the right pin was connected to the inductor of the last 

segment. 
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Figure 13: Transmission Line icon 

To the left pin of the transmission line, controlled voltage component was connected which is 

a parameterless converter of real valued signals into a source voltage. Moreover, the real 

valued signals had to be provided by the components of Modelica.Blocks library. A step input 

was selected and it was filtered with a second order low pass filter in order to eliminate its 

high frequency components. And, at the right end of the transmission line, a load resistance 

was placed which was equal to the characteristic impedance of the transmission line.  

 

Figure 14: Transmission Line circuit model 

If the distributed resistance is neglected, characteristic impedance of the transmission line 

can be approximated by: 

𝑍𝑜 =  √
𝑙

𝑐
 

where l and c is the inductance per meter and capacitance per meter respectively. 

In the transmission line circuit model, load resistance was taken as equal to the characteristic 

impedance in order to test the matched load case in which no reflected wave is observed in 

the transmission line. 
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Another important point of the transmission line that has to be analyzed is the time delay 

between its ends. It can be calculated as: 

𝜏 =  √
𝐿

𝑣
 

where 𝐿 is the length of the transmission line and 𝑣 =  
1

√𝑙𝑐
  is the velocity of the signal. The 

formula of the time delay was used for the verification of the implemented transmission line 

circuit model to check whether the time delay of the model satisfies the theoretical one.  

The second order low pass filter was in the form: 

𝑦 =
𝑘

(
𝑠
𝜔)2 + 2𝐷

𝑠
𝜔 + 1

𝑢 

where 𝜔 is the angular cut-off frequency, 𝐷 is the damping, 𝑘 is the gain, 𝑢 is the step input 

and 𝑦 is the output which is the input for signal voltage component. Second order filter 

provided a slope of -40dB/decade which mostly removed undesired high frequency 

oscillations. The angular cut-off frequency was determined by measuring the high frequency 

oscillations as well as paying attention not to remove the desired frequencies. Moreover, 

damping and gain of the filter was chosen to be 1. 

2.5.2. Transmission Line Circuit by Equations 

Considering the nodes of the discrete transmission line shown in Figure 11, circuit equations 

can be written. In the transmission line, we considered N segments, therefore, there were N+1 

nodes, and N+1 voltage and current variables. 

𝐶𝑥

𝑑𝑣𝑗+1

𝑑𝑡
=

𝑖𝑗 − 𝑖𝑗+1

𝑙
 

𝐿𝑥 

𝑑𝑖𝑗
𝑑𝑡

= −𝑅𝑥𝑖𝑗 +
𝑣𝑗 − 𝑣𝑗+1

𝑙
 

where 𝑗 = 2, . . , 𝑁.  And, 𝑙 =
𝐿

𝑁
  is the length of each segment, 𝑅𝑥is the resistance per meter, 

𝐿𝑥 is the inductance per meter and 𝐶𝑥 is the capacitance per meter. 

Output voltage can be described as: 

𝑣𝑁+1 = 𝑖𝑁+1 𝑅𝐿 

where 𝑅𝐿 is the load resistance which was taken to be equal to the characteristic impedance 

of the transmission line. 
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Moreover, considering the form of the second order low pass filter as mentioned in Section 

2.5.1, equation of the filter can be defined in the following way: 

𝑉𝑠𝑡𝑒𝑝 = 𝑣1 +
2

𝜔

𝑑𝑣1

𝑑𝑡
+

1

𝜔2

𝑑2𝑣1

𝑑𝑡2
 

where 𝑉𝑠𝑡𝑒𝑝 is the step voltage and 𝑣1 is the output voltage of the filter. 

The equations were defined in OMEdit as explained. And, parameters and variables were 

defined using Modelica.SIunits library. The results of the transmission line circuit models are 

discussed in Chapter 3.  

 

3. Simulations 

The implemented models were simulated and evaluated in terms of the plots of the results, 

compilation times and simulation times. Plots and time spent for the compilation and 

simulation of the models are important in order to analyze the performance of Modelica while 

handling large systems which means high number of equations. For the purpose of the 

performance and plot analysis, each model was simulated by gradually increasing “N” of the 

models. The test system was a laptop with AMD Quad-Core Processor @ 1.4 GHz and 4 GB 

RAM running Windows 8. All the models were simulated using the dassl-solver for a time 

period necessary to observe the expected results. 

OpenModelica compilation works by translating a Modelica code to a C code to make it 

executable for the simulation. Modelica source code is first translated to a flat model, which 

means in this phase type checking, inheritance, generation of connection equations are 

performed. Later, in the analyzer and optimizer, sorting of the equations and optimization of 

equations are done which are necessary for compiling the models. Finally, sequential C code 

is generated and compiled to produce executable code.  

In this chapter, statistics of each model is provided within the tables in terms of compilation 

and simulation times. For the compilation time, specifically, timeSimCode and timeCompile, 

which are the time for generating C code from optimized sorted equations and the time of C 

code compilation respectively, are highlighted.  

Simulations were implemented using command shell by creating a .mos file which is a 

Modelica script file. Furthermore, statistics of the compilation and simulation time were 

written in a .txt file in which time spent for compilation and simulation can be seen. Moreover, 

the generated code and the plots of the results were obtained.  
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An example is given below about how to create a .mos file by using Visual Figaro: 

TransmissionLine.mos: 

loadModel(Modelica); 
loadFile("ScalableTestSuite.mo"); getErrorString(); 
simulate(ScalableTestSuite.TransmissionLine.TransmissionLineEquations_N_2, simflags = "-lv 
LOG_STATS"); getErrorString(); 
 
After creating the .mos files, OMC was invoked using command shell as shown in Figure 15.  

 

Figure 15: Command shell OMC invocation 

In the example provided in Figure 15 statistics are written in “Test.txt” file which contains 

compilation and simulation times. Generated code is created in a file named 

“TransmissionLineEquations_N_2.exe” and the plots of the results are provided in a file 

named “TransmissionLineEquations_N_2.mat”.  

Therefore, all the models were simulated in same way and the results are discussed. 

 

3.1. Simulations of Heat Conduction Models 

For the heat conduction models, as mentioned in Chapter 2 there were two kind of models 

which are mentioned as HeatConductionTT and HeatConductionTI. 

An aluminum material was considered for the simulations. Material parameters are shown in 

Table 2. 

Table 2: Parameters for heat conduction simulations 

Length(m) 
Specific Heat Capacity 

(J/(kg.K)) 
Thermal conductivity 

(W/(m.K)) 
Density ( kg/m3) 

0.2 910 237 2712 
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Both models were implemented using their equations and Modelica.Thermal library. 

Furthermore, verification was done by the analytical solutions of the models which were 

calculated according to their boundary conditions.  

Mentioning again that N is the number of nodes for the heat conduction models, 32 

simulations were done in total for different N values. 16 simulations were done for both 

HeatConductionTI and HeatConductionTT: 8 for the models implemented by equations and 8 

for the models implemented by Modelica.Thermal library. 

Boundary conditions and N values for HeatConductionTT and HeatConductionTI which were 

used in the simulations are shown in Table 3, 4 and 5. 

Table 3: HeatConduction TT boundary conditions and simulation time 
Temperature at 

the first node(N=1) 
Temperature at the 
last node (node N) 

Initial condition for the 
other nodes(2,..,N-1) 

Simulation Time 

330 K 300 K 273.15 K 350 s 

 
Table 4: HeatConductionTI boundary conditions and simulation time 

Temperature at the last 
node (node N) 

Initial condition for the other 
nodes(1,..,N-1) 

Simulation Time 

330 K 273.15 K 1500 s 

 
Table 5: N values for the heat conduction simulations 

N (number of nodes) 

10 

20 

40 

80 

160 

320 

640 

1280 

 

3.1.1. Plots of HeatConductionTT and  HeatConductionTI 

For the verification of HeatConductionTT and HeatConductionTI, plots when N=1280 are 

shown since they are the most accurate.  

In the verification, mid-nodes of the models were selected, and verified by the analytical 

solutions as seen in Figure 16 and 17. In the figures, red lines represent the temperature at 

the middle of the models implemented by analytical solutions, blue lines represent the 

temperature at the mid-node of the models implemented by equations and green lines 

represent the temperature of the heat capacitor at the middle of the models implemented by 

Modelica.Thermal library. According to Figure 16 and 17, results of the equations and Thermal 

library are exactly matching with each other and with the analytical solutions.  
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Figure 16: Verification for HeatConductionTI when N=1280 

 

 
Figure 17: Verification for HeatConductionTT when N=1280 
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In the next two figures, some representative temperatures for HeatConductionTI models with 

respect to time are given for our N values which are shown in Table 5. In Figure 18, lines 

represent the temperatures at the mid-nodes of each HeatConductionTI model implemented 

by equations. And, in Figure19, lines represent the temperatures of the heat capacitors at the 

middle of each HeatConductionTI model implemented by MSL. 

 
Figure 18: Temperatures of HeatConductionTI implemented by equations 

 

 
Figure 19: Temperatures of HeatConductionTI implemented by MSL 
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The temperatures of HeatConductionTI implemented by equations and MSL are exactly 

matching at each N and they give the same response with respect to time. Temperatures are 

starting from 273.15 K which is the initial temperature and they reach steady state value 330K 

around 1200 seconds. In Figure 18 and 19, red lines represent the temperatures when N=10, 

and as N increases error decreases between the expected temperature. Starting from N=320, 

temperatures show the same response for the increasing N values. 

In Figure 20 and 21, the necessary temperatures for HeatConductionTT models with respect 

to time are given for the same N values. In Figure 20, lines represent the mid-node 

temperatures of the HeatConductionTT model implemented by equations. 

 
Figure 20: Temperatures of HeatConductionTT implemented by equations  

 

In Figure 21, lines represent the temperatures of the heat capacitors at the middle of the 

HeatConductionTT models implemented by MSL. 



26 
 

 
Figure 21: Temperatures of HeatConductionTT implemented by MSL 

 

In both models of HeatConductionTT, mid-node temperatures are reaching steady state 

temperature 315K around 300 seconds. While N=10 and N=20 the temperature differences 

between the models implemented by equation and MSL are apparent, as N increases this 

difference is getting lost.  

The plots of HeatConductionTT and HeatConductionTI were as expected. When a rod is 

exposed to fixed temperatures from its both ends it reaches steady state faster than the rod 

which is exposed to a fixed temperature from one end. In the plots of HeatConductionTI, it is 

seen that equations and MSL show exactly the same results. However, in HeatConductionTT, 

plots proves that MSL shows better results than equations at lower N values as can be seen 

from the error between N=10 and N=1280 in the Figure 20 and 21. 
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3.1.2. Statistics of HeatConductionTT and HeatConductionTI 

In this part, compilation and simulation times of the models are provided. Statistics for 

HeatConductionTT implemented by equations are given in Table 6. 

Table 6: Statistics for HeatConductionTT implemented by equations 

N=10 

Compilation Time 12,7201 s 
timeSimCode 0,059 s  

timeCompile 10,5358 s 

Simulation Time 0,02205 s 
 

N=20 

Compilation Time 12,6075 s 
timeSimCode 0,1237 s 

timeCompile 9,9512 s 

Simulation Time 0,0256 s 
 

N=40 

Compilation Time 13,5012 s 
timeSimCode 0,2632 s 

timeCompile 10,3084 s 

Simulation Time 0,0449 s 
 

N=80 

Compilation Time 14,7156 s 
timeSimCode 0,5387 s 

timeCompile 10,8068 s 

Simulation Time 0,0888 s 
 

N=160 

Compilation Time 18,5574 s 
timeSimCode 1,7197 s 

timeCompile 12,1735 s 

Simulation Time 0,2054 s 
 

N=320 

Compilation Time 26,4369 s 
timeSimCode 2,5133 s 

timeCompile 15,3876 s 

Simulation Time 0,4899 s 
 

N=640 

Compilation Time 42,0018 s 
timeSimCode 5,6619 s 

timeCompile 19,7147 s 

Simulation Time 1,6681 s 
 

N=1280 

Compilation Time 85,6352 s 
timeSimCode 15,6075 s 

timeCompile 30,6983 s 

Simulation Time 6,1233 s 
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Statistics for HeatConductionTT implemented by MSL are given in Table 7. 

Table 7: Statistics for HeatConductionTT implemented by MSL 

N=10 

Compilation Time 13,3162s 
timeSimCode 0,047 s 

timeCompile 10,8379s 

Simulation Time 0,02727 s 
 

N=20 

Compilation Time 13,5027 s 
timeSimCode 0,1013 s 

timeCompile 10,2659 s 

Simulation Time 0,0498 s 
 

N=40 

Compilation Time 15,6125 s 
timeSimCode 0,2394 s 

timeCompile 10,6928 s 

Simulation Time 0,0961 s 
 

N=80 

Compilation Time 19,2601 s 
timeSimCode 0,5348 s 

timeCompile 12,2513 s 

Simulation Time 0,196 s 
 

N=160 

Compilation Time 26,6549 s 
timeSimCode 1,1833 s 

timeCompile 14,2433 s 

Simulation Time 0,4042 s 
 

N=320 

Compilation Time 44,1781 s 
timeSimCode 3,7143 s 

timeCompile 19,6767 s 

Simulation Time 0,9081 s 
 

N=640 

Compilation Time 105,5254 s 
timeSimCode 11,4071 s 

timeCompile 30,2928 s 

Simulation Time 2,6541 s 
 

N=1280 

Compilation Time 299,5425 s 
timeSimCode 36,9461 s 

timeCompile 52,2366 s 

Simulation Time 8,1803 s 
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Figure 22 compares the compilation times of HeatConductionTT implemented by equations 

and MSL according to our N values. 

 
Figure 22: HeatConductionTT compilation times 

 

Compilation times starts increasing after N=20 for the HeatConductionTT models, and time 

difference between the compilation times of the models implemented by equations and MSL 

is growing as N increases. For large values of N, compilation times of the model implemented 

by MSL increases roughly with a second power of N. And, for low values of N, the time is almost 

constant due to a fixed overhead independent of size. 

In Figure 23, simulation times for HeatConductionTT implemented by equations and MSL are 

given according to our N values. 

 
Figure 23: HeatConductionTT simulation times 
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As it can be inspected in Figure 23, simulation times of HeatConductionTT models increase 

with second power of N.  

Statistics for HeatConductionTI implemented by equations are given in Table 8. 

Table 8: Statistics for HeatConductionTI implemented by equations 

N=10 

Compilation Time 12,4957 s 
timeSimCode 0,0649 s 

timeCompile 10,1706 s 

Simulation Time 0,0154 s 
 

N=20 

Compilation Time 12,1556 s 
timeSimCode 0,1305 s 

timeCompile  10,1645 s 

Simulation Time 0,02511 s 
 

N=40 

Compilation Time 13,1739 s 
timeSimCode 0,2637 s 

timeCompile 10,3102 s 

Simulation Time 0,0492 s 
 

N=80 

Compilation Time 14,7031 s 
timeSimCode 0,5516 s 

timeCompile 10,7217 s 

Simulation Time 0,0918 s 
 

N=160 

Compilation Time 18,4264 s 
timeSimCode 1,1664 s 

timeCompile 12,6475 s 

Simulation Time 0,205 s 
 

N=320 

Compilation Time 25,8326 s 
timeSimCode 2,5179 s 

timeCompile 14,7186 s 

Simulation Time 0,5185 s 
 

N=640 

Compilation Time 42,9075 s 
timeSimCode 6,4962 s 

timeCompile 19,4988 s 

Simulation Time 1,7475 s 
 

N=1280 

Compilation Time 82,2501 s 
timeSimCode 14,6987 s 

timeCompile 30,2779 s 

Simulation Time 5,968 s 
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Statistics for HeatConductionTI implemented by MSL are given in Table 9. 

Table 9: Statistics for HeatConductionTI implemented by MSL 

N=10 

Compilation Time 13,0588 s 
timeSimCode 0,0495 s 

timeCompile 10,4661 s 

Simulation Time 0,027 s 
 

N=20 

Compilation Time 13,1929 s 
timeSimCode 0,1101 s 

timeCompile 10,3077 s 

Simulation Time 0,0514 s 
 

N=40 

Compilation Time 14,3168 s 
timeSimCode 0,2232 s 

timeCompile 10,7568 s 

Simulation Time 0,0988 s 
 

N=80 

Compilation Time 17,5525 s 
timeSimCode 0,4961 s 

timeCompile 12,1652 s 

Simulation Time 0,1931 s 
 

N=160 

Compilation Time 24,2966 s 
timeSimCode 1,1636 s 

timeCompile 13,9298 s 

Simulation Time 0,4012 s 
 

N=320 

Compilation Time 42,5138 s 
timeSimCode 3,0872 s 

timeCompile 19,5183 s 

Simulation Time 0,9692 s 
 

N=640 

Compilation Time 
102,8176 

s 

timeSimCode 9,7597 s 

timeCompile 30,4896 s 

Simulation Time 2,7141 s 
 

N=1280 

Compilation Time 
298,0852 

s 

timeSimCode 37,887 s 

timeCompile 52,0476 s 

Simulation Time 8,135 s 
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In Figure 24, the compilation times of HeatConductionTI implemented by equations and MSL 

are shown according to our N values. 

 
Figure 24: HeatConductionTI compilation times 

 

Compilation and simulation times of HeatConductionTI models are very near to 

HeatConductionTT models. 

 
Figure 25: HeatConductionTI simulation times 

 

It is observed that HeatConductionTI and HeatConductionTT models show the same 

compilation and simulation times. However, the models implemented by Thermal library take 

more time than the models implemented by equations in terms of compilation and simulation.  
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3.2. Simulations of Heat Exchanger Models 

As it is mentioned in Chapter 2, there were two models of heat exchangers implemented by 

equations; countercurrent heat exchanger and cocurrent heat exchanger. Heat exchangers 

were simulated for the same parameter values. Their difference occurred due to boundary 

conditions which was caused by the flow direction of fluid B.   

Parameters used for both fluid A and B for both heat exchangers: 

Table 10: Parameters of fluid A and B  
Density 
(kg/m3) 

Specific heat capacity 
(J/(kg.K)) 

Heat Transfer Coefficient 

(W/(m2.K)) 
1000 4200 4000 

 

Parameters used for channel A and B and wall for both heat exchangers: 

Table 11: Parameters of channel A and B 
Length 

(m) 
Cross sectional area 

(m2) 
Perimeter 

(m) 
Specific heat capacity of the wall 

(J/(kg.K)) 

10 5*10-5 0.1 2000 

 

Mass flow rates of fluid A and B for both heat exchangers: 

Table 12: Mass flow rates of fluid A and B 
Mass flow rate of B 

(kg/s) 
Mass flow rate of A 

(kg/s) 
1 if time<15 seconds  then  1  else  1.1 

 

As mentioned in Chapter 2, in the heat exchangers, there are N temperature variables on the 

channels. And, N-1 heat flow rate variables are considered for each segment. Moreover, there 

are N-1 wall segments and wall temperature variables. 

For countercurrent and cocurrent heat exchangers, there are different boundary conditions. 

In cocurrent heat exchanger, the first node of the channel B is at fixed temperature, on the 

other hand, in countercurrent heat exchanger the last node of the channel B is at fixed 

temperature. Therefore, according to these arrangements initial conditions were also 

arranged for the nodes in between. 

In order to analyze heat exchanger responses to temperature and mass flow rate, they were 

changed after a specific time when they reached steady state.  The temperature of the cold 

fluid which is fluid A was increased by 1K after 8 seconds and its mass flow rate was increased 

by 0.1 kg/s after 15 seconds. 
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Boundary conditions for cocurrent heat exchanger: 

Table 13: Boundary conditions for countercurrent heat exchanger 
Temperature of fluid A at first node 

(N=1) 
if time<8 then 300K else 301K 

Temperature of fluid B at first node 
(N=1) 

310K 

Initial Temperature of fluid A and B 
at nodes 2…N 

300K 

Initial Temperature of wall segments 300K 

 

Boundary conditions for countercurrent heat exchanger: 

Table 14: Boundary conditions for cocurrent heat exchanger 
Temperature of fluid A at first node 

(N=1) 
if time<8 then 300K else 301K 

Temperature of fluid B at node N 310K 

Initial Temperature of fluid A and B 
at nodes 1…N-1 

300K 

Initial Temperature of wall segments 300K 

 
Table 15: Simulation time of heat exchangers 
Simulation time for both heat exchangers (s) 

20 
 

3.2.1. Plots of Heat Exchanger Models 

At the steady state, as it is mentioned in the Chapter 2, total heat flow rates of 𝑄𝐴 and 𝑄𝐵 will 

be equal to steady state rate equation. Therefore, firstly total heat flow rates of 𝑄𝐴 and 𝑄𝐵 

were verified with the steady state rate equation. It was observed that results were exactly 

matching in high N values while for low N values there were minor differences.In Table 16, 

steady state heat flow rates of cocurrent and countercurrent heat exchangers are given.   

Table 16: Steady state heat flow rates 
 Steady State Heat Flow Rate (W) 

Time (s) Countercurrent Mode Cocurrent Mode 

time < 8 17004 15609.5 

8 < time < 15 15303.6 14051 

15 < time 15587.5 14396.2 
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In Figure 26, temperatures at the nodes of channel A and channel B are provided for the 

cocurrent heat exchanger in the cases for N=10 and N=1280. TA[1] and TB[1] are the fixed 

temperatures at the first node (inlet) of channel A and channel B respectively. TA[1] was 

changed by 1K after 8 seconds. And, after 15 seconds mass flow rate of fluid A was increased 

by 0.1 kg/s. TA[10] and TB[10] are the temperature variables at the last node (outlet) of 

channel A and channel B respectively for N=10 case. And, TA[1280] and TB[1280] are the 

temperature variables at the last node (outlet) of channel A and channel B respectively for 

N=1280 case.  

 
Figure 26: Cocurrent heat exchanger when N=10 and N=1280 

 

In Figure 27, temperatures at the nodes of channel A and channel B are provided for the 

countercurrent heat exchanger for the cases N=10 and N=1280. In the figure, temperature 

variables that are shown are the last nodes (outlet) of channel A and the first nodes (outlet) 

of channel B. Moreover, boundary condition for the fluid A temperature is also shown being 

300K at the beginning and after 8 seconds it increases to 301K. And, at the last node (inlet) of 

channel B, fluid B temperature was kept at 310K. TA[10] and TA[1280] are shown for channel  

A for the cases N=10 and N=1280 cases respectively. And, TB[1] variables are shown for 

channel B for the cases N=10 and N=1280. TA[10] and TA[1280] correspond to temperature 

variables at the last node (outlet) of channel A for N=10 and N=1280 respectively. In the figure, 

green TB[1] corresponds to the first node (outlet) of channel B when N=10. And, red TB[1]  

corresponds to the first node (outlet) of channel B when N=1280. 
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Figure 27: Countercurrent heat exchanger when N=10 and N=1280 

 

As it is seen in Figure 26 and 27, temperature errors between the plotted nodes in the cases 

N=10 and N=1280 for both heat exchangers are very small. Because of this reason, only the 

temperature plots of N=10 and N=1280 are shown.  
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Figure 28: Zoomed version of Figure 27 

 

In Figure 28, zoomed version of Figure 27 can be seen which shows the temperature variables 

of our interest. When the inlet temperature of channel A is increased by 1K after 8 seconds, 

its outlet temperature gets affected after a time delay because of the advective transport 

delay. However, mass flow rate increase of fluid A after 15 seconds affects the outlet 

temperature of channel A directly without a delay since it affects the entire channel at once. 

Furthermore, the same response is also observed for cocurrent heat exchanger in Figure 26. 

The difference between the cocurrent and countercurrent mode occurs due to the 

temperature variable values.   

It was observed that countercurrent heat exchanger was more efficient than cocurrent heat 

exchanger. In countercurrent mode, temperature variables of hot fluid B decreased more 

whereas temperature variables of cold fluid A increased more. Therefore, total heat flow rate 

of the countercurrent heat exchanger was higher than the cocurrent heat exchanger. 
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3.2.2. Statistics of Heat Exchanger Models  

Compilation and simulation times for countercurrent heat exchanger is given in Table 17. 

Table 17: Statistics for countercurrent heat exchanger implemented by equations 

N=10 

Compilation Time 13,2865 s 
timeSimCode 0.2041 s 

timeCompile 10.016 s 

Simulation Time 0,0452 s 
 

N=20 

Compilation Time 13,2865 s 
timeSimCode 0.4209 s 

timeCompile 10.8012 s 

Simulation Time 0,08825 s 
 

N=40 

Compilation Time 16,9808 s 
timeSimCode 0,9170 s 

timeCompile 11,5944 s 

Simulation Time 0,2059 s 
 

N=80 

Compilation Time 24,0665 s 
timeSimCode 2,0107 s 

timeCompile 14,1486 s 

Simulation Time 0,5891 s 
 

N=160 

Compilation Time 42,7319 s 
timeSimCode 4,5364 s 

timeCompile 18,9587 s 

Simulation Time 2,7388 s 
 

N=320 

Compilation Time 116,235 s 
timeSimCode 12,9859 s 

timeCompile 29,97 s 

Simulation Time 15,8217 s 
 

N=640 

Compilation Time 460,1403 s 
timeSimCode 34,629 s 

timeCompile 50,3959 s 

Simulation Time 118,512 s 
 

N=1280 

Compilation Time 3189,9404 s 
timeSimCode 125,6588 s 

timeCompile 91,3888 s 

Simulation Time 796,541 s 
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Compilation and simulation times for cocurrent heat exchanger is given in table 18. 

Table 18: Statistics for cocurrent heat exchanger implemented by equations 

N=10 

Compilation Time 13,0373 s 
timeSimCode 0,2038 s 

timeCompile 10,5185 s 

Simulation Time 0,04765 s 
 

N=20 

Compilation Time 14,2773 s 
timeSimCode 0,429 s 

timeCompile 10,9431 s 

Simulation Time 0,0888 s 
 

N=40 

Compilation Time 17,3529 s 
timeSimCode 0,9172 s 

timeCompile 12,572 s 

Simulation Time 0,211 s 
 

N=80 

Compilation Time 23,1271 s 
timeSimCode 1,9963 s 

timeCompile 14,6171 s 

Simulation Time 0,6234 s 
 

N=160 

Compilation Time 40,0048 s 
timeSimCode 5,1013 s 

timeCompile 19,4841 s 

Simulation Time 2,9268 s 
 

N=320 

Compilation Time 105,3304 s 
timeSimCode 12,1592 s 

timeCompile 29,3973 s 

Simulation Time 18,7728 s 
 

N=640 

Compilation Time 481,6894 s 
timeSimCode 34,6752 s 

timeCompile 50,7986 s 

Simulation Time 141,603 s 
 

N=1280 

Compilation Time 3304,775 s 
timeSimCode 123,5185 s 

timeCompile 92,9118 s 

Simulation Time 954,558 s 
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In Figure 29, compilation and simulation times are shown for cocurrent and countercurrent 

heat exchangers for our N values. 

 
Figure 29: Compilation and simulation times of heat exchangers 

 

Cocurrent and countercurrent heat exchangers at each N take the same time for compilation 

and for simulation. Compilation times of the models starts to increase after N=20. When 

N=640, the compilation time increases more than fourfold and when N=1280, compilation 

time increases almost sevenfold with respect to previous N compilation times. And, for large 

values of N, simulation times increase slightly with the third power of N. 

 

3.3. Simulations of Flexible Beam Model 

The simulations of the flexible beam were performed for 6 N values. Simulations were done 

for smaller N values comparing to other models because of its workload for OMC. The most 

important point in the plot analysis was to investigate the vibration frequency of the beam as 

N increases. The vibration frequency had to get closer to the analytical frequency as N 

increased.  

An aluminum material was used for the flexible beam. Parameters are given in Table 19. 

Table 19: Parameters for flexible beam 
Length 

(m) 
Height 

(m) 
Width 

(m) 
Density 
(kg/m3) 

Modulus of Elasticity 
(N/m2) 

Force  
(N) 

0.5 0.02 0.05 2700 6.9*1010 100 
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Using the parameters given in Table 19, parameters for the spring were obtained as shown 

in Table 20.  

Table 20: Parameters for spring 
Spring coefficient 

(N.m/rad) 
Area moment of inertia 

(m4) 

6.9*1010*3.33*10-8/(0.5/N) 3.33*10-8 

 

Since the spring coefficient was a function of modulus of elasticity, area moment of inertia 

and a length of single element, it changed for each N value.  

N values, which are the number of elements, used in the simulations are given in Table 21.  

Table 21: N values for flexible beam simulation 
N(Number of elements) 

2 

4 

8 

16 

32 

64 
 

Table 22: Simulation time of flexible beam 
Simulation Time (s) 

0.15 

 

 

3.3.1. Plots of Flexible Beam Model 

Simulation time is 0.15 seconds for flexible beam models. As it is mentioned in the model 

explanation in Chapter 2, to the free end of the flexible beam a downwards force by 100 N 

was applied in the vertical axis between 0.001 and 0.002 seconds. And, the vibration of the 

flexible beam was observed. However, analytical solution represents the vibration of the free 

end directly starting from time 0 when a force of 100N is removed.  

In Figure 30, red line represents the vibration of the free end in the case of analytical solution 

at the first mode, and blue line represents the vibration of the free end of the model 

implemented by MSL. In the figure, only the vibrations for N=64 are shown since for other N 

values vibrations showed the same behavior. The difference between the vibrations for 

different N values, occurred because of the vibration frequencies of the free end since N 

increases vibration frequency gets closer to the expected frequency. 
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Figure 30: Vibration of the free end of the beam when N=64 

 

In the figure, there is a phase shift between the vibrations of the flexible beam model and the 

analytical solution, this is because the flexible beam model was exposed to a force between 

0.001 and 0.002 seconds and analytical solution starts directly vibrating from time 0. 

As mentioned, the frequency of the vibration of the flexible beam at the free end was 

expected to get closer to the analytical calculated frequency as N increased. Approximate 

vibration frequencies of the free end of the flexible beam are given in the table below for each 

N according to the plots. 

Table 23: Frequency values for corresponding N 
N 

Frequency of the first 
modes (Hz) 

2 69,93 

4 68,02 

8 67,56 

16 67,11 

32 66,66 

64 66,22 

       

In the analytical solution, the frequency of the first mode was found to be 65.32 Hz.  As it is 

seen in Table 23, as N increases frequency of the first mode of the flexible beam model is 

getting closer to the expected frequency. Therefore, for N goes to infinity, frequencies are 

expected to be equal. 
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3.3.2. Statistics of Flexible Beam Model 

Compilation and simulation times are given below for the flexible beam model. 

Table 24: Statistics for flexible beam implemented by MSL 

N=2 

Compilation Time 128,297 s 
timeSimCode 1,6614 s 

timeCompile 11,7185 s 

Simulation Time 0,2651 s 
 

N=4 

Compilation Time 135,2002 s 
timeSimCode 2,0952 s 

timeCompile 12,9071 s 

Simulation Time 1,356 s 
 

N=8 

Compilation Time 152,2238 s 
timeSimCode 4,9046 s 

timeCompile 14,6112 s 

Simulation Time 5,1238 s 
 

N=16 

Compilation Time 230,6504 s 
timeSimCode 14,2493 s 

timeCompile 20,2011 s 

Simulation Time 46,59 s 
 

N=32 

Compilation Time 578,2093 s 
timeSimCode 46,81 s 

timeCompile 29,3969 s 

Simulation Time 298,312 s 
 

N=64 

Compilation Time 3445,0252 s 
timeSimCode 166,8684 s 

timeCompile 61,6683 s 

Simulation Time 2839,18 s 
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In Figure 31, compilation and simulation times are shown for flexible beam for our N values. 

 
Figure 31: Compilation and simulation times of the flexible beam 

 

Comparing the time spent of the other models for compilation and simulation, it was observed 

that the time spent for the flexible beam created by MSL was the highest.  It can be observed 

that the multi body systems take a large compilation and simulation time due to its equations. 

Compilation time of the flexible beam model increase with slightly more than third power of 

N. And, simulation time also grows significantly as N doubles. An important point to mention 

is that when N=1280, total time spent for compilation and simulation is almost 2 hours.  

 

3.4. Simulations of String model 

As it is mentioned in the Chapter 2 in the explanation of the model of the string, N corresponds 

to number of revolute joints and there are N+1 body boxes. Therefore, length of the each body 

box is a function of N, corresponding to Length/ (N+1). 

Parameters and simulation time for the string model: 

Table 25: Parameters for string 
Length(m) Width(m) Height(m) Density(kg/m3) 

Damping 
coefficient(N.m.s/rad) 

0.5 0.001 0.001 2000 10-5 

 
Table 26: Simulation time of string 

Simulation Time(s) 

0.8 
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3.4.1. Plots of String Model 

In Figure 32 and 33, frame_b of some body boxes of the string are shown, frame_b 

corresponds to right end of a body box component. In the figures, a travelling wave is observed 

along the string model as expected. Two plots are provided for the cases when N=4 and N=64. 

 
Figure 32: Plots of bodybox frames when N=4 

 

 

Figure 33: Plots of bodybox frames when N=64 
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3.4.2. Statistics of String Model 

Compilation and simulation times of the string model are given in Table 27. 

Table 27: Statistics for string 

N=2 

Compilation Time 155,9539 s 
timeSimCode 1,8186 s 

timeCompile 14,4382 s 

Simulation Time 0,1341 s 
 

N=4 

Compilation Time 159,0971 s 
timeSimCode 3,5646 s 

timeCompile 14,9751 s 

Simulation Time 0,2242 s 
 

N=8 

Compilation Time 171,5468 s 
timeSimCode 7,453 s 

timeCompile 16,7655 s 

Simulation Time 0,3996 s 
 

N=16 

Compilation Time 212,4966 s 
timeSimCode 18,0573 s 

timeCompile 20,9911 s 

Simulation Time 1,0406 s 
 

N=32 

Compilation Time 322,4101 s 
timeSimCode 53,161 s 

timeCompile 30,7398 s 

Simulation Time 4,9838 s 
 

N=64 

Compilation Time 684,1533 s 
timeSimCode 182,7935 s 

timeCompile 62,2027 s 

Simulation Time 32,4428 s 
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In Figure 34, compilation and simulation times of the string model are shown. 

 
Figure 34: Compilation and simulation times for string 

 

Compilation times of the string model took less time comparing to flexible beam when N=64 

and N=1280 even though the two models were closely implemented. The difference between 

the models are the spring components and the uniform gravity. In the flexible beam, revolute 

joints were coupled with springs and dampers whereas in the string model, revolute joints 

were coupled with the dampers. In the string model, there was also uniform gravity. 

 

3.5. Simulations of Transmission Line models 

16 simulations were done for the transmission line circuit models for different N values, 8 for 

the transmission line circuit implemented by equations and 8 for the transmission line circuit 

implemented by Modelica.Electrical library. In transmission line models, N values correspond 

to number of segments. Parameters, N values and simulation time for the transmission line 

circuit models are given in the tables below. 

Table 28: Transmission line parameters 
Length(m)  r (Ω/m)  l (nH/m)  c(pF/m) Zo(Ω) Rload(Ω) 

100 48e-6 253 101 50 50 
 

Table 29: Second order filter parameters 
Gain Damping Cut-off frequency (rad/s) 

1 1 5*106 
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322,410
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Table 30: Values of N used for the transmission line simulations 
N (number of segments in a transmission line) 

10 

20 

40 

80 

160 

320 

640 

1280 

 
Table 31: Simulation time for transmission line models 

Simulation Time(s) 

4.10-6 

 

Using the parameters, time delay of the transmission line was found 5,055.10-7 seconds. 

 

3.5.1. Plots of Transmission Line Models 

For the verification of the models, Figure 35 is given in order to show that transmission line 

circuit by Electrical library and equations are matching. For the verification, N=1280 is used 

since it was the most accurate. Moreover, green line (vol[1]) represents the filter output 

voltage which is the input voltage of the transmission line. Blue (vol[1280]) and 

red(resistor.p.v) lines represent the voltage on the load resistance in the case of transmission 

line circuit implemented by equations and Electrical library respectively. It can be seen that 

blue and red lines are exactly matching and time delay between the input voltage and the 

output voltage of the transmission line is matching with the theoretical time delay:5,055.10-7 

seconds. 
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Figure 35: Transmission Line in the case of N=1280 

 

In Figure 36 and 37, output voltages of the transmission line circuits implemented by 

equations and MSL are given for the different N values which are shown in Table 30. In both 

figures, all the lines represent the output voltage of the transmission line, thus, the voltage on 

the load resistor.  

 
Figure 36: Output voltages of transmission line implemented by equations 
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Figure 37: Output voltages of transmission line implemented by MSL 

In the figures, as N increases output voltage error decreases. It was observed that starting 

from N=160 two models were meeting the expected output voltage response. Furthermore, 

considering the time delay as calculated 5,055.10-7 seconds, transmission line circuit created 

by MSL is more accurate than the model implemented by equations. Starting from N=20, it 

satisfies the theoretical time delay while it does not show the exact behavior. Red lines in both 

figures represent the output voltage of the transmission line when N=10, both figures have 

some oscillations when they about to reach steady state, however, the model implemented 

by MSL is closer to the expected result in terms of time delay and the models implemented by 

MSL have less error. 
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3.5.2. Statistics of Transmission Line Models 

Compilation times and simulation times are provided for each model of the transmission line 

circuit for 8 different values of N.   

Statistics for the transmission line circuit implemented by equations is given in Table 32.  

Table 32: Statistics for transmission line circuit implemented by equations 

N=10 

Compilation Time 18,227 s 
timeSimCode 0,094911 s 

timeCompile 14,9981 s 

Simulation Time 0,0918539 s 
 

N=20 

Compilation Time 18,1851 s 
timeSimCode 0,16728 s 

timeCompile 14,5725 s 

Simulation Time 0,119774 s 
 

N=40 

Compilation Time 19,1862 s 
timeSimCode 0,3383 s 

timeCompile 15,06125 s  

Simulation Time 0,2695 s 
 

N=80 

Compilation Time 22,1957 s 
timeSimCode 0,70748 s 

timeCompile 16,0989 s 

Simulation Time 1,11 s 
 

N=160 
 

Compilation Time 33,4538 s 
timeSimCode 1,58155 s 

timeCompile 19,8994 s 

Simulation Time 4,57905 s 
 

N=320 

Compilation Time 71,9591 s 
timeSimCode 3,89609 s 

timeCompile 25,1333 s 

Simulation Time 32,1252 s 
 

N=640 

Compilation Time 172,3209 s 
timeSimCode 8,8533 s 

timeCompile 29,1568 s 

Simulation Time 117,686 s 
 

N=1280 

Compilation Time 1392,8 s 
timeSimCode 27,5935 s 

timeCompile 48,3279 s 

Simulation Time 1273,45 s 
 



52 
 

Statistics for the transmission line circuit implemented by MSL is given in Table 33. 

Table 33: Statistics for transmission line circuit implemented by MSL 

N=10 

Compilation Time 20,5265 s 

timeSimCode 0,2732 s 

timeCompile 16,4346 s 

Simulation Time 0,0703 s 
 

N=20 

Compilation Time 18,3549 s 
timeSimCode 1,07107 s 

timeCompile 12,5433 s 

Simulation Time 0,1132 s 

 

N=40 

Compilation Time 22,4014 s 
timeSimCode 0,9868 s 

timeCompile 13,5865 s 

Simulation Time 0,2648 s 
 

N=80 

Compilation Time 32,1239 s 
timeSimCode 2,4577 s 

timeCompile 14,8782 s 

Simulation Time 0,757 s 
 

N=160 

Compilation Time 74,2713 s 
timeSimCode 8,3692 s 

timeCompile 27,5583 s 

Simulation Time 4,2633 s 
 

N=320 

Compilation Time 208,8679 s 
timeSimCode 38,1643 s 

timeCompile 33,5111 s 

Simulation Time 22,8354 s 
 

N=640 

Compilation Time 934,1011 s 
timeSimCode 202,9418 s 

timeCompile 62,8952 s 

Simulation Time 141,316 s 
 

N=1280 

Compilation Time 6071,9205 s 
timeSimCode 1562,8448 s 

timeCompile 131,4872 s  

Simulation Time 1568,27 s 
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In Figure 38, compilation times of transmission line circuit implemented by equations and 

MSL according to our N values is shown. 

Figure 38: Compilation times of transmission line circuit models 

The compilation times of the two models are close until N=40. However, as N increases after 

N=40, compilation times for both models are increasing and the time difference between the 

two models are growing. The model which is implemented by MSL takes more time to compile. 

And, its compilation times increase roughly with second power of N. Moreover, when N=1280, 

the time that takes to compile the model implemented by MSL is around 1.6 hours. However, 

when N=1280, the model implemented by equations takes around 23 minutes.  

In Figure 39, simulation times of transmission line circuit implemented by equations and MSL 

are shown. For higher of values of N, simulation time of the transmission line circuit model 

implemented by MSL increases roughly with third power of N. 

 
Figure 39: Simulation times of transmission line circuit models 

 

 

0,0918 0,1197
0,2695

1,11
4,579

32,1252

117,686

1.273

0,0703 0,1132
0,2648

0,757

4,2633

22,8354

141,316

1.568

0,01

0,1

1

10

100

1000

10000

10 20 40 80 160 320 640 1280

Ti
m

e(
s)

N

Transmission Line Simulation Times

Simulation Time Equations Simulation Time MSL

18,277 18,1851 19,1862 22,1957 33,4538
71,9591

172,3209

1.392

20,5265 18,3549 22,4014 32,1239
74,2713

208,8679

934,1011
6.071

1

10

100

1000

10000

10 20 40 80 160 320 640 1280

Ti
m

e(
s)

N

Transmission Line Compilation Times

Compilation Time Equations Compilation Time MSL



54 
 

4. Conclusion and Future Work 

A test suite of large scalable models from different domains have been implemented in order 

to test performance of OpenModelica and other Modelica compilers. The scope of this test 

suite will be enlarged in future by other people who are interested in this research area. 

All the models were tested for gradually increasing N values, hence, discretization. In 

simulations, as expected it was observed that as N increased in the models, their plots 

reflected more accurate results. However, this yielded more equations and increased 

compilation and simulation times. The models which were implemented using equations were 

faster than the models implemented using MSL in terms of compilation and simulation times 

for increasing N. However, in terms of accuracy, MSL showed better results than equations for 

lower N values.  

It was observed that mechanical models which were implemented using MultiBody library 

caused more compilation and simulation times comparing to Electrical and Thermal libraries. 

The reason is the number of equations because multi body systems require the solution of the 

motion equations for each component. Therefore, it requires a large portion of time. 

Moreover, Thermal library was observed to be quicker comparing to Electrical library in 

compilation and simulation.   

Compiler and sequential simulation codes became less efficient while tackling large models, 

especially in mechanical domain, implemented by MSL and it caused to spend a lot of time for 

the compilation and simulation of some models. Therefore, compiler and sequential 

simulation code need to be improved in order to support large models.  

Multi rate and sparse solvers, and parallelization algorithms have been improved by 

developers to decrease the simulation times. Parallelization enables the modeler to split the 

equations into several independent parts. A module has already been implemented for OMC 

which enables to use different scheduling algorithms for parallelization. Therefore, the models 

can be tested with parallelization algorithms to observe whether it is possible to get faster 

results.  
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