OpenModelica Users Guide

Version 2015-03-10
for OpenModelica 1.9.2

March 2015

Peter Fritzson
Adrian Pop, Adeel Asghar, Willi Braun, Jens Frenkel,
Lennart Ochel, Martin Sjélund, Per Ostlund, Peter Aronsson,

Mikael Axin, Bernhard Bachmann, Vasile Baluta, Robert Braun, Lena Buffoni,
David Broman, Stefan Brus, Francesco Casella, Filippo Donida, Atiyah Elsheikh,
Anand Ganeson, Mahder Gebremedhin, Pavel Grozman, Daniel Hedberg, Michael

Hanke, Alf Isaksson, Kim Jansson, Daniel Kanth, Tommi Karhela, Juha
Kortelainen, Abhinn Kothari, Petter Krus, Alexey Lebedev, Oliver Lenord, Ariel

Liebman, Rickard Lindberg, Hakan Lundvall, Abhir Raj Metkar, Eric Meyers,
Tuomas Miettinen, Afshin Moghadam, Kenneth Nealy, Nemer, Hannu Niemisto,
Peter Nordin, Kristoffer Norling, Arunkumar Palanisamy, Karl Pettersson, Pavol

Privitzer, Jhansi Reddy, Reino Ruusu, Per Sahlin,Wladimir Schamai, Gerhard
Schmitz, Alachew Shitahun, Anton Sodja, Ingo Staack, Kristian Stavaker, Sonia

Tarig, Mohsen Torabzadeh-Tari, Parham Vasaiely, Marcus Walter, Volker
Waurich, Niklas Worschech, Robert Wotzlaw, Azam Zia

Copyright by:

Open Source Modelica Consortium

Copyright © 1998-CurrentYear, Open Source Modelica Consortium (OSMC), c/o Linkdpings universitet,
Department of Computer and Information Science, SE-58183 Link&ping, Sweden

All rights reserved.

THIS PROGRAM IS PROVIDED UNDER THE TERMS OF GPL VERSION 3 LICENSE OR THIS OSMC
PUBLIC LICENSE (OSMC-PL). ANY USE, REPRODUCTION OR DISTRIBUTION OF THIS PROGRAM
CONSTITUTES RECIPIENT'S ACCEPTANCE OF THE OSMC PUBLIC LICENSE OR THE GPL
VERSION 3, ACCORDING TO RECIPIENTS CHOICE.

The OpenModelica software and the OSMC (Open Source Modelica Consortium) Public License (OSMC-PL)
are obtained from OSMC, either from the above address, from the URLSs: http://www.openmodelica.org
or http://www.ida.liu.se/projects/OpenModelica, and in the OpenModelica distribution. GNU
version 3 is obtained from: http://www.gnu.org/copyleft/gpl.html.

This program is distributed WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE, EXCEPT AS EXPRESSLY SET
FORTH IN THE BY RECIPIENT SELECTED SUBSIDIARY LICENSE CONDITIONS OF OSMC-PL.

See the full OSMC Public License conditions for more details.

This document is part of OpenModelica: http://www.openmodelica.org
Contact: OpenModelica@ida.liu.se

Modelica® is a registered trademark of the Modelica Association, http://www.Modelica.org

Mathematica® is a registered trademark of Wolfram Research Inc, www.wolfram.com

http://www.openmodelica.org/�

Table of Contents

LI Lo L0 J O]) (=1 TSRS 3
e] (o1 TSSOSO PP PR PPOURTPRPOO 9
Chapter 1 INTFOQUCTION ...ttt sttt sttt s e be e e enesneneas 11
1.1 SYSEEM OVEIVIBW ...ttt sttt sttt sttt st bt e b s be st e neebesee e eneane e 12
1.2 Interactive Session With EXAMPIES.........cocviveieiiiiiiciese et 13
1.2.1 Starting the INtEractive SESSIONcccecviveieiiieie et e nas 14
1.2.2 Using the INteraCtive MOccviueiiiiiriiiee et 14
1.2.3 Trying the BubbIeSort FUNCHION.........ccccv oo 16
1.2.4 Trying the system and cd COMMENGS...........ccoviviireierireseeee e e aesresees 17
1.25 Modelica Library and DCMOtOr MOlcoviiiireiiiieieise e 17
126 The Val() TUNCLIONcoiiiicece ettt neenneeneas 20
1.2.7 BouncingBall and SWitch MOEISccoeeiiiiiiiiee s 20
1.2.8 Clear Al IMIOGEISoiuiiiiieie ettt sttt bbb 22
1.2.9 VanDerPol Model and Parametric PIOTcccoiiiieiiinicieec e 22
1.2.10 Using Japanese or Chinese CharaCtersccicviiveiererieseeieseseseseeee e see e e esae e e snas 23
1.2.11 Scripting with For-Loops, While-Loops, and If-Statementsccccccovvvviveveicieieenenn 24
1.2.12 Variables, Functions, and Types of Variables.............cccccooveviiiiiiiccceccee e, 25
1.2.13 Getting Information about Error CAUSEccccviveiereii e 26
1.2.14 Alternative Simulation OUtPUt FOrMALS..........cccoviiviiieiiiiie e 26
1.2.15 Using EXtErNal FUNCHIONScviiiiieieesie sttt 27
1.2.16 Using Parallel Simulation via OpenMP Multi-Core SUPPOIt........ccccoevrevieererieninseeeeniens 27
1.2.17 Loading Specific Library VErsioNnccccoeiiiiiviieiiesc e 27
1.2.18 Calling the Model Query and Manipulation APlcccoceviiiiiniennneie e 27
1.2.19 QUIt OPENMOUEIICAocveiiieniece ettt seesrenneeneas 29
1.2.20 Dump XML RePreSeNtationc..ccceviriirieresieseseesiesiesiesseeseeseessessessessaessessessessesseessesees 29
1.2.21 Dump Matlabh Representation...........cccccviviieiiiiiiesiesese et 29
13 Summary of Commands for the Interactive Session Handlercccocoovvieveiivnvicecenenn, 30
1.4 Running the compiler from command [Nc.cocoveveiiiiniieeie e 31
15 RETEIENCES ...ttt bttt b e bbb b et bt b et et be e 32
Chapter 2 OMEdit — OpenModelica Connection EAItOrccocvveiiiiiineiiineesceeie 33
2.1 SEArtING OMEIL.........iiiiicece ettt esaesbesaeeneeseeneenreaneas 33
211 MICTOSOFt WINGOWScuiiiieiiiie ettt bbb e 33
2,101 LINMUX oeiteeti ettt ettt ettt b e et et a et e b e b e ehe e bt e s beete e st e b e beeteereereerearearas 33
212 IMIAC OS X ottt e b et b e r s 33
2.2 MaINWINAOW & BIOWSENS ...ttt sb bbb 34
2,21 SEAICH BIOWSEN......ocuiiiiiticte ettt ettt ettt e be et e e st et e b e sbeese et e b e saeereanis 35
2.2.2 LIDIaries BIOWSEciiiiieiciitie bbb 36
2.2.3 DOCUMENTALION BIOWSEoviiiiiiitiiieieiesie et 37
2.2.4 Variables BIOWSETc.ciuiiuiieiiiiesieeieie sttt sttt b ettt bt st e bbb e bt b e e e ene e 37
2,25 MESSAGES BIOWSENc.eviiiiiitie ittt sttt sttt ettt sttt bbb sbe e sbe e b e e b ebeenne s 38
2.3 e] 1= Tod 1Y OSSR 39
2.3. 1 WEICOME PEISPECLIVEviiviciicie ettt et st s re e b aesbeeneenes 39
2.3.2 MOUEIING PEISPECLIVEuiiveieiiiiesieiee sttt sttt e s e 39

2.3.3 PlOttING PEISPECLIVEeiiviiiieieeie sttt re st sre e e naenreereenes 40

24 MOAEIING @ MOEL ...t ens 41

2.4.1 Creating @ New MOeliCa ClIasscceiviiiereiiiie et 41
242 0pening @ MOGEHCA FIlEccv i st 41
2.4.3 Opening a Modelica File With ENCOTINGccccviveiieiiirineiene e 42
o Y To o (=T BNV To o =) OSSR 42
245 Adding Component MOEISooveiiiiiiiee e e 43
P T |V -1 (] T T @] T <o o] S 43
25 SIMUIALING @ IMOEL.......coioiee e e sreenes 43
251 GENEIAI TAD ..cviiiice e e b et areanas 43
BT O 111 o1V A I o 43
2.5.3 SImMulation FIags Tab......ccccciiiiiiicc e 44
2.6 Plotting the SIMUIAtION RESUIS..........ccoiiiiiieiice e 44
P2 TSt 1Y/ o1 o) = (o] 1 T R 45
2.7 Re-simulating @ MOGEL...........ooviiiii e e e 45
2.8 How to Create User Defined Shapes — ICONScviereiiiiriniiee e 45
2.9 ST TSRS 46
2.9. 1 GENEIAL ... bbbttt 47

P I W o] g -5 JO OSSOSO URPTOURPRIN 47
2.9.3 MOOElICA TEXE EQITON ...ttt 47
2.9.4 GraphiCal VIBWSc.oooiiieiiiiceesie sttt te e ae st ste e eenaenneenaens 48
2.9.5 SIMUIALION Lot bbb et e e b 48
2.9.6 IMIBSSAQES ...vveteeitieitee ittt sttt b e b bttt bbbt bt b e R e nh e b e e bt e be e bt n e reernenrre s 48
2.9.7 NOUTICAIIONS ...ttt ettt bbb sb e b b e 49
2.9.8 LINE SLYIE oot ann 49
2.9.9 FIlESEYIE ettt re st e 49
2.9.10 CUIVE STYIB ...ttt ettt r et be s te st e e e b steeneene e e e ntenreann 49
BN IS R o T o TSRS 49

B T 1= o 10 o o =] SOOI 50
2.9. 13 FIMI ettt b r e 50
2.10 The EqQuation-based DEDUGQETcoviieieiieiireee sttt nne s 50
2.10.1 Enable Tracing Symbolic Transformations...........c.cccovvviviiieieii i 50
2.10.2 Load a MOEl 10 DEDUGoveieiiiiee st et 50
2.10.3 Simulate and Start the DEDUGGETcc.viv i 51
2.10.4 Use the Transformation Debugger for BrowSingcccccoeveiiiiiievc i 51
211 The AIGOrithmic DEDUGGETooveieiiierieeee sttt sttt eens 52
220 T N o [T 2 =T 14 oL O 52
2.11.2 Start the Algorithmic DEDUGOETooviii i 53
2.11.3 Debug CONFIGUIALIONSoouiieiiiiiieieeese ettt ne e 54
2.11.4 AUaCh t0 RUNNING PIOCESSocviiviiiieiesiesiesie ettt sae st sne e e s 54
2.11.5 Using the Algorithmic Debugger WINdOW............ccoeveiiiiieeiieic e 55

(O aF= o] (=T e T B I (o] 1 o T TSRS 57
3.1 TS 111 0] PSS 57
3.2 Plotting Commands and their OPLiIONSccvoviiiiiiiecee e 58
Chapter 4 OMNotebook with DrModelica and DrControl...........ccocevvviviivnieenine e 60
4.1 Interactive Notebooks with Literate Programmingccoccoovererienienenrenieniesesreeseese e seeenes 60
411 Mathematica NOTEDOOKScuiiiiiiiiiirieie e e 60
412 OMNOLEDOOK.......eeiiiitiite ittt sttt sb ettt b e sb et be bt e b b nes 60
4.2 DrModelica Tutoring System — an Application of OMNotebooK...........ccocooiiviviiiiiiiinns 61

4.3 DrControl Tutorial for Teaching Control ThEOIYcccoccvviviieieneie e 67

N R 1= o o ot o T o I SRS 67

4.3.2 Mathematical Modeling with Characteristic EQUations.............ccocuvereierieneneese e, 70
4.4 OpenModelica NOtebOOK COMMANTScveieiiiriieieie e see et see e 76
AUATL CRllS it bbb bbbttt be s 76
B2 CUISOIS. . .etieteeieeete sttt ettt b itttk b e bt e b ekt e bt b £ ek e e ke eb e eR e e R e e b e e b e eb e e beenb e b e ebeebeebeeneenbesee e 76
4.4.3 Selection Of TeXt OF CellS ..o e 77
QA4 FIE IMEINU ..ottt bbbt b bbbt b bbbt be e 77
S o [1Y, [T o U OSSOSO SR UR PR 78
446 CIIMENU ..ottt ettt et e b e s b e e te et e st e st e e teens e s e sresre e 78
44T FOIMAL IMBNU ...ttt r e r e r e e r e nr e sn e e e nennesre e 79
448 INSEITIMIBINU. ...ueitiiiiitieee ettt bbbt s bbbt b et e b e b b e s bt e e e e e b e eee e 79
449 WINAOW MENU ..c.uiiiiiiiic ettt ettt et ettt e s be b et e s b e sbeeas e b e besbeereans 80
0T o 1= [T T OSSP 80
4411 AAdItIONAl FEALUIESoiuiiiiiiieiteee ettt b bbbt 80
4.5 R (=] £ Lol TSR PRR 81
Chapter 5 Functional Mock-up Interface - FMI..........cccoooi i 83
5.1 Y I] o To o PP RPP 83
5.2 Y I = oo TSSO 84
Chapter 6 Optimization with OpenMOdeliCa. ... 86
6.1 Builtin Dynamic Optimization with OpenModelica and 1pOpt........cccccevevviviieri i 86
6.1.1 Compiling the MOdeliCa COUE.........c.coiiiiiiieic e 87
B.1.2 AN EXAMPIE .ttt ettt ne et e 88
6.1.3 Different Options for the Optimizer IPOPTccovoiiii i 89
6.2 Dynamic Optimization with OpenModelica and CasADi..........cccccccvviieveiiiieseese e, 90
6.2.1 Compiling the MOdeliCa COUE.oreiiiiieice e s 90
B.2.2 AN BXAMPIE. ..ttt ne ettt nreenn 91
6.2.3 Generated XML for EXaMPIE......cocovoiiiiiiiiicic ettt 92
6.2.4 XML Import to CasADi via OpenModelica Python SCript........ccccvvvveiiiviiininicienenn, 96
6.3 Parameter Sweep Optimization using OMOPUIM.........c.cocvviviiiiiiere e 97
6.3.1 Preparing the MOGELcvoieie e 97
6.3.2 Set problem in OMOPLIMocviiciee e re e 98
B.3.3 RESUILS ...ttt 102
6.3.4 Window Regions in OMOPLM GUIccoooiiiiiiiec e s 103
Chapter 7 MDT - The OpenModelica Development Tooling Eclipse Plugin............cccccccoevvenne. 105
7.1 INEFOAUCTION ...t ettt e s beeae e e e b e beere e 105
7.2 INSEAITALION. ... vttt sre e 105
7.3 (CT= L] T IR = o PSS 106
7.3.1 Configuring the OpenModelica COMPIEr..........cccciriiiiieieeee e 106
7.3.2 Using the Modelica PEISPECLIVEccviviieieri e 106
7.3.3 Selecting a Workspace FOIUENccviiiieieiiie e 106
7.3.4 Creating one or more Modelica PrOjJECEScoviiiirieiiiieiee e 106
7.3.5 Building and RUNNING @ PrOJECT........ccviiiieie e 106
7.3.6 Switching to ANOther PErSPECLIVEcccveiiiiiiieee e 107
7.3.7 Creating @ PACKAJEccveviviiieieiise sttt sttt ne e ene e 108
7.3.8 CreatiNg @ ClaSS......cueiiiiiieiesie e ie ettt ettt st steere et saesreeneeseeseenaesreeneas 108
e I V01 - VO T od ([o PSPPSRI 109
7.3.10 Automatic INdentation SUPPOIccviiireieiese e 110

7.3.11 Code COMPIBLION.....ccuiiiiiitee ettt bbb ene e 110

7.3.12 Code Assistance on Identifiers when HOVENNG..........ccoocoviieviiieii e 111

7.3.13 GO t0 DefiNition SUPPOIT....ccveuiiiiieiieiee sttt st st s seeneas 111
7.3.14 Code Assistance 0N Writing RECOIUScoveiviiiieieiese e see e 111
7.3.15 Using the MDT Console fOr PIOINGccovviiiiiec e 112
Chapter 8 Modelica Performance ANAIYZETcccooiiiiieiiiiiiieese e 114
8.1 Example Report Generated for the A Modelcoooveoiiiiiieic e 115
B.LL INTOIMALION ...ttt bbbt et ebe e 115

TN 1= 1 T TSSOSO 115

8.1.3 SUIMMAIY ..ttt ettt ettt be et e b et e e nbe e 115
8.1 4 GlODAI STEPS ..veieeieeee et ra et naenreeneas 116
8.1.5 Measured FUNCLION CallS..........ccoiiiiiiiieicse e e 116
8.1.6 MEASUIEd BIOCKSceeuieiiiiiiieieiise sttt et 116
8.1.7 Genenerated XML for the EXamPlec.ccoooiiiiiiiiec e 117
Chapter 9 MDT Debugger for Algorithmic ModeliCa.............coovreiniiiienineiie e 119
9.1 The Eclipse-based Debugger for Algorithmic Modelicaccooovviviiiiieiciiceee 119
9.1.1 Starting the Modelica Debugging Perspectivecoccocvoeevenieniesieenese e 120
9.1.2 Debugging OPenMOTElICA.ccccveieriiieie et 124
9.1.3 The Debugging PerSPECLIVE........cccciieiiiiie ettt 124

(O aF=T o) (=T g O I AV, oo [=] [T oF 1 I PSS 126
LO.1 WWINAOWS .ttt etttk b e bbb bbbt b bt e bt bt n e et e b e 126
L0.2 IMACOS ...ttt bttt b bt bbb R R RE bR Rt bt R e E et e Rt bt Rt e nenrenre s 127
Chapter 11 Simulation in WD BIrOWSET ..ottt 129
Chapter 12 Interoperability — C and PYthon ... 131
12,1 Calling EXternal C fUNCHIONScviiiieie sttt 131
122 Calling PYtNON COURooviieiiciiiteie sttt sttt 132
Chapter 13 OpenModelica Python Interface and PySimulator.............cccccooveveviiivineiencie s, 134
13.1 OMPython — OpenModelica Python Interface...........cccocevvvviiiiiiii i 134
13.1.1 Features Of OMPYLNONcviiiiicice et eenea 134
13.1.2 USING OMPYENON.......ccuiiiiiiee ettt ettt sne e e nnenneenens 134
13.1.3 IMPIEMENTALION......ciiiiiiiiee ettt sresresre e aenaenreeneens 138
13.1.4 APl — List Of COMMANGSccuiiuiieiiiieiierieise ettt 142

IR T ST 1401 Lo S SSRTTRN 163
Chapter 14 Modelica and Python Scripting AP ... 165
14.1 OpenModelica Modelica Scripting Commandscccceevviviieieniese e 165
14.1.1 OpenModelica Basic COMMANGSccccvreriiirerieieisieniesieesie st sreseeseeneas 165

14.2 OpenModelica System COMMANUS........ccoivireiierirereee e e e e e sre e eaesrennas 167
14.3 Al OpenModelica APT CallScccovoieiiiiiicicce e 167
L1431 EXAMPIES ..ottt ettt be st n et e 175

144 OpenModelica Python Scripting CommandS..........ccoovererivrirneenenieseseere e 179
Chapter 15 Frequently Asked QUESEIONS (FAQ)......coviiiiiereiie et 180
151 OpenMOdelica GENEIALccciiiiieiiiie ettt sttt ee e 180
152 OMNOLEDOOK ...ttt bbbt 180
15.3 OMDev - OpenModelica Development ENVIFONMENTccoovevevierveienene e seene e see e 181

Lo (= TR TR TR 213

Preface

This users guide provides documentation and examples on how to use the OpenModelica system, both for the
Modelica beginners and advanced users.

11

Chapter 1

Introduction

The OpenModelica system described in this document has both short-term and long-term goals:

The short-term goal is to develop an efficient interactive computational environment for the Modelica
language, as well as a rather complete implementation of the language. It turns out that with support of
appropriate tools and libraries, Modelica is very well suited as a computational language for
development and execution of both low level and high level numerical algorithms, e.g. for control
system design, solving nonlinear equation systems, or to develop optimization algorithms that are
applied to complex applications.

The longer-term goal is to have a complete reference implementation of the Modelica language,
including simulation of equation based models and additional facilities in the programming
environment, as well as convenient facilities for research and experimentation in language design or
other research activities. However, our goal is not to reach the level of performance and quality
provided by current commercial Modelica environments that can handle large models requiring
advanced analysis and optimization by the Modelica compiler.

The long-term research related goals and issues of the OpenModelica open source implementation of a
Modelica environment include but are not limited to the following:

Development of a complete formal specification of Modelica, including both static and dynamic
semantics. Such a specification can be used to assist current and future Modelica implementers by
providing a semantic reference, as a kind of reference implementation.

Language design, e.g. to further extend the scope of the language, e.g. for use in diagnosis, structural
analysis, system identification, etc., as well as modeling problems that require extensions such as partial
differential equations, enlarged scope for discrete modeling and simulation, etc.

Language design to improve abstract properties such as expressiveness, orthogonality, declarativity,
reuse, configurability, architectural properties, etc.

Improved implementation techniques, e.g. to enhance the performance of compiled Modelica code by
generating code for parallel hardware.

Improved debugging support for equation based languages such as Modelica, to make them even easier
to use.

Easy-to-use specialized high-level (graphical) user interfaces for certain application domains.
Visualization and animation techniques for interpretation and presentation of results.
Application usage and model library development by researchers in various application areas.

12

The OpenModelica environment provides a test bench for language design ideas that, if successful, can be
submitted to the Modelica Association for consideration regarding possible inclusion in the official Modelica
standard.

The current version of the OpenModelica environment allows most of the expression, algorithm, and
function parts of Modelica to be executed interactively, as well as equation models and Modelica functions to
be compiled into efficient C code. The generated C code is combined with a library of utility functions, a run-
time library, and a numerical DAE solver.

1.1 System Overview

The OpenModelica environment consists of several interconnected subsystems, as depicted in Figure 1-1-1
below.

MDT Eclipse Plugin Graphical Model
Editor/Browser \ Editor/Browser
A
OMOptim Interactive I
o session handler
Optimization / — Monee)l(tllzjg:tor
Subsystem
OMNotebook
DrModelica Execution ¢ Modelica
Model Editor Compiler
Modelica
R Debugger

Figure 1-1-1. The architecture of the OpenModelica environment. Arrows denote data and control flow. The
interactive session handler receives commands and shows results from evaluating commands and expressions that
are translated and executed. Several subsystems provide different forms of browsing and textual editing of
Modelica code. The debugger currently provides debugging of an extended algorithmic subset of Modelica

The following subsystems are currently integrated in the OpenModelica environment:

e An interactive session handler, that parses and interprets commands and Modelica expressions for
evaluation, simulation, plotting, etc. The session handler also contains simple history facilities, and
completion of file names and certain identifiers in commands.

e A Modelica compiler subsystem, translating Modelica to C code, with a symbol table containing
definitions of classes, functions, and variables. Such definitions can be predefined, user-defined, or
obtained from libraries. The compiler also includes a Modelica interpreter for interactive usage and
constant expression evaluation. The subsystem also includes facilities for building simulation
executables linked with selected numerical ODE or DAE solvers.

e An execution and run-time module. This module currently executes compiled binary code from
translated expressions and functions, as well as simulation code from equation based models, linked
with numerical solvers. In the near future event handling facilities will be included for the discrete and
hybrid parts of the Modelica language.

13

e Eclipse plugin editor/browser. The Eclipse plugin called MDT (Modelica Development Tooling)
provides file and class hierarchy browsing and text editing capabilities, rather analogous to previously
described Emacs editor/browser. Some syntax highlighting facilities are also included. The Eclipse
framework has the advantage of making it easier to add future extensions such as refactoring and cross
referencing support.

e OMNotebook DrModelica model editor. This subsystem provides a lightweight notebook editor,
compared to the more advanced Mathematica notebooks available in MathModelica. This basic
functionality still allows essentially the whole DrModelica tutorial to be handled. Hierarchical text
documents with chapters and sections can be represented and edited, including basic formatting. Cells
can contain ordinary text or Modelica models and expressions, which can be evaluated and simulated.
However, no mathematical typesetting facilities are yet available in the cells of this notebook editor.

e Graphical model editor/browser OMEdit. This is a graphical connection editor, for component based
model design by connecting instances of Modelica classes, and browsing Modelica model libraries for
reading and picking component models. The graphical model editor also includes a textual editor for
editing model class definitions, and a window for interactive Modelica command evaluation.

e Optimization subsystem OMOptim. This is an optimization subsystem for OpenModelica, currently for
design optimization choosing an optimal set of design parameters for a model. The current version has
a graphical user interface, provides genetic optimization algorithms and Pareto front optimization,
works integrated with the simulators and automatically accesses variables and design parameters from
the Modelica model.

e Dynamic Optimization subsystem. This is dynamic optimization using collocation methods, for
Modelica models extended with optimization specifications with goal functions and additional
constraints. This subsystem is integrated with in the OpenModelica compiler.

e Modelica equation model debugger. The equation model debugger shows the location of an error in the
model equation source code. It keeps track of the symbolic transformations done by the compiler on the
way from equations to low-level generated C code, and also explains which transformations have been
done.

e Modelica algorithmic code debugger. The algorithmic code Modelica debugger provides debugging for
an extended algorithmic subset of Modelica, excluding equation-based models and some other features,
but including some meta-programming and model transformation extensions to Modelica. This is a
conventional full-feature debugger, using Eclipse for displaying the source code during stepping,
setting breakpoints, etc. Various back-trace and inspection commands are available. The debugger also
includes a data-view browser for browsing hierarchical data such as tree- or list structures in extended
Modelica.

1.2 Interactive Session with Examples

The following is an interactive session using the interactive session handler in the OpenModelica environment,
called OMShell — the OpenModelica Shell). Most of these examples are also available in the OpenModelica
notebook UsersGuideExamples.onb in the testmodels (C:/OpenModelica/share/doc/omc/testmodels/)
directory, see also Chapter 4.

14

1.2.1 Starting the Interactive Session

The Windows version which at installation is made available in the start menu as OpenModelica-
>0penModel ica Shel I which responds with an interaction window:

{fi o11Shell - Opentodelica Shell —1Of x|
File Edit Wiew Help

Y BB (3| e 0|

OpenModelica 1.4.5 =
Copyright (<) OSMC 2002-2008

To get help on using OMShell and OpenModelica, type "help()"

and press enter.

e

L

Ready A

We enter an assignment of a vector expression, created by the range construction expression 1:12, to be stored
in the variable x. The value of the expression is returned.

>> x = 1:12
{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12}

1.2.2 Using the Interactive Mode

When running OMC in interactive mode (for instance using OMShell) one can make use of some of the
compiler debug trace flags defined in section 2.1.2 in the System Documentation. Here we give a few example
sessions.

Example Session 1

OpenModelica 1.9.2
Copyright (c) OSMC 2002-2015
To get help on using OMShell and OpenModelica, type "help()" and press enter.

>> model A Integer t = 1.5; end A; //The type is Integer but 1.5 is of Real Type
{A}

15

>> instantiateModel (A)
Error: Type mismatch in modifier, expected type Integer, got modifier =1.5 of type Real
Error: Error occured while flattening model A

Example Session 2

OpenModelica 1.9.2
Copyright (c) OSMC 2002-2014
To get help on using OMShell and OpenModelica, type "help()" and press enter.

>> setDebugFlags("'dump™)

true

---DEBUG(dump)---

1EXP(Absyn .CALL(Absyn.CREF_IDENT("'setDebugFlags™, [1).,
FUNCTIONARGS (Absyn . STRING(*'dump'),)))
---/DEBUG(dump)---

---DEBUG(dump)---
IEXP(Absyn.CALL(Absyn.CREF_IDENT(*'getErrorString"™, [1), FUNCTIONARGS(,)))
---/DEBUG(dump)—

>> model B Integer k = 10; end B;

{B}

---DEBUG(dump)---

Absyn . PROGRAM([

Absyn._CLASS(*'B"", false, false, false, Absyn_.R_MODEL,

Absyn .PARTS([Absyn.PUBLIC([Absyn.ELEMENTITEM(Absyn.ELEMENT(False, _, Absyn.UNSPECIFIED
, '‘component', Absyn.COMPONENTS(Absyn.ATTR(false, false, Absyn.VAR, Absyn.BIDIR,

[1). Integer, [Absyn_COMPONENT I TEM(Absyn.COMPONENT(*'k"*, [1, SOME(Absyn.CLASSMOD([],
SOME(Absyn. INTEGER(10))))), NONE())]1), Absyn.INFO('", false, 1, 9, 1, 23)), NONE))DI,
NONEQ)), Absyn.INFO("™, false, 1, 1, 1, 30))

].Absyn_TOP)

-—-/DEBUG(dump)---

---DEBUG(dump)---
1EXP(Absyn.CALL(Absyn.CREF_IDENT(*'getErrorString™, [1)., FUNCTIONARGS(,)))
-—-/DEBUG(dump)—

>> instantiateModel (B)

"fclass B

Integer k = 10;
end B;
---DEBUG(dump)---

1EXP(Absyn.CALL(Absyn.CREF_IDENT("instantiateModel™, [1),

FUNCT IONARGS (Absyn .CREF(Absyn .CREF_IDENT('B™, [1)),)))

---/DEBUG(dump)---

---DEBUG(dump)---

IEXP(Absyn .CALL(Absyn.CREF_IDENT(*'getErrorString™, [])., FUNCTIONARGS(,)))
-—-/DEBUG(dump)—

>> simulate(B, startTime=0, stopTime=1l, numberOfintervals=500, tolerance=1le-4)
record SimulationResult

resultFile = "B_res.plt"

end SimulationResult;

---DEBUG(dump)---

16

#ifdef
extern
#endi
#ifdef

3
#endif

__cplusplus

o {

__cplusplus

IEXP(Absyn.CALL(Absyn.CREF_IDENT("simulate', [1),

FUNCT IONARGS (Absyn .CREF(Absyn.CREF_IDENT("'B", [1)), startTime = Absyn.INTEGER(O),
stopTime = Absyn.INTEGER(1), numberOflntervals = Absyn.INTEGER(500), tolerance =
Absyn.REAL(0.0001))))

---/DEBUG(dump)---

---DEBUG(dump)---
IEXP(Absyn.CALL(Absyn.CREF_IDENT(*'getErrorString"™, [1)., FUNCTIONARGS(,)))
---/DEBUG(dump)--

Example Session 3

OpenModelica 1.9.2
Copyright (c) OSMC 2002-2014

To get

help on using OMShell and OpenModelica, type "help()" and press enter.

>> model C Integer a; Real b; equation der(a) = b; der(b) = 12.0; end C;

{C}

>> instantiateModel (C)

Error:
Real

Error:
Error:
Error:
Real

Error:
Error:

Il1legal derivative. der(a) where a is of type Integer, which is not a subtype of

Wrong type or wrong number of arguments to der(a)”.
Error occured while flattening model C
Il1legal derivative. der(a) where a is of type Integer, which is not a subtype of

Wrong type or wrong number of arguments to der(a)”.
Error occured while flattening model C

1.2.3 Trying the Bubblesort Function

Load the function bubblesort, either by using the pull-down menu File->Load Model, or by explicitly
giving the command:

>> loadFile("'C:/0OpenModelical.9.2/share/doc/omc/testmodels/bubblesort.mo'™)

true

The function bubblesort is called below to sort the vector x in descending order. The sorted result is returned
together with its type. Note that the result vector is of type Real[:], instantiated as Real [12], since this is
the declared type of the function result. The input Integer vector was automatically converted to a Real
vector according to the Modelica type coercion rules. The function is automatically compiled when called if
this has not been done before.

>> bubblesort(x)

{12.0,

11.0,10.0,9.0,8.0,7.0,6.0,5.0,4.0,3.0,2.0,1.0}

Another call:
>> bubblesort({4,6,2,5,8})

17

{8.0,6.0,5.0,4.0,2.0}

It is also possible to give operating system commands via the system utility function. A command is provided
as a string argument. The example below shows the system utility applied to the UNIX command cat, which
here outputs the contents of the file bubblesort.mo to the output stream. However, the cat command does not
boldface Modelica keywords — this improvement has been done by hand for readability.

>> cd("'C:/0OpenModelical.9.2/share/doc/omc/testmodels/™)
>> gystem(*'cat bubblesort._mo')

function bubblesort

input Real[:] x;

output Real[size(x,1)] vy:
protected

Real t;
algorithm

y = X;

for i in 1l:size(x,1) loop

for j in 1l:size(x,1) loop
if y[i] > y[i] then

t o= y[il;
ylil == yLil:
yOl := t;
end if;
end for;
end for;

end bubblesort;

1.2.4 Trying the system and cd Commands

Note: Under Windows the output emitted into stdout by system commands is put into the winmosh console
windows, not into the winmosh interaction windows. Thus the text emitted by the above cat command would
not be returned. Only a success code (0 = success, 1 = failure) is returned to the winmosh window. For
example:

>> gystem(*'dir')
0

>> gystem(*'Non-existing command'™)
1

Another built-in command is cd, the change current directory command. The resulting current directory is
returned as a string.

>> cd()
' C:/0OpenModelical.9.2/share/doc/omc/testmodels/""

>> cd(..™)
" C:/0OpenModelical.9.2/share/doc/omc/""

>> cd("'C:/0OpenModelical.9.2/share/doc/omc/testmodels/")
" C:/OpenModelical.9.2/share/doc/omc/testmodels/"

1.2.5 Modelica Library and DCMotor Model

We load a model, here the whole Modelica standard library, which also can be done through the File->Load
Modelica Library menu item:

>> loadModel (Modelica)
true

We also load a file containing the dcmotor model:

>> loadFile("'C:/0OpenModelical.9.2/share/doc/omc/testmodels/dcmotor.mo™)
true

It is simulated:
>> simulate(dcmotor,startTime=0.0,stopTime=10.0)

record
resultFile = "dcmotor_res.plt"”
end record

We list the source code of the model:
>> list(dcmotor)

"model dcmotor
Modelica.Electrical .Analog.Basic.Resistor r1(R=10);
Modelica.Electrical .Analog.Basic. Inductor il;
Modelica.Electrical .Analog.Basic.EMF emfl;
Modelica.Mechanics.Rotational . lnertia load;
Modelica.Electrical.Analog.Basic.Ground g;
Modelica.Electrical .Analog.Sources.ConstantVoltage v;

equation
connect(v.p,rl.p);
connect(v.n,g-p);
connect(rl.n,il.p);
connect(il.n,emfl.p);
connect(emfl.n,g.p);
connect(emfl.flange_b,load.flange_a);
end dcmotor;

We test code instantiation of the model to flat code:
>> instantiateModel (dcmotor)

"fclass dcmotor

Real rl.v "Voltage drop between the two pins (= p.v - n.v)";
Real rl1.i "Current flowing from pin p to pin n";

Real rl.p.v "Potential at the pin";

Real rl.p.i "Current flowing into the pin';

Real rl.n.v "Potential at the pin";

Real rl.n.i "Current flowing into the pin";

parameter Real r1.R = 10 "Resistance";

Real i1l.v "Voltage drop between the two pins (= p.v - n.v)";
Real il.i "Current flowing from pin p to pin n";

Real il.p.v "Potential at the pin";

Real il.p.i "Current flowing into the pin";

Real il.n.v "Potential at the pin";

Real il.n.i "Current flowing into the pin";

parameter Real il.L = 1 "Inductance";

parameter Real emfl_k = 1 "Transformation coefficient"”;

Real emfl.v "Voltage drop between the two pins';

Real emfl.i "Current flowing from positive to negative pin';
Real emfl.w "Angular velocity of flange_b";

Real emfl.p.v "Potential at the pin";

Real emfl._p.i "Current flowing into the pin";

Real emfl.n.v "Potential at the pin";

19

Real emfl.n.i "Current flowing into the pin";
Real emfl.flange b.phi "Absolute rotation
Real emfl.flange b.tau 'Cut torque in the
Real load.phi "Absolute rotation angle of
Real load.flange_a.phi "Absolute rotation
Real load.flange_a.tau "Cut torque in the
Real load.flange _b.phi "Absolute rotation
Real load.flange_ b.tau "Cut torque in the
= 1 "Moment of inertia";

Real load.w "Absolute angular velocity of component";
Real load.a "Absolute angular acceleration of component';

parameter Real load.J

Real g.p.v "Potential

Real g.p.i "Current flowing into the pin";
v "Voltage drop between the two pins (= p.v - n.v)";
"Current flowing from pin p to pin n";

Real v.
Real v.
Real v.
Real v.
Real v.n.v "Potential

i
p.v "Potential
p-i

Real v.n._.i "Current flowing into the pin';

at the pin";

at the pin'';

i "Current flowing into the pin®;

at the pin"';

angle of flange™;
flange";

component (= flange_a.phi = flange_b.phi)";

angle of flange";
flange";
angle of flange";
flange";

parameter Real v.V = 1 "Value of constant voltage";

equation
ri.R * rl.i =rl.v;

ri.v = rl.p.v - rl.n.v;

0.0 = rl.p.i + rl.n

emfl.n.v;

rl.i = rl.p.i;

il.L * der(il.i) = il.v;
il.v = il.p.v - il.n.v;
0.0 = il.p.i + il.n

il.i = il.p.i;

emfl.v = emfl._p.v -

0.0 = emfl.p.i + emfl.n.i;

emfl.i = emfl.p.i;

emfl.w = der(emfl.flange_b.phi);
emfl.k * emfl.w = emfl.v;

emfl._flange_b.tau =
load.w
load.a

-(emfl.k * emfl.i);

der(load.phi);
der(load.w);

load.J * load.a = load.flange_a.tau + load.flange_b.tau;

load.flange_a.p

hi =
load.flange_b.phi

g.p.v = 0.0;

V.V = V.V;

V.V = V.p.V - V.n.v
0.0 = v.p.i + v.n.i
V.l = v.p.i;
emfl.flange b.tau +

emfl.flange b.phi =

load.phi;
load.phi;

load.flange_a.tau =
load.flange_a.phi;

emfl.n.i + v.n.i + g.p.i = 0.0;

emfl.n.v

I
<
5
s

V.p-V = rl.p.v;
load.flange b.tau =
end dcmotor;

We plot part of the simulated result:

0.0;

20

>> plot({load.w, load.phi})
true

I Flot Window - 0] x|
File Edit Insert Tools Help
J_| Cpen Save | Print | Select | Zoom Pan | rid | Hold | Preferences | Active | Image
Plot by OpenlModelica
3.5
]
2.5 @ load.w
2
1.5
@ load.phi
1
0.5
1]
2 4 B 3
time
Connection closed i

1.2.6 The val() function

The val(variableName,time) scription function can be used to retrieve the interpolated value of a simulation
result variable at a certain point in the simulation time, see usage in the BouncingBall simulation below.

1.2.7 BouncingBall and Switch Models

We load and simulate the BouncingBall example containing when-equations and if-expressions (the Modelica
keywords have been bold-faced by hand for better readability):

>> loadFile(*'C:/0OpenModelical.9.2/share/doc/omc/testmodels/BouncingBall._mo'™)
true

>> list(BouncingBall)
"model BouncingBall
parameter Real e=0.7 "coefficient of restitution’;
parameter Real g=9.81 "gravity acceleration";
Real h(start=1) "height of ball";
Real v "velocity of ball";
Boolean flying(start=true) "true, if ball is flying";

21

Boolean impact;
Real v_new;
equation
impact=h <= 0.0;
der(v)=if flying then -g else 0;
der(h)=v;
when {h <= 0.0 and v <= 0.0, impact} then
v_new=iT edge(impact) then -e*pre(v) else 0;
flying=v_new > 0;
reinit(v, v_new);
end when;
end BouncingBall;"

Instead of just giving a simulate and plot command, we perform a runScript command on a .mos
(Modelica script) file sim_BouncingBal I .mos that contains these commands:

loadFile(*"'BouncingBall.mo™);
simulate(BouncingBall, stopTime=3.0);

plot({h,flying});
The runScript command:

>> runScript(*'sim_BouncingBall _mos'™)
""true
record

resultFile = "BouncingBall_res.plt"”
end record
true
true"

£ _tmpPlot.plt] 3]

File Edit Special

Plot by OpenModelica

flying ®

06 [7

047 7

0.0

0.0 [} 1.0 1.4 20 24 3.0

We enter a switch model, to test if-equations (e.g. copy and paste from another file and push enter):

>> model Switch
Real v;
Real 1;
Real i1;
Real itot;
Boolean open;
equation
itot = i + i1;

if open then

v = 0;
else
i =0;

end if;

1 - il =0;
1-v-1=0;
open = time >= 0.5;
end Switch;
Ok

>> simulate(Switch, startTime=0, stopTime=1);
Retrieve the value of itot at time=0 using the val (variableName,time) function:

>> val(itot,0)
1

Plot itot and open:

>> plot({itot,open})
true

Z tmpPlot.plt
File Edit Special

Plot by OpenModelica

201 7 open ®
jtot =

0.0

oo 01 02 03 04 05 06 0F 08 09 1.0

We note that the variable open switches from false (0) to true (1), causing itot to increase from 1.0 to 2.0.

1.2.8 Clear All Models

Now, first clear all loaded libraries and models:

>> clear()
true

List the loaded models — nothing left:
>> list()

1.2.9 VanDerPol Model and Parametric Plot

We load another model, the VanDerPol model (or via the menu File->Load Model):

>> loadFile("'C:/0OpenModelical.9.2/share/doc/omc/testmodels/VanDerPol .mo™))
true

It is simulated:

23

>> simulate(VanDerPol)

record
resultFile = "VanDerPol_res.plt"
end record
It is plotted:
plotParametric(x,y);

& tmpPlot.plt — |EI|5|

File Edit Special

Plot by OpenModelica

-2.0 -1.4 -1.0 -0.5 0.o 0.5 1.0 1.5 2.0

Perform code instantiation to flat form of the VanDerPol model:
>> instantiateModel (VanDerPol)

"fclass VanDerPol

Real x(start=1.0);

Real y(start=1.0);

parameter Real lambda = 0.3;

equation
der(x) =vy;
der(y) -x + lambda * (1.0 - x * xX) * y;

end VanDerPol ;

1.2.10 Using Japanese or Chinese Characters

Japenese, Chinese, and other kinds of UniCode characters can be used within quoted (single quote) identifiers,
see for example the variable name to the right in the plot below:

24

File Edit Special

Plot by GpenModelica

0.8r 1

0.8 T

0.2 T

0.0

0.0 0.5 1.0 1.3 2.0 2.5

1.2.11 Scripting with For-Loops, While-Loops, and If-Statements

A simple summing integer loop (using multi-line input without evaluation at each line into OMShell requires
copy-paste as one operation from another document):
>> k 1= 0;
for 1 iIn
k 1= k
end for;

1:1000 loop
+ 10

>> k
500500

A nested loop summing reals and integers::

>> g = 0.0;
h = 5;
for 1 in {23.0,77.12,88.23} loop
for j in 1:0.5:(i+1) loop
g :=9g+]j;
g:=g+h/2;
end for;
h = h + g;
end for;

By putting two (or more) variables or assignment statements separated by semicolon(s), ending with a variable,
one can observe more than one variable value:

>> h;g
1997 .45
1479.09

A for-loop with vector traversal and concatenation of string elements:

>> pI="";
Ist := {"Here ", "are ","some ","strings.'"};
s ="
for 1 in Ist loop
S I1=s + 1;
end for;
>> s

""Here are some strings."

25

Normal while-loop with concatenation of 10 "abc " strings:
>> sI="";
i:=1;
whille i<=10 loop
s:="abc "+s;
1:=i+1;
end while;
>> S
"abc abc abc abc abc abc abc abc abc abc ™

A simple if-statement. By putting the variable last, after the semicolon, its value is returned after evaluation:

>> §f 5>2 then a = 77; end if; a
77

An if-then-else statement with elseif:

>> if false then

a = 5;
elseif a > 50 then
b:= "test'"; a:= 100;
else
a:=34;
end if;
Take a look at the variables a and b:
>> a;b
100
"test"

1.2.12 Variables, Functions, and Types of Variables

Assign a vector to a variable:

>> a:=1:5
{1,2,3,4,5}

Type in a function:

>> function MySqr input Real x; output Real y; algorithm y:=x*x; end MySqr;
Ok

Call the function:

>> b:=MySqr(2)
4.0

Look at the value of variable a:

>> a
{1.2,3,4,5}

Look at the type of a:

>> typeOf(a)
"Integer[]”

Retrieve the type of b:

>> typeOf(b)
"Real™

26

What is the type of MySqr? Cannot currently be handled.

>> typeOf(MySqr)
Error evaluating expr.

List the available variables:

>> listVariables()
{currentSimulationResult, a, b}

Clear again:

>> clearQ)
true

1.2.13 Getting Information about Error Cause

Call the function getErrorString() in order to get more information about the error cause after a
simulation failure:

>> getErrorString()

1.2.14 Alternative Simulation Output Formats

There are several output format possibilities, with mat being the default. plt and mat are the only formats that
allow you to use the val () or plot() functions after a simulation. Compared to the speed of plt, mat is
roughly 5 times for small files, and scales better for larger files due to being a binary format. The csv format is
roughly twice as fast as pIt on data-heavy simulations. The plt format allocates all output data in RAM
during simulation, which means that simulations may fail due applications only being able to address 4GB of
memory on 32-bit platforms. Empty does no output at all and should be by far the fastest. The csv and plt
formats are suitable when using an external scripts or tools like gnuplot to generate plots or process data. The
mat format can be post-processed in MATLAB! or Octave?2.

simulate(... , outputFormat="mat')
simulate(... , outputFormat="csv')
simulate(... , outputFormat="plt')

simulate(... , outputFormat="empty')

It is also possible to specify which variables should be present in the result-file. This is done by using POSIX
Extended Regular Expressions?. The given expression must match the full variable name (~ and $ symbols are
automatically added to the given regular expression).

// Default, match everything

simulate(... , variableFilter="_*")

// match indices of variable myVar that only contain the numbers using combinations
// of the letters 1 through 3

simulate(... , variableFilter="myVar\\[[1-3]*\\]"")

1 http://www.mathworks.com/products/matlab/
2 http://www.gnu.org/software/octave/
3 http://en.wikipedia.org/wiki/Regular_expression

http://www.mathworks.com/products/matlab�
http://www.gnu.org/software/octave/�
http://en.wikipedia.org/wiki/Regular_expression�

27

// match x or y or z

simulate(... , variableFilter="x|y|z")

1.2.15 Using External Functions

See Chapter 12 for more information about calling functions in other programming languages.

1.2.16 Using Parallel Simulation via OpenMP Multi-Core Support

Faster simulations on multi-core computers can be obtained by using a new OpenModelica feature that
automatically partitions the system of equations and schedules the parts for execution on different cores using
shared-memory OpenMP based execution. The speedup obtained is dependent on the model structure, whether
the system of equations can be partitioned well. This version in the current OpenModelica release is an
experimental version without load balancing. The following command, not yet available from the
OpenModelica GUI, will run a parallel simulation on a model:

omc +d=openmp model .mo

1.2.17 Loading Specific Library Version

There exist many different versiosn of Modelica libraries which are not compatible. It is possible to keep
multiple versions of the same library stored in the directory given by calling getModel icaPath(). By calling
loadModel (Modelica,{'3.2"}), OpenModelica will search for a directory called "Modelica 3.2" or a file
called "Modelica 3.2.mo". It is possible to give several library versions to search for, giving preference for a
pre-release version of a library if it is installed. If the searched version is "default”, the priority is: no version
name (Modelica), main release version (Modelica 3.1), pre-release version (Modelica 3.1Beta 1) and unordered
versions (Modelica Special Release).

The loadModel command will also look at the uses annotation of the top-level class after it has been
loaded. Given the following package, Complex 1.0 and ModelicaServices 1.1 will also be loaded into the AST
automatically.

package Modelica

annotation(uses(Complex(version="1.0"), ModelicaServices(version="1.1")))
end Modelica;

1.2.18 Calling the Model Query and Manipulation API

In the OpenModelica System Documentation, an external API (application programming interface) is described
which returns information about models and/or allows manipulation of models. Calls to these functions can be
done interactively as below, but more typically by program clients to the OpenModelica Compiler (OMC)
server. Current examples of such clients are the OpenModelica MDT Eclipse plugin, OMNotebook, the
OMEdit graphic model editor, etc. This API is untyped for performance reasons, i.e., no type checking and
minimal error checking is done on the calls. The results of a call is returned as a text string in Modelica syntax
form, which the client has to parse. An example parser in C++ is available in the OMNotebook source code,
whereas another example parser in Java is available in the MDT Eclipse plugin.

Below we show a few calls on the previously simulated BouncingBall model. The full documentation on
this API is available in the system documentation. First we load and list the model again to show its structure:

>>loadFile(*'C:/0penModelical.9.2/share/doc/omc/testmodels/BouncingBall.mo™)
true

>>list(BouncingBall)

"model BouncingBall
parameter Real e=0.7 "coefficient of restitution";
parameter Real g=9.81 "gravity acceleration";
Real h(start=1) "height of ball";
Real v "velocity of ball";
Boolean flying(start=true) "true, if ball is flying";
Boolean impact;
Real v_new;
equation
impact=h <= 0.0;
der(v)=if flying then -g else 0;
der(h)=v;
when {h <= 0.0 and v <= 0.0, impact} then
v_new=i1Tf edge(impact) then -e*pre(v) else 0;
flying=v_new > 0;
reinit(v, v_new);
end when;
end BouncingBall;

Different kinds of calls with returned results:

>>getClassRestriction(BouncingBall)
"model™

>>getClassInformation(BouncingBall)
{"model™, """ ,{false,false,false},{" "writable",1,1,18,17}}

>>isFunction(BouncingBall)
false

>>existClass(BouncingBall)
true

>>getComponents(BouncingBall)

{{Real,e,""coefficient of restitution”, "public"”, false, false, false,
“parameter’, '"'none', "unspecified"},

{Real,g,""gravity acceleration”,

“"public", false, false, false, "parameter'™, "none'", "unspecified"},
{Real,h,"height of ball", "public", false, false, false,
"unspecified”, "none", "unspecified"},

{Real,v,"velocity of ball",

“"public", false, false, false, "unspecified”, "none", "unspecified"},
{Boolean, flying, " true, if ball is flying", "public”, false, false,
false, "unspecified”, "none", "unspecified"},

{Boolean, impact,"",

“"public", false, false, false, "unspecified"”, "none'", "unspecified"},
{Real,v_new,""", "public", false, false, false, "unspecified", "none",
"unspecified"}}

>>getConnectionCount(BouncingBall)
0]

>>getlnheritanceCount(BouncingBall)
0]

>>getComponentModifierValue(BouncingBall,e)
0.7

>>getComponentModifierNames(BouncingBall,e)

29

8

>>getClassRestriction(BouncingBall)
"model™

>>getVersion() // Version of the currently running OMC
n1.9 om

1.2.19 Quit OpenModelica

Leave and quit OpenModelica:
>> quit()

1.2.20 Dump XML Representation

The command dumpXMLDAE dumps an XML representation of a model, according to several optional
parameters.

dumpXMLDAE(modelname[,asInSimulationCode=<Boolean>] [,filePrefix=<String>]
[,storelnTemp=<Boolean>] [,addMathMLCode =<Boolean>])

This command dumps the mathematical representation of a model using an XML representation, with optional
parameters. In particular, asInSimulationCode defines where to stop in the translation process (before
dumping the model), the other options are relative to the file storage: filePrefix for specifying a different
name and storelnTemp to use the temporary directory. The optional parameter addMathMLCode gives the
possibility to don't print the MathML code within the xml file, to make it more readable. Usage is trivial, just:
addMathMLCode=true/false (default value is false).

1.2.21 Dump Matlab Representation

The command export dumps an XML representation of a model, according to several optional parameters.
exportDAEtoMatlab(modelname) ;

This command dumps the mathematical representation of a model using a Matlab representation. Example:

$ cat daequery.mos
loadFile(*'BouncingBall_mo™);
exportDAEtoMatlab(BouncingBall);
readFile("'BouncingBall_imatrix.m");

$ omc daequery.mos

true

"The equation system was dumped to Matlab file:BouncingBall_imatrix.m"
% Incidence Matrix

%
% number of rows: 6

IM={[3,-6],[1,{"if", “true”,"==" {3}.{}.}]1.[2.{"if", “edge(impact)"”
{3}.{5}.31.[4.2].[5.{"if", "true","==" {4},{}i}] .[6,-51};

30

EqStr = {"impact = h <= 0.0;","foo = if impact then 1 else 2;","when {h <= 0.0 AND v
<= 0.0, impact} then v_new = if edge(impact) then (-e) * pre(v) else 0.0; end
when; ", *when {h <= 0.0 AND v <= 0.0, impact} then flying = v_new > 0.0; end
when; ", "der(v) = if flying then -g else 0.0;","der(h) = v;"};

OldEgStr={"fclass BouncingBall", "parameter Real e = 0.7 "coefficient of
restitution';", "parameter Real g = 9.81 "'gravity acceleration';", "Real h(start = 1.0)
"height of ball";","Real v "velocity of ball";","Boolean flying(start = true) "true,
if ball is flying";", "Boolean impact;","Real v_new;","Integer foo;","equation”,”
impact = h <= 0.0;"," Too = if impact then 1 else 2;"," der(v) = if flying then -g
else 0.0;"," der(h) = v;"," when {h <= 0.0 AND v <= 0.0, impact} then"," v_new = if
edge(impact) then (-e) * pre(v) else 0.0;"," flying = v_new > 0.0;","

reinit(v,v_new);"," end when;","end BouncingBall;", ""};"

1.3 Summary of Commands for the Interactive Session Handler

The following is the complete list of commands currently available in the interactive session hander.
simulate(modelname) Translate a model named modelname and simulate it.

simulate(modelname[, startTime=<Real>][,stopTime=<Real>][,numberOfintervals
=<Integer>] [, outputinterval=<Real>][,method=<String>]
[, tolerance=<Real>][, fixedStepSize=<Real>]
[,outputFormat=<String>]) Translate and simulate a model, with
optional start time, stop time, and optional number of simulation intervals or
steps for which the simulation results will be computed. More intervals will
give higher time resolution, but occupy more space and take longer to
compute. The default number of intervals is 500. It is possible to choose
solving method, default is “dassl”, *“euler” and *“rungekutta” are also
available. Output format “mat” is default. “plt” and “mat” (MATLAB) are
the only ones that work with the val() command, “csv” (comma separated
values) and “empty” (no output) are also available (see chapter 1.2.14).

plot(vars) Plot the variables given as a vector or a scalar, e.g. plot({x1,x2}) or
plot(x1).

plotParametric(varl, var2) Plot var2 relative to varl from the most recently simulated model, e.g.
plotParametric(x,y).

cdQ Return the current directory.

cd(dir) Change directory to the directory given as string.

clear(Q Clear all loaded definitions.

clearVvariables() Clear all defined variables.

dumpXMLDAE(modelname, ...) Dumps an XML representation of a model, according to several optional
parameters.

exportDAEtoMatlab(name) Dumps a Matlab representation of a model.

instantiateMode l (modelname)Performs code instantiation of a model/class and return a string containing
the flat class definition.

listQ Return a string containing all loaded class definitions.

list(modelname) Return a string containing the class definition of the named class.

listvariables() Return a vector of the names of the currently defined variables.

31

loadModel (classname)

loadFile(str)
readFile(str)
runScript(str)
system(str)

timing(expr)

typeOf(variable)

saveMode I (str,modelname)

val (variable,timePoint)

helpQ
quitQ

Load model or package of name classname from the path indicated by the
environment variable OPENMODEL I CAL I BRARY.

Load Modelica file (.mo) with name given as string argument str.
Load file given as string str and return a string containing the file content.
Execute script file with file name given as string argument str.

Execute str as a system(shell) command in the operating system; return
integer success value. Output into stdout from a shell command is put into
the console window.

Evaluate expression expr and return the number of seconds (elapsed time)
the evaluation took.

Return the type of the variable as a string.

Save the model/class with name modelname in the file given by the string
argument str.

Return the (interpolated) value of the variable at time timePoint.
Print this helptext (returned as a string).
Leave and quit the OpenModelica environment

1.4 Running the compiler from command line

The OpenModelica compiler can also be used from command line, in Windows cmd.exe.

Example Session 1 — obtaining information about command line parameters

C:\dev> C:\OpenModelical.9.2 \bin\omc -h

OpenModelica Compiler 1.9.2

Copyright © 2015 Open Source Modelica Consortium (OSMC)

Distributed under OMSC-PL and GPL, see www.openmodelica.org

Usage: omc [Options] (Model.mo | Script.mos) [Libraries | .mo-files]

Example Session 2 - create an TestModel.mo file and run omc on it

C:\dev> echo model TestModel parameter Real x = 1; end TestModel; > TestModel .mo
C:\dev> C:\OpenModelical.9.2 \bin\omc TestModel_mo

class TestModel

parameter Real X
end TestModel;
C:\dev>

1.0;

Example Session 3 - create an script.mos file and run omc on it

Create a file script.mos using your editor containing these commands:

// start script.mos

loadModel (Modelica); getErrorString();
simulate(Modelica.Mechanics.MultiBody.Examples.Elementary.Pendulum); getErrorString(Q);

// end script.mos

C:\dev> notepad script.mos
C:\dev> C:\OpenModelical.9.2 \bin\omc script.mos

true

http://www.openmodelica.org/�

32

record SimulationResult

resultFile =
""C:/dev/Modelica.Mechanics.MultiBody.Examples.Elementary.Pendulum_res.mat",

simulationOptions = "“startTime = 0.0, stopTime = 5.0, numberOfintervals = 500,
tolerance = 1e-006, method = "dassl®, fileNamePrefix =
"Modelica.-Mechanics_MultiBody.Examples.Elementary.Pendulum®, options = "~,
outputFormat = "mat", variableFilter = "_.*", cflags = "", simflags = """,

messages = """,

timeFrontend = 1.245787339209033,

timeBackend 20.51007138993843,

timeSimCode = 0.1510248469321959,

timeTemplates = 0.5052317333954395,

timeCompile = 5.128213942691722,

timeSimulation = 0.4049189573103951,

timeTotal = 27.9458487395605
end SimulationResult;

In order to obtain more information from the compiler one can use the command line options
+showErrorMessages +d=failtrace when running the compiler:

C:\dev> C:\OpenModelical.9.2 \bin\omc +showErrorMessages +d=failtrace script.mos

1.5 References

Peter Fritzson, Peter Aronsson, Hakan Lundvall, Kaj Nystrom, Adrian Pop, Levon Saldamli, and David
Broman. The OpenModelica Modeling, Simulation, and Software Development Environment.
In Simulation News Europe, 44/45, December 2005. See also: http://www.openmodelica.org.

Peter Fritzson. Principles of Object-Oriented Modeling and Simulation with Modelica 2.1, 940 pp., ISBN
0-471-471631, Wiley-1EEE Press, 2004.

The Modelica Association. The Modelica Language Specification Version 3.0, Sept 2007.
http://www.modelica.org.

http://www.modelica.org/�

33

Chapter 2

OMEdit — OpenModelica Connection Editor

OMEdit — OpenModelica Connection Editor is the new Graphical User Interface for graphical model editing in
OpenModelica. It is implemented in C++ using the Qt 4.8 graphical user interface library and supports the
Modelica Standard Library version 3.1 that is included in the latest OpenModelica installation. This chapter
gives a brief introduction to OMEdit and also demonstrates how to create a DCMotor model using the editor.
OMEdit provides several user friendly features for creating, browsing, editing, and simulating models:

e Modeling — Easy model creation for Modelica models.

e Pre-defined models — Browsing the Modelica Standard library to access the provided models.

e User defined models — Users can create their own models for immediate usage and later reuse.

e Component interfaces — Smart connection editing for drawing and editing connections between model
interfaces.

e Simulation — Subsystem for running simulations and specifying simulation parameters start and stop
time, etc.

e Plotting — Interface to plot variables from simulated models.

2.1 Starting OMEdit

2.1.1 Microsoft Windows

OMEdit can be launched using the executable placed in
OpenModelicalnstallationDirectory/bin/OMEdit/OMEdit. exe. Alternately, choose
OpenModelica > OpenModelica Connection Editor from the start menu in Windows. A splash screen
similar to the one shown in Figure 2-1 will appear indicating that it is starting OMEdit.

2.1.1 Linux

Start OMEdit by either selecting the corresponding menu application item or typing “OMEdit” at the shell or
command prompt.

2.1.2 Mac OS X

2?2 fill in

34

Loading Modelica

Figure 2-1: OMEdit Splash Screen.

2.2 MainWindow & Browsers

The MainWindow contains several dockable browsers,

e Search Browser

e Libraries Browser

e Documentation Browser
e Variables Browser

e Messages Browser

Figure 2-2 shows the MainWindow and browsers.

35

Search Browser

PEHES kD

File Edit View Simulation FMI

XML Tools Help

!Search Browser g X |

Within Modelica text

Search Modelica Class Search

| Searched Items

|Libraries Browser g X

Library Browser Libraries

Complex

[] Modelica

@ ModelicaReference
[] MedelicaServices

OpenModelica

Do tion Browser (=0

2 Previous | o Next|

|Find Variables

Variables

Messages Browser

twdctme oaMcdeling ’iﬁotﬁﬂg | -_?Szﬂ’!mdi\resﬁnjaﬁm]

Figure 2-2: OMEdit MainWindow and Browsers.

The default location of the browsers are shown in Figure 2-2. All browsers except for Message Browser can
be docked into left or right column. The Messages Browser can be docked into left,right or bottom areas. If
you want OMEdit to remember the new docked position of the browsers then you must enable Preserve
User"s GUI Customizations option, see section 2.9.1.

2.2.1 Search Browser

iSEidl Browser & X |
|Grnund | Search

Within Modelica text

+
-
+

-

Searched Items

Maodelica.Electrical. Analog.Basic.Ground

Modelica.Electrical. QuasiStationary.5inglePhase.Basic.Ground

Modelica.Electrical. Spice3.Basic.Ground

Modelica.Magnetic.FluxTubes.Basic. Ground
Medelica.Magnetic.FundamentalWave, Components. Ground
* Modelica.Mechanics.MultiBody.Visualizers.Ground

B @ Modelica.Mechanics.Rotational Examples.FirstGrounded

Figure 2-3: Search Browser.

36

To view the Search Browser click Edit->Search Browser or press keyboard shortcut Ctr1+Shift+F.
The loaded Modelica classes can be searched by typing any part of the class name. It is also possible to search
the Modelica class if one knows the text string that is used within it but Wwithin Modelica text checkbox
should be checked for this feature to work.

2.2.2 Libraries Browser

To view the Libraries Browser click View->Windows->Libraries Browser. Shows the list of loaded
Modelica classes. Each item of the Libraries Browser has right click menu for easy manipulation and
usage of the class. The classes are shown in a tree structure with name and icon. The protected classes are not
shown by default. If you want to see the protected classes then you must enable the Show Protected
Classes option, see section 2.9.1.

g hl
o& OMEdit - OpenModelica Connection Editor - [m1°] E=EERT=C
gﬁ File Edit View Simulation FMI Export Tools Help =

FEHH 0O BEQAQ weBOeEN[EQ9»0e5 8- 9 X »
Libraries Browser g x |*@E)] |Writeab|e

s

Model

Diagram View ‘ Line: 1, Col: 0 ‘ E‘

Libraries

Complex

= 77 Modelica

ﬂ UsersGuide
(@) Blocks

(@) ComplexBlocks
='+“ StateGraph

muﬁ

Wiew Class

=2 = B E R

[+

ﬂ View Documentation

[+

Instantiate Model

Check Model

Check All Models

Simulate Ctrl+B

[+

o
J"El Mec
=)

[+

[+

Simulate with Transformational Debugger

[+

Com

e

sl

;)e Utilit Simulate with Algorthmic Debugger
)

Y YYY)

Cons Simulation Setup

E —— &

(1] Icon
Ka) stuni
O wodeli
[| Modeli

Unload

Export FMU
Export XML
Export Figaro

IR 4

Opens the clas

53 Y:-1.79 €L welcome | & Modeling | B Plotting

Figure 2-4: Libraries Browser.

37

2.2.3 Documentation Browser

Displays the HTML documentation of Modelica classes. It contains the navigation buttons for moving forward
and backward. To see documentation of any class, right click the Modelica class in Libraries Browser and
choose View Documentation.

Documentation Browser

=

Previous Mext

»

Modelica —
Modelica Standard Library - Version 2.2.1 (Build 3)

Information

Package Modelica® is a standardized and free package that is developed together with the Modelica® language from the Modelica
Association, see https://vww.Modelica.org. It is also called Modelica Standard Library. It provides model components in many
domains that are based on standardized interface definitions. Some typical examples are shown in the next figure:

ambiant
E B pipe .
&

Ll
AIMCT

For an intreduction, have especially a look at:

Owverview provides an overview of the Modelica Standard Library inside the User's Guide.

Release Notes summarizes the changes of new versions of this package.

Contact lists the contributors of the Modelica Standard Library.

The Examples packages in the various libraries, demonstrate how to use the components of the corresponding sublibrary.

-
-
-
-

This version of the Modelica Standard Library consists of

» 1360 models and blocks, and —
« 1280 functions

that are directly usable (= number of public, non-partial classes). It is fully compliant to Modelica Specification Version 3.2 Revision 2
and it has been tested with Modelica tools from different vendors.

Licensed by the Modelica Association under the Modelica License 2
Copyright © 1998-2013, ABB, AIT, T. B&drich, DLR, Dassault Systémes AB, Fraunhofer, A. Haumer, ITI, C. Kral, Madelon, TU

Figure 2-5: Documentation Browser.

2.2.4 Variables Browser

The class variables are structured in the form of the tree and are displayed in the Variables Browser. Each
variable has a checkbox. Ticking the checkbox will plot the variable values. There is a find box on the top for
filtering the variable in the tree. The filtering can be done using Regular Expression, Wildcard and Fixed
String. The complete vVariables Browser can be collapsed and expanded using the Collapse All and
Expand Al buttons.

The browser allows manipulation of changeable parameters for re-simulation. See section 2.7. It also displays
the unit and description of the variable.

38

Variables Browser

| Find Variables

|:| Case Sensitive [Flegular Expression b]

[Expand Al |

Collapse Al |

F

Variables Value IInit
= 8 Modelica.El...ChuaCircuit
=l

Flc 10.0 F
[der(v) 000102811 V
B 00102811 A

n

p

L Flv

@)

G

Gnd

L

Mr

Ro

L Ftime 50000

Description

Capacitance

Voltage drop betw...ins (= p.v - n.wv)

Current flowing from pin p to pin n

m

Voltage drop bebw..ins (= p.v - n.v)

Figure 2-6: Variables Browser.

2.2.5 Messages Browser

Shows the list of errors. Following kinds of error can occur,

e Syntax

e Grammar

e Translation
e Symbolic

e Simulation
e Scripting

See section 2.9.6 for Messages Browser options.

39

2.3 Perspectives

The perspective tabs are loacted at the bottom right of the MainWindow,

e Welcome Perspective
e Modeling Perspective
e Plotting Perspective

2.3.1 Welcome Perspective

Libraries Browser

Libraries

. Complex

B @4 Modelica

Y OMEdit -

F ™

& OMEdit - OpenModelica Connection Editor - [m1*] [E= TR

A File Edit View Simulation FMI Export Tools Help [=[[=]]
FeBH DA EaaAiweneo BN EO09 eS| B-9 X ~»

OpenModelica Connection Editor

Latest News

&

»

October 07, 2014: OpenModelica1.9.1 Betad released

&5

March 08, 2014: OpenModelica 1.9.1 Beta2 released

@

MNew Book: Peter Fritzson - Principles of Object-Oriented Mode|

m

@

February 02, 2014: OpenModelica1.9.1 Betal released

@

CFP OpenModelica Workshop February 2014

&5

October 09, 2013: OpenModelica 1.9.0 released

@

September 27, 2013: OpenModelica 1.9.0 RC1 released

11 | 3

Reload For more details visit our website www.openmodelica.org

0 UsersGuide

(8 Biocks Recent Files

@ ComplexBlocks

E StateGraph =7 C:/Users/adeas31/Desktop
& Electrical & C:/Users/adeas31/Desktop
@ Magnetic)

E Mechanics = L‘./ C:/Users/adeas31/Desktop
%) Fluid & C/Users/adeas31/Desktop
5 Media . _

E{ﬂ Thermal 67 C:/OpenModelica/trunk/E
m Math & C:/Users/adeas31/Desktop
E ComplexMath

) Utilities

|~E Constants 4 III E
E Icons T Clear Recent Files

E‘ Slunits

0 ModelicaReference

D ModelicaServices

Create New Modelica Class

=

Open Model/Library File(s)

‘ tWEIcome | eﬁl\"lodeling | 22 Plotting | p

X:-123.32 Y: 25.56

Figure 2-7: OMEdit Welcome Perspective.

The Welcome Perspective shows the list of recent files and the list of latest news from openmodelica.org.
See Figure 2-7. The orientation of recent files and latest news can be horizontal or vertical. User is allowed to

show/hide the latest news. See section 2.9.1.

2.3.2 Modeling Perspective

The Modeling Perpective provides the interface where user can create and design their models. See Figure

2-8.

https://www.openmodelica.org/�

40

F ™
&4 OMEdit - OpenModelica Connection Editor o o5 |

File Edit View Simulation FMI Export Tools Help

FEAH A0 B QAQA WeNoEBNM E99»9e5 8- 9 X »
Libraries Browser 5 X di DCMotor®
Libraries I-I#@]E B ‘Wriheable |Model |Diagram View ‘ ‘ Line: 1, Col: 0 ‘ ﬁ|
. Complex
7% Modelica
ﬂ' ModelicaReference
: ModelicaServices
[E OpenMedelica

X:-111.11 ¥: 99.76 o/t Modeling £ plotting

Figure 2-8: OMEdit Modeling Perspective.

The Modeling Perspective interface can be viewed in two different modes, the tabbed view and
subwindow view, see section 2.9.1.

2.3.3 Plotting Perspective

The Plotting Perspective shows the simulation results of the models. Plotting Perspective will
automatically become active when the simulation of the model is finished successfully. It will also become
active when user opens any of the OpenModelica’s supported result file. Similar to Modeling Perspective
this perspective can also be viewed in two different modes, the tabbed view and subwindow view, see

section 2.9.1.

41

F ™
&4 OMEdit - OpenModelica Connection Editor o o5 |

File Edit View Simulation FMI Export Tools Help

EHE YL EQQAllweNeoBEN[L E99 5 ¢ - x »

Libraries Browser g X E Plot @ 1 | Variables Browser g =
Libraries Pan | FitinView & Save | Print | Grid NoGrid | »»||Find Variables |
. Cornplex [case Sensitive w
p— i £ohi
7% Modelica =mfph [rac] | Expandal | [collpseal |
0' ModelicaReference 0 =
M : . 8 _‘_\ variables I
| Modelicabervices 4 @
i B DCMot
[E OpenMedelica -0.02 orer
: =l emf
L@ DCMotor] =
] b [dertpni)

m

-0.04 fixed
- \ flange
-0.06 |— i

internalSupport

-0.08 |» Ok
] n
i P

-0.1
] \ [7] useSupport

-0.12 Flv
] -
-0.14 . —T— — — — —— groundl
0 0.2 0.4 0.6 0.8 1 "'|:| :r-r}f‘--l-*ﬂﬂ :
¥:-137.12 Y: 59.10 | t Welcome | gﬁ Modeling | ﬂ Plotting ‘

Figure 2-9: OMECdit Plotting Perspective.

2.4 Modeling a Model

2.4.1 Creating a New Modelica class

Creating a new Modelica class in OMEdit is rather straightforward. Choose any of the following methods,

e SelectFile > New Modelica Class from the menu.

e Click on New Modelica Class toolbar button.

e Click on the Create New Modelica Class button available at the left bottom of welcome
Perspective.

e Press Ctri+N.

2.4.2 Opening a Modelica File

Choose any of the following methods to open a Modelica file,

42

e SelectFile > Open Model/Library File(s) from the menu.
e Click on Open Model/Library File(s) toolbar button.

e Click on the Open Model/Library File(s) button available at the right bottom of welcome
Perspective.

e Press Ctri+0.

2.4.3 Opening a Modelica File with Encoding

Select File > Open/Convert Modelica File(s) With Encoding from the menu. It is also possible to
convert files to UTF-8.

2.4.4 Model Widget

For each Modelica class one Model Widget is created. It has a statusbar and a view area. The statusbar
contains buttons for navigation between the views and labels for information. The view area is used to display
the icon, diagram and text layers of Modelica class. See Figure 2-10.

oA DCMotar |

Statusbar I-I-l [E]E ﬂ | Writeable | Model ‘ Diagram View | C:/Usersfadeas31/Desktop/DCmotor.mo | Line: 1, Col: 0 | i‘

= |—D T
lcon/ . 13 . ot
Diagram/ | g 4.<> E Y a T
Text View — L E =

graundl

Figure 2-10: Model Widget showing the Diagram View.

43

2.4.5 Adding Component Models

Drag the models from the Libraries Browser and drop them on either Diagram or Icon View of Model
Widget.

246 Making Connections

In order to connect one component model to another the user first needs to enable the connect mode from the
toolbar. See Figure 2-11.

*

Figure 2-11: Connect/Unconnect Mode toolbar button.

2.5 Simulating a Model

The OMEdit Simulation Dialog can be launched by,

Selecting Simulation > Simulation Setup from the menu. (requires a model to be active in
ModelWidget)

Clicking on the Simulation Setup toolbar button. (requires a model to be active in ModelWidget)
Right clicking the model from the Libraries Browser and choosing Simulation Setup.

2.5.1 General Tab

Start Time — the simulation start time.

Stop Time — the simulation stop time.

Method — the simulation solver. See Appendix C for solver details.

Tolerance — the simulation tolerance.

Compiler Flags (Optional) — the optional C compiler flags.

Number of Processors — the number of processors used to build the simulation.
Launch Transformational Debugger — launches the transformational debugger.
Launch Algorithmic Debugger — launches the algorithmic debugger.

2.5.2 Output Tab

Number of Intervals — the simulation number of intervals.

Output Format — the simulation result file output format.

File Name (Optional) — the simulation result file name.

Variable Filter (Optional).

Protecetd Variables — adds the protected variables in result file.
Store Variables at Events — adds the variables at time events.

Show Generated File — displays the generated files in a dialog box.

44

2.5.3 Simulation Flags Tab

e Model Setup File (Optional) — specifies a new setup XML file to the generated simulation code.
¢ Initialization Method (Optional) — specifies the initialization method.

e Equation System Initialization File (Optional) — specifies an external file for the initialization of the
model.

e Equation System Initialization Time (Optional) — specifies a time for the initialization of the model.

e Clock (Optional) — the type of clock to use.

e Linear Solver (Optional) — specifies the linear solver method.

e Non Linear Solver (Optional) — specifies the nonlinear solver.

e Linearization Time (Optional) — specifies a time where the linearization of the model should be
performed.

e Output Variables (Optional) — outputs the variables a, b and ¢ at the end of the simulation to the
standard output.
e Profiling — creates a profiling HTML file.
e CPU Time — dumps the cpu-time into the result file.
e Enable All Warnings — outputs all warnings.
e Logging (Optional)
= DASSL Solver Information — prints additional information about dassl solver.
= Debug — prints additional debug information.
= Dynamic State Selection Information — outputs information about dynamic state selection.
= Jacobians Dynamic State Selection Information — outputs jacobain of the dynamic state selection.
= Event Iteration — additional information during event iteration.
= Verbose Event System — verbose logging of event system.
= [nitialization — prints additional information during initialization.
= Jacobians Matrix — outputs the jacobian matrix used by dassl.
= Non Linear Systems — logging for nonlinear systems.
= Verbose Non Linear Systems — verbose logging of nonlinear systems.
= Jacobians Non Linear Systems — outputs the jacobian of nonlinear systems.
= |nitialization Residuals — outputs residuals of the initialization.
= Simulation Process — additional information about simulation process.
= Solver Process — additional information about solver process.
= Final Initialization Solution — final solution of the initialization.
= Timer/Event/Solver Statistics — additional statistics about timer/events/solver.
= Util
= Zero Crossings — additional information about the zerocrossings.
e Additional Simulation Flags (Optional) — specify any other simulation flag.

2.6 Plotting the Simulation Results

Successful simulation of model produces the result file which contains the instance variables that are candidate
for plotting. Variables Browser will show the list of such instance variables. Each variable has a checkbox,
checking it will plot the variable. See Figure 2-9.

45

2.6.1 Types of Plotting

The plotting type depends on the active Plot Window. By default the plotting type is Time Plot.

2.6.1.1 Time Plot

Plots the variable over the simulation time. You can have multiple Time Plot windows by clicking on New
Plot Window toolbar button. See Figure 2-12.

X

Figure 2-12: New Plot Window toolbar button.

2.6.1.2 Plot Parametric

Draws a two-dimensional parametric diagram, between variables x and y, with y as a function of x. You can
have multiple Plot Parametric windows by clicking on the New Plot Parametric toolbar button. See Figure
2-13.

©

Figure 2-13: New Plot Parametric toolbar button.

2.7 Re-simulating a Model

The Variables Browser allows manipulation of changeable parameters for re-simulation as shown in Figure
2-6. After changing the parameter values user can click on the Re-simulate toolbar button, , or right click the
model in Variables Browser and choose Re-simulate from the menu.

>N

Figure 2-14: Re-simulate toolbar button.

2.8 How to Create User Defined Shapes — Icons

Users can create shapes of their own by using the shape creation tools available in OMEdit.

e Line Tool — Draws a line. A line is created with a minimum of two points. In order to create a line, the
user first selects the line tool from the toolbar and then click on the Icon/Diagram View; this will
start creating a line. If a user clicks again on the 1con/Diagram View a new line point is created. In
order to finish the line creation, user has to double click on the Icon/Diagram View.

e Polygon Tool — Draws a polygon. A polygon is created in a similar fashion as a line is created. The only
difference between a line and a polygon is that, if a polygon contains two points it will look like a line
and if a polygon contains more than two points it will become a closed polygon shape.

e Rectangle Tool — Draws a rectangle. The rectangle only contains two points where first point indicates
the starting point and the second point indicates the ending the point. In order to create rectangle, the
user has to select the rectangle tool from the toolbar and then click on the Icon/Diagram View, this
click will become the first point of rectangle. In order to finish the rectangle creation, the user has to

46

click again on the 1con/Diagram View where he/she wants to finish the rectangle. The second click
will become the second point of rectangle.

e Ellipse Tool — Draws an ellipse. The ellipse is created in a similar way as a rectangle is created.

e Text Tool — Draws a text label.

e Bitmap Tool — Draws a bitmap container.

The shape tools are located in the toolbar. See Figure 2-15.

(¢ Rectangle Tool (Text Tool D

\

(Line Tool) A—WOHOEN —»(Bitmap Tool D

/N

(Polygon Tool) C Ellipse Tool)

Figure 2-15: User defined shapes.

The user can select any of the shape tools and start drawing on the Icon/Diagram View. The shapes created
on the Diagram View of Model Widget are part of the diagram and the shapes created on the Icon View
will become the icon representation of the model.

For example, if a user creates a model with name testModel and add a rectangle using the rectangle tool
and a polygon using the polygon tool, in the Icon View of the model. The model’s Modelica Text will
appear as follows:

model testModel

annotation(lcon(graphics = {Rectangle(rotation = 0, lineColor = {0,0,255}, fillColor =
{0,0,255}, pattern = LinePattern.Solid, fillPattern = FillPattern_.None, lineThickness
= 0.25, extent = {{ -64.5,88},{63, -22.5}}),Polygon(points = {{ -47.5, -29.5},{52.5, -
29.5},{4.5, -86},{ -47.5, -29.5}}, rotation = 0, lineColor = {0,0,255}, FfillColor =
{0,0,255}, pattern = LinePattern.Solid, FfillPattern = FillPattern_None, lineThickness

= 0.25)1));
end testModel;

In the above code snippet of testModel, the rectangle and a polygon are added to the icon annotation of the
model. Similarly, any user defined shape drawn on a Diagram View of the model will be added to the
diagram annotation of the model.

2.9 Settings

OMEdit allows users to save several settings which will be remembered across different sessions of OMEdit.
The Options Dialog can be used for reading and writing the settings.

47

2.9.1 General

e General
= Language — Sets the application language.
= Working Directory — Sets the application working directory.
= Toolbar Icon Size — Sets the size for toolbar icons.
= Preserve User’s GUI Customizations — If true then OMEdit will remember its windows and
toolbars positions and sizes.
e Libraries Browser
= Library Icon Size — Sets the size for library icons.
= Show Protected Classes — Sets the application language.
e Modeling View Mode
= Tabbed View/SubWindow View — Sets the view mode for modeling.
e Plotting View Mode
= Tabbed View/SubWindow View — Sets the view mode for plotting.
o Default View
= [con View/DiagramView/Modelica Text View/Documentation View — If no preferredView
annotation is defined then this setting is used to show the respective view when user double clicks
on the class in the Libraries Browser.
e Enable Auto Save

= Auto Save interval — Sets the auto save interval value. The minimum possible interval value is 60
seconds.

= Enable Auto Save for single classes — Enables the auto save for one class saved in one file.

= Enable Auto Save for one file packages — Enables the auto save for packages saved in one file.
e Welcome Page

= Horizontal View/Vertical View — Sets the view mode for welcome page.

= Show Latest News — if true then displays the latest news.

2.9.2 Libraries

e System Libraries — The list of system libraries that should be loaded every time OMEdit starts.

e Force loading of Modelica Standard Library — If true then Modelica and ModelicaReference will
always load even if user has removed them from the list of system libraries.

e User Libraries — The list of user libraries/files that should be loaded every time OMEdit starts.

2.9.3 Modelica Text Editor

e General
= Enable Syntax Highlighting — Enable/Disable the syntax highlighting for the Modelica Text
Widget.

= Enable Line Wrapping — Enable/Disable the line wrapping for the Modelica Text Widget.

e Fonts and Colors
= Font Family — Contains the names list of available fonts.
= Font Size — Sets the font size.
= |tems — List of categories used of syntax highlighting the code.

48

= |tem Color — Sets the color for the selected item.
= Preview — Shows the demo of the syntax highlighting.

2.9.4 Graphical Views

Extent

= Left — Defines the left extent point for the view.

= Bottom — Defines the bottom extent point for the view.
= Right — Defines the right extent point for the view.

= Top - Defines the top extent point for the view.

Grid

= Horizontal — Defines the horizontal size of the view grid.
= Vertical — Defines the vertical size of the view grid.
Component

= Scale factor — Defines the initial scale factor for the component dragged on the view.
= Preserve aspect ratio — If true then the component’s aspect ratio is preserved while scaling.

2.9.5 Simulation

Simulation

= Matching Algorithm — sets the matching algorithm for simulation.

= Index Reduction Method — sets the index reduction method for simulation.
= OMC Flags - sets the omc flags for simulation.

= Save class before simulation — if ture then always saves the class before running the simulation.

Output
= Structured — Shows the simulation output in the form of tree structure.
= Formatted Text — Shows the simulation output in the form of formatted text.

2.9.6 Messages

General

= Qutput Size - Specifies the maximum number of rows the Messages Browser may have. If there

are more rows then the rows are removed from the beginning.

= Reset messages number before simulation — Resets the messages counter before starting the
simulation.

Font and Colors

= Font Family — Sets the font for the messages.

= Font Size — Sets the font size for the messages.

= Notification Color — Sets the text color for notification messages.

= Warning Color — Sets the text color for warning messages.

= Error Color — Sets the text color for error messages.

49

2.9.7 Notifications

e Notifications

Always quit without prompt — If true then OMEdit will quit without prompting the user.

Show item dropped on itself message — If true then a message will pop-up when a class is dragged
and dropped on itself.

Show model is defined as partial and component will be added as replaceable message — If true
then a message will pop-up when a partial class is added to another class.

Show component is declared as inner message — If true then a message will pop-up when an inner
component is added to another class.

Show save model for bitmap insertion message — If true then a message will pop-up when user tries
to insert a bitmap from a local directory to an unsaved class.

2.9.8 Line Style

e Line Style

Color — Sets the line color.

Pattern — Sets the line pattern.

Thickness — Sets the line thickness.

Start Arrow — Sets the line start arrow.

End Arrow — Sets the line end arrow.

Arrow Size — Sets the start and end arrow size.

Smooth — If true then the line is drawn as a Bezier curve.

2.9.9 Fill Style
o Fill Style

Color - Sets the fill color.
Pattern — Sets the fill pattern.

2.9.10 Curve Style

e Curve Style

Pattern — Sets the curve pattern.
Thickness — Sets the curve thickness.

2.9.11 Figaro

e Figaro

Figaro Database File — the Figaro database file path.
Figaro Mode —

Figaro Options File — the Figaro options file path.
Figaro Process — the Figaro process location.

50

2.9.12 Debugger

e Algorithmic Debugger
= GDB Path - the gnu debugger path
= GDB Command Timeout — timeout for gdb commands.
= Display C frames — if true then shows the C stack frames.

= Display unknown frames — if true then shows the unknown stack frames. Unknown stack frames
means frames whose file path is unknown.

= Clear old output on a new run — if true then clears the output window on new run.
= Clear old log on new run — if true then clears the log window on new run.
e Transformational Debugger
= Always show Transformational Debugger after compilation — if true then always open the
Transformational Debugger window after model compilation.

= Generate operations in the info xml — if true then adds the operations information in the info xml
file.

2.9.13 FMI

e Export
= Version 1.0 — Sets the FMI export version to 1.0
= Version 2.0 — Sets the FMI export version to 2.0

2.10 The Equation-based Debugger

This section gives a short description how to get started using the equation-based debugger in OMEdit.

2.10.1 Enable Tracing Symbolic Transformations

This enables tracing symbolic transformations of equations. It is optional but strongly recommended in order to
fully use the debugger. The compilation time overhead from having this tracing on is less than 1%, however, in
addition to that, some time is needed for the system to write the xml file containing the transformation tracing
information.

Enable +d=infoXmlOperations in Tools->Options->Simulation (see section 2.9.5) OR
alternatively click on the checkbox Generate operations in the info xml in Tools->Options->Debugger (see
section 2.9.12) which performs the same thing.

This adds all the transformations performed by OpenModelica on the equations and variables stored in the
model_info.xml file. This is necessary for the debugger to be able to show the whole path from the source
equation(s) to the position of the bug.

2.10.2 Load a Model to Debug

Load an interesting model. We will use the package
https://openmodelica.org/svn/OpenModelica/trunk/testsuite/openmodelica/debugging/D
ebugging.mo since it contains suitable, broken models to demonstrate common errors.

https://openmodelica.org/svn/OpenModelica/trunk/testsuite/openmodelica/debugging/Debugging.mo�
https://openmodelica.org/svn/OpenModelica/trunk/testsuite/openmodelica/debugging/Debugging.mo�

51

2.10.3 Simulate and Start the Debugger

Select and simulate the model as usual. For example, if using the Debugging package, select the model
Debugging.Chattering.ChatteringEventsl. If there is an error, you will get a clickable link that starts
the debugger. If the user interface is unresponsive or the running simulation uses too much processing power,
click cancel simulation first.

OMEdit - Simulation

Running Simulation of Debugging.Chattering.ChatteringEvents1.
Please wait for a while.

| E——

Cancel Simulation

ot OMEdit - Debugging.Chattering.ChatteringEvents1 Simulation Output =

Qutput Compilation

C:/Users/adeas3l/AppData/Local/Temp/OpenModelica/OMEdit/Debugging.Chatteri
ng.ChatteringEventsl.exe -port=63475 -logFormat=xml -w -1lv=LOG_STATS
stdout | info | Chattering detected around time
0.500000005..0.500000555001 (100 state events in a row with a total time
delta less than the step size 0.002). This can be a performance
bottleneck. Use -lv LOG_EVENTS for more information. The zerc-crossing
was: x > 0.0 Debug more

y

X:-196.26 Y:100.23 | @ Welcome | of Modeing | £ Plotting

Figure 2-16. Simulating the model.

2.10.4 Use the Transformation Debugger for Browsing

Use the transformation debugger. It opens on the equation where the error was found. You can browse through
the dependencies (variables that are defined by the equation, or the equation is dependent on), and similar for
variables. The equations and variables form a bipartite graph that you can walk.

If the +d=infoXmlOperations was used or you clicked the “generate operations” button, the operations
performed on the equations and variables can be viewed. In the example package, there are not a lot of
operations because the models are small.

Try some larger models, e.g. in the MultiBody library or some other library, to see more operations with
several transformation steps between different versions of the relevant equation(s). If you do not trigger any
errors in a model, you can still open the debugger, using File->Open Transformations File
(model_info.xml).

52

F ™
@ OMEdit - Transformational Debugger - @M
@ |C:,ﬂ..lsersfadeasSlprpDaia,ﬂ_omI,FrempfOpenModeIiijMEdithebugging.Chatbering.ChatheringE\remsl_info.ml
Variables |Source Browser
Variables Browser Defined In Equations Used In Equations C: /Usersfadeas31/Desktop/Debugging.mo
- - r - - - . =
Find Variables Index Type Equation Index Type Equation chattering behaviour" 2
|| Case Sensitive [Regu\ar Expression ~ model ChatteringEventsl —
"Exhibits chattering after t©
Expend A ,“ Colapee Al = 0.5, with generated events" E
Variables Comment Line Location 7 Eeal x(start=1, fixed=true); R
. Real ¥
x 7 ChlUser.gin| | m v || I | Real z:
¥ 8§ Ci\User.gin [Varable Operations 10 equation
9 C:\User...gin Operations 11 z = 1if x > 0 then -1 else 1;
12 Yy = Z%z;
13 der(x) = v:
14 annotation
(Documentation (info="<html>
15 <p>»After t = 0.5, chattering takes
o m] b place, due to the discontinuity in
= the right hand side of the first
Mﬂs equation.</p>
EJL‘THLM Defines | Depends 16 <p>Chattering can be detected
Index Type Equation Variable Variable because lots of tightly spaced
1 initial (assign..x = 1.0 z Lx E"JE:JFS are ge.nerat,ed. The feedback
L . to the user should allow to
2 initial (assign..lse 1.0 identify the eguation from which
3 initial (assignm...20*z the zero crossing function that
4 initial (assign...(x) = y ge:_]e;at.es the events
originates.</p>
5 regular (assign..lse1.0 Equation Operations 17 </html>"), experiment (StopTime=1));
6 regular (assignm... 20* z Operations _ 8 end ChatteringEventsl:
7 regular (assign..(x) =y solved: z = if x > 0.0 then -1.0 else 1.0 20 model ChatteringEvents?2
original: z = ifx > 0 then -1 else 1; ..ned: z = if x > 0.0 then -1.0 else 1.0; 21 "Exhibits chattering after t
= 0.422, with generated events"
22 Eeal x(start=1l, fixed=true):; -
4 T G < T | »

Figure 2-17. Transfomation Debugger.

2.11 The Algorit

hmic Debugger

This section gives a short description how to get started using the algorithmic debugger in OMEdit. See section
2.9.12 for further details of debugger options/settings. The Algorithmic Debugger window can be launched
from Tools->Windows->Algorithmic Debugger.

2.11.1 Adding Breakpoints

There are two ways to add the breakpoints,

e Click directly on the line number in Text View, a red circle is created indicating a breakpoint as
shown in Figure 2-18.

e Open the Algorithmic Debugger window and add a breakpoint using the right click menu of
Breakpoints Browser window.

53

d OMEdit - OpenModelica Connection Editor - [SimulationMadel]

= e |

Efile Edit View Simulation FMI Export Jools Help
FEHH X0 BQaaQiwemnoeoBN[) EQO9»yes B 9 [X »

Libraries Browser g X ‘Il-l oA -lﬂ | Wiriteable ‘ Model ‘ Text View | C:/Usersfadeas31/.. imulationModel.mo ‘ Line: 1, Col: 0 | ﬁ‘

- | &

Libraries
Complex Eeal x=(start
7% Modelica
0‘ ModelicaReference [] ®x = getValueMultipliedByTwo (x) !
| ModelicaServices v
[E OpenModelica

|:|E| SimulaticnModel

E getValueMultipliedBy Two

1 model SimmlationModel
1):

1):

Real wy(start
algorithm

Hall-
end SimulationModel:

¥:96.28 Y: 100.83 €L welcome | 4 Modeling | £ Plotting

Figure 2-18: Adding breakpoint in Text View.

2.11.2 Start the Algorithmic Debugger

You should add breakpoints before starting the debugger because sometimes the simulation finishes quickly
and you won’t get any chance to add the breakpoints.

There are four ways to start the debugger,

Open the Simulation Setup and click on Launch Algorithmic Debugger before pressing
Simulate.
Right click the model in Libraries Browser and select Simulate with Algorithmic

Debugger.
Open the Algorithmic Debugger window and from menu select Debug->Debug

Configurations (see section 2.11.3).
Open the Algorithmic Debugger window and from menu select Debug->Attach to Running
Process (see section 2.11.4).

54

2.11.3 Debug Configurations

If you already have a simulation executable with debugging symbols outside of OMEdit then you can use the
Debug->Debug Configurations option to load it.

The debugger also supports MetaModelica data structures so one can debug omc executable. Select omc
executable as program and write the name of the mos script file in Arguments.

- ~
@ OMEdit - Debug Configurations ﬁ
R

@& MNew_configurationl Mame: |New_n:c:nﬁguraﬁnn1 |

Program: || | Browse... |
Warking Directory':| | Browse... |

GDE Path: |C:,.'DMDE'u',.’b::nls,.’mingw,.'bin,.’gdb.Exe | Browse... |
Arguments:

[Apply] [Reset]

[Save] [Sa‘u’e &Debug] ’ Cancel]

Figure 2-19: Debug Configurations.

2.11.4 Attach to Running Process

If you already have a running simulation executable with debugging symbols outside of OMEdit then you can
use the Debug->Attach to Running Process option to attach the debugger with it. Figure 2-20 shows the
Attach to Running Process dialog. The dialog shows the list of processes running on the machine. The
user selects the program that he/she wish to debug. OMEdit debugger attaches to the process.

55

[@ OMEdit - Attach to Running Process ﬁ1
Attach to Process ID: |
| Filter Processes |

Process ID Mame . it
a760 ALM Updates Motifier.exe —|
2164 AESTSrd exe
2288 AppleMobileDeviceService. exe
3896 ETStackServerexe
1612 ETTray.exe
7596 BluetoothHeadsetProxy.exe
7972 CCCexe
7580 C55.55%erviceManager.exe
6628 CamRecorderexe
4960 ComExec.exe
588 CmRcService.exe
628 ConversicnService,exe
1744 Feoccricor
0K, Refresh] [Cancel

Figure 2-20: Attach to Running Process.

2.11.5 Using the Algorithmic Debugger Window

Figure 2-21 shows the Algorithmic Debugger window. The window contains the following browsers,

e Stack Frames Browser — shows the list of frames. It contains the program context buttons like resume,
interrupt, exit, step over, step in, step return. It also contains a threads drop down which allows
switching between different threads.

e BreakPoints Browser — shows the list of breakpoints. Allows adding/editing/removing breakpoints.

e Locals Browser — Shows the list of local variables with values. Select the variable and the value will be
shown in the bottom right window. This is just for convenience because some variables might have long
values.

e Debugger CLI — shows the commands sent to gdb and their responses. This is for advanced users who
want to have more control of the debugger. It allows sending commands to gdb.

e Output Browser — shows the output of the debugged executable.

56

F ™
@ OMEdit - Algorithmic Debugger [EE e

Debug View

Stack Frames Browser & X BreakPoints Browser & X Locals Browser q o

[| |E V= ‘Threads:|5hopp...eadl Line File Mame Type Value

Function Line File

® 5 C/Users..ByTwo.mo inValue Real 1

=P getValueMultipliedByTweo 5 C:/users/...dbytwo.mo outValue Real 511434..23e-295
Simulation...Function .1 5 C:/users/...nModel.mo

m

Simulation..|[Equations 90 C:fusers/a...el_DGinz.c
symbelic_initialization
initialization

initializeModel

C:/Users/adeas31/Desktop faetvalueMultipliedByTwo.ma
1 function getValueMultipliedByTwo
2 input EReal inValue;

output Real ocutValue;
algorithm

outValues := inValue * 2;
end getValueMultipliedByTwo;

[y LT IS

Debugger CLI & X OutputBrowser B X
30-data-evaluate- -
expression {gdb)
" _outValue™

s

1

A
|| send

Figure 2-21: Algorithmic Debugger.

57

Chapter 3

2D Plotting

This chapter covers the 2D plotting available in OpenModelica via OMNotebook, OMShell and command line
script. The plotting is based on OMPIot application.

3.1 Example

class HelloWorld
Real x(start = 1);
parameter Real a = 1;
equation
der(x) = - a * x;
end HelloWorld;

To create a simple time plot the above model Hel loWor Id is simulated. To reduce the amount of simulation
data in this example the number of intervals is limited with the argument numberOfiIntervals=10. The
simulation is started with the command below.

simulate(HelloWorld, startTime=0, stopTime=4, numberOfintervals=10);

When the simulation is finished the file Hel loworld res.plt contains the simulation data. The contents of
the file is the following (some formatting has been applied).

0 1
4.440892098500626e-013 0.9999999999995559
0.4444444444444444 0.6411803884299349
0.8888888888888888 0.411112290507163
1.333333333333333 0.2635971381157249
1.777777777777778 0.1690133154060587
2.222222222222222 0.1083680232218813
2.666666666666667 0.06948345122279623
3.111111111111112 0.04455142624447787
3.555555555555556 0.02856550078454138
4 0.01831563888872685

Diagrams are now created with the new OMP ot program by using the following command.
plot(x);
seems to correspond well with the data.

o
o
=4
=
-
.
o
|
W
w
w
wn

Figure 3-1: Simple 2D plot of the HelloWorld example.

By re-simulating and saving results at many more points, e.g. using the default 500 intervals, a much smoother
plot can be obtained.

simulate(HelloWorld, startTime=0, stopTime=4, numberOflntervals=500);
plot(x);

0.8 o

0.6 o

0.4 -

0.2 o

&

=
=
s
=
—
.
(]
]
w
w
w
wn

time

Figure 3-2: Simple 2D plot of the HellowWorld example with larger number of points.

3.2 Plotting Commands and their Options

g

59

Command

Description

plot(x)

Creates a diagram with data from the last simulation that
had a variable named x.

plot({X,y,---, z})

Like the previous command, but with several variables.

plotParametric(x, y)

Creates a parametric diagram with data from the last
simulated variables named x and y.

plotParametric(x, {yl,y2})

Like the previous command, but with several variables.

plotAll)

Creates a diagram with all variables from the last

simulated model as functions of time.

All of these commands can have any number of optional arguments to further customize the the resulting
diagram. The available options and their allowed values are listed below.

Option Default value Description
fileName The result of the last | The name of the result-file containing the variables to
simulation plot

grid true Determines whether or not a grid is shown in the
diagram.

title This text will be used as the diagram title.

logX false Determines whether or not the horizontal axis is
logarithmically scaled.

logY false Determines whether or not the wvertical axis is
logarithmically scaled.

xLabel time’ This text will be used as the horizontal label in the
diagram.

yLabel This text will be used as the vertical label in the
diagram.

xRange {0, 0} Determines the horizontal interval that is visible in the
diagram. {0, 0} will select a suitable range.

yRange {0, 0} Determines the vertical interval that is visible in the
diagram. {0, 0} will select a suitable range.

curveWidth 1.0 Defines the width of the curve.

curveStyle 1 Defines the style of the curve.
SolidLine=1, DashLine=2, DotLine=3, DashDotLine=4,
DashDotDotLine=5, Sticks=6, Steps=7.

legendPosition | “top” Defines the position of the legend in the diagram.
Possible values are left, right, top, bottom and none.

externalWindow | false Opens a new OMPlot window if set to true otherwise

update the current opened window.

60

Chapter 4

OMNotebook with DrModelica and DrControl

This chapter covers the OpenModelica electronic notebook subsystem, called OMNotebook, together with the
DrModelica tutoring system for teaching Modelica, and DrControl for teaching control together with Modelica.
Both are using such notebooks.

4.1 Interactive Notebooks with Literate Programming

Interactive Electronic Notebooks are active documents that may contain technical computations and text, as
well as graphics. Hence, these documents are suitable to be used for teaching and experimentation, simulation
scripting, model documentation and storage, etc.

4.1.1 Mathematica Notebooks

Literate Programming (Knuth 1984) is a form of programming where programs are integrated with
documentation in the same document. Mathematica notebooks (Wolfram 1997) is one of the first WYSIWYG
(What-Y ou-See-Is-What-You-Get) systems that support Literate Programming. Such notebooks are used, e.g.,
in the MathModelica modeling and simulation environment, e.g. see Figure 4-1below and Chapter 19 in
(Fritzson 2004)

4.1.2 OMNotebook

The OMNotebook software (Axelsson 2005, Fernstrom 2006) is a new open source free software that gives an
interactive WYSIWYG (What-You-See-Is-What-You-Get) realization of Literate Programming, a form of
programming where programs are integrated with documentation in the same document.

The OMNotebook facility is actually an interactive WYSIWYG (What-You-See-Is-What-Y ou-Get)
realization of Literate Programming, a form of programming where programs are integrated with
documentation in the same document. OMNotebook is a simple open-source software tool for an electronic
notebook supporting Modelica.

A more advanced electronic notebook tool, also supporting mathematical typesetting and many other
facilities, is provided by Mathematica notebooks in the MathModelica environment, see Figure 4-1.

61

E E valuated Modeling, Code Generation, and... [H[=] E3
|

-
Modeling E Evaluated Modeling. Code Generation, and... [H[=] E3
bl 1

Simulati -

Process 4l 1 E valuated Modeling, Code Generation, and... [H[=] E3
(r—

- using Mathe Toar o] T Umatred |

E Evaluated Modeling. Code Generation, and... !Em
At ekt ePthe e o

- 4
e erax | 2 The Seesawdi £ = WRRgULEtGCGLAx] I
R o ve i DD = (. phemiceluslurs,
== ClmgoneiMeteix {1, 5., 1, 5., 0, 0, ¢, 031,
Tres can camly b waures .1 Tdeneisgrmteiz 121 |

PrT— Sree v il demnn con

‘Sewevean S
I — £ {f Metelxloom
= . wnew el L,
CEm, *34 (RIB1 I SLIO0 LML A3 W02 G
C3URELES .26 00RE L LRRIDS L33.035R L. 42800 B.2IELD L. anbel o

Map et eixtaem, 3 The conoml lus ke e 8 b = - VM, SR YK T MERRITNENG OF 06 ERms Thes DAEs O
Pliemrg cleacd oo mazrs @ mradns H = £ WM, = LI

mradnd bech vmeh

1 Introductior

Conerud mmzra o
Mress gager wn |
Mrareil pglicn
omderes wrd de

Ehargs rarsss of vanabics m oy AS01 charssars |recekd fir codk pure s o -

‘ A0z A4|| LA 7

Figure 4-1. Examples of Mathematica notebooks in the MathModelica modeling and simulation environment.

Traditional documents, e.g. books and reports, essentially always have a hierarchical structure. They are
divided into sections, subsections, paragraphs, etc. Both the document itself and its sections usually have
headings as labels for easier navigation. This kind of structure is also reflected in electronic notebooks. Every
notebook corresponds to one document (one file) and contains a tree structure of cells. A cell can have different
kinds of contents, and can even contain other cells. The notebook hierarchy of cells thus reflects the hierarchy
of sections and subsections in a traditional document such as a book.

4.2 DrModelica Tutoring System —an Application of OMNotebook

Understanding programs is hard, especially code written by someone else. For educational purposes it is
essential to be able to show the source code and to give an explanation of it at the same time.

Moreover, it is important to show the result of the source code’s execution. In modeling and simulation it is
also important to have the source code, the documentation about the source code, the execution results of the
simulation model, and the documentation of the simulation results in the same document. The reason is that the
problem solving process in computational simulation is an iterative process that often requires a modification
of the original mathematical model and its software implementation after the interpretation and validation of
the computed results corresponding to an initial model.

Most of the environments associated with equation-based modeling languages focus more on providing
efficient numerical algorithms rather than giving attention to the aspects that should facilitate the learning and
teaching of the language. There is a need for an environment facilitating the learning and understanding of
Modelica. These are the reasons for developing the DrModelica teaching material for Modelica and for
teaching modeling and simulation.

62

An earlier version of DrModelica was developed using the MathModelica (now Wolfram SystemModeler)
environment. The rest of this chapter is concerned with the OMNotebook version of DrModelica and on the
OMNotebook tool itself.

DrModelica has a hierarchical structure represented as notebooks. The front-page notebook is similar to a
table of contents that holds all other notebooks together by providing links to them. This particular notebook is
the first page the user will see (Figure 4-2).

E OMNotebook: DrModelica.onb®

File Edit Cell Format Insert ‘Window Help

Version 2006-04-11 |

D I'M Od e | iC QModelica Edition

Copyright () Linképing University, PELAB, 2003-2006, Wiley-TIEEE Press, IModelica & ssociation.
Contact: Openhlodelica@ida lu ze; Openhlodelica Project web site:

wwrw tda . sefprojects/ Openbdodelca

Book web page: www mathcore. com/driModelica; Book author: Peter Fritzson@ida I se

DibIodelica Authors: (2003 versiow) Susanna Monemat, Eva-Lena Lengguist Sandelin, Peter Fritzson, Peter Bunus
Dilvlodelica Authors: (2005 and later updates): Peter Fritzson

This DrModelica noteboak has been developed to facilitate learning the Modelica language as well as
praviding an iniraduction io object-orienied modeling and simudation. It is hased on and is
supplementary material io the Modelica book: Peigr Fritzson: "Frinciples af Objeci-Oriented
Modeling and Simulation with Modelica” (2004), 040 pages, Wiley-IEEE Press, ISEN 0-471-471631.
Al of the examples and exercises in DrModelica and the page raferences are from that book, Most of
the text in DrModelica is also based on that book.

Detailed Copyright and Acknowledgment Information
Getting Started Using OMNotebook
OpenModelica commands
Berkeley license Openiodelica
1 A Quick Tour of Modelica

1.1 Getting Started - First Basic Examples

There 15 a long tpadifion that thefrst sample program in any computer language is a trivial program
printing the strifg "He]lo World"
language, printing Tsheng

a trival differential equahon The second example shows how you can write a model that solves a
Differential Algebraic Equation Systemn (p. 19). In the Van der Pol (p. 22) exarnple declaration as well as

witiahzation and prefiz usage are shown in a slightly more complicated way.

b. 19 in Peter Fritzson's book). Since Iodelica 1s an equation based
not make much sence. Instead, our Hello World Modelica program solves

1.2 Classes and Instances

In Modelica objects are created implicitly just by Declanng Tnstances of Classes (p. 26). Almost anything

m Modelica 15 a class, but there are some keywords for specific use of the class concept, called =

Ready

63

Figure 4-2. The front-page notebook of the OMNotebook version of the DrModelica tutoring system.

In each chapter of DrModelica the user is presented a short summary of the corresponding chapter of the book
“Principles of Object-Oriented Modeling and Simulation with Modelica 2.1” by Peter Fritzson. The summary

introduces some keywords, being hyperlinks that will lead the user to other notebooks describing the keywords
in detail.

41 DMNotebook: HelloWorld.onb®
File Edit el Format Insert Window Help

First Basic Class

1 HelloWorld

The program contans a declaration of a class called He 11 oWo rld with two felds and one equation. The first field 1z
the vaniable x which is mitialized to a start value 2 at the time when the simulation starts. The second field iz the variable
a, which 15 a constant that is mitialized to 2 at the beginming of the simulation. Such a constant is prefized by the
keyword parameter th order to idicate that it i constant during simulation but is a mo del parameter that can be
changed between simulations.

The Modelica program solves a trivial differential equationn =% = - a * x. The vanable x 15 a state vanable
that can change value over tune. The x ' is the time derivative of z.

class HelloWorld
Real x(start = 1);

parameter Real a = 1;
equation
der({x) = - a * x;

end HelloWorld;

Ok

2 Simulation of HelloWorld

simulate{ HelloWorld, startTime=0, stopTime=4 };

[done]

ploti x };

Plot by OpenModelica

oar 7

08 7

o2r 7

ool

00 0.5 10 15 20 25 20 25 40

Ready

Figure 4-3. The Hel loWorld class simulated and plotted using the OMNotebook version of DrModelica.

64

Now, let us consider that the link “Helloworld” in DrModelica Section is clicked by the user. The new
HelloWorld notebook (see Figure 4-3), to which the user is being linked, is not only a textual description but
also contains one or more examples explaining the specific keyword. In this class, Hel loWor1d, a differential
equation is specified.

No information in a notebook is fixed, which implies that the user can add, change, or remove anything in a
notebook. Alternatively, the user can create an entirely new notebook in order to write his/her own programs or
copy examples from other notebooks. This new notebook can be linked from existing notebooks.

{l oMNotebook: drmodelica.onb i [m] 3]
File Edit Cell Format Insert Window Help
Algorithms and Functions
Algorithins
In Modelica, algorithmic statements can only occur w1t11111 Algorithin Sectiong (p. 285),
startmg with the keyword algorithm Smnple A g (p. 287) iz the
most conumon land of statements in algorithm E:eCtlDllE: Tllele ig a special form of
assignment statement that is only used when the right hand side contams a call to a
Function with Multiple Results (p. 287).
The for-Statement (alzo called for-loop) is a convenient way of expressmg iteration (p.
288). When uging the for-loop for iteration we must be able to express the range of
values over which the iteration variable should iterate in a closed form as an iferation
expression. For cases where this is not feagible there is also a While-loop iteration
construct m Modelica (p. 290). For conditional expreszions the if-Statement (p. 292) ig
uged. When-Statements (p. 293) are used to express actions af event instants and are
clogely related to when-equations. The Reinit (p. 296) statement can be used in
when-statements to define new values for contmuous-tune stafe variables of a model at
an event.
The Aszert (p. 298) statement provides a convenient means for specifying checks on
model validity within a model.
The most common usage of Ternunate (p. 298) 1 to give more appropriate stopping
criteria for termunating a simulation than a fixed pomt in time.
Exercises :| J
Exercise 1
Exercise 2
Exercise 3
Exercise 4
Exercise S
Functions
The body of a Modelica function is a kind of algorithun section that contains procedural
algoritlunic code to be executed when the fimction is Called (p. 300). Since a function is
a restricted and enhanced kind of clags. it ig nossible to inherit an existine fimction =l
Ready 4

Figure 4-4. DrModelica Chapter on Algorithms and Functions in the main page of the OMNotebook version of
DrModelica.

When a class has been successfully evaluated the user can simulate and plot the result, as previously depicted
in Figure 4-3 for the simple Hel loWor Id example model.

65

After reading a chapter in DrModelica the user can immediately practice the newly acquired information by
doing the exercises that concern the specific chapter. Exercises have been written in order to elucidate language
constructs step by step based on the pedagogical assumption that a student learns better “using the strategy of
learning by doing”. The exercises consist of either theoretical questions or practical programming assignments.
All exercises provide answers in order to give the user immediate feedback.

Figure 4-4 shows part of Chapter 9 of the DrModelica teaching material. Here the user can read about
language constructs, like algorithm sections, when-statements, and reinit equations, and then practice
these constructs by solving the exercises corresponding to the recently studied section.

M OMMotebook: Exercisel.nb 10| =|

File Edit Cell Format Insert Swindow Help

Exercise 1

Using Algorithm Sections

TWrite a function, Sum, which calculates the sum of numbers, in an array of arbitrary size.

|]

TWnte a fanction, Average, which calculates the average of munbers, m an array of arbitrary size. Average
should use malkee a finction call to Sum.

|]

Write a class, LargestAverage, that has two arrays and calculates the average of each of them. Then it
cotpares the averages and sets a variable to true of the first array iz larger than the second and otherwise falze.

|]

Answer

Ready A
Figure 4-5. Exercise 1 in Chapter 9 of DrModelica
Exercise 1 from Chapter 9 is shown in Figure 4-5. In this exercise the user has the opportunity to practice

different language constructs and then compare the solution to the answer for the exercise. Notice that the
answer is not visible until the Answer section is expanded. The answer is shown in Figure 4-6.

66

I OMNotebook: Exercisel.nb*®
File Edit Cel Format Insert ‘Window Help

[
Answer

Sum

function Sum
input Beal[:] x;
output Real sum;
algorithm
for 1 in l:size(x,1) loop
sum := sum + x[i];
end for;

end Sum;

Average

function Average
input Beal[:] x;
output Real average;
protected
Real sum;
algoxrithm
average := Sumix) / size(x,1);

end Average;

LargestAverage

class LargestAverage
parameter Integer[:] Al = {1, 2, 3, 4,
parameter Integer[:] AZ = {7, 8, 9}:
Real awveragedl, awveragedZ;
Boolean AlLargest(start = false);
algorithm
averagehl = Average(il);

averagehl
if awerageiAl = averageiZ then

Average (AZ) ;

AlLargest := true;
else

AlLargest := false;
end if;

end Largestiverage;

Sinulation of LargestAverage

S}y

simulate{ LargestAverage J;

variable A 1Largest iz false (= 03

Ready

When we lool at the values in the vanables we see that 42 has the largest average (2) and therefore the

s el

Figure 4-6. The answer section to Exercise 1 in Chapter 9 of DrModelica.

67

4.3 DrControl Tutorial for Teaching Control Theory

DrControl is an interactive OMNotebook document aimed at teaching control theory. It is included in the
OpenModelica distribution and appears under the directory OpenModelical.9.2/share/
omnotebook/drcontrol.

The front-page of DrControl resembles a linked table of content that can be used as a navigation center. The
content list contains topics like:

e Getting started

e The control problem in ordinary life
e Feedback loop

¢ Mathematical modeling

e Transfer function

e Stability

e Example of controlling a DC-motor
e Feedforward compensation

e State-space form

e State observation

e Closed loop control system.

e Reconstructed system

e Linear quadratic optimization

e Linearization

Each entry in this list leads to a new notebook page where either the theory is explained with Modelica
examples or an exercise with a solution is provided to illustrate the background theory. Below we show a few
sections of DrControl.

4.3.1 Feedback Loop

One of the basic concepts of control theory is using feedback loops either for neutralizing the disturbances from
the surroundings or a desire for a smoother output.

In Figure 4-7, control of a simple car model is illustrated where the car velocity on a road is controlled, first
with an open loop control, and then compared to a closed loop system with a feedback loop. The car has a mass
m, velocity y, and aerodynamic coefficient a. The 0 is the road slope, which in this case can be regarded as
noise.

68

File Edit Cell Format Insert Window Help

Feedback

One important method in designing control system is a feedback loop. It can be used to eliminate the
influence of noise or to decrease the output error.

rit) elt)

—>Q

vith
Regulator

1 Example

Assume that we want to control the speed of a car on the road. The car has a mass m, velocity y, and
aerodynamic coefficient a. The 0 is the road slope, which in this case can be regarded as noise.

my =u—ay —mgsin(d)
If we want a reference speed of 20 mvs for a car with m=1500 kg, «=250 Ns/m, =0 rad, how high should

the amplification factor be in the regulator?
Try with u = 250*r.

vit) = mgsin(B)=0

L.

-

Open Loop

loadModel(Modelica)
true

model noFeedback

import SI = Modelica.SIunits;

SI.Velocity y; // output signal without
noise, theta = @ -> v(t) = @

&T Valnritu wNnica- £/ nutnut cinnal with nnica

Figure 4-7. Feedback loop

Lets look at the Modelica model for the open loop controlled car:
my =u —ay — mgsin{d)

model NoFeedback
import SI = Modelica.Slunits;
SI.Velocity y "No noise"';
SI.Velocity yNoise "With noise";
parameter Sl._Mass m = 1500;
parameter Real alpha = 200;
parameter SI. ngle theta = 5*3.14/180;
parameter Sl.Acceleration g = 9.82;
SI1.Force u;
SI.Velocity r = 20 "Reference signal';
equation
m*der(y)=u - alpha*y;
m*der(yNoise)= u - alpha*yNoise —
m*g*sin(theta);
u = 250A*r;
end NoFeedback;

By applying a road slope angle different from zero the car velocity is influenced which can be regarded as
noise in this model. The output signal in Figure 4-8 is stable but an overshoot can be observed compared to the
reference signal. Naturally the overshoot is not desired and the student will in the next exercise learn how to get
rid of this undesired behavior of the system.

69

fie Ede Cet Formur It Wndow Hep

bt =

1.1 Open Loop |

LoadModel (Hodelica)

parameter aI.Mass m = 1500%

parameter Real alpha = 200:

BI.Angle theta = 3+3.141382/180;
SI.ncceleration g = 3.83;

u = 250°x
and noresdhacks

reFeechck
simulate (noFeedback, stopTine=100)
plot{ [y, z, yNoise})

e

Plat by Oy

C
e

In the above fipwe the cutput siguals (v and vNoise) and the reference signal (1) are ploted. We have an overshoot with the comtrol law that we have chosen. Can vou design an object oniented
Resde Taarh

Figure 4-8. Open loop control example.

The closed car model with a proportional regulator is shown below:

u=K=(r—-y)

model WithFeedback
import SI = Modelica.Slunits;
S1.Velocity y "Output, No noise";
Sl.Velocity yNoise "Output With noise";
parameter Sl_Mass m = 1500;
parameter Real alpha = 250;
parameter Sl_Angle theta = 5*3.14/180;
parameter Sl_Acceleration g = 9.82;
SI.Force u;
Sl.Force uNoise;
Sl.Velocity r = 20 "Reference signal"';
equation
m*der(y) = u - alpha*y;
m*der(yNoise) = uNoise - alpha*yNois —
m*g*sin(theta);
u = 5000*(r - y);
uNoise = 5000*(r - yNoise);
end WithFeedback;

By using the information about the current level of the output signal and re-tune the regulator the output
guantity can be controlled towards the reference signal smoothly and without an overshoot, as shown in Figure
4-9.

In the above simple example the flat modeling approach was adopted since it was the fastest one to quickly
obtain a working model. However, one could use the object oriented approach and encapsulate the car and
regulator models in separate classes with the Modelica connector mechanism in between.

70

File Edit Cell Format Insert Window Help

|

model withFeedback
import SI = Modelica.SIunits;
SI.velocity y;
SI.Velocity yNoise;
parameter SI.Mass m = 1500;
parameter Real alpha = 250;
parameter SI.Angle theta = 5*3.141592/180;
parameter SI.Acceleration g = 9.82;
SI.Force u;
SI.Force uNoise;
SI.velocity r=20;
equation
m*der (y)=u-alpha*y;
m*der (yNoise)=uNoise-alpha*yNoise-m*g*sin(theta);
u = 5000*(r-y);
uNoise = 5000*(r-yNoise);
end withFeedback;

simulate(withFeedback, stopTime=10)

plot({r,y,yNoise}) // (reference signal, output signal with theta = 0,
output signal with theta <> @)

true
Plot by Op

15 er
10 o

5

@yNoise
0
n) A & 2 i)

Ready Ln4, Col 49

Figure 4-9. Closed loop control example.

4.3.2 Mathematical Modeling with Characteristic Equations

In most systems the relation between the inputs and outputs can be described by a linear differential equation.
Tearing apart the solution of the differential equation into homogenous and particular parts is an important
technique taught to the students in engineering courses, also illustrated in Figure 4-10.

d™y d"ly B d™u
df” +f11 dtn_l + ...+f1n}? == bl}dt—m++ b

Now let us examine a second order system:

- +b
m—1 df mu

j+ay+ay=1

model NegRoots
Real y;
Real der_y;
parameter Real al
parameter Real a2
equation

I
N

71

der_y = der(y);
der(der_y) + al*der_y + a2*y = 1;
end NegRoots;

Choosing different values for a; and a; leads to different behavior as shown in Figure 4-11 and Figure 4-12.

File Edit Cell Format Insert Window Help

= 5 K QU= <@

Mathematical Modeling

In most systems the relation between the inputs and outputs can be approximated by a linear differential
equation.

n

d dnt dm d
E}‘(t) + ul—d”_ly(t) +ota,y(t) = boﬁu(o +.+ bm,lyu(t)+bmu(t)

where the coefficients a; and b; are constants. The above differential equation has a homogeneous and a
particular solution:

The homogeneous solution where u is set to zero has the form:
Vi = Crelet + o 4 0%nf
where

At AT+ ta, g4 +a,=0

|
|
|
¥=antds]
]
]
]
]

—

Example

Consider the following model.

Examine the behavior of the system for different values on a, and a,

1.

—

d: »i dl 11 11
V@ ey tay® =1
Characteristic Equation with Negative Real Roots, A=-1,-2]
model negRoots
Real y;
Real der_y;
parameter Real al
parameter Real a2
equation
der_y = der(y);
der(der_y) + al*der y + a2*y = 1;
end negRoots;

{negRoots}
simulate(neaRoots. stonTime=10) 1

3;
2;

Figure 4-10. Mathematical modeling with characteristic equation.

In the first example the values of a; and a, are chosen in such way that the characteristic equation has negative
real roots and thereby a stable output response, see Figure 4-11.

72

File Edit Cell Format Insert Window Help

N b= y 1 Q| B U |

1 Example

Consider the following model.

d? dt

Y8 ta gyt +axy(e) =1
Examine the behavior of the system for different values on a, and a;,

1.1 Characteristic Equation with Negative Real Roots, 3=-1,-2

model negRoots
Real y;
Real der_y;
parameter Real al
parameter Real a2
equation
der_y = der(y);
der(der_y) + al*der_y + a2*y = 1;
end negRoots;

{negRoots}
simulate(negRoots, stopTime=18)

3;
2;

record SimulationResult
resultFile = "negRoots_res.plt"
end SimulationResult;

plot({y})
frue
Plot by OpenModelica

0.5

0.4

0.3

0.2

0.1

time

Figure 4-11. Characteristic eg. with real negative roots.

10

Ready

44

The importance of the sign of the roots in the characteristic equation is illustrated in Figure 4-11 and Figure
4-12, e.g., a stable system with negative real roots and an unstable system with positive imaginary roots

resulting in oscillations.

model NegRoots

Real y;

Real der_y;

parameter Real al = -2;
parameter Real a2 = 10;

equation

der_y = der(y);

der(der_y) + al*der_y + a2*y = 1;
end NegRoots;

File Edit Cell Format Insert Window Help

W= s ¥ L = ":g v @

1.4 Characteristic Equation with Imaginary Roots with Positive Real Part, A=1+3i,1-3i

i L

model imgPosRoots

Real y;

Real der_y;

parameter Real al = -2;

parameter Real a2 = 10;
equation

der_y = der(y);
der(der_y) + al*der_y + a2*y = 1;
end imgPosRoots;
{imgPosRoots}
simulate(imgPosRoots, number0fIntervals=1000, stopTime=15.5)
record SimulationResult

resultFile = "imgPosRoots_res.plt"
end SimulationResult;

plot(y)
true
Plot by OpenModelica

500000

400000

300000

200000

100000 oy

]
-100000
-200000
0 5 10 15
time 41

As concluding words one can say that if the characteristic equation has negative real roots then the
homogenous solution dies out. On the other hand real positive root leads to that the signal becomes

Ready

Figure 4-12. Characteristic eq. with positive imaginary roots.

File Edit Cell Format Insert Window Help

N[=2 e [||« | @
1 Example J
Consider a tank system with the following transfer function]]
1
G(s) = ; f T
T

What is the weight function? Can you plot the step response of the tank?

1.

—

Tank Transfer Function

loadModel (Modelica.Blocks)

model Tank
Modelica.Blocks.Continuous.TransferFunction 6(b={1/A},

a={1,1/T},y _start(fixed=true)=1/A);
Modelica.Blocks.Continuous.TransferFunction GStep(b={1/A}, a={1,1/T});
parameter Real T = 15;
parameter Real A = 5;
Real u = if (time > © or time<@) then @ else Modelica.Constants.inf;
Real uStep = if (time > © or time<@) then 1 else ©;

equation
G.u = if time > © then © else 1ele;
GStep.u = uStep;

end Tank;

{Tank}

simulate(Tank, startTime=-1e-10, numberofIntervals=500, stopTime=10);

plot({6.y,GStep.y})

Plot by OpenModelica

0.8
0.6

0.4 ®Gstep.y

0.2
0 E

0 2 4 6 8 10

Ready Ln8g, Coll

74

Figure 4-13. Step and pulse (weight function) response.

The theory and application of Kalman filters is also explained in the interactive course material.

F@.SMNoteboolc Kalman.of o[
File Edit Cell Format Inset Window Help
o Hl = P & Q| =l v @

1 Kalman Filter

Often we don't have access to the internal states of a system and can only measure the outputs of the system and
have to reconstruct the state of the system based on these measurements. This is normally done with an observer.
The idea with an observer is that we feedback the difference of the measured output with the estimated output. If
the estiamtion is correct then the difference should be zero.

Another difficulty is that the measured quantities often contain disturbance, i.e. noise.
{f =A% +Bu+e
y=C%+v

Here are e denoting a disturbance in the input signal and v is a measurement error. The quality of the estimate can
be evaluated by the difference

f K(y(t) — C2(t) — Du(t))

By using this quantity as feedback we obtain the observer

% = AZ() + Bult) + K(y(t) = €2(8) = Du(®))

Now form the error as

The differential error is

leaim]

Ready Ready

Figure 4-14. Theory background about Kalman filter.

In reality noise is present in almost every physical system under study and therefore the concept of noise is also

introduced in the course material, which is purely Modelica based.

75

File Edit Cell

Format Insert Window Help

sl =2 P s =Lv 0

i

model KalmanFeedback
parameter Real A[:,size(A, 1)] = ({0,1},{1,0}} ;
parameter Real B[size(a, 1),:] = {{0},{1}};
parameter Real C[:,size(a, 1)] = {{1,0}};
parameter Real[2,1] K = [2.4;3.4];
parameter Real[l,2] L = [2.4,3.4];
parameter Real[:,:] ABL = A-B*L;
parameter Real[:,:] BL = B*L;
| parameter Real([:,:] Z = zeros(size (ABL,2),size(ARC,1));
parameter Real[:,:] ARC = A-K*C;
| parameter Real[:,:] Anew [0,1,0,0 ; -1.4, -3.4, 2.4,3.4;
]
]

parameter Real[:,:] Bnew [0;1;0;0];

parameter Real[:,:] Fnew = [1;0:0;0];

stateSpaceNoise Kalman(stateSpace.A=Anew,stateSpace.B=Bnew,
stateSpace.F = Fnew);

stateSpaceNoise noRalman;
end KalmanFeedback;

0,0,-2.4,1;0,0,-2.4,0];

stateSpace.C=[1,0,0,0],

simulate (RalmanFeedback, stopTime=3)

plot ({Ralman.stateSpace.y([1],noRalman.stateSpace.y fm)
| [true
Plot by OpenModelica

15

@ Kalman.stateSpace. y[1]

@ nokalman, stateSpace. y[1]

Ready Ln12, Col 39

J

.=

e e

Figure 4-15. Comparison of a noisy system with feedback link in DrControl.

76

4.4 OpenModelica Notebook Commands

OMNotebook currently supports the commands and concepts that are described in this section.

4.4.1 Cells

Everything inside an OMNotebook document is made out of cells. A cell basically contains a chunk of data.
That data can be text, images, or other cells. OMNotebook has four types of cells: headercell, textcell,
inputcell, and groupcell. Cells are ordered in a tree structure, where one cell can be a parent to one or
more additional cells. A tree view is available close to the right border in the notebook window to display the
relation between the cells.

Textcell — This cell type is used to display ordinary text and images. Each textcell has a style that
specifies how text is displayed. The cell’s style can be changed in the menu Format->Styles,
example of different styles are: Text, Title, and Subtitle. The Textcell type also has support for
following links to other notebook documents.

Inputcell — This cell type has support for syntax highlighting and evaluation. It is intended to be used
for writing program code, e.g. Modelica code. Evaluation is done by pressing the key combination
Shift+Return or Shift+Enter. All the text in the cell is sent to OMC (OpenModelica
Compiler/interpreter), where the text is evaluated and the result is displayed below the inputcell. By
double-clicking on the cell marker in the tree view, the inputcell can be collapsed causing the result to
be hidden.

Groupcell — This cell type is used to group together other cell. A groupcell can be opened or closed.
When a groupcell is opened all the cells inside the groupcell are visible, but when the groupcell is
closed only the first cell inside the groupcell is visible. The state of the groupcell is changed by the user
double-clicking on the cell marker in the tree view. When the groupcell is closed the marker is changed
and the marker has an arrow at the bottom.

4.4.2 Cursors

An OMNotebook document contains cells which in turn contain text. Thus, two kinds of cursors are needed for
positioning, text cursor and cell cursor:

Textcursor — A cursor between characters in a cell, appearing as a small vertical line. Position the
cursor by clicking on the text or using the arrow buttons.

Cellcursor — This cursor shows which cell currently has the input focus. It consists of two parts. The
main cellcursor is basically just a thin black horizontal line below the cell with input focus. The
cellcursor is positioned by clicking on a cell, clicking between cells, or using the menu item Cell-
>Next Cell or Cell->Previous Cell. The cursor can also be moved with the key combination
Ctrl+Up or Ctrl+Down. The dynamic cellcursor is a short blinking horizontal line. To make this visible,
you must click once more on the main cellcursor (the long horizontal line). NOTE: In order to paste
cells at the cellcursor, the dynamic cellcursor must be made active by clicking on the main cellcursor
(the horizontal line).

77

4.4.3 Selection of Text or Cells

To perform operations on text or cells we often need to select a range of characters or cells.

Select characters — There are several ways of selecting characters, e.g. double-clicking on a word,
clicking and dragging the mouse, or click followed by a shift-click at an adjacent positioin selects the
text between the previous click and the position of the most recent shift-click.

Select cells — Cells can be selected by clicking on them. Holding down Ctrl and clicking on the cell
markers in the tree view allows several cells to be selected, one at a time. Several cells can be selected
at once in the tree view by holding down the Shift key. Holding down Shift selects all cells between last
selected cell and the cell clicked on. This only works if both cells belong to the same groupcell.

4.4.4 File Menu

The following file related operations are available in the file menu:

Create a new notebook — A new notebook can be created using the menu File->New or the key
combination Ctrl+N. A new document window will then open, with a new document inside.

Open a notebook — To open a notebook use Fi le->0pen in the menu or the key combination Ctrl+O.
Only files of the type .onb or .nb can be opened. If a file does not follow the OMNotebook format or
the FullForm Mathematica Notebook format, a message box is displayed telling the user what is wrong.
Mathematica Notebooks must be converted to fullform before they can be opened in OMNotebook.

Save a notebook — To save a notebook use the menu item File->Save or File->Save As. If the
notebook has not been saved before the save as dialog is shown and a filename can be selected.
OMNotebook can only save in xml format and the saved file is not compatible with Mathematica. Key
combination for save is Ctrl+S and for save as Ctrl+Shift+S. The saved file by default obtains the file
extension .onb.

Print — Printing a document to a printer is done by pressing the key combination Ctrl+P or using the
menu item File->Print. A normal print dialog is displayed where the usually properties can be
changed.

Import old document — Old documents, saved with the old version of OMNotebook where a different
file format was used, can be opened using the menu item File->Import->0ld OMNotebook file.
Old documents have the extension .xml.

Export text — The text inside a document can be exported to a text document. The text is exported to this
document without almost any structure saved. The only structure that is saved is the cell structure. Each
paragraph in the text document will contain text from one cell. To use the export function, use menu
item Fi le->Export->Pure Text.

Close a notebook window — A notebook window can be closed using the menu item File->Close or
the key combination Ctrl+F4. Any unsaved changes in the document are lost when the notebook
window is closed.

Quitting OMNotebook — To quit OMNotebook, use menu item File->Quit or the key combination
Crtl+Q. This closes all notebook windows; users will have the option of closing OMC also. OMC will
not automatically shutdown because other programs may still use it. Evaluating the command quit() has
the same result as exiting OMNotebook.

78

4.45 Edit Menu

Editing cell text — Cells have a set of of basic editing functions. The key combination for these are:
Undo (Ctrl+Z), Redo (Ctrl+Y), Cut (Ctrl+X), Copy (Ctrl+C) and Paste (Ctrl+V). These functions can
also be accessed from the edit menu; Undo (Edit->Undo), Redo (Edit->Redo), Cut (Edit->Cut),
Copy (Edit->Copy) and Paste (Edit->Paste). Selection of text is done in the usual way by double-
clicking, triple-clicking (select a paragraph), dragging the mouse, or using (Ctrl+A) to select all text
within the cell.

Cut cell — Cells can be cut from a document with the menu item Edit->Cut or the key combination
Ctrl+X. The cut function will always cut cells if cells have been selected in the tree view, otherwise the
cut function cuts text.

Copy cell — Cells can be copied from a document with the menu item Edit->Copy or the key
combination Ctrl+C. The copy function will always copy cells if cells have been selected in the tree
view, otherwise the copy function copy text.

Paste cell — To paste copied or cut cells the cell cursor must be selected in the location where the cells
should be pasted. This is done by clicking on the cell cursor. Pasteing cells is done from the menu Edit-
>Paste or the key combination Ctrl+V. If the cell cursor is selected the paste function will always paste
cells. OMNotebook share the same application-wide clipboard. Therefore cells that have been copied
from one document can be pasted into another document. Only pointers to the copied or cut cells are
added to the clipboard, thus the cell that should be pasted must still exist. Consequently a cell can not
be pasted from a document that has been closed.

Find — Find text string in the current notebook, with the options match full word, match cell, search
within closed cells. Short command Ctrl+F.

Replace — Find and replace text string in the current notebook, with the options match full word, match
cell, search+replace within closed cells. Short command Ctrl+H.

View expression — Text in a cell is stored internally as a subset of HTML code and the menu item Edit-
>View Expression let the user switch between viewing the text or the internal HTML representation.
Changes made to the HTML code will affect how the text is displayed.

4.4.6 Cell Menu

Add textcell — A new textcell is added with the menu item Cel 1->Add Cell (previous cell style) or the
key combination Alt+Enter. The new textcell gets the same style as the previous selected cell had.

Add inputcell — A new inputcell is added with the menu item Cell->Add Inputcell or the key
combination Ctrl+Shift+l.

Add groupcell — A new groupcell is inserted with the menu item Cell->Groupcell or the key
combination Ctrl+Shift+G. The selected cell will then become the first cell inside the groupcell.
Ungroup groupcell — A groupcell can be ungrouped by selecting it in the tree view and using the menu
item Cel1->Ungroup Groupcell or by using the key combination Ctrl+Shift+U. Only one groupcell
at a time can be ungrouped.

Split cell — Spliting a cell is done with the menu item Cell->Split cell or the key combination
Ctrl+Shift+P. The cell is splited at the position of the text cursor.

Delete cell — The menu item Cell->Delete Cell will delete all cells that have been selected in the
tree view. If no cell is selected this action will delete the cell that have been selected by the cellcursor.

79

This action can also be called with the key combination Ctrl+Shift+D or the key Del (only works when
cells have been selected in the tree view).

Cellcursor — This cell type is a special type that shows which cell that currently has the focus. The cell
is basically just a thin black line. The cellcursor is moved by clicking on a cell or using the menu item
Cell->Next Cell or Cell->Previous Cell. The cursor can also be moved with the key
combination Ctrl+Up or Ctrl+Down.

44,7 Format Menu

Textcell — This cell type is used to display ordinary text and images. Each textcell has a style that
specifies how text is displayed. The cells style can be changed in the menu Format->Styles,
examples of different styles are: Text, Title, and Subtitle. The Textcell type also have support
for following links to other notebook documents.

Text manipulation — There are a number of different text manipulations that can be done to change the
appearance of the text. These manipulations include operations like: changing font, changing color and
make text bold, but also operations like: changing the alignment of the text and the margin inside the
cell. All text manipulations inside a cell can be done on single letters, words or the entire text. Text
settings are found in the Format menu. The following text manipulations are available in OMNotebook:
> Font family

> Font face (Plain, Bold, Italic, Underline)

> Font size

> Font stretch

> Font color

> Text horizontal alignment

> Text vertical alignment

> Border thickness

> Margin (outside the border)

> Padding (inside the border)

4.4.8 Insert Menu

Insert image — Images are added to a document with the menu item Insert->Image or the key
combination Ctrl+Shift+M. After an image has been selected a dialog appears, where the size of the
image can be chosen. The images actual size is the default value of the image. OMNotebook stretches
the image accordantly to the selected size. All images are saved in the same file as the rest of the
document.

Insert link — A document can contain links to other OMNotebook file or Mathematica notebook and to
add a new link a piece of text must first be selected. The selected text make up the part of the link that
the user can click on. Inserting a link is done from the menu Insert->Link or with the key
combination Ctrl+Shift+L. A dialog window, much like the one used to open documents, allows the
user to choose the file that the link refers to. All links are saved in the document with a relative file path
so documents that belong together easily can be moved from one place to another without the links
failing.

80

4.49 Window Menu

Change window — Each opened document has its own document window. To switch between those use
the Window menu. The window menu lists all titles of the open documents, in the same order as they
were opened. To switch to another document, simple click on the title of that document.

4.4.10 Help Menu

About OMNotebook — Accessing the about message box for OMNotebook is done from the menu Help-
>About OMNotebook.

About Qt — To access the message box for Qt, use the menu Help->About Qt.

Help Text — Opening the help text (document OMNotebookHe I p . onb) for OMNotebook can be done in
the same way as any OMNotebook document is opened or with the menu Help->Help Text. The
menu item can also be triggered with the key F1.

4.4.11 Additional Features

Links — By clicking on a link, OMNotebook will open the document that is referred to in the link.

Update link — All links are stored with relative file path. Therefore OMNotebook has functions that
automatically updating links if a document is resaved in another folder. Every time a document is
saved, OMNotebook checks if the document is saved in the same folder as last time. If the folder has
changed, the links are updated.

Evaluate several cells — Several inputcells can be evaluated at the same time by selecting them in the
treeview and then pressing the key combination Shift+Enter or Shift+Return. The cells are evaluated in
the same order as they have been selected. If a groupcell is selected all inputcells in that groupcell are
evaluated, in the order they are located in the groupcell.

Command completion — Inputcells have command completion support, which checks if the user is
typing a command (or any keyword defined in the file commands.xml) and finish the command. If the
user types the first two or three letters in a command, the command completion function fills in the rest.
To use command completion, press the key combination Ctrl+Space or Shift+Tab. The first command
that matches the letters written will then appear. Holding down Shift and pressing Tab (alternative
holding down Ctrl and pressing Space) again will display the second command that matches. Repeated
request to use command completion will loop through all commands that match the letters written.
When a command is displayed by the command completion functionality any field inside the command
that should be edited by the user is automatically selected. Some commands can have several of these
fields and by pressing the key combination Ctrl+Tab, the next field will be selected inside the
command.

> Active Command completion: Ctrl+Space / Shift+Tab

> Next command: Ctrl+Space / Shift+Tab

> Next field in command: Ctrl+Tab’

Generated plot — When plotting a simulation result, OMC uses the program Ptplot to create a plot.
From Ptplot OMNotebook gets an image of the plot and automatically adds that image to the output
part of an inputcell. Like all other images in a document, the plot is saved in the document file when the
document is saved.

Stylesheet —OMNotebook follows the style settings defined in stylesheet.xml and the correct style is
applied to a cell when the cell is created.

81

e Automatic Chapter Numbering — OMNotebook automatically numbers different chapter, subchapter,
section and other styles. The user can specify which styles should have chapter numbers and which
level the style should have. This is done in the stylesheet.xml file. Every style can have a
<chapterLevel> tag that specifies the chapter level. Level 0 or no tag at all, means that the style should
not have any chapter numbering.

e Scrollarea — Scrolling through a document can be done by using the mouse wheel. A document can also
be scrolled by moving the cell cursor up or down.

e Syntax highlighter — The syntax highlighter runs in a separated thread which speeds up the loading of
large document that contains many Modelica code cells. The syntax highlighter only highlights when
letters are added, not when they are removed. The color settings for the different types of keywords are
stored in the file modelicacolors.xml. Besides defining the text color and background color of
keywords, whether or not the keywords should be bold or/and italic can be defined.

e Change indicator — A star (*) will appear behind the filename in the title of notebook window if the
document has been changed and needs saving. When the user closes a document that has some unsaved
change, OMNotebook asks the user if he/she wants to save the document before closing. If the
document never has been saved before, the save-as dialog appears so that a filename can be choosen for
the new document.

e Update menus — All menus are constantly updated so that only menu items that are linked to actions
that can be performed on the currently selected cell is enabled. All other menu items will be disabled.
When a textcell is selected the Format menu is updated so that it indicates the text settings for the text,
in the current cursor position.

45 References

Eric Allen, Robert Cartwright, Brian Stoler. DrJava: A lightweight pedagogic environment for Java. In
Proceedings of the 33rd ACM Technical Symposium on Computer Science Education
(SIGCSE 2002) (Northern Kentucky — The Southern Side of Cincinnati, USA, February 27 —
March 3, 2002).

Ingemar Axelsson. OpenModelica Notebook for Interactive Structured Modelica Documents. Final thesis,
LITH-IDA-EX-05/080-SE, Linkdping University, Linkdping, Sweden, October 21, 2005.

Anders Fernstrom, Ingemar Axelsson, Peter Fritzson, Anders Sandholm, Adrian Pop. OMNotebook —
Interactive WYSIWYG Book Software for Teaching Programming. In Proc. of the Workshop
on Developing Computer Science Education — How Can It Be Done?. Linkdping University,
Dept. Computer & Inf. Science, Linkoping, Sweden, March 10, 2006.

Anders Fernstrom. Extending OMNotebook — An Interactive Notebook for Structured Modelica
Documents. Final thesis, LITH-IDA-EX--06/057—SE, Dept. Computer and Information
Science, Linképing University, Sweden, September 4, 2006.

Peter Fritzson. Principles of Object Oriented Modeling and Simulation with Modelica 2.1, 940 pages,
ISBN 0-471-471631, Wiley-IEEE Press. Feb. 2004.

Knuth, Donald E. Literate Programming. The Computer Journal, NO27(2), pp. 97-111, May 1984.

Eva-Lena Lengquist-Sandelin, Susanna Monemar, Peter Fritzson, and Peter Bunus. DrModelica — A Web-
Based Teaching Environment for Modelica. In Proceedings of the 44th Scandinavian
Conference on Simulation and Modeling (SIMS’2003), available at www.scan-sims.org.
Vésteras, Sweden. September 18-19, 2003.

82

The Modelica Association. The Modelica Language Specification WVersion 3.0, Sept 2007.
http://www.modelica.org.

Stephen Wolfram. The Mathematica Book. Wolfram Media Inc, 1997.

83

Chapter 5

Functional Mock-up Interface - FMI

The new standard for model exchange and co-simulation with Functional Mockup Interface (FMI) allows
export of pre-compiled models, i.e., C-code or binary code, from a tool for import in another tool, and vice
versa. The FMI standard is Modelica independent. Import and export works both between different Modelica
tools, or between certain non-Modelica tools. OpenModelica supports FMI 1.0 & 2.0,

¢ Model Exchange
e Co-Simulation (under development)

5.1 FMI Import

To import the FMU package use the OpenModelica command importFMU,

function importFMU

input String filename "the fmu file name";

input String workdir = "<default>" "The output directory for imported FMU files.
<default> will put the Ffiles to current working directory.";

input Integer loglevel = 3
"loglevel_nothing=0; loglevel_fatal=1;loglevel_error=2;loglevel_warning=3;loglevel_info
=4;loglevel_verbose=5; loglevel_debug=6"";

input Boolean fullPath = false "When true the full output path is returned otherwise
only the file name.";

input Boolean debuglLogging = false ""When true the FMU"s debug output is printed.";

input Boolean generatelnputConnectors = true "When true creates the input connector
pins.';

input Boolean generateOutputConnectors = true "When true creates the output
connector pins.";

output String generatedFileName "Returns the full path of the generated file.";
end importFMU;

The command could be used from command line interface, OMShell, OMNotebook or MDT. The importFMU
command is also integrated with OMEdit. Select FMI > Import FMU the FMU package is extracted in the
directory specified by workdir, since the workdir parameter is optional so if its not specified then the
current directory of omc is used. You can use the cd() command to see the current location.

The implementation supports FMI for Model Exchange 1.0 & 2.0 and FMI for Co-Simulation 1.0 stand-alone.
The support for FMI Co-Simulation is still under development.

84

The FMI Import is currently a prototype. The prototype has been tested in OpenModelica with several
examples. It has also been tested with example FMUs from FMUSDK and Dymola. A more fullfleged version
for FMI Import will be released in the near future.

r
o OMEdit - OpenModelica Connection Editor - [Bouncing_OM_me_FMU] o] = [
E File Edit Wiew Simulation FMI Export Tools Help = || & =
FEHH 00 BEQAQwemeEN HEO9+5 @8- X b
Libraries Browser g X ‘II-I oﬁ@ |Writeable ‘Model |Text'\ﬁew ‘C:)Users,.fadeasalfn...ndng_DM_me_FMU.mo |Line: 1, Cal: 24 ‘E|
L 1 model Bouncing OM me FMU &
+ EI OpenModelica constant String fmuWorkingDir = I
"C:/Users/adeas31l/AppData/Local/Temp,/OpentModelica/OMEdic™; E
parameter Integer logLevel = 3 "log level used during the 3
loading of FHU" annotation(Dialog({tab = "FHI", group = "Enakble
logging”}}:
parameter Boolean debuglogging = false "enables the FMUO
zimulation logging” annotation(Dialog(tab = "FMI", group =
"Enable logging™)):
] FHI1ModelExchange fmilme = FHMI1ModelExchange (logLevel,
fmuWorkingDir, "Bouncing OM", debuglogging):
Real wv;
Real vy
Real der wv_;
Real der y ;
Real g
parameter EReal yStart:
parameter Real wStart:
parameter Eeal dampCoeff;
Boolean D whenConditionl:
Boolean D whenCondition2:
constant Integer numberOfContinuousStates = 2;
Eeal fmi x[numberCfContinuousStates] "States":
Real fmi_x_new[numberOfContinuousStates] "Hew States"”;
conztant Integer numberOfEventIndicators = 2;
Feal fmi z[numberOfEventIndicators] "Events Indicators";
| Boolean fmi_z_positive [numberOfEventIndicators];
Feal flowTime;
parameter Beal flowParamsStart (fixed = false); o
¥:-149.58 Y 96.12 €L welcome | oA Modeling | £ Plotting
L

Figure 5-1: Example of FMU Import in OpenModelica where a bouncing ball model is imported.

5.2 FMI Export

To export the FMU use the OpenModelica command translateMode IFMU(ModeIName) from command
line interface, OMShell, OMNotebook or MDT. The export FMU command is also integrated with OMEdit.
Select FMI > Export FMU the FMU package is generated in the current directory of omc. You can use the
cd() command to see the current location. You can set which version of FMI to export through OMEdit
settings, see section 2.9.13.

After the command execution is complete you will see that a file Mode IName . fmu has been created. As
depicted in Figure 6-2, we first changed the current directory to C:/OpenModelical.7.0/bin , then we
loaded a Modelica file with BouncingBall example model and finally created an FMU for it using the
translateMode lFMU call.

85

= ~— — i
&) OMShell - OpenModelica Shell G=CED X}
File Edit View Help
b B £ % D

| cMShell 1.1 Copyright Link&ping University 2002-2011 =
|Distributed under CMSC-PL and GPL, see www.openmodelica.org

| connected to OpenModelica 1.7.0
| To get help on using OMShell and OpenModelica, type "help()"™ and press enter.

| == cd("C:/COpenModelical.7.0/bin")
"C:/OpenModelical.7.0/bin"

:>> loadFile ("BouncingBallz.mo")
| true

| > translateModelFMU (BouncingBall)
"SimCode: The model BouncingBall has been translated to FMU"

e

Figure 5-2: OMShell screenshot for creating an FMU

A log file for FMU creation is also generated hamed Mode IName_FMU. log. If there are some errors while
creating FMU they will be shown in the command line window and logged in this log file as well.

86

Chapter 6

Optimization with OpenModelica

The following facilities for model-based optimization are provided with OpenModelica:

Builtin dynamic optimization with OpenModelica and IpOpt using dynamic optimization, Section 6.1
This is the recommended way of performing dynamic optimization with OpenModelica.

Dynamic optimization with OpenModelica by automatic export of the problem to CasADi, Section 6.2.
Use this if you want to employ the CasADi tool for dynamic optimization.

Classical parameter sweep based design optimization, Section 6.3. Use this if you have a static
optimization problem.

6.1 Builtin Dynamic Optimization with OpenModelica and IpOpt

Note: this is a very short preliminary decription which soon will be considerably improved.

OpenModelica provides builtin dynamic optimization of models by using the powerful symbolic machinery of
the OpenModelica compiler for more efficient and automatic solution of dynamic optimization problems.

The builtin dynamic optimization allows users to define optimal control problems (OCP) using the
Modelica language for the model and the optimization language extension called Optimica (currently partially
supported) for the optimization part of the problem. This is used to solve the underlying dynamic optimization
model formulation using collocation methods, using a single execution instead of multiple simulations as in the
parameter-sweep optimization described in Section 6.3.

For more detailed information regarding background and methods, see the papers:

Bernhard Bachmann, Lennart Ochel, Vitalij Ruge, Mahder Gebremedhin, Peter Fritzson, Vaheed
Nezhadali, Lars Eriksson, Martin Sivertsson. Parallel Multiple-Shooting and Collocation Optimization
with OpenModelica. In Proceedings of the 9th International Modelica Conference (Modelica'2012),
Munich, Germany, Sept.3-5, 2012.

Vitalij Ruge, Willi Braun, Bernhard Bachmann, Andrea Walther and Kshitij Kulshreshtha. Efficient
Implementation of Collocation Methods for Optimization using OpenModelica and ADOL-C. In
Proceedings of the 10th International Modelica Conference (Modelica'2014), Munich, Germany,
March.10-12, 2014.

87

[§ OMNotebook: BatchReactor.onb™ | o||= | == |

N = .l R O | Br | & v ©

cd("D:/Temp/Tutorial™)

"D:/Temp/Tutorial”

setCommandLineOpticons ("+g=0Optimica)

m

true
model BatchReactor

Real =2 (start =0, fixed=true, min=0, max=1);
Real =1 (start =1, fixed=true, min=0, max=1);

input Real u(min=0, max = 5.0, nominal = 1.0,start = 0.0);
equation
der(xl) = —(utu"2/2)*xl;

der (x2) = u¥*xl;

end BatchReactor;
{BatchReactor}

optimization nmpcBatchReactor (objective = -x2)
extends BatchReactor;
end nmpcBatchReactor;

{nmpcBatchReactor}
optimize (nmpcBatchReactor, stopTime=1.0, numberOfIntervals=50, tolerance = le-8)

record SimulationResult
resultFile = "nmpcBatchReactor_res.mat",

meszages —
ek b e e e e e e e e e e b b e b e b b e e b b e ke e ke ke ke ke e ke b b b e

This program contains Ipopt, a library for large—scale nonlinear optimization.
Ipopt is released as open source code under the Eclipse Public License (EPL).

For more information visit http://projects.coin-or.org/Ipopt
W e Wk e ke e e e e e e ke e e e e e e e e e e e e e o b e e ke e ke ol b e e e e Wk e Wb e e e e e e e e ke e e e e e e e e e e e e e e e e e ke e ke b b b e e e e e

NOTE: You are using Ipopt by default with the MUMPS linear solwver.
Other linear solvers might be more efficient (see Ipopt documentation).

end SimulationResult;

Figure 6-1: OMNotebook screenshot for dynamic optimization.

6.1.1 Compiling the Modelica code

Before starting the optimization the model should be symbolically instantiated by the compiler in order to get a
single flat system of equations. The model variables should also be scalarized. The compiler frontend performs
this, including syntax checking, semantics and type checking, simplification and constant evaluation etc. are
applied. Then the complete flattened model can be used for initialization, simulation and last but not least for
model-based dynamic optimization.

The OpenModelica command optimize(ModeIName) from OMShell, OMNotebook or MDT runs
immediately the optimization. The generated result file can be read in and visualized with OMEdit or within
OMNotebook.

88

// name: BatchReactor.mos

setCommandLineOptions(*'+g=0Optimica'™);
getErrorString();

loadFile('BatchReactor.mo');
getErrorString(Q);

optimize(nmpcBatchReactor, numberOfIntervals=16, stopTime=1l, tolerance=1e-8);
getErrorString();

6.1.2 An Example

In this section, a simple optimal control problem will be solved. When formulating the optimization problems,
models are expressed in the Modelica language and optimization specifications. The optimization language
specification allows users to formulate dynamic optimization problems to be solved by a numerical algorithm.
It includes several constructs including a new specialized class optimization, a constraint section,
startTime, FinalTime etc. See the optimal control problem for batch reactor model below.

optimization BatchReactor(objective=-x2(finalTime),
startTime = 0, finalTime =1)
Real x1(start =1, fixed=true, min=0, max=1);
Real x2(start =0, fixed=true, min=0, max=1);
input Real u(min=0, max=5);

equation
der(x1) = -(u+tun2/2)*x1;
der(x2) = u*x1;

end BatchReactor;

Create a new file named BatchReactor.mo and save it in you working directory. Notice that this model contains
both the dynamic system to be optimized and the optimization specification.

Once we have formulated the undelying optimal control problems, we can run the optimization by using
OMShell, OMNotebook , MDT, OMEdit or command line terminals similar as described in Figure 6-1.

The control and state trajectories of the optimization results are shown in Figure 6-2.

Input

[— u]

89

State

©-3.5

Figure 6-2: Optimization results for Batch Reactor model — state and control variables.

6.1.3 Different Options for the Optimizer IPOPT

Compiler options

numberOflntervals

collocation intervals

startTime, stopTime

time horizon

tolerance = l1le-8

e.g. le-8

solver tolerance

simflags

all run/debug options

Run/debug options

-lv

LOG_IPOPT

console output

-ipopt_hesse

CONST ,BFGS, NUM

hessian approximation

-ipopt_max_iter

number e.g. 10

maximal number of
iteration for ipopt

90

external Input.csv input guess

Figure 6-3: Compiler options for IpOpt.

6.2 Dynamic Optimization with OpenModelica and CasADi

OpenModelica coupling with CasADi supports dynamic optimization of models by OpenModelica exporting
the optimization problem to CasADi which performs the optimization. In order to convey the dynamic system
model information between Modelica and CasADi, we use an XML-based model exchange format for
differential-algebraic equations (DAE). OpenModelica supports export of models written in Modelica and the
Optimization language extension using this XML format, while CasADi supports import of models represented
in this format. This allows users to define optimal control problems (OCP) using Modelica and Optimization
language specifications, and solve the underlying model formulation using a range of optimization methods,
including direct collocation and direct multiple shooting.

6.2.1 Compiling the Modelica code

Before exporting a model to XML, the model should be symbolically instantiated by the compiler in order to
get a single flat system of equations. The model variables should also be scalarized. The compiler frontend
performs this, including syntax checking, semantics and type checking, simplification and constant evaluation
etc. are applied. Then the complete flattened model is exported to XML code. The exported XML document
can then be imported to CasADi for model-based dynamic optimization.

The OpenModelica command translateMode IXML(Mode IName) from OMShell, OMNotebook or MDT
exports the XML. The export XML command is also integrated with OMEdit. Select XML > Export XML the
XML document is generated in the current directory of omc. You can use the cd() command to see the current
location. After the command execution is complete you will see that a file ModelName.xml has been exported.
As depicted in Figure 6-4, we first changed the current directory to C: /OpenModelical.9.2/bin, and then
we loaded a Modelica file with BatchReactor example model and finally exported an XML for it using the
translateMode I XML call.

Assuming that the model is defined in the modelName.mo, the model can also be exported to an XML code
using the following steps from the terminal window:

e Go to the path where your model file found(C:/<%path to modelName .mo File%>).

e Go to omc path (<kpath to omc%>/omc) and write the flag +s +g=Optimica
+simCodeTarget=XML <%your.mo Ffile name%>.mo>

91

[= CMShell - OpenMaodelica Shel

| File

Edit Help

CMShell 1.1 Copyright Open Source Modelica Consortium (OSMC) 2002-2013 1
Distributed under OMSC-PL and GPL, see www.openmodelica.org

Connected to OpenModelica 1.5.0 beta4+dev (rl5212)

To get help on using OMShell and OpenModelica, type "help ()" and press enter.

»» cd("c:/CpenModelical.5.0/bin™)
"c:/COpenModelical.S.0/bin"

»>» lpadFile ("BatchReactor.mo"™)
true

2> tran=slateModelXML (BatchReactor)
"SimCode: The model BatchReactor has been translated to XML"

»>

Figure 6-4: OMShell screenshot for exporting an XML.

6.2.2 An example

In this section, a simple optimal control problem will be solved. When formulating the optimization problems,
models are expressed in the Modelica language and optimization specifications. The optimization language
specification allows users to formulate dynamic optimization problems to be solved by a numerical algorithm.
It includes several constructs including a new specialized class optimization, a constraint section,
startTime, FinalTime etc. See the optimal control problem for batch reactor model below.

optimization BatchReactor(objective=-x2(finalTime),
startTime = 0, finalTime =1)

Real x1(start =1, fixed=true, min=0, max=1);
Real x2(start =0, fixed=true, min=0, max=1);
input Real u(min=0, max=5);

equation
der(x1) -(u+un2/2)*x1;
der(x2) = u*x1;

end BatchReactor;

Create a new file named BatchReactor.mo and save it in you working directory. Notice that this model contains
both the dynamic system to be optimized and the optimization specification.

One we have formulated the undelying optimal control problems, we can export the XML by using
OMShell, OMNotebook , MDT, OMEdit or command line terminals which are described in Section 6.2.4 .

To export XML using terminals as depicted in Figure 6-5, we first changed the current directory to
C:/TestCases, and run command ../Dev/OpenModleicasZbuild/bin omc +s +g=Optimica
+simCodeTarget=XML BatchReactor .mo. This will generate an XML file under C: /TestCases directory
named BatchReactor.xml shown in Section 6.2.3 that contains a symbolic representation of the optimal
control problem and can be inspected in a standard XML editor.

92

s cod c:
S cd TestCases~

S ../Dev/0OpenModelicasbuild/binsome +s +g=0Optimica +simCodeTarget=XML BatchReac
tor.mo
clazs BatchReactor
Real x1tmin = B.A, max 1.8, start 1.8, fixed truel;
Real x2(min = A.A, max 1. start A.8, fixed trued;
input RBeal wufmin = B.B, max L.H);
equation
derd<xl) = <¢—u ™ 2.8> » 2.8 — u) = x1;
der(x2) = u = x1;
end BatchReactow:

Figure 6-5: Terminal screenshot for exporting an XML.

6.2.3 Generated XML for Example

<?xml version="1.0" encoding="UTF-8"7?>
<OpenModelicaModelDescription
xmIns:exp=""https://svn.jmodelica.org/trunk/XML/daeExpressions.xsd"
xmIns:equ="https://svn.jmodelica.org/trunk/XML/daeEquations.xsd"
xmIns:fun="https://svn.jmodelica.org/trunk/XML/daeFunctions.xsd"
xmIns:opt="https://svn.jmodelica.org/trunk/XML/daeOptimization.xsd"
xmIns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
fmiVersion="1.0"
mode IName=""BatchReactor""
model ldentifier="BatchReactor"
guid="{d06ca497-3al4-4c61l-ab0a-ee9f3edfca73}"
generationDateAndTime="2012-05-18T17:47:35"
variableNamingConvention="Structured"
numberOfContinuousStates=""2"
numberOfEventindicators="0">
<VendorAnnotations>
<Tool name="OpenModelica Compiler 1.8.1+ (ri11925)">
</Tool>
</VendorAnnotations>
<ModelVariables>
<ScalarVariable name="finalTime" valueReference="0"
variability="parameter' causality="internal" alias="noAlias">
<Real relativeQuantity="false" start="1.0" free=""false"
initialGuess="0.0" />
<QualifiedName>
<exp:QualifiedNamePart name="finalTime"/>
</QualifiedName>

93

<isLinear>true</isLinear>
<isLinearTimedVariables>
<TimePoint index="0" isLinear="true"/>
</isLinearTimedVariables>
<VariableCategory>independentParameter</VariableCategory>
</ScalarVariable>
<ScalarVariable name="startTime" valueReference=""1"
variability="parameter’ causality=""internal” alias="noAlias">
<Real relativeQuantity="false" start="0.0" free=""false"
initialGuess="0.0" />
<QualifiedName>
<exp:QualifiedNamePart name="startTime"/>
</QualifiedName>
<isLinear>true</isLinear>
<isLinearTimedVariables>
<TimePoint index="0" isLinear="true"/>
</isLinearTimedVariables>
<VariableCategory>independentParameter</VariableCategory>
</ScalarVariable>
<ScalarVariable name="x1" valueReference="2" variability="continuous”
causality="internal” alias="noAlias">
<Real relativeQuantity="false" min="0.0" max="1.0" start="1.0"
fixed=""true" />
<QualifiedName>
<exp:QualifiedNamePart name=""x1"/>
</QualifiedName>
<VariableCategory>state</VariableCategory>
</ScalarVariable>
<ScalarVariable name="x2" valueReference="3"
variability="continuous" causality="internal"” alias="noAlias'>
<Real relativeQuantity="false" min="0.0" max="1.0" start="0.0"
fixed="true" />
<QualifiedName>
<exp:QualifiedNamePart name="'x2"/>
</QualifiedName>
<VariableCategory>state</VariableCategory>
</ScalarVariable>
<ScalarVariable name="der(x1)" valueReference="4"
variability=""continuous"™ causality="internal” alias=""noAlias">
<Real relativeQuantity="false" />
<QualifiedName>
<exp:QualifiedNamePart name="'x1"/>
</QualifiedName>
<VariableCategory>derivative</VariableCategory>
</ScalarVariable>
<ScalarVariable name="der(x2)" valueReference="5"
variability=""continuous" causality="internal"” alias="noAlias'>
<Real relativeQuantity="false" />
<QualifiedName>
<exp:QualifiedNamePart name="'x2"/>
</QualifiedName>
<VariableCategory>derivative</VariableCategory>
</ScalarVariable>
<ScalarVariable name="u" valueReference="6"
variability=""continuous" causality="input"” alias="noAlias">
<Real relativeQuantity="false" min="0.0" max="5.0"/>
<QualifiedName>

94

<exp:QualifiedNamePart name="u"/>
</QualifiedName>
<VariableCategory>algebraic</VariableCategory>
</ScalarVariable>
</ModelVariables>
<equ:BindingEquations>
<equ:BindingEquation>
<equ:Parameter>
<exp:QualifiedNamePart name="'startTime"/>
</equ:Parameter>
<equ:BindingExp>
<exp:IntegerLiteral>0</exp:IntegerLiteral>
</equ:BindingExp>
</equ:BindingEquation>
<equ:BindingEquation>
<equ:Parameter>
<exp:QualifiedNamePart name="finalTime"/>
</equ:Parameter>
<equ:BindingExp>
<exp:IntegerLiteral>1</exp:IntegerLiteral>
</equ:BindingExp>
</equ:BindingEquation>
</equ:BindingEquations>
<equ:DynamicEquations>
<equ:Equation>
<exp:Sub>
<exp:Der>
<exp:ldentifier>
<exp:QualifiedNamePart name="'x2"/>
</exp:ldentifier>
</exp:Der>
<exp:Mul>
<exp:ldentifier>
<exp:QualifiedNamePart name="u'"/>
</exp:ldentifier>
<exp:ldentifier>
<exp:QualifiedNamePart name="'x1"/>
</exp:ldentifier>
</exp:Mul>
</exp:Sub>
</equ:Equation>
<equ:Equation>
<exp:Sub>
<exp:Der>
<exp:ldentifier>
<exp:QualifiedNamePart name="x1"/>
</exp:ldentifier>
</exp:Der>
<exp:Mul>
<exp:Sub>
<exp:Div>
<exp:Neg>
<exp:Pow>
<exp:ldentifier>
<exp:QualifiedNamePart name="u"/>
</exp:ldentifier>
<exp:RealLiteral>2.0</exp:RealLiteral>

95

</exp:Pow>
</exp:Neg>
<exp:ReallLiteral>2.0</exp:ReallLiteral>
</exp:Div>
<exp:ldentifier>
<exp:QualifiedNamePart name="u"/>
</exp:ldentifier>
</exp:Sub>
<exp:ldentifier>
<exp:QualifiedNamePart name="'x1"/>
</exp:ldentifier>
</exp:Mul>
</exp:Sub>
</equ:Equation>
</equ:DynamicEquations>
<equ: InitialEquations>
<equ:Equation>
<exp:Sub>
<exp:ldentifier>
<exp:QualifiedNamePart name=""x1"/>
</exp:ldentifier>
<exp:ReallLiteral>1.0</exp:ReallLiteral>
</exp:Sub>
</equ:Equation>
<equ:Equation>
<exp:Sub>
<exp:ldentifier>
<exp:QualifiedNamePart name="'x2"/>
</exp:ldentifier>
<exp:ReallLiteral>0.0</exp:ReallLiteral>
</exp:Sub>
</equ:Equation>
</equ:InitialEquations>
<opt:Optimization>
<opt:ObjectiveFunction>
<exp:Neg>
<exp:TimedVariable timePointlndex = "0" >
<exp:ldentifier>
<exp:QualifiedNamePart name="x2"/>
</exp:ldentifier>
</exp:TimedVariable>
</exp:Neg>
</opt:ObjectiveFunction>
<opt:IntervalStartTime>
<opt:Value>0.0</opt:Value>
<opt:Free>false</opt:Free>
<opt:InitialGuess>0.0</opt: InitialGuess>
</opt:IntervalStartTime>
<opt:IntervalFinalTime>
<opt:Value>1.0</opt:Value>
<opt:Free>false</opt:Free>
<opt:InitialGuess>1.0</opt:InitialGuess>
</opt:IntervalFinalTime>
<opt:TimePoints>
<opt:TimePoint index = "0" value = "1.0">
<opt:QualifiedName>
<exp:QualifiedNamePart name="x2"/>

96

</opt:QualifiedName>
</opt:TimePoint>
</opt:TimePoints>
<opt:Constraints>
</opt:Constraints>
</opt:Optimization>
<fun:FunctionsList>
</fun:FunctionsList>
</OpenModel icaModelDescription>

6.2.4 XML Import to CasADi via OpenModelica Python Script

The symbolic optimal control problem representation (or just model description) contained in
BatchReactor.xml can be imported into CasADi in the form of the SymbolicOCP class via OpenModelica
python script.

The SymbolicOCP class contains symbolic representation of the optimal control problem designed to be
general and allow manipulation. For a more detailed description of this class and its functionalities, we refer to
the API documentation of CasADi.

The following step compiles the model to an XML format, imports to CasADi and solves an optimization
problem in windows PowerShell:

1. Create a new file named BatchReactor.mo and save it in you working directory.

E.g. C:\OpenModelical.9.2\share\casadi\testmodel
2. Perform compilation and generate the XML file

a. Go to your working directory

E.g. cd C:\OpenModelical.9.2\share\casadi\testmodel
b. Go to omc path from working directory and run the following command

E.g. --\..\..\bin\omc +s +g=Optimica +simCodeTarget=XML BatchReactor.mo
3. Run defaultStart.py python script from OpenModelica optimization directory
E.g. Python.exe ..\share\casadi\scripts defaultStart.py BatchReactor.xml

The control and state trajectories of the optimization results are shown in Figure 6-6.

INnput

97

State

O'%.O 0.2 0.4 o.e o.8 1.0

Figure 6-6: Optimization results for Batch Reactor model — state and control variables.

6.3 Parameter Sweep Optimization using OMOptim

OMOptim is a tool for parameter sweep design optimization of Modelica models. By optimization, one should
understand a procedure which minimizes/maximizes one or more objective functions by adjusting one or more
parameters. This is done by the optimization algorithm performing a parameter swep, i.e., systematically
adjusting values of selected parameters and running a number of simulations for different parameter
combinations to find a parameter setting that gives an optimal value of the goal function.

OMOptim 0.9 contains meta-heuristic optimization algorithms which allow optimizing all sorts of models
with following functionalities:

e One or several objectives optimized simultaneously
e One or several parameters (integer or real variables)

However, the user must be aware of the large number of simulations an optimization might require.

6.3.1 Preparing the Model

Before launching OMOptim, one must prepare the model in order to optimize it.

6.3.1.1 Parameters

An optimization parameter is picked up from all model variables. The choice of parameters can be done using
the OMOptim interface.
For all intended parameters, please note that:

e The corresponding variable is constant during all simulations. The OMOptim optimization in version
0.9 only concerns static parameters’ optimization i.e. values found for these parameters will be constant
during all simulation time.

98

e The corresponding variable should play an input role in the model i.e. its modification influences model
simulation results.

6.3.1.2 Constraints

If some constraints should be respected during optimization, they must be defined in the Modelica model itself.
For instance, if mechanical stress must be less than 5 N.m™, one should write in the model:

assert(mechanicalStress < 5, “Mechanical stress too high”);

If during simulation, the variable mechanicalStress exceeds 5 N.m?, the simulation will stop and be considered
as a failure.

6.3.1.3 Objectives

As parameters, objectives are picked up from model variables. Objectives’ values are considered by the
optimizer at the final time.

6.3.2 Set problem in OMOptim

6.3.2.1 Launch OMOptim

OMOptim can be launched using the executable placed in OpenModelicalnstallationDirectory/bin/
OMOptim/OMOptim.exe. Alternately, choose OpenModelica > OMOptim from the start menu.

6.3.2.2 Create a new project

To create a new project, click on menu File -> New project
Then set a name to the project and save it in a dedicated folder. The created file created has a .min
extension. It will contain information regarding model, problems, and results loaded.

6.3.2.3 Load models

First, you need to load the model(s) you want to optimize. To do so, click on Add .mo button on main window
or select menu Model -> Load Mo file...

When selecting a model, the file will be loaded in OpenModelica which runs in the background.

While OpenModelica is loading the model, you could have a frozen interface. This is due to multi-threading
limitation but the delay should be short (few seconds).

You can load as many models as you want.

If an error occurs (indicated in log window), this might be because:

e Dependencies have not been loaded before (e.g. modelica library)
e Model use syntax incompatible with OpenModelica.

Dependencies

OMOptim should detect dependencies and load corresponding files. However, it some errors occur, please load
by yourself dependencies. You can also load Modelica library using Model->Load Modelica library.

When the model correctly loaded, you should see a window similar to Figure 6-7.

99

(=) %

Display Tools About
| Project | Optimization | OptCooling | Optimization result (3) | Optimization result | OptCoolingresul | OptCodir P
Project name : testLinearActuator
Project file : Ci/Documents and Settings/SayahfMes documents/Mines/ModOpt) TestLinearActuator testLinearActuatormin
/Documents and Settings/SayahfMes documents/Mines/ModOptModelicaTotal. mo

Loaded .mo files : C {Dacuments and Settings/Sayah/Mes documents/MinesModOpt/TestLinearActustor [Linearactuator.ma

Loading project (C:/Documents and Settings/SayahfMes documents/Mines/ModOpt TestLinearActuator /testLinearActuatonmin ...

Loading file : C:fDocuments and Settings(SayahfMes documents(Mines/ModOptiModelicaTatal, mo

Model loaded successfully™C:/Documents and Settings/SayvahfMes documents/Mines/ModOpt/MadelicaTotal.ma"

Loading file : C:/Documents and Settings/SayahiMes documents/Mines/ModOptfTestLinear Actuator jLinearactuator.mo

Mode! loaded successfully"C:/Documents and Settings/SayahfMes documentsMines/ModOpt/ TestLinear Actuator Linear actuator. mo®

Loading maodel file (C: fDocuments and Settings/Sayah/Mes documents/Mines/ModOpt TestLinearActuator/Madels/LinearActuator/LinearActuator.mmo) ...
Loading model file (C: [Documents and Settings/Sayah/Mes

documentsMines/MadOpt/ TestLinear Actuator (Models/Modelica, Thermal FluidHeatFlow. Examples. SimpleCooling/testLinear Actuator.mma) ...

Problem "Optimization® added to project

Problem "OptCooling” added to project

dnakd akbinmalCassnkdilon o aadbil

Dﬂc_'._ml

e kT bl T TP Ry R i o Y

Figure 6-7. OMOptim window after having loaded model.

6.3.2.4 Create a new optimization problem

Problem->Add Problem->Optimization

A dialog should appear. Select the model you want to optimize. Only Model can be selected (no Package,
Component, Block...).

A new form will be displayed. This form has two tabs. One is called Variables, the other is called
Optimization.

100

"~ ouoptim B anE <
[8|
® — TR T Ik [lontimized variables
Electrical T - BE
& Math | nssrscusorrases Bungs bss o Ju Darmperz |0 o
& Meds || ssractawonzorgat Aange b shi o UnaswActumorspringOrpert d o
;’ Jlunks | ——— ' <| = T >
@ Thermel | | ST =
ol = scrmteie (2] [
@ sponDarpert || |lineuacuorsupty 0 [am ™ | Velue | Description | Datatype | ScanMnimum | Scan M
fixed] B 5 | '
® id 1| | |funsaractusorssept sartTin v
T [<] | | (>
—ca]E
0 y
= Name - Description Direction L] = z
0
3'- LinearActuator sumDeviakion - Minimize: [} Selected Ob]ec“ves
= <] (2]
Log
Loading project {C:fDoc and y ;{ModOpt) TestLinearAct inearfc
Loading file : C:fDac and [SanvahMes doc MMirve-s{ModOpt iModeli l.mo
it et e el peege et N -
Loading file : C:/O and hiMes d < /ModOpt Test. ey
Model loaded successfully™C: [Documents and 5 s |T:
Loading moded file (C:/Documents and SettingsSayah/Mes fMines ModOpt T [MidelsLinearfictuator [Lineardchustor mmo)
Loading model file (C:/Documents and Settings/SayahjMes
,_‘t Jp(fl’n-uls of Thermal, FluidHeatFlow, Examples. SimpleCooling b 3
“Cptimization” added to project
Problem “OptCoolng” added bo project
Droiact losdion eixceacch n sl i ", e s 1
mo | omc | Debug |

Figure 6-8. Forms for defining a new optimization problem.

List of Variables is Empty

If variables are not displayed, right click on model name in model hierarchy, and select Read variables.

W LaLGal api e

H_l_llhpamm

® Thermal "
! . Open folder L
+ SDI’I Reload model [l
B fixe Recompile model Read functions
® ided Read variables e
:L:’ :;'I' Read connections e
inet Set parameters... = Set parameters (e.g. finalTime, solver)
+ tor!
stej v Dymola X Select simulator
ref1 OpenModelica i

SUMoevaao T
‘ ‘ LinearActuatc

Figure 6-9. Selecting read variables, set parameters, and selecting simulator.

6.3.2.5 Select Optimized Variables

To set optimization, we first have to define the
should find best values of. To do this, select

variables the optimizer will consider as free i.e. those that it
in the left list, the variables concerned. Then, add them to

Optimized variables by clicking on corresponding button (+).

For each variable, you must set minimum
Optimized variables table.

and maximum values it can take. This can be done in the

101

6.3.2.6 Select objectives

Objectives correspond to the final values of chosen variables. To select these last, select in left list variables
concerned and click + button of Optimization objectives table.
For each objective, you must:

e Set minimum and maximum values it can take. If a configuration does not respect these values, this
configuration won’t be considered. You also can set minimum and maximum equals to “-“ : it will then

o Define whether objective should be minimized or maximized.

This can be done in the Optimized variables table.

6.3.2.7 Select and configure algorithm

After having selected variables and objectives, you should now select and configure optimization algorithm. To
do this, click on Optimization tab.

Here, you can select optimization algorithm you want to use. In version 0.9, OMOptim offers three different
genetic algorithms. Let’s for example choose SPEA2Adapt which is an auto-adaptative genetic algorithm.

By clicking on parameters... button, a dialog is opened allowing defining parameters. These are:

e Population size: this is the number of configurations kept after a generation. If it is set to 50, your final
result can’t contain more than 50 different points.

e Off spring rate: this is the number of children per adult obtained after combination process. If it is set to
3, each generation will contain 150 individual (considering population size is 50).

e Max generations: this number defines the number of generations after which optimization should stop.
In our case, each generation corresponds to 150 simulations. Note that you can still stop optimization
while it is running by clicking on stop button (which will appear once optimization is launched).
Therefore, you can set a really high number and still stop optimization when you want without losing
results obtained until there.

e Save frequency: during optimization, best configurations can be regularly saved. It allows to analyze
evolution of best configurations but also to restart an optimization from previously obtained results. A
Save Frequency parameter set to 3 means that after three generations, a file is automatically created
containing best configurations. These files are named iteraionl.sav, iteration2.sav and are store in Temp
directory, and moved to SolvedProblems directory when optimization is finished.

e ReinitStdDev: this is a specific parameter of EAAdaptl. It defines whether standard deviation of
variables should be reinitialized. It is used only if you start optimization from previously obtained
configurations (using Use start file option). Setting it to yes (1) will, in most of cases, lead to a spread
research of optimized configurations, forgetting parameters’ variations’ reduction obtained in previous
optimization.

Use start file

As indicated before, it is possible to pursue an optimization finished or stopped. To do this, you must enable
Use start file option and select file from which optimization should be started. This file is an iteration_.sav file
created in previous optimization. It is stored in corresponding SolvedProblems folder (iteration10.sav
corresponds to the tenth generation of previous optimization).

Note that this functionality can only work with same variables and objectives. However, minimum,
maximum of variables and objectives can be changed before pursuing an optimization.

102

6.3.2.8 Launch

You can now launch Optimization by clicking Launch button.

6.3.2.9 Stopping Optimization

Optimization will be stopped when the generation counter will reach the generation number defined in
parameters. However, you can still stop the optimization while it is running without loosing obtained results.
To do this, click on Stop button. Note that this will not immediately stop optimization: it will first finish the
current generation.

This stop function is especially useful when optimum points do not vary any more between generations.
This can be easily observed since at each generation, the optimum objectives values and corresponding
parameters are displayed in log window.

6.3.3 Results

The result tab appear when the optimization is finished. It consists of two parts: a table where variables are
displayed and a plot region.

6.3.3.1 Obtaining all Variable Values

During optimization, the values of optimized variables and objectives are memorized. The others are not. To
get these last, you must recomputed corresponding points. To achieve this, select one or several points in
point’s list region and click on recompute.

For each point, it will simulate model setting input parameters to point corresponding values. All values of
this point (including those which are not optimization parameters neither objectives).

103

6.3.4 Window Regions in OMOptim GUI

Model structure
rb'uo'dbpt'
| Flo Modsls Problem Display Tools About
Models |
2
x4
Fe
ﬁ.;
Ciram.
oo =5
| Loading project (C:/Documents and SettingsSaysh[Mes documents/Mines{ModOpt[TestOsyczkalosyczka.min) ...
log [Jiorotie: ciDeaments and setino=wetibles coomnispasoontinnoncsiiortctiams
| Problem “Optmzation” sddedtopraject
wo | oM
| |

Figure 6-10. Window regions in OMOptim GUI.

105

Chapter 7

MDT — The OpenModelica Development Tooling
Eclipse Plugin

7.1 Introduction

The Modelica Development Tooling (MDT) Eclipse Plugin as part of OMDev — The OpenModelica
Development Environment integrates the OpenModelica compiler with Eclipse. MDT, together with the
OpenModelica compiler, provides an environment for working with Modelica and MetaModelica
development projects. This plugin is primarily intended for tool developers rather than application
Modelica modelers.

The following features are available:

Browsing support for Modelica projects, packages, and classes

Wizards for creating Modelica projects, packages, and classes

Syntax color highlighting

Syntax checking

Browsing of the Modelica Standard Library or other libraries

Code completion for class names and function argument lists

Goto definition for classes, types, and functions

Displaying type information when hovering the mouse over an identifier.

7.2 Installation

The installation of MDT is accomplished by following the below installation instructions. These
instructions assume that you have successfully downloaded and installed Eclipse (http://www.eclipse.org).

agkrowpnE

© oo

Start Eclipse

Select Help->Software Updates->Find and Install... from the menu

Select ‘Search for new features to install” and click ‘Next’

Select ‘New Remote Site...

Enter ‘MDT’ as name and
‘http://www.ida.liu.se/labs/pelab/modelica/OpenModelica/MDT’ as URL and click ‘OK’
Make sure ‘MDT’ is selected and click ‘Finish’

In the updates dialog select the ‘MDT’ feature and click ‘Next’

Read through the license agreement, select ‘I accept...” and click ‘Next’

Click ‘Finish’ to install MDT

http://www.ida.liu.se/labs/pelab/OpenModelica/MDT�

106

7.3 Getting Started

7.3.1 Configuring the OpenModelica Compiler

MDT needs to be able to locate the binary of the compiler. It uses the environment variable
OPENMODELICAHOME to do so.

If you have problems using MDT, make sure that OPENMODELICAHOME is pointing to the folder
where the Open Modelica Compiler is installed. In other words, OPENMODELICAHOME must point to
the folder that contains the Open Modelica Compiler (OMC) binary. On the Windows platform it’s called
omc.exe and on Unix platforms it’s called omc.

7.3.2 Using the Modelica Perspective

The most convenient way to work with Modelica projects is to use to the Modelica perspective. To switch
to the Modelica perspective, choose the Window menu item, pick Open Perspective followed by
Other... Select the Model ica option from the dialog presented and click OK..

7.3.3 Selecting a Workspace Folder

Eclipse stores your projects in a folder called a workspace. You need to choose a workspace folder for this
session, see Figure 5-7-1

Figure 5-7-1. Eclipse Setup — Switching Workspace.

7.3.4 Creating one or more Modelica Projects

To start a new project, use the New Modelica Project Wizard. It is accessible through File->New->
Modelica Project or by right-clicking in the Modelica Projects view and selecting New->Modelica
Project.

Figure 5-7-2. Eclipse Setup — creating a Modelica project in the workspace.

You need to disable automatic build for the project(s) (Figure 5-7-3).

Figure 5-7-3. Eclipse Setup — disable automatic build for the projects.

Repeat the procedure for all the projects you need, e.g. for the exercises described in the MetaModelica
users guide: 01_experiment, 02a_expl, 02b_exp2, 03_assignment, 04a_assigntwotype, etc.

NOTE: Leave open only the projects you are working on! Close all the others!

7.3.5 Building and Running a Project

After having created a project, you eventually need to build the project (Figure 7-4).

107

m_ =lsl=
Fie B8 Refactr fregate Sowch | Proect i Wrw Heb
eas Ly el v s | o S =
(i Moceszapr... 5= O fEFR Gy
Dot T e cHE =
" | e ||
it Bk Wherr Sl i
M Manme :; Y
i Trpesmo Bt ety
L 08 _CMCariCorha
& 07_pam =
08 et
1 09_pamtrans
1 10 petrsl
G e _r'.I
whnl r2 8 -ri=-"70]
|
Ly o]

i | Writable

Figure 7-4. Eclipse MDT - Building a project.

There are several options: building, building from scratch (clean), running, see Figure 7-5.

??missing figure

Figure 7-5. Eclipse — building and running a project.

You may also open additional views, e.g as in Figure 7-6.

??missing figure

Figure 7-6. Eclipse — Opening views.

7.3.6 Switching to Another Perspective

If you need, you can (temporarily) switch to another perspective, e.g. to the Java perspective for working
with an OpenModelica Java client as in Figure 7-7.

T SLIES

Fie Edt Refactor Nowgate Search Propect Rum Window Hep
= SR L SRR E E =B E R R

B 1T Modieicn. i

B 01_experment
T 038 gt
B 0 el
1 02_mwgrment
1 48_ssmgritwetype
L 04 sttty
12 05 _sehewrcet
12} [08_OMCAiC b
8 2 seting
% s ey
) classpath
) project
| README et
1 07_pem
1 08 _pemded
1 03 _pamirans
Tl 10_perrs
=

- | lwill| @ -1 -70]

£m -f a.eul cote man.sul gmen.eul maln main.eas Hain.s Types.e Functions.s Habn.e Haln.h Types.e Types.h Punctions.e S|

108

Figure 7-7. Eclipse — Switching to another perspective — e.g. the Java Perspective.

7.3.7 Creating a Package

To create a new package inside a Modelica project, select Fi le->New->Model ica Package. Enter the
desired name of the package and a description of what it contains. Note: for the exercises we already have
existing packages.

|(New Modelica Package E'
Modelica Package
Create a new Modelica package.
Source folder: [F’F’C 970 l [Browse... l
Name: [C ore l

Description: [This package contains the core stuff l

[Jis encapsulated package

[Finish l [Cancel

Figure 7-8. Creating a new Modelica package.

7.3.8 Creating a Class

To create a new Modelica class, select where in the hierarchy that you want to add your new class and
select File->New->Modelica Class. When creating a Modelica class you can add different restrictions
on what the class can contain. These can for example be model, connector, block, record, or
function. When you have selected your desired class type, you can select modifiers that add code blocks
to the generated code. ‘Include initial code block’ will for example add the line ‘initial
equation’ to the class.

109

New Modelica Class

Modelica Class
Create a new Modelica class.
Source folder: [PPCQ?WCore l [Browse...]
Name: |ALU |
Type: block
Modifiers: include initial equation block

[is partial class

O

l Einish] [Cancel

Figure 7-9. Creating a new Modelica class.

7.3.9 Syntax Checking

Whenever a build command is given to the MDT environment, modified and saved Modelica (-mo) files
are checked for syntactical errors. Any errors that are found are added to the Problems view and also
marked in the source code editor. Errors are marked in the editor as a red circle with a white cross, a
squiggly red line under the problematic construct, and as a red marker in the right-hand side of the editor. If
you want to reach the problem, you can either click the item in the Problems view or select the red box in

the right-hand side of the editor.

Modelica - ALU.mo - Eclipse SDK

File Edit MNavigate Search Project SWT Hierarchy Run Window Help
- oo eelan]s o (o] >
|4 -
% Modeli.. 2 = O |(SUTNTNER, =
~ ZPPCY70 block ALU =
~
& Core equation
ALU.mo -
package_mo O inital eauation
El .project end ALU;
I» =hSystem Libra
Y Yl D]
Console | [£l Problems &2 T ¥ =0
2 errors, 0 warnings, 0 infos
‘ |De5cr‘ipti0r| |Re50urce ‘ In Folder Location
@ unexpected token ALU.mo PPCO970/Core line 5
[X] unexpected token ALU.mo PPCO70/Core line 5
(4] [T]] |« | [»]

Figure 7-10. Syntax checking.

110

7.3.10 Automatic Indentation Support

MDT currently has support for automatic indentation. When typing the Return (Enter) key, the next line is
indented correctly. You can also correct indentation of the current line or a range selection using CTRL+I
or “Correct Indentation” action on the toolbar or in the Edit menu.

7.3.11 Code Completion

MDT supports Code Completion in two variants. The first variant, code completion when typing a dot after
a class (package) name, shows alternatives in a menu. Besides the alternatives, Modelica documentation
from comments is shown if is available. This makes the selection easyer.

< Modelica - DCEngine.mo - Eclipse SDK

File Edit Refactor Mawigate Search Run Project Window Help
Tj'U:;JI;.I ot %' ¥ |0~

[M] Modelica Projects &3 = O *DiCEnging. ma &4
=121 EngineSimulation model DCEngine
+- [DCEngine.mo import Modelica.|
|=| project e i
=z, Skandard Library uation B Blodks
= EB Modelica _) EEC:::nstants
end DCEngine; £ Electrical
+- £ Blocks
+-f Constants £ 1cons
+-F3 Electrical £ Math
-3 Teons 3 Mecharics
=3 Math B stuniits
+ acos B Thermal
+ asin
+ atan
+ akanz
baselconl

Figure 7-11. Code completion when typing a dot.

The second variant is useful when typing a call to a function. It shows the function signature (formal
parameter names and types) in a popup when typing the parenthesis after the function name, here the
signature Real sin(Sl1.Angle u) of the sin function:

= Modelica - DCEngine.mo - Eclipse SDK
File Edit Refactor Mavigate Search Run Project ‘Window Help

Tj’LDJ|=J atd %"' \);' ==

[M* Modelica Projects 22 = B *DCEngine.mo 25
-1 EngineSimulation model DCEngine
¥ DCERGine i import Modelica.Math. #;
|=| -project output Eeal x:
—-= Standard Libraty equation
=1} Modelica Feal sin(SLAngle u)
+--F3 Blocks x = sin|

+--Ff Canstants
+- 4 Electrical -
+- Y Icons

Figure 7-12. Code completion at a function call when typing left parenthesis.

end DCEngine:

111

7.3.12 Code Assistance on Identifiers when Hovering

When hovering with the mouse over an identifier a popup with information about the identifier is
displayed. If the text is too long, the user can press F2 to focus the popup dialog and scroll up and down to
examine all the text. As one can see the information in the popup dialog is syntax-highlighted.

e — sl
orrect Indentation I 3 S R e £ | [Modelica *
g RS =
=
output
output
output Intersctive.InteractiveSywbolTsble cutlnteractiveSywbolTsble;
algorithm
cutScclesn, cutString, cutlnterac =
losal J
1
i ive Interacti isble> vars_l,vars;
lis , tuple<Types.TType, Opticn<Absyn.Path>>>> cI_1,c%;
1lis
lis [

case [str,isymb)
equation
true = Upil_strnemp{"quit ()"
then
false, "Ok\n",isymb) ;

case |str,

end FULLYQUALIFIED;

end Fzth;

Figure 7-13. Displaying information for identifiers on hovering

7.3.13 Go to Definition Support

Besides hovering information the user can press CTRL+click to go to the definition of the identifier.
When pressing CTRL the identifier will be presented as a link and when pressing mouse click the editor will
go to the definition of the identifier.

7.3.14 Code Assistance on Writing Records

When writing records, the same functionality as for function calls is used. This is useful especially in
MetaModelica when writing cases in match constructs.

112

lodelica - Absyn.mo - Ech

File Edit Navigate Search Project Run Window Help
|ti-Eolm Q- |

[F* Modelica Projects 5%

J@{'JLSYJQJ-?Y-:"*QD' vJCmectlr'rdent:ﬁon

local ComponentRef crefl, crefi; list«<Exp> ergsl, argsZ; Boole
blst = Util_listThreadMap{argal, argsZ, expEqual);
equal = Util.bkoollAndListiblst);

then egqual;

e jdt

""" 157 jruby

2T modegTHG

I:I---Ig:E OpenModelica [trunk]

""" 17 org.modelica.mdt.core

""" 127 org.modelica. mdt.debug. core
""" T org.modelica.mdt.debug.ui
""" 127 org.modelica mdt. feature
""" 17 org.modelica.mdt.omc

""" 1T org.modelica,mdt. site

""" 15T org.modelica, mdt. test

12T org.modelica.mdt. i

case (MATRIX{argsl) MRTRIH (argsZ))
local ComponentRBef crefl,crefl; list<list<Exp>> argsl,srgsi;
blst = Util_listListThresdMap{argsl,argss, expEqual);
equal = Util_boolBndList(Util.listFlatteniblst));
then egqual;
[RANGE{Exp start, Option <Exp > step, Exp stop) |
caze (RRNEGE l:lall,. SCME (elZ2), el3,RANGE {e2l, SOME (e22) ,e23))
loczl Exp ell, elz, el3, eZl, e2Z, eZ3;
Boolean bl b2, bB3;
equation

bl = expEqual{ell,eZl);

bZ = expEqusal (elZ, eZZ);

b3 = expEqual (el3, e23);

equel = Util.boclBndListi{{bl, bZ, b3}],
then equal;

case (RANGE(ell, ,el3), RRENGE(ezl, ,e23))
local Exp ell, elZ,el3, el ez eZ3;
Boolean bl, b2, bB3;
egquation

bl = expEqualiell,eZl);

al |

Figure 7-14. Code assistance when writing cases with records in MetaModelica.

7.3.15 Using the MDT Console for Plotting

& Modelica - demo/BouncingBall.mo - Eclipse SDK =10l
File Edit Mavigate Search Project Run Field Assist Window Help
J - | lare J -0~ Q- J @l & J E J J @ J =) JCorrectIndentation J 13 58 e e - £ [Modelica| &) 2ava
1 Modelics Projects b BouncingBall.ma VanDerPol.mo
11 Model " =0l llmo 52 | =i
= <§> A 1Emodel BouncingBall =
=] ngmD 2 parameter Real "coe
- Bouncingsallmo 3| parameter Real
il HeloWerid.mo 2| Eadebtmrac
Bl-[M VanDerPol.mo 2 | SEmaw
A A 3 Boolean L is=
i X] .project . =t
El-B} Libraries: C:\OpenMadelica 1.4, 4\Modelical . fDCfE_e‘z
-8} Modelica g SRR RN -
B eyt IO B 9 | discrete Integer n_bounce (start=0);:
| @~ Blocks 10 egastion
5 constants S ;“F"EC;; e i _—
8 Electrical er (v ng then -g else 0;
B} Icons der(h) = wv:
H Math
E}Mechanics).0 and v <= 0.0,impact} then
Eflslumts edge (impact) then -e*pre(v) else 0
1 UsersGuide - rnew 7’ oz
#t Modelicandditions {¥5, Yonou):
] | 0 n_bounce=pre (n_bounce) +1;
20 end wher L
B Outline 53 = |m| 21 end BouncingBall; H
BRats | s
B M Bouncngsall [£ Proslems [1 console £2, Ul Bookmarks | & progress| % B -rf-=08]
: ;) o consoles to dipiay at thi time, 132va Stack Trace Console
yin
o g ¢ Ej2cvs
lieo h 3 New Console View
o impact 4MDT Console
-8 n_bounce 7 5.5y Cansole
=A = i & Tdconsole
9 v_new
[] & 7

Figure 7-15. Activate the MDT Console

113

File Edit

e~

Navigate Search Frojsct Run Field Assist

|#-0-%- |3+ 2|0 |5

Window Help

| corect ndentation: | e

S
[| [Modelics 8% 1ava
=

Plet by OpenMedelica
T T T

(1 Modslca Projects 82 = O |[4 souncingeall.mo 82 [¥anDerPal.mo W
Fy ‘ = <}§>"’ 1-model BouncingBall
El 2 demo f Par8odel BouncingBall
[Boundingsal.mo # | PATA parameter Real e=0.7 "coefficient of restitution”:
[Heloworld.mo 4 Reall arameter Real g=8 "gravity acceleration”:
[vanerpol.ma 2| Beall Rea) n(scart=1) "neighc of balir;
%) project § Booll zeal v "welocity of ball”: Edit Special
- T B s g £h :
=B Libraries: C:\OpenModelica 1.4, 4|Modelical ¥ 201 zoclean flving(start=trme) "trus, iF Ball iz flving':
-8 Modelica g ‘;?“ Boolean impact;
~+® extends Icons.Library; 2 15¢ Real v _new; 10
% Blacke S4RATY gigorete Integer n_bounce (starc=o):
H Constants 120 - - 08
=i der(v) = if flying then -g else 0;
8 1cons der(n) = v: -
-EF Math
B M when {h <= 0.0 and v <= 0.0,impact} then
lechanics
£ stunits v_new = if edge(impact) then -s-pre(v) else 0; 0.4
B Userstuide flying = v_mew > 0:
H ModelicaAdditions Felnit v, Y. oew)! iz
4 o n_bounce=pre (n_bounce)+1: i
end when:
B2 outine £3 = im| end BouncingBall; 00 05 1.0
B oW 2z
5 M saunngeal ([scckomarks | & Progress | Ee|=B-r5-70
o e
e fiying Welcome to Modelica Development Tooling (MTD) Console -
° 8 You can send commands To OMC from here.
eh Type 'help for
@ impact omcs> simulate (Bo gBall, stopTime=3)
© n_bounce record
LI = 1gBall_res.plt”
©° y_new end =
eme> plot (n)
true
jome>
4
| o |

Figure 7-16. Simulation from MDT Console

114

Chapter 8

Modelica Performance Analyzer

A common problem when simulating models in an equation-based language like Modelica is that the model
may contain non-linear equation systems. These are solved in each time-step by extrapolating an initial
guess and running a non-linear system solver. If the simulation takes too long to simulate, it is useful to run
the performance analysis tool. The tool has around 5~25% overhead, which is very low compared to
instruction-level profilers (30x-100x overhead). Due to being based on a single simulation run, the report
may contain spikes in the charts.

When running a simulation for performance analysis, execution times of user-defined functions as well
as linear, non-linear and mixed equation systems are recorded.

To start a simulation in this mode, just use the measureTime flag of the simulate command.

simulate(modelname, measureTime = true)

The generated report is in HTML format (with images in the SVG format), stored in a file
modelname_prof.html, but the XML database and measured times that generated the report and graphs
are also available if you want to customize the report for comparison with other tools.
Below we use the performance profiler on the simple model A:
model A

function f
input Real r;

output Real o := sin(r);
end f;
String s = "abc";

Real x = F(X) "This is x";
Real y(start=1);
Real zl1l = cos(z2);
Real z2 = sin(zl);
equation
der(y) = time;
end A;

We simulate as usual, but set measureTime=true to activate the profiling:

simulate(A, measureTime = true)

115

// // record SimulationResult

// resultFile = "A_res.mat",

// messages = "Time measurements are stored in A_prof.html (human-readable)
and A_prof._.xml (for XSL transforms or more details)"

// end SimulationResult;

8.1 Example Report Generated for the A Model

8.1.1 Information

All times are measured using a real-time wall clock. This means context switching produces bad worst-case
execution times (max times) for blocks. If you want better results, use a CPU-time clock or run the
command using real-time priviliges (avoiding context switches).

Note that for blocks where the individual execution time is close to the accuracy of the real-time clock,
the maximum measured time may deviate a lot from the average.

For more details, see the generated file A_prof.xml, shown in Section 8.1.7 below.

8.1.2 Settings

The settings for the simulation are summarized in the table below:

Name Value
Integration method euler
Output format mat
Output name A_res.mat
Output size 24.0 kB
Profiling data A _prof.data
Profiling size 27.3 kB

8.1.3 Summary

Execution times for different activities:

Task Time Fraction
Pre-Initialization 0.000401 19.17%
Initialization 0.000046 2.20%
Event-handling 0.000036 1.72%
Creating output file 0.000264 12.62%
Linearization 0.000000 0.00%
Time steps 0.001067 51.00%
Overhead 0.000273 13.05%
Unknown 0.000406 0.24%
Total simulation time 0.002092 100.00%

http://www.ida.liu.se/~marsj/A_prof4/A_prof.xml�
http://www.ida.liu.se/~marsj/A_prof4/A_res.mat�
http://www.ida.liu.se/~marsj/A_prof4/A_prof.data�

116

8.1.4 Global Steps

Steps || Total Time || Fraction Average Time || Max Time || Deviation
i_._ 499 0.001067 || 51.00% || 2.13827655310621e-06 || 0.000006611 2.09x
8.1.5 Measured Function Calls
Name || Calls Time || Fraction Max Time || Deviation
@i A.f 1506 || 0.000092990 4.45% || 0.000000448 6.26X%
8.1.6 Measured Blocks
Name Calls Time || Fraction Max Time || Deviation
Ei residualFunc3 || 2018 || 0.000521137 || 24.91% || 0.000035456 136.30x
1—_‘—1 residualFuncl || 1506 || 0.000393709 | 18.82% || 0.000002735 9.46x
8.1.6.1 Equations
Name Variables
SES ALGORITHM 0
SES SIMPLE_ASSIGN 1 der
residualFunc3 z2,21
residualFuncl X

8.1.6.2 Variables

Name || Comment

X This is X

http://www.ida.liu.se/~marsj/A_prof4/a.mo#line=2�
http://www.ida.liu.se/~marsj/A_prof4/A_prof.html#1009�
http://www.ida.liu.se/~marsj/A_prof4/A_prof.html#1010�
http://www.ida.liu.se/~marsj/A_prof4/A_prof.html#1001�
http://www.ida.liu.se/~marsj/A_prof4/A_prof.html#1004�
http://www.ida.liu.se/~marsj/A_prof4/A_prof.html#1003�
http://www.ida.liu.se/~marsj/A_prof4/A_prof.html#1002�
http://www.ida.liu.se/~marsj/A_prof4/a.mo#line=8�
http://www.ida.liu.se/~marsj/A_prof4/a.mo#line=8�
http://www.ida.liu.se/~marsj/A_prof4/a.mo#line=7�
http://www.ida.liu.se/~marsj/A_prof4/a.mo#line=9�
http://www.ida.liu.se/~marsj/A_prof4/a.mo#line=10�

117

8.1.7 Genenerated XML for the Example

<IDOCTYPE doc (View Source for full doctype...)>

- <simulation>

- <modelinfo>
<name>A</name>
<prefix>A</prefix>
<date>2011-03-07 12:55:53</date>
<method>euler</method>
<outputFormat>mat</outputFormat>
<outputFilename>A_res.mat</outputFilename>
<outputFilesize>24617</outputFilesize>
<overheadTime>0.000273</overheadTime>
<preinitTime>0.000401</preinitTime>
<initTime>0.000046</initTime>
<eventTime>0.000036</eventTime>
<outputTime>0.000264</outputTime>
<linearizeTime>0.000000</linearizeTime>
<totalTime>0.002092</totalTime>
<totalStepsTime>0.001067</totalStepsTime>
<numStep>499</numStep>
<maxTime>0.000006611</maxTime>
</model info>

- <profilingdataheader>
<filename>A_prof.data</filename>
<fFilesize>28000</filesize>

- <format>
<uint32>step</uint32>
<double>time</double>
<double>cpu time</double>
<uint32>A.f (calls)</uint32>
<uint32>residualFunc3 (calls)</uint32>
<uint32>residualFuncl (calls)</uint32>
<double>A.f (cpu time)</double>
<double>residualFunc3 (cpu time)</double>
<double>residualFuncl (cpu time)</double>
</format>
</profilingdataheader>

- <variables>

- <variable 1d="1000" name="y" comment=""'>
<info filename="a.mo" startline="8" startcol="3" endline="8"

readonly="writable" />
</variable>

- <variable 1d="1001" name="der(y)' comment=""">
<info filename="a.mo" startline="8" startcol="3" endline="8"

readonly="writable" />
</variable>

- <variable 1d="1002" name="x" comment="This is x'>
<info filename="a.mo" startline="7" startcol="3" endline="7"

readonly="writable" />
</variable>

- <variable i1d="1003" name="'z1" comment="""">
<info filename="a.mo" startline="9" startcol="3" endline="9"

readonly="writable" />
</variable>

- <variable i1d="1004" name=''z2" comment=""">

<info filename="a.mo" startline="10" startcol="3" endline="10" endcol="20"

readonly="writable" />
</variable>

endcol="18"
endcol="18"
endcol="28"
endcol="20"

http://www.ida.liu.se/~marsj/A_prof4/a.mo#line=6�

118

- <variable id="1005" name="s" comment=""'>

<info filename="a.mo" startline="6" startcol="3" endline="6" endcol="19"

readonly="writable" />
</variable>
</variables>
- <functions>
- <function i1d="1006">
<name>A.f</name>
<ncal 1>1506</ncal 1>
<time>0.000092990</time>
<maxTime>0.000000448</maxTime>
<info filename="a.mo" startline=""2" startcol="3"
readonly="writable" />
</function>
</functions>
- <equations>
- <equation i1d="1007" name="SES_ALGORITHM 0>
<refs />
</equation>
- <equation 1d="1008" name="'SES_SIMPLE_ASSIGN 1'>
- <refs>
<ref refid="1001" />
</refs>
</equation>
- <equation i1d="1009" name="residualFunc3'>
- <refs>
<ref refid=""1004" />
<ref refid="1003" />
</refs>
</equation>
- <equation i1d="1010" name="residualFuncl'>
- <refs>
<ref refid=""1002" />
</refs>
</equation>
</equations>
- <profileblocks>
- <profileblock>
<ref refid="1009" />
<ncall>2018</ncall>
<time>0.000521137</time>
<maxTime>0.000035456</maxTime>
</profileblock>
- <profileblock>
<ref refid="1010" />
<ncal 1>1506</ncall>
<time>0.000393709</time>
<maxTime>0.000002735</maxTime>
</profileblock>
</profileblocks>
</simulation>

endline="5" endcol="8"

119

Chapter 9

MDT Debugger for Algorithmic Modelica

The algorithmic code debugger, used for the algorithmic subset of the Modelica language as well as the
MetaModelica language is described in Section 9.1. Using this debugger replaces debugging of algorithmic
code by primitive means such as print statements or asserts which is complex, time-consuming and error-
prone. The usual debugging functionality found in debuggers for procedural or traditional object-oriented
languages is supported, such as setting and removing breakpoints, stepping, inspecting variables, etc. The
debugger is integrated with Eclipse.

9.1 The Eclipse-based Debugger for Algorithmic Modelica

The debugging framework for the algorithmic subset of Modelica and MetaModelica is based on the
Eclipse environment and is implemented as a set of plugins which are available from Modelica
Development Tooling (MDT) environment. Some of the debugger functionality is presented below. In the
right part a variable value is explored. In the top-left part the stack trace is presented. In the middle-left part
the execution point is presented.

The debugger provides the following general functionalities:

e Adding/Removing breakpoints.
e Step Over — moves to the next line, skipping the function calls.
e Step In —takes the user into the function call.

e Step Return — complete the execution of the function and takes the user back to the point from
where the function is called.

e Suspend — interrupts the running program.

120

I=EY
File Edit Mavigate Search Project Run Window Help
[Nt e [# -0 - [®@ - - - G- o | comectindentation | Build project T | %> Debug »
5 Debug &2 ™ |z @ . = [i* 7 = 0| ®-vaiables 2 _% Ereakpoints| =l ¥ =0
?T". MDT GDE [Modelica Developement Teoling (MDT) GDE] || _Name | Dedared Type | Value -
188 MoT @ cache record<Env.Cache.CACHE> | record<Env.Cache.CACHE
o Main Thread (stepping) @ re record < SCode Restriction.R... record<SCode. Restriction.
= instClassdef2 at Inst.mo:3494 @ pre record < Prefiv.Prefic NOPRE> | record«Prefix, Prefic, MOPR
instClassdef at Inst.mo: 3078 E % eqgs list<record<5Code.Equatio.. <2 items>
instClassIn__dispatch at Inst.mo:2140 = % [1] record<5Code.Equation.EQ... record<5Code.Equation.E(
instClassIn at Inst.mo: 1813 El @ eFquation record<5Code EEquation.E... | record<5Cede.EEquation.t
instClass at Inst.mo: 1233 El % expleft record < Absyn.Exp.CREF> record < Absyn Exp. CREF>
instProgram at Inst.mo: 1055 L E % componentRe record<Absyn.Component.. | recard<Absyn.Componen
instProgram at Inst.mao: 1085 ¥ name String "
instantiate at Inst.mo:227 @ subscripts list<Any> <0 item>
instantiate at Main.mo:598 LI El % expRight record < Absyn.Exp.CALL> record=Absyn Exp.CALL>
——— == % function_ record<Absyn.Compenent.. record<Absyn.Componen
Inst.mo i3 Interactive.ma 1 QuotedFunction.mo P34 =0 @ functionArgs record<Absyn.FunctionArg... record<Absyn.FunctionAr
normalilgorithmlet = alg, init,ialnlgorit,‘nrrl;l @ comment Optien<Any> NOME()
re,vis, , ,inst dims,impl,callscope, graph, csets,instSingl ¥ info record = Absyn.Info.JMFO> record < Absyn Info INFO>
equation - - = @ [2] record<5Code.Equation.EQ... record<5Code.Equation.E(
false = Uril.getStatefulBoolean (stoplnst): a = % eEquation record=5Code.EEquation.E... | record<S5CodeEEquation.
UnitParserExt.checkpoint () : ¥ expleft record = Absyn.Exp. CREF> record=Absyn Exp.CREF> _|
//Debug.traceln (" Instclassdef for: "™ +& PrefixUtil.print expRight record< Absyn.Bxp.CALL> record<Absyn Bxp.CALL>
ci statel = ClassInf.trans(ci state, ClassInf.NEWDEF()): @ comment Option<Any> NONEQ
els = ext,1'act,Const,ant,PlusDeps_[els,instsinglecref,{j—,class E % info recerd< AbsynInfo.JNFO> recerd<Absyn Info INFO>
@ fileMame String "Abs.mo”
// split elements lineNumberSt Integer 12
(cdefelts,extendsclasselts, extendselts, compelts) = splitE @ columnNumt Integer 3
@ lineNumberEr Integer 12
extendselts = S5CodeUtil.addRedeclareAsElementsToExtends (e @ columnhumt Integer 7
- E % buildTimes record<Absyn.TimeStamp.... record<Absyn.TimeStamp
Kl | 3 @ lastBuildTi Real 0
= — # lastEditTin Real 0
B Consols 2 = T“kq [3—‘ Problemq G B(Ecumbleq o= @ els list<record<5Code.Element... <2 iterns>
MDT GDB [Madelica Developement Toaling (MDT) GDB] C:\OpenModelics \trunk|\testsuite\bootstrapping\main.exe | £ @ ci_state record < Classnf.5tate.MOD... record < ClassInf State.MOL
1 Ug@’@l = - - E @ path record<Absyn.PathIDENT> | record<Absyn.PathIDENT
= # name String "Abs"
@ csets record=Connect.5ets.SETS> | record<Connect.Sets,SETS
= @ initalg list< Any> <0 item> =
4 il i i | - T
J e ‘ Wiritzble ‘ Insert | 3494 : 27 | OpenModelica C....8.0 is Online J

Figure 9-1. Debugging functionality.

9.1.1 Starting the Modelica Debugging Perspective

To be able to run in debug mode, one has to go through the following steps:

e create a mos file

e setting the debug configuration
e setting breakpoints

e running the debug configuration

All these steps are presented below using images.

9.1.1.1 Create mos file

In order to debug Modelica code we need to load the Modelica files into the OpenModelica Compiler. For

this we can write a small script file like this,

setCommandLineOptions({""+d=rml,noevalfunc","+g=MetaModelica'});
setEnvironmentVar (*"MODEL ICAUSERCFLAGS™,""-g"") ;

loadFile(""HelloWorld.mo™);
getErrorString();
HelloWorl1d(120.0);
getErrorString();

So lets say that we want to debug Hel loworld.mo. For that we must load it into the compiler using the
script file. Put all the Modelica files there in the script file to be loaded. We should also initiate the
debugger by calling the starting function, in the above code Hel lowor1d(120.0);

121

9.1.1.2 Setting the debug configuration

While the Modelica perspective is activated the user should click on the bug icon on the toolbar and select
Debug in order to access the dialog for building debug configurations.

& Modelica - Eclipse SDK

File Edit Mavigate Search Project Run FieldAssist Window Help

Ird- 1B s-0-Q- 8 | & |G| ®]|@ Uil e~
— 2% 1 10_petral
-'rﬂ 2 09_pamtrans
= %% 308_pamded
- .externalToolg
M Functions.mo | @t 505_advanced
; Main.mo 77 6 04b_modassigntwotype
[[M] Types.mo A%, 7 09a_assignbwotype
- M| .project 7% 803_assignment
g Eunc:ons.; T 9 01_experiment
unctions. P o
- |Z] Functions.o ! -
- Functions.srz Debug As >
| vl &
o Malrec . Debug...
E :a\n.rxe Organize Favarites...
-] Main.h
El Main.o
- (=] Main,srz
L@ Make.mk
| g Makefile
- [E] README. txt
... 2 oni i TTAR b i
| | 3
I =H
o= Cutline &3
An outline is not available. Problems | B Console 2 Bookmarks|Progress|
<terminated > OMDev-MINGYW [Program] C:\OMDey \toals\msys'bin'make. exe
compiling/linking in debug mode with LIBRML=rml_g =nd R Zdebug
—pointer -I"/ rrl//include”/plain -o Main.o Main. e
mo-cps -c Iypes
nking in debug wode with LIBRMI=rml_g =nd EMLARGS= -fdebug
/tools/rml//bin/rml" -Eplain -fdebug -Cno-cps Types.mo

Figure 9-2. Accessing the debug configuration dialog.

To create the debug configuration, right click on the classification Modelica Development Tooling
(MDT) GDB and select New as in figure below. Then give a name to the configuration, select the debugging
executable to be executed and give it command line parameters. There are several tabs in which the user
can select additional debug configuration settings like the environment in which the executable should be
run.

Note that we require Gnu Debugger (GDB) for debugging session. We must specify the GDB location,
also we must pass our script file as an argument to OMC.

122

£ Modelica - HelloWorld/Script.mos - Eclipse SDK =0 5[
File Edit Mavigate Search Froject Run Window Help
[i [|#-0-%- |- |5 - - & - - | Comectindentation | Buid project T %5 Debug ®
(i Modelica Projects 22 = O] Helloworldmo [il =0
[. — T
B
& Debug Configurations _I
7 00_sim . .
7 01_ex Create, manage, and run configurations
L7 02a_e Run or Debug a MetaModelica program
7 02b e
T 03_syr
= = +
7 04_ast RS | El 50 v Name: INEw_cunﬁguration
g g:.ﬁl |l‘.‘DE Flter text Main B Souroew = Commonw -3 Emn'ronmeﬂq
_m —
! CjC++ ication
g 06_ad :E-H— :pﬂpa'dﬂ to Application Program: IC:'\,0penMudEI\G\trunk\build\,bin\cmcexe Workspace... | File System...
07_0N
= 08333\ /C++ Postmortem Debugger Work d\red:ory:l C:\Userstadeas 31 workspaceMOT \HelloWarld Workspace... | File System...
17 09_pal JC++ Remate Application GDB path: | &{env_var:OMDEV} \tools\mingw'bin\gdb.exe Workspace... | File System...
7 10_pal DSF PDA Application
1T 11_pe Eclipse Application
=2 Hellowy ~-[c] GDB Hardware Debugging ™| Debug € source files
M He Java Applet
o --[T] Java Application Arguments:
& He | Ju dunit SCRIPT.mos|
B} He U JUnit Plugen Test
[£] He B Launch Group
[£] He % Modelica Developement Tooling (MDT)
&) He '”re. Modelica Developement Tocling {(MDT) GDE
@ He 7’& MDT Debugger Test _’ILI
B ne 7’& New_configuration
El He 77, standard Modelica Test . =0
4 I {B O5Gi Framework
| @ Push Down Automata
o= Outline & @' Remote Java Application
=] Snapshot Album
Aply. Revert |
Filter matched 21 of 21 items 4'
@ Debug I Close |
J e | Wiritable | Insert | i:1 OpenModelica C....8.0 is Onling J

Figure 9-3. Creating the Debug Configuration.

9.1.1.3 Setting/Deleting Breakpoints

The Eclipse interface allows to add/remove breakpoints. At the moment only line number based
breakpoints are supported. Other alternative to set the breakpoints is; function breakpoints.

123

£ Modebca - Mainmo - Eclipse SDK

|
Fie Edt Mavigete Sewch Froject Run FeidAssst Wincow Hel
It @ O Qur [82 [loe |8 @] en Giv - | comectindentaton 74 [23 modeken =
i Modehca Projects [=0 m i)
PRl 17bachage Hazn =
it E- 3 T Types;
AXIETATOORICE S ¢ import Tunctions;
’ function main
b input list<Etring> arg;
E algorithm
) | Eataticomtimi arg
cass (n_murs:_
— 13 local
i ¥ 3 Intager &, n;
i £ Etring str, n_stri
A A i3 ¥ “ona* e ng ifunctione. cest | "ona™| j};
!.L—l 34 P = 1) "swa\ " 48 ng{Functions. vast i "owe™ | s -
cate i, AT L XT-D -
s MR e[@550
B menfisicsvng> o) oL 08 SgTACPt=1796 CogReplPort=2737 <OGEeNPart=1758 <ogSgnabert=27¥ 10
o import Funceons)

=

Double click on the
ruler to set/delete
breakpoints

L]

| Wriabie | Tnsery | 121 | 8 Onenadeica Compler 143 Orine | J|oe

Figure 9-4. Setting/deleting breakpoints.

9.1.1.4 Starting the debugging session and enabling the debug perspective

£ Modebca - Mainmo - Eclipse SDK

|
Fie Edt Mavgate Sewrch Project Run FeidAssst Window Helo

e)

-D-Q.-J'JJ-;F'J._.-IOJOJ.<'-'\':a- + | Comeatndentation L E o

i
,;ll:llgl Hazn -
sapars Typans
Aimport Funotions;
function main
input list<String> arg;
algorithm
matchcontimue arg
case (n_uizci_
local
» Inzager t, n;
Btring ssr, n_stei
*TaATion
'
na' e o ena™l b
wa " 4L L Functions.test ("twa™ i -
'I‘J
N
-] == =
rotiems | Borsie 15 Boskmaris | Frogress | « Wi wid[@570
F manfistcsrng> wg) experent

=

v MOT]] € oL, e ogCmcPurt= 1796 <hoRenhPort=1737 <bgfvenori«1753 <bgSgnaPert=755 10
& mport Funcons; \

Click and select the
debug configuration.
The debugging will start.

’ , 4

| eitable | Tnsert 2:t | 81 Ooeniodeica Compler 1.4.31s Orine | [T | e

Figure 9-5. Starting the debugging session.

124

File Edit Mavigate Search Project Run FieldAssist

Window Help

[C- Gl s-0-%- | &&= & 1@ L] o || cocamndntton
[t Modelica Projects 53 ., = 0O | fm] e
RERE
@122 01_experiment
Tl 02a_expl
-5 02b_exp2
i --t{ 03_assignment ifunction main
..... m 04a_assigntwotype input list<String> arg;
""" 120 04b_modassigntwotype algc_’:ltlm
""" 17 05_advanced i ?
= = . matchocontinue arg
----- 127 06_OMCAndCorba EEE s
""" 121 07_pam local
120 08_pamded Integer i, n; n - =
= 09_pamtrans String str, n_str; & Confirm Perspective Switch ll
-0 10_petrol equation
_____ B documenitation This kind of launch is configured to open the Debug perspective when it
BT et suspends,
..... etc
This Debug perspective is designed to support application debugging. It
incorporates views for displaying the debug stack, variables and breakpoint
management,
Do you want to open this perspective now?
” . [~ Remember my decision
o= Outiine 23 IR S O E e A
Yes Mo
=] EE Main problems | B Console &2 Bookmarl
B - main{ist<String > arg) 01_experiment [Modelica Developement - B ey T T
e 0 import Functions;

Figure 9-6. Eclipse will ask if the user wants to switch to the debugging perspective.

9.1.2 Debugging OpenModelica

e Compile and create OpenModelica executable as usual.
e Goto /trunk/Compiler/boot

e Now run make —f Makefile.omdev.mingw (choose the right make file depending on your
platform), this will create a bootstrapped omc and will replace the omc executable in
/trunk/build/bin.

e Now in the debug configuration as explained in Section 9.1.1.2 choose omc executable as the

program.

9.1.3 The Debugging Perspective

The debug view primarily consists of two main views:

e Stack Frames View

e Variables View

The stack frame view, shown in the figure below, shows a list of frames that indicates how the flow had
moved from one function to another or from one file to another. This allows backtracing of the code. It is
very much possible to select the previous frame in the stack and inspect the values of the variables in that
frame. However, it is not possible to select any of the previous frame and start debugging from there. Each
frame is shown as <function_name at file_name:line_number>.

The Variables view shows the list of variables at a certain point in the program, containing four colums:

e Name — the variable name.
e Declared Type — the Modelica type of the variable.
e Value - the variable value.

125

e Actual Type —the mapped C type.

By preserving the stack frames and variables it is possible to keep track of the variables values. If the value
of any variable is changed while stepping then that variable will be highlighted yellow (the standard
Eclipse way of showing the change).

& Debug - Main.mo - Ecdipse SHK =181 x|
Fie Edt Refacior Nevgale Sewch Frojwct Run Feidssst Window Heb
Iri= | e Q- Ra- Qe [0 | |- | @] - et e - | Comtindentaton £ | %5 Debug =
(%5 0 5N R W R R e T T O] eovrat 5 soum] TR S i)
= B 01_expenment [Modeica Developement Toing (MOT]] - Hame | e 1
=3 vot EEXT) strrg st
Eraf Man Svead (steoping) B aw string
= fasinmain e 17, 517)
ol Cronicypuinihome oo HetsMocelca 11 _sipermentiman.exe <gCnePort=3050 dogReptPogfl 2051 dhgEnsorta3052 &
1 2 o
1 = 01| [outine i1 Moseicaproess 33 %, O
||| RS e [
| = 01 _eperment
B 02s_eo1
& o> _ew2
181 03_assgrment

TS Cda_pssgrtwatyoe

B 0%_modessgrtivoryoe
16 08 _achianced

i 05_oMCAnGCona

61 07 _pam

13 08_pamded

1 o9_pamtrans

& 10 perel

&I Socumentation

B etz

mput
: algorithm
matchoontinue arg
case (n_
loeal

— o -
[Ecm 43\ Tasks | Brror Log | hi A wLie @i 0
01_sxpermen: | Tootng $0T]] € R IAMOOR 02, e e]

Browse variables here. =
Use the buttons to step. Also there 1s a tab with
breakpoints.

oy |)

e - B A 9 Ooerticdaics Compier 1.4.3 8 Orice e | ErrsTTT—

Figure 9-7. The debugging perspective.

- Debug - Main.mno - Edipse SDK
Fle Edt Refecwer Navgate Sewch Projec Rum Feidusst Wicow Heb

| ST SR R N R M I R NS B R
4 Deing 21 Pt SInl P A S il =]
£ B 03_sxperment Modsica Develooement Tookng (MOT]]

=B s

=i o Mar thresd (steopng)
= Manman (ine: 17, 5°: 7)
#il Crbricygn homeladma MetaModelon)] _sxpermentiman.exe cbpCndPort= 3050 ChoRenPortm 1051 <bgEvenPort=3nE2 -
|

4] | Ll

& dmport Fuscsicns:

funstion main
T imput listeSizing arg:
algerith

matchoontinue arg

L N T I e
| Switch between Debug
and Modelica Perspective

Figure 9-8. Switching between perspectives.

126

Chapter 10

Modelica3D

Modelica3D is a lightweight, platform independent 3D-visualisation library for Modelica. Read more about
the Modelica3D library here https://mlcontrol.uebb.tu-berlin.de/redmine/projects/modelica3d-public.

10.1 Windows

In order to run Modelica3D on windows you need following softwares;

e Python - Install python from http://www.python.org/download/. Python2.7.3 is recommended.

e PYyGTK - Install GTK+ for python from
http://ftp.gnome.org/pub/GNOME/binaries/win32/pygtk/2.24/. Download the all-in-one package.
Recommmended is pygtk-all-in-one-2.24.2.win32-py2.7.msi.

Run the Modelica3D server by executing the dbus-server.py script located at
OPENMODELICAHOME/lib/omlibrary-modelica3d/osg-gtk.

python dbus-server.py

This will start the Modelica3D server and on success you should see the output,

Running dbus-server...

Now run the simulation. The following commands will load the Modelica3D library and simulates the
DoublePendulum example,
loadModelica3D(); getErrorString();
loadString("'model DoublePendulum
extends Modelica.Mechanics.MultiBody.Examples_Elementary._DoublePendulum;
inner ModelicaServices.Modelica3D.Controller m3d_control;

end DoublePendulum;™); getErrorString();
simulate(DoublePendulum); getErrorString();

If everything goes fine a visualization window will pop-up. To visualize any models from the MultiBody
library you can use this script and change the extends to point to the model you want. Note that you will
need to add visualisers to your model similarly to what Modelica.MultiBody library has. See some
documentation of the visualizers available here:
https://build.openmodelica.org/Documentation/Modelica.Mechanics.MultiBody. Visualizers.html

loadModelica3D(); getErrorString();

loadString("

model Visualize_MyModel
inner ModelicaServices.Modelica3D.Controller m3d_control;
extends MyModel;

end Visualize_MyModel;

simulate(Visualize_MyModel); getErrorString(Q);

https://mlcontrol.uebb.tu-berlin.de/redmine/projects/modelica3d-public�
http://www.python.org/download/�
http://ftp.gnome.org/pub/GNOME/binaries/win32/pygtk/2.24/�
https://build.openmodelica.org/Documentation/Modelica.Mechanics.MultiBody.Visualizers.html�

127

10.2 MacOS

On MacQOS you can use the 3d visualization like this. Note that on your system the paths used here might
vary. In one terminal type:

start the dbus server (you only need to do this once)

> sudo launchctl load -w
/opt/openmodelica/Library/LaunchDaemons/org.freedesktop.dbus-system.plist

> launchctl load -w /opt/openmodelica/Library/LaunchAgents/org.freedesktop.dbus-
session.plist

export python path

> export
PYTHONPATH=/opt/openmodelica/Library/Frameworks/Python.framework/Versions/2.7/1ib/
python2.7/site-packages:$PYTHONPATH

run the dbus-server.py

go to your openmodelica installation /lib/omlibrary-modelica3d/osg-gtk

> python dbus-server.py

In another terminal type:

> cat > modelica3d.mos

loadModelica3D();getErrorString();

loadString("'model DoublePendulum

extends Modelica.Mechanics._MultiBody.Examples.Elementary.DoublePendulum;
inner ModelicaServices._Modelica3D.Controller m3d_control;

end DoublePendulum;™);getErrorString();

instantiateModel (DoublePendulum); getErrorString(Q);
simulate(DoublePendulum); getErrorString();

CTRL+D

> omc modelica3d.mos

129

Chapter 11

Simulation in Web Browser

OpenModelica can simulate in a web browser on a client computer by model code being compiled to
efficient Javacript code.

For more information, see https://github.com/tshort/openmodelica-javascript

Below used on the MSL MultiBody RobotR3.fullRobot example model.

AEa40&aYing %

& -3 - ® ~ Page~ Safety~ Tools~ @~ 3 M G

= M [raw pags

OpenModelica simulation example

Modelica Mechanics MultiBody. Examples. Systems. RobotR 3 fullRobot

Sammation Mnshed. Time: 0040

S Wi G 1k =
Dl pant wiviesivale =] F-' e
Tokerance (W11 ak]) s _l_: L ¥
18 . .
s

https://github.com/tshort/openmodelica-javascript�

130

& g/ shon.githubugmisgad/mdpad Mml Modelica 0 - B &

AEalavYins &

= v Page~ Safety> Toals~ @~ A IS

OpenModelica simulation example

Modelica Mechanics MultiBody . Examples Systems. RobotR 3. ful Robot

Simutabon finished. Time. 0040
Model Resuls

Pigt variabi

St 500 PEChanics Ik w o

Oupul wlervals

Tok=rance

131

Chapter 12

Interoperability — C and Python

Below is information and examples about the OpenModelica external C interfaces, as well as examples of
Python interoperability.

12.1 Calling External C functions
The following is a small example (ExternalLibraries.mo) to show the use of external C functions:

model ExternallLibraries
Real x(start=1.0),y(start=2.0);

equation
der(x)=-ExternalFuncl(x);
der(y)=-ExternalFunc2(y);

end ExternalLibraries;

function ExternalFuncl
input Real Xx;
output Real y;
external
y=ExternalFuncl_ext(x) annotation(Library="1ibExternalFuncl_ext.o",
Include="#include \"ExternalFuncl_ext._.h\""");
end ExternalFuncl;

function ExternalFunc2
input Real x;
output Real y;
external "C" annotation(Library="libExternalFunc2.a",
Include="#include \"ExternalFunc2.h\""");
end ExternalFunc2;

These C (.c) files and header files (.h) are needed:

/* File: ExternalFuncl.c */
double ExternalFuncl_ext(double x)

double res;
res = xX+2.0*xX*X;
return res;

}

/* Header file ExternalFuncl _ext.h for ExternalFuncl function */
double ExternalFuncl_ext(double);

/* file: ExternalFunc2.c */
double ExternalFunc2(double x)

{

132

double res;
res = (x-1.0)*(x+2.0);
return res;

}

/* Header file ExternalFunc2.h for ExternalFunc2 */
double ExternalFunc2(double);

The following script file ExternalLibraries.mos will perform everything that is needed, provided you
have gcc installed in your path:

loadFile("ExternalLibraries.mo™);

system(''gcc -c¢ -o libExternalFuncl_ext.o ExternalFuncl.c");
system(*'gcc -c -0 libExternalFunc2.a ExternalFunc2.c");
simulate(ExternallLibraries);

We run the script:

>> runScript(“ExternalLibraries.mos™);
and plot the results:

>> plot({x,y});

< tmpPlot.pit
File Edit Special

Plot by OpenModelica

20[1y |
‘!lf.
15[i
1.0 T
04l]

0o o1 02 03 04 05 0B 0F 08 08 1.0

12.2 Calling Python Code

This section describes a simple-minded approach to calling Python code from OpenModelica. For a
description of Python scripting with OpenModelica, see Chapter 13.

The interaction with Python can be perfomed in four different ways whereas one is illustrated below.
Assume that we have the following Modelica code (Cal ledbyPython.mo):
model CalledbyPython

Real x(start=1.0),y(start=2.0);
parameter Real b = 2.0;

equation
der(x) = -b*y;
der(y) = x;

end CalledbyPython;

In the following Python (.py) files the above Modelica model is simulated via the OpenModelica scripting
interface.
file: PythonCaller.py

#1/usr/bin/python
import sys,o0s

133

global newb = 0.5

os.chdir(r=C:\Users\Documents\python*)

execFile("CreateMosFile.py™)
os.popen(r'C:\OpenModelical.4_5\bin\omc.exe CalledbyPython.mos"™).read()
execfile("RetrResult._py")

file: CreateMosFile._py

#1/usr/bin/python

mos_TFfile = open("CalledbyPython.mos",’w”,1)

mos_Ffile.write("loadFile(\"CalledbyPython.mo\'"");\n"")

mos_TFile.write("setComponentModifierValue(CalledbyPython,b,$Code(="+str(newb)+")
):\n™)

mos_File.write("simulate(Cal ledbyPython,stopTime=10);\n")

mos_file.close()

file: RetrResult.py

#1/usr/bin/python

def zeros(h): #
vec = [0.0]
for i in range(int(n)-1): vec = vec + [0.0]
return vec

res_file = open("CalledbyPython_res.plt","r",1)

line = res_fTile.readline()
size = int(res_file.readline(Q).split("=")[1])
time = zeros(size)

y zeros(size)

while line = ["DataSet: time\n"]: line = res_Ffile.readline().split(",")[0:1]
for j in range(int(size)): time[j]=Float(res_file_readline(QQ.split(",")[0])
while line = ["DataSet: y\n"]: line=res_file.readline(Q).split(",")[0:1]

for j in range(int(size)): y[j]=Float(res_file.readline(Q).split(",")[1]D
res_Ffile.close()

A second option of simulating the above Modelica model is to use the command bui IdModel instead of
the simulate command and setting the parameter value in the initial parameter file,
CalledbyPython_init.txt instead of using the command setComponentModifiervalue. Then
the file CalledbyPython.exe is just executed.

The third option is to use the Corba interface for invoking the compiler and then just use the scripting
interface to send commands to the compiler via this interface.

The fourth variant is to use external function calls to directly communicate with the executing
simulation process.

134

Chapter 13

OpenModelica Python Interface and PySimulator

This chapter describes the OpenModelica Python integration facilities.

e OMPython — the OpenModelica Python scripting interface, see Section 13.1.

e PySimulator — a Python package that provides simulation and post processing/analysis tools
integrated with OpenModelica, see Section 13.2.

13.1 OMPython — OpenModelica Python Interface

OMPython — OpenModelica Python API is a free, open source, highly portable Python based interactive
session handler for Modelica scripting. It provides the modeler with components for creating a complete
Modelica modeling, compilation and simulation environment based on the latest OpenModelica library
standard available. OMPython is architectured to combine both the solving strategy and model building. So
domain experts (people writing the models) and computational engineers (people writing the solver code)
can work on one unified tool that is industrially viable for optimization of Modelica models, while offering
a flexible platform for algorithm development and research. OMPython v2.0 is not a standalone package, it
depends upon the OpenModelica installation.

OMPython v2.0 is implemented in Python using the OmniORB and OmniORBpy — high performance
CORBA ORB:s for Python and it supports the Modelica Standard Library version 3.2 that is included in the
latest OpenModelica (version 1.9.2) installation.

13.1.1 Features of OMPython

OMPython provides user friendly features like,

e Interactive session handling, parsing, interpretation of commands and Modelica expressions for
evaluation, simulation, plotting, etc.

o Interface to the latest OpenModelica API calls.

e Optimized parser results that give control over every element of the output.

e Helper functions to allow manipulation on Nested dictionaries.

e Easy access to the library and testing of OpenModelica commands.

13.1.2 Using OMPython
The third party library of OMPython can be created by changing directory to,

OpenModelicalnstallationDirectory/share/omc/scripts/Pythoninterface/

And running the command,

135

python setup.py install

This will install the OMPython library into your Python’s third party libraries directory. Now OMCSession
can be imported from OMPython and used within Python.

13.1.2.1 Test Commands

To test the command outputs, simply create an OMCSession object by importing from the OMPython
library within Python interepreter. The module allows you to interactively send commands to the OMC
server and display their output.

To get started, create an OMCSession object:

C:\>python
>>> from OMPython import OMCSession
>>> OMPython = OMCSession()

Get the currently running OMC version
>>> OMPython.execute(''getVersion()™)
""1.9.2+dev (r24159)'"\n*

Get the current directory.
>>> OMPython.execute(*'cd()"™)
"""C:/Users/alash325"\n"

Load Modelica library:
>>> OMPython.execute("'loadModel (Modelica)™)
True

Load a modelica model:

>>> OMPython.execute('loadFile(\"C:/Dev/0OpenModelica/Examples/BouncingBall.mo\')"™)
True

We give the command to flatten a model:
>>> OMPython.execute('instantiateModel (BouncingBall)™)

"""class BouncingBall\n parameter Real e = 0.7 "coefficient of restitution”;\n

parameter Real g = 9.81 "gravity acceleration”;\n Real h(start 1.0) "height

of ball";\n Real v "velocity of ball";\n Boolean flying(start = true) "true,

if ball is flying”;\n Boolean impact;\n Real v_new;\n Integer
foo;\nequation\n impact = h <= 0.0;\n foo = if impact then 1 else 2;\n

der(v) = if flying then -g else 0.0;\n der(h) = v;\n when {h <= 0.0 and v <=
0.0, impact} then\n v_new = if edge(impact) then (-e) * pre(v) else 0.0;\n
flying = v_new > 0.0;\n reinit(v, v_new);\n end when;\nend
BouncingBall;\n"\n"

We get the name and other properties of a class:

>>> OMPython.execute(“getClassNames()™)
{"SET1": {}, "SET2": {"Setl": ["BouncingBall"]}}
>>> OMPython.execute(“isPartial (BouncingBall)™)
false

>>> OMPython.execute(“isPackage(BouncingBall)™)
false

>>> OMPython.execute(“isModel (BouncingBall)™)

136

true

>>> OMPython.execute(“checkModel (BouncingBall)™*)
"""Check of BouncingBall completed successfully._\n\n\nClass BouncingBall
has 6 equation(s) and 6 variable(s).-\nl of these are trivial

equation(s)-\n"\n"

>>> OMPython.execute(“getClassRestriction(BouncingBall)™)
""model'\n"

>>> OMPython.execute(“getClassInformation(BouncingBall)™)
{"SET4": {}, "SET1": {"Setl": [-100.0, -100.0, 100.0, 100.0, True, 0.1, 2.0,
2.0]}, °"SET2": {"Elements”: {"Line3": {"Properties”: {"Values": [False, O,
"LinePattern.Dot", 0.25, 3, "Smooth.None®"], "Subsetl": {"Setl": [0, -100],
"Set2": [0, -30]}, "Setli": [0.0, 0.0], "Set2": [127, O, 0], "Set3":
[*Arrow_None®, "Arrow.None"]}}, "Line2": {"Properties”: {"Values": [True, O,
"LinePattern.Solid", 0.25, 3, "Smooth.None"], "Subsetl®: {"Setl": [70, O],
"Set2": [90, 0]}, "Setl": [0.0, 0.0], "Set2": [0, O, 255], "Set3":
["Arrow_None®, “Arrow.None®"]}}, "Linel": {"Properties®: {"Values": [True, O,
"LinePattern.Solid", 0.25, 3, "Smooth.None"], "Subsetl®: {"Setl": [-90, 0],
"Set2": [-70, 0]}, "Seti": [0.0, 0.0], "Set2": [0, 0,255], "Set3"
[*Arrow_None®, “"Arrow.None"]}}, "Text2": {"Properties”: {"Values®: [True, O,
"LinePattern.Solid", "FillPattern.None®, 0.25, ""%name"", O,
"TextAlignment.Center®], "Subsetl®": {"Setl": [-152, 87], "Set2": [148, 471},
"Setl": [0.0, 0.0], "Set2": [0, O, 255], "Set3": [0, O, O]}}, "Textl":
{"Properties®: {"Values": [True, 0, "LinePattern.Solid", “FillPattern_None",
0.25, 0, "TextAlignment.Center™], "Subsetl®: {"Setl": [-144, -40], "Set2":
[142, -72]}, "Setl": [0.0,0.0], "Set2": [0, 0, 0], "Results”": {""R": "%R""}}},
"Rectanglel”: {"Properties”: {"Values®: [True, 0, "LinePattern.Solid",
"FillPattern.Solid", 0.25, "BorderPattern.None", 0], "Subsetl®: {"Setl": [-70,
30], "Set2": [70, -30]}, "Setl": [0.0, 0.0], "Set2": [0, O, 255], "Set3":
[255, 255, 255]}}}}), "SET3": {"Elements”": {"Line3": {"Properties®: {"Values":
[False, 0, "LinePattern.Dot", 0.25, 3, "Smooth_None®"], "Subsetl": {"Setl": [O,
-100], "Set2": [0, -30]}, "Setl": [0.0, 0.0],"Set2": [127, O, O], "Set3":
[*Arrow_.None®, "Arrow.None"]}}, "Line2": {"Properties”: {"Values®: [True, O,
"LinePattern.Solid", 0.25, 3, "Smooth.None"], "Subsetl®: {"Setl": [70, O],
"Set2": [90, 0]}, "Setl": [0.0, 0.0], "Set2": [0, O, 255],"Set3":
[*Arrow_None", "Arrow.None"]}}, "Linel": {"Properties”: {"Values": [True, O,
"LinePattern.Solid", 0.25, 3, "Smooth.None"], "Subsetl®": {"Setl": [-90,
0], "Set2": [-70, 0]}, "Setl": [0.0, 0.0], "Set2": [0, O, 255], "Set3":
["Arrow_None®, "Arrow.None"]}}, "Text2": {"Properties®: {"Values": [True, O,
"LinePattern.Solid", "FillPattern.None®", 0.25, ""%name"™", O
"TextAlignment._Center®], "Subsetl®: {"Setl": [-152, 87], "Set2": [148, 47]},
"Setl": [0.0, 0.0], "Set2": [0, O, 255], "Set3": [0, O, O]}}, "Textl-":
{"Properties”: {"Values": [True, 0, "LinePattern.Solid", "FillPattern_None",
0.25, 0, "TextAlignment.Center®"], "Subsetl®: {"Setl": [-144, -40], "Set2":
[142, -72]}, "Setl": [0.0, 0.0], "Set2": [0, O, 0], "Results™: {""R":
"%R""}}}, "Rectanglel®: {"Properties”: {"Values": [True, O,
"LinePattern.Solid", "FillPattern.Solid", 0.25, "BorderPattern.None",
0], "Subsetl®: {"Setl": [-70, 30], "Set2": [70, -30]}, "Setli": [0.0, 0.0],
"Set2": [0, 0, 255], "Set3": [255, 255, 255]}}}, "Setli": [-100.0, -100.0,
100.0, 100.0, True, 0.1,2.0, 2.0], "Set2": [""model™", """, False, False,
False, ""C:/Dev/OpenModelica/Examples/BouncingBall._mo™", False, 1, 1, 23,
1713}

>>> OMPython.execute(“getConnectionCount(BouncingBall)™)
0

>>> OMPython.execute(“getlnheritanceCount(BouncingBall)™)
0

>>> OMPython.execute(“getComponentModifierValue(BouncingBall,e))
7.5

The common combination of a simulation followed by getting a value and doing a plot:
>>> OMPython.execute(“simulate(BouncingBall, stopTime=3.0)"");

137

{"SimulationOptions®: {"options®: """, "cflags": """", "simflags": """",
"variableFilter~: ""_*"", “outputFormat®: ""mat"", "method": ""dassl®",
"stopTime": 3.0, "startTime": 0.0, "numberOfintervals®: 500, "tolerance": le-
06, "“fileNamePrefix": ""BouncingBall®"}, "SimulationResults®: {"timeCompile~:
3.022411668585939, "timeBackend”: 0.01062840294955596, "messages”: """,
"timeFrontend®: 0.01682653265860022, "timeSimulation®: 0.2781055999108373,
"timeTemplates®: 0.04694975100793849, "timeSimCode": 0.002148411220572541,
"timeTotal": 3.37801918685201, “"resultFile":
""C:/Users/alash325/BouncingBall_res.mat""}, "SET1": {}, "SET2": {"Setl-":

["BouncingBall*]}}
>>> OMPython.execute(“val(h , 2.0)™)
0.04239430772884123
>>> OMPython.execute(“plot(h)™)
True
B8 OMPlot - OpenMadelica Piot =] &= Jd;;hl
F; frmens Plotl - x(t) B .
] '\'_

0. - \

Y it 9 1.0145, 0.4196
0.4 —| i + + " {

i T T T III. T T - 1
o 0.5 1 1.5 2 2.5 2
time
>>> OMPython.execute("plotAl1I()")
"85 oMPlot - OpenModelica Piot —— = — — — = | 5 | Se] |

File Options
Plot1 - x{t)

Zoom | Pan Fitin Wiew | Sawve | Print | Grid | Detailed Grid Mo Grid |[Log¥ |IT Log¥ | setup
foo g h

time

der(h)

impact

der(v) e flying v_new

"
5
|

T I TSI R SRER
4
i
4

-
=)

time

138

>>> OMPython.execute('quit()")
"quit requested, shutting server down\n*

13.1.2.2 Import As Library

To use the module from within another python program, simply import OMCSession from within the
using program. Make use of the execute() function of the OMPython library to send commands to the OMC
server.

For example:

answer = OMPython.execute(cmd)

Full example:

test.py

from OMPython import OMCSession

OMPython = OMCSession()

cmds =
[""loadModel (Modelica)",
"model test end test;",
"loadFile(\"'C:/Dev/0OpenModel ica/Examples/BouncingBall.mo\"")",
"'"getlconAnnotation(Modelica.Electrical.Analog.Basic.Resistor)",
"getElementsinfo(Modelica.Electrical .Analog.Basic.Resistor)",
"simulate(BouncingBall)",

“plot(h)"]

for cmd in cmds:
answer = OMPython.execute(cmd)
print "\nResult:\n%s"%answer

13.1.3 Implementation

13.1.3.1 Client Implementation

The OpenModelica Python API Interface — OMPython, attempts to mimic the OMShell's style of
operations.
OMPython is designed to,

e Initialize the CORBA communication.

¢ Send commands to the Omc server via the CORBA interface.
e Receive the string results.

e Use the Parser module to format the results.

e Return or display the results.

13.1.3.2 Parser Implementation

Since the results of OMC are retrieved in a String format over CORBA, some housekeeping has to be done
to make sure the results are usable in Python easily.
The Parser is designed to do the following,

e Analyze the result string for categorical data.

e Group each category under a category name.

e Type cast the data within these categories.

e Build a suitable data structure to hold these data so that the results can be easily accessed and used.

Understanding the Parsed output

139

Each command in OpenModelica produces a result that can be categorized according to the statistics of the
pattern of data presented in the text. Grammar based parsers were found to be tedious to use because of the
complexity of the patterns of data.

The parser just type casts the data without "curly brackets" to the appropriate data type and displays it as
the result.

For example:

>> getVectorizationLimit()

<< 20

>> getNthlnheritedClass(Modelica.Electrical .Analog.Basic.Resistor,1)
<< Modelica.Electrical.Analog. Interfaces.OnePort

However, multiple data types packed within a pair of quotations is always treated as a full string.

For example:

>> getModelicaPath()
<< "C:/OpenModelical.8.0/lib/omlibrary"

The Dictionary data type in Python

Dictionaries are found to be a useful datatype to pack data with different datatypes. Dictionaries in Python
are indexed by Keys unlike the sequences, which are indexed by a range of numbers.

It is best to think of dictionaries as an unordered set of key:value pairs, with the requirement that the
keys are always unique. The common operation on dictionaries is to store a value associated with a key and
retrieve the value using the key. This provides us the flexibility of creating keys at runtime and accessing
these values using their keys later. All data within the dictionary are stored inside a named dictionary. An
empty dictionary is represented by a pair of braces {}.

From the reply of the OMC, the complicated result strings are usually the ones found within the curly
braces, in order to make a meaningful categorization of the data within these brackets and to avoid the
potential complexities due to creating Dynamic variables, we introduce the following notations that can be
used within dictionaries,

e SET

e Set

e Subset

e Element

o Results

e Values
SET

A SET (note the capital letters) is used to group data that belong to the first set of balanced curly brackets.
According to the needed semantics of the results, a SET can contain Sets, Subsets, Elements, Values and
Results. A SET can also be empty, denoted by {}. The SETs are named with an increasing index starting
from 1(one). This feature was planned to eliminate the need for dynamic variable creation and having
duplicate Keys. The SET belongs within the dictionary, result.

For example:
>> strtok(*'abcbdef*,"b'™)
<< {"SET1": {"Values™: [""a","c","def""1}}

The command strtok tokenizes the string "abcbhdef" at every occurrence of b and produces a SET with
ValueS Ilall’ IICII’ "def".

Set

140

A set is used to group all data within the a SET that is enclosed within a pair of balanced {}s. A Set can
contain only Values and Elements. A set can also be empty, it can be depicted as {{}}, the outer brackets
compose a SET, the inner brackets are the Set within the SET.

Subset

A Subset is a two-level deep set that is found within a SET. A subset can contain multiple Sets within its
enclosure.

For example:
{SET1 {Subsetl{Setl},{Set2},{Set3}}}

Element

Elements are the data which are grouped within a pair of Parenthesis (). As observed from the results
string, elements have an element name that describes the data within them, so elements can be grouped by
their names. Also, many elements have the same names, so they are indexed by increasing numbers starting
from 1(one). Elements have the special property of having one or more Sets and Subsets within them.
However, they are in turn enclosed within the SET.

For example:

>> getClassAttributes(test.mymodel)

<< {"SET1": {"Elements®: {"recl®: {"Properties™: {"Results®: {"comment”: None,
“res

triction™: "MODEL", "startLine": 1, "partial”: False, "name": ""mymodel™", “enca
psulated®: False, "startColumn®: 14, “"readonly®: ""writable"", “endColumn®: 69,
"file": "'<interactive>"", "endLine": 1, "final": False}}}}}}

The result contains, a SET with a Element named rec1 which has Properties which are Results (see below)
of the element.

Results

Data that is related by the assignment operator "=", within the SETs are denoted as Results. These
assignments cannot be assigned to their actual values unless they are related by a Name = Value
relationship. So, they form the sub-dictionary called Results within the Element (for example). Then these
values can be related by the key:value pair relationship.

For example:

>> getClassAttributes(test.mymodel)

<< {"SET1": {"Elements”: {"recl”: {"Properties”: {"Results”: {"comment”: None,
“res

triction®: "MODEL", "startLine”: 1, "partial®: False, "name": ""mymodel™", “enca
psulated®: False, "startColumn®: 14, “"readonly®: ""writable"", "endColumn®: 69,
"file": ""<interactive>"", "endLine": 1, "final": False}}}}}}

Values

Data within any or all of SETs, Sets, Elements and Subsets that are not assignments and separated by
commas are grouped together into a list called "Values". The Values list may also be empty, due to
Python's representation of a null string " as {}. Although a Null string is still a Null value, sometimes it is
possible to observe data grouped into Values to look like Sets within the Values list.

For example:

>> getNthConnection(Modelica.Electrical .Analog.Examples.ChuaCircuit,?2)
<< {"SET1": {"Setl": [*G.n", “Nr.p", {31}}

141

13.1.3.3 The Simulation Results

The OMPython.execute(“simulate(BouncingBall)’) command produces output that has no SET
or Set data in it. Instead, for simplicity, it has two dictionaries namely, SimulationResults and
SimulationOptions within the result dictionary.

For example:
— —— —
% test.py - SciTE | — | (=] |ﬁl
File Edit Search View Tools Options Language Buffers Help
1 test.py
1 from CHEython import CHMCSeszion
2 ome = OMCSe=zzion()
3 —cmds =["loadModel (Modelica)}™,
= "loadFile (\"C:/Dev/0OpenModelica/Examples/BouncingBall .mo\ ™) ™,
o "zimulate (BouncingBall) "]
& — for cmd in cmds:
T answer = onc.execute (cmd)
i print "\nResult:‘\nis"%answer
g
Fi il Ik
% 3
Administrator: Command Prompt |ﬂﬁ

Microsoft Windows [Uersion 6.1.76011 »
Copyright {(c> 28009 Microsoft Corporation. All rights reserved.

C:\Usersialash325>python test.py

2015-01-26 13:49:04,0842? — OMCSession — INFO — OMC Server is up and running fi
lez///c: \users\alaoh325\appdata\lucal\temp\upenmudellca othd.cc4d62f53e924?l6a5
41cf9017h85a79

Result:

Result:
True

Result:
{’SimulationOptions’: {’options *cf lags *simf lags’ : ‘varia
bhleFilter’: " .»’", ’outputFormat’: "'mat’", ’method’: '""dassl’", ’stopTime’: 1.
B, ’‘startTime’: 8.8, ’numberOflIntervals’: 508, ’tolerance’: le-B6, ’fileNamePref
ix’: "’ BouncingBall’ ">, ’81mu1at1onResu1t“" {’timeCompile’: 2.830489366688655.
’timeBackend’ : 0.001958808535163131, ’'messages’: 'Y, ’timeFrontend’: 0.4909625
247517311, ’timeSimulation’: 3.2863329?625?836, *timeTemplates’: 8.8431267636925
’timeSimCode’ : 0.0014829957761208065, ’'timeTotal’: 3.65447811563847, ’resul
*v"C:/Users/alash325/BouncingBall_res.mat'’ 2>

3= W3R 3 - WwFIWG [LF AT
»

C:\Userssalash325> Y

13.1.3.4 Record Construction

The OpenModelica commands that produce output with Record constructs also do not have SET or Set data
within them. The results of the output are packed within the RecordResults dictionary.

For example:
OMPython.execute("'checkSettings('™)

142

&5 test.py - SciTE CE=RE=E —x
File Edit Search View Toels Options Language Buffers Help
1 test.py
i from CMFvthon import CMCSession
= omcs = COMCSes=zion()
= print omc.execute ("checkSettings () ")
=
5
Fl 111} 3

EA Administrator: Command Prompt - . . |£|EI&J

Microzoft Windows [Version 6.1.760811
Copyright ¢c> 288? Microsoft Corporation. All rights reserved.

C:sUserssalash325python test.py
28015-81-26 14:81:55,181 — OMCSesszion — INF0O — OMC Server iz up and vunning at fi
le:=///c:suserssalashd2b~appdataslocalstemp~openmode lica.objid.613f5d8445ec483897
126139c13beZcce
<’ RecordRezults’: {'arranty; not even for MERCHAMTABILITY or»r FITMESS FOR A PARTI
CULAR PURPOSE.’: ’‘warranty; not even for MERCHANTABILITY or FITHESS FOR A PARTIC
ULAR PURPOSE.', 'C_COMPILER_UERSION’: ‘“'gcc (GCGC) 4.4_.8', ‘opyright (C> 28009 Fre
e Software Foundation, Inc.’: ‘Copyright (C» 2009 Free Software Foundation®,. *O0M
C_FOUND’ = True, ‘MODELICAUSERCFLAGS': ‘' _ 'C_COMPILER_RESPONDING’: True, *'OPEN
MODELICAHOME* = *'"C:-/0penModelical .? . 2Mightl1ly*’ . *SYSTEM_INFQ®: *"MINGUW3I2_NT-6.1
IDA-LIU116 1_8.17<{@._48-3-2> 2011-84-24 23:39 i686 M=sys', ' OMDEU_PATH' = *"C:0MDeu
. *REMOUE_FILE WORKS’: True. *COMFIGURE_CMDLINE’: *"Manuwally created Makefiles
for OMDev’, ‘hisz iz free software; see the source for copying conditions. Ther
e iz NO': "This is free software; see the source for copying conditions. There
iz NO', ‘UORKING_DIRECTORY': '“C:-Users-alash325'"’ . ’*SYSTEM_PATH': ’"C:/0penMode
lical.?.2Nightlybhin;C:/0penModelical . ?.2Nightlylib;C:0MDevtoolsmingwhin:;C:0OMDevt
oolsmingwlibexecgcemingw324 . 4_8;C:ProgramDatalracledJavajavapath; C:DevOpenModelic
aTLMPluginbin;c:Program Files (x86)Microsoft Uisual Studio ?.8Common7IDE:c :Progp
am Files (x86>Microsoft Uisuwal Studio ?.BUCBIM:c:Program Files {(x86>Microsoft Ui
sual Studio ?2.8Common?Tools;c:-WindowsMicrosoft.NETFrameworkevl.5;c:WindowsMicroso
ft .METFrameworku2 . B.58727;c:Program Files (xB86)Microsoft Uisual Studio 9.8BUCUCPa
ckages;C:Program FilesMicrosoft SDEsWindowsve _BAbin;c:-Program Files (x86>Microso
L]

13.1.4 API — List of Commands

The following table contains brief descriptions of the API/ commands that are available in the
OpenModelica environment, which can be called using Python or Modelica scripting.

Command

Description

simulate

Simulates a model.
Interface:

function simulate

input TypeName className;

input Real startTime=0;

input Real stopTime=1;

input Integer numberOfintervals=500;

input Real tolerance=le-4;

input String method="dassl”; See Appendix C for
solver details.

input String outputFormat="mat”; {mat, plt, csv,
empty}

input String fileNamePrefix="""";

input String variableFilter="";

input String cflags=""";

input String simflags=""";

ouput SimulationResult simRes;
end simulate;

143

SimulationResult:

Record SimulationResult
String resultFile;
String simulationOptions;
String messages;

Real timeFrontend;
Real timeBackend;
Real timeSimCode;
Real timeTemplates;
Real timeCompile;
Real timeSimulation;
Real timeTotal;
End SimulationResult;

appendEnvironmentVar

Appends a variable to the environment variables list.
Interface:

function appendEnvironmentVar
input String var;
input String value;
output String result "returns \"error\" if the
variable could not be appended™;
end appendEnvironmentVar;

basename

Returns the base name (file part) of a file path. Similar to basename(3), but
with the safety of Modelica strings.
Interface:

function basename
input String path;
output String basename;
end basename;

cd

change directory to the given path (which may be either relative or absolute)
returns the new working directory on success or a message on failure if the
given path is the empty string, the function simply returns the current
working directory.

Interface:

function cd
input String newWorkingDirectory = "";
output String workingDirectory;

end cd;

checkAllModelsRecursive

Checks all models recursively and returns number of variables and equations.
Interface:

function checkAlIModelsRecursive

input TypeName className;

input Boolean checkProtected = false ''Checks also
protected classes if true";

output String result;
end checkAllModelsRecursive;

checkModel

Checks a model and returns number of variables and equations.
Interface:

function checkModel
input TypeName className;
output String result;

end checkModel ;

checkSettings

Display some diagnostics.
Interface:

http://linux.die.net/man/3/basename�

144

function checkSettings

output CheckSettingsResult result;
end checkSettings;
CheckSettingsResult:

String OPENMODEL ICAHOME ,OPENMODEL ICAL IBRARY ,0OMC_PATH;
Boolean OMC_FOUND;
String MODELICAUSERCFLAGS,WORKING_DIRECTORY;
Boolean CREATE_FILE_WORKS,REMOVE_FILE_WORKS;
String 0S, SYSTEM_INFO,SENDDATALIBS,C _COMPILER;
Boolean C_COMPILER_RESPONDING;
String CONFIGURE_CMDLINE;

end CheckSettingsResult;

clear

Clears everything: symboltable and variables.
Interface:

function clear
output Boolean success;
end clear;

clearMessages

Clears the error buffer.
Interface:

function clearMessages
output Boolean success;
end clearMessages;

clearVariables

Clear all user defined variables.
Interface:

function clearVariables
output Boolean success;
end clearVariables;

closeSimulationResultFile

Closes the current simulation result file. Only needed by Windows. Windows
cannot handle reading and writing to the same file from different processes.
To allow OMECdit to make successful simulation again on the same file we
must close the file after reading the Simulation Result Variables. Even
OMEdit only use this API for Windows.

Interface:

function closeSimulationResultFile
output Boolean success;
end closeSimulationResultFile;

codeToString

Interface:

function codeToString
input $Code className;
output String string;
end codeToString;

compareSimulationResults

Compares simulation results.
Interface:

function compareSimulationResults
input String filename;
input String reffilename;
input String logfilename;
input Real refTol;
input Real absTol;
input String[:] vars;
output String result;

end compareSimulationResults;

145

deleteFile

Deletes a file with the given name.
Interface:

function deleteFile

input String fileName;
output Boolean success;
end deleteFile;

dirname

Returns the directory name of a file path. Similar to dirname(3), but with the
safety of Modelica strings.
Interface:

function dirname
input String path;
output String dirname;
end dirname;

dumpXMLDAE

Outputs the DAE system corresponding to a specific model.
Interface:

function dumpXMLDAE

input TypeName className;

input String translationLevel = "flat";

input Boolean addOriginallncidenceMatrix = false;

input Boolean addSolvingInfo = false;

input Boolean addMathMLCode = false;

input Boolean dumpResiduals = false;

input String fTileNamePrefix = "<default>" '"this is
the className in string form by default";

input Boolean storelnTemp = false;

output String result[2] "Contents,
Message/Filename; why 1is this an array and not 2
output arguments?';
end dumpXMLDAE;

echo

echo(false) disables Interactive output, echo(true) enables it again.
Interface:

function echo
input Boolean setEcho;
output Boolean newEcho;
end echo;

generateCode

The input is a function name for which C-code is generated and compiled
into a dll/so.
Interface:

function generateCode
input TypeName className;
output Boolean success;
end generateCode;

generateHeader

Interface:

function generateHeader
input String fileName;
output Boolean success;
end generateHeader;

generateSeparateCode

Interface:

function generateSeparateCode
output Boolean success;
end generateSeparateCode;

getAlgorithmCount

Counts the number of Algorithm sections in a class.
Interface:

http://linux.die.net/man/3/dirname�

146

function getAlgorithmCount
input TypeName class_;
output Integer count;
end getAlgorithmCount;

getAlgorithmltemsCount

Counts the number of Algorithm items in a class.
Interface:

function getAlgorithmltemsCount
input TypeName class_;
output Integer count;

end getAlgorithmltemsCount;

getAnnotationCount

Counts the number of Annotation sections in a class.
Interface:

function getAnnotationCount
input TypeName class_;
output Integer count;
end getAnnotationCount;

getAnnotationVersion

Returns the current annotation version.
Interface:

function getAnnotationVersion
output String annotationVersion;
end getAnnotationVersion;

getAstAsCorbaString

Print the whole AST on the CORBA format for records, e.g.

record Absyn.PROGRAM
classes = ...,
within_ = ._._,
globalBuildTimes = ...
end Absyn.PROGRAM;
Interface:

function getAstAsCorbaString

input String fileName = "<interactive>";

output String result "returns the string if
fileName is interactive; else it returns ok or error
depending on if writing the file succeeded";
end getAstAsCorbaString;

getClassComment

Returns the class comment.
Interface:

function getClassComment
input TypeName cl;
output String comment;
end getClassComment;

getClassNames

Returns the list of class names defined in the class.
Interface:

function getClassNames
input TypeName class_ = $Code(AllLoadedClasses);
input Boolean recursive = false;
input Boolean qualified false;
input Boolean sort = false;

input Boolean builtin = fTalse "List also builtin
classes if true”;
input Boolean showProtected = Tfalse "List also

protected classes if true";
output TypeName classNames[:];
end getClassNames;

147

getClassesIinModelicaPath

Interface:

function getClasseslInModelicaPath
output String classeslinModelicaPath;

end getClassesInModelicaPath;

getCompileCommand

Interface:

function getCompileCommand
output String compileCommand;
end getCompileCommand;

getDocumentationAnnotation

Returns the documentaiton annotation defined in the class.
Interface:

function getDocumentationAnnotation

input TypeName cl;

output String out[2] "{info,revision}";
end getDocumentationAnnotation;

getEnvironmentVar

Returns the value of the environment variable.
Interface:

function getEnvironmentVar

input String var;

output String value 'returns empty string
failure™;
end getEnvironmentVar;

on

getEquationCount

Counts the number of Equation sections in a class.
Interface:

function getEquationCount
input TypeName class_;
output Integer count;
end getEquationCount;

getEquationltemsCount

Counts the number of Equation items in a class.
Interface:

function getEquationltemsCount
input TypeName class_;
output Integer count;

end getEquationltemsCount;

getErrorString

Returns the current error message. [file.mo:n:n-n:n:b] Error:
message
Interface:

function getErrorString
output String errorString;
end getErrorString;

getimportCount

Counts the number of Import sections in a class.
Interface:

function getlmportCount
input TypeName class_;
output Integer count;
end getlmportCount;

getlnitial AlgorithmCount

Counts the number of Initial Algorithm sections in a class.
Interface:

function getilnitialAlgorithmCount
input TypeName class_;
output Integer count;

end getinitialAlgorithmCount;

148

getlnitial AlgorithmltemsCount

Counts the number of Initial Algorithm items in a class.
Interface:

function getinitialAlgorithmltemsCount
input TypeName class_;
output Integer count;

end getinitialAlgorithmltemsCount;

getlInitialEquationCount

Counts the number of Initial Equation sections in a class.
Interface:

function getlnitialEquationCount
input TypeName class_;
output Integer count;

end getlnitialEquationCount;

getlnitialEquationltemsCount

Counts the number of Initial Equation items in a class.
Interface:

function getlInitialEquationltemsCount
input TypeName class_;
output Integer count;

end getlnitialEquationltemsCount;

getInstallationDirectoryPath

This returns OPENMODEL I CAHOME if it is set; on some platforms the default
path is returned if it is not set.
Interface:

function getinstallationDirectoryPath
output String installationDirectoryPath;
end getlinstallationDirectoryPath;

getLanguageStandard

Returns the current Modelica Language Standard in use.
Interface:

function getLanguageStandard
output String outVersion;
end getlLanguageStandard;

getMessagesString

see getErrorString()
Interface:

function getMessagesString
output String messagesString;
end getMessagesString;

getMessagesStringInternal

{{[file.mo:n:n-n:n:b] Error: message, TRANSLATION,
Error, code}}
Interface:

function getMessagesStringlnternal
output ErrorMessage[:] messagesString;
end getMessagesStringlnternal;

getModelicaPath

Get the Modelica Library Path.
Interface:

function getModelicaPath
output String modelicaPath;
end getModelicaPath;

getNoSimplify

Returns true if noSimplify flag is set.
Interface:

function getNoSimplify
output Boolean noSimplify;
end getNoSimplify;

getNthAlgorithm

Returns the Nth Algorithm section.

149

Interface:

function getNthAlgorithm
input TypeName class_;
input Integer index;
output String result;
end getNthAlgorithm;

getNthAlgorithmltem

Returns the Nth Algorithm Item.
Interface:

function getNthAlgorithmltem
input TypeName class_;
input Integer index;
output String result;
end getNthAlgorithmltem;

getNthAnnotationString

Returns the Nth Annotation section as string.
Interface:

function getNthAnnotationString
input TypeName class_;
input Integer index;
output String result;

end getNthAnnotationString;

getNthEquation

Returns the Nth Equation section.
Interface:

function getNthEquation
input TypeName class_;
input Integer index;
output String result;
end getNthEquation;

getNthEquationltem

Returns the Nth Equation Item.
Interface:

function getNthEquationltem
input TypeName class_;
input Integer index;
output String result;
end getNthEquationltem;

getNthImport

Returns the Nth Import as string.
Interface:

function getNthlmport
input TypeName class_;
input Integer index;

output String out[3] "{\"Path\",\"1d\",\"Kind\"}"

end getNthlmport;

getNthInitial Algorithm

Returns the Nth Initial Algorithm section.
Interface:

function getNthinitialAlgorithm
input TypeName class_;
input Integer index;
output String result;

end getNthilnitialAlgorithm;

getNthinitial Algorithmltem

Returns the Nth Initial Algorithm Item.
Interface:

function getNthiInitialAlgorithmltem
input TypeName class_;
input Integer index;

150

output String result;
end getNthilnitialAlgorithmltem;

getNthlInitialEquation

Returns the Nth Initial Equation section.
Interface:

function getNthlnitialEquation
input TypeName class_;
input Integer index;
output String result;

end getNthlnitialEquation;

getNthInitialEquationltem

Returns the Nth Initial Equation Item.
Interface:

function getNthilnitialEquationltem
input TypeName class_;
input Integer index;
output String result;

end getNthilnitialEquationltem;

getOrderConnections

Returns true if orderConnections flag is set.
Interface:

function getOrderConnections
output Boolean orderConnections;
end getOrderConnections;

getPackages

Returns the list of packages defined in the class.
Interface:

function getPackages
input TypeName class_ = $Code(AllLoadedClasses);
output TypeName classNames[:];

end getPackages;

getPlotSilent

Returns true if plotSilent flag is set.
Interface:

function getPlotSilent
output Boolean plotSilent;
end getPlotSilent;

getSettings

Interface:

function getSettings
output String settings;
end getSettings;

getShowAnnotations

Interface:

function getShowAnnotations
output Boolean show;
end getShowAnnotations;

getSourceFile

Returns the filename of the class.
Interface:

function getSourceFile

input TypeName class_;

output String filename "empty on failure’;
end getSourceFile;

getTempDirectoryPath

Returns the current user temporary directory location.
Interface:

function getTempDirectoryPath
output String tempDirectoryPath;
end getTempDirectoryPath;

151

getVectorizationLimit

Interface:

function getVectorizationLimit
output Integer vectorizationLimit;
end getVectorizationLimit;

getVersion

Returns the version of the Modelica compiler.
Interface:

function getVersion
input TypeName cl =
output String versio
end getVersion;

$Code(OpenModelica);
n;

help

Display the OpenModelica help text.
Interface:

function help
output String helpText;
end help;

iconv

The iconv () function converts one multibyte characters from one character
set to another.
See man(3) iconv for more information.

Interface:

function iconv
input String string;
input String from;
input String to = "UTF-8";
output String result;
end iconv;

importFMU

Imports the Functional Mockup Unit.
Example command:

importFMU("A.fmu'™);
Interface:

function importFMU

input String filename "the fmu file name';

input String workdir = "_./" "The output directory
for imported FMU files. <default> will put the files
to current working directory.";

output Boolean success "Returns true on success';
end importFMU;

instantiateModel

Instantiates the class and returns the flat Modelica code.
Interface:

function instantiateModel
input TypeName className;
output String result;

end instantiateModel;

isModel

Returns true if the given class has restriction model.
Interface:

function isModel
input TypeName cl;
output Boolean b;
end isModel;

isPackage

Returns true if the given class is a package.
Interface:

function isPackage
input TypeName cl;

152

output Boolean b;
end isPackage;

isPartial

Returns true if the given class is partial.
Interface:

function isPartial
input TypeName cl;
output Boolean b;
end isPartial;

list

Lists the contents of the given class, or all loaded classes.
Pretty-prints a class definition.

Syntax

list(Modelica.Math.sin)
list(Modelica.Math.sin, interfaceOnly=true)
Interface:

function list
input TypeName class_ = $Code(AllLoadedClasses);
input Boolean interfaceOnly = false;
input Boolean shortOnly = false "only short class
definitions';
output String contents;
end list;

listVariables

Lists the names of the active variables in the scripting environment.
Interface:

function listVariables
output TypeName variables[:];
end listVariables;

loadFile

load file (*.mo) and merge it with the loaded AST.
Interface:

function loadFile
input String fileName;
output Boolean success;
end loadFile;

loadFilelnteractive

Interface:

function loadFilelnteractive
input String filename;
output TypeName names[:];
end loadFilelnteractive;

loadFilelnteractiveQualified

Interface:

function loadFilelnteractiveQualified
input String filename;
output TypeName names[:];

end loadFilelnteractiveQualified;

loadModel

Loads a Modelica library.

Syntax

loadModel (Modelica)
loadModel (Modelica,{"'3.2"})
Interface:

function loadModel
input TypeName className;
input String[:] priorityVersion = {"default"};
output Boolean success;

end loadModel ;

loadString

Parses the data and merges the resulting AST with the loaded AST. Ifa

153

filename is given, it is used to provide error-messages as if the string was
read in binary format from a file with the same name. The file is converted to
UTF-8 from the given character set.

Interface:

function loadString
input String data;
input String filename
input String encoding
output Boolean success;
end loadString;

"<interactive>";
"UTF-8";

parseFile

Interface:

function parseFile
input String filename;
output TypeName names[:];
end parseFile;

parseString

Interface:

function parseString
input String data;
input String filename = '"<interactive>";
output TypeName names[:];

end parseString;

plot

Launches a plot window using OMPIot. Returns true on success. Don't
require sendData support.

Example command sequences:

simulate(A);plot({x,y,z});

simulate(A);plot(x, externalWindow=true);
simulate(A,TileNamePrefix="B");
simulate(C);plot(z,"B.mat", legend=false);
Interface:

function plot

input VariableNames vars "The variables you want
to plot";

input Boolean externalWindow = false "Opens the
plot in a new plot window";
input String fileName = "<default>" "The filename

containing the variables. <default> will read the last
simulation result;

input String title = "Plot by OpenModelica™ "This
text will be used as the diagram title.";

input Boolean legend = true "Determines whether or
not the variable legend is shown.";

input Boolean grid = true "Determines whether or
not a grid is shown in the diagram.™;

input Boolean logX = false "Determines whether or
not the horizontal axis is logarithmically scaled.";

input Boolean logY = false "Determines whether or
not the vertical axis is logarithmically scaled.";

input String xLabel = "time™ "This text will be
used as the horizontal label in the diagram.';
input String yLabel = "" "This text will be used

as the vertical label in the diagram.";

input Real xRange[2] = {0.0,0.0} "Determines the
horizontal interval that is visible in the diagram.
{0,0} will select a suitable range.";

input Real yRange[2] = {0.0,0.0} '"Determines the
vertical interval that is visible in the diagram.
{0,0} will select a suitable range.";

154

output Boolean success "Returns true on success';
output String[:] result "Returns list i.e
{\"_omc_PlotResult\", \"<FileName>\"", \"<title>\"
\"<legend>\"", \"<grid>\", \"<PlotType>\", \'"<logxX>\",
\"<logY>\"", \"<xLabel>\", \"<ylLabel>\", \"<xRange>\",
\"<yRange>\"", \"<PlotVariables>\"}";
end plot;

plotAll

Works in the same way as plot(), but does not accept any variable names as
input. Instead, all variables are part of the plot window.

Example command sequences:
simulate(A);
plotAll1();
simulate(A);
plotAll (externalWindow=true);
simulate(A, fileNamePrefix="B");

simulate(C);
plotAll(Xx,"B.mat™);
Interface:
function plotAll
input Boolean externalWindow = false "Opens the
plot in a new plot window";
input String fTileName = "<default>" "The filename

containing the variables. <default> will read the last
simulation result';

input String title = "Plot by OpenModelica" "This
text will be used as the diagram title.";

input Boolean legend = true "Determines whether or
not the variable legend is shown.™;

input Boolean grid = true "Determines whether or
not a grid is shown in the diagram.";

input Boolean logX = false "Determines whether or
not the horizontal axis is logarithmically scaled.";

input Boolean logY = false "Determines whether or
not the vertical axis is logarithmically scaled.";

input String xLabel = "time™ "This text will be
used as the horizontal label in the diagram.™;
input String yLabel = """ "This text will be used

as the vertical label in the diagram.';

input Real xRange[2] = {0.0,0.0} 'Determines the
horizontal interval that is visible in the diagram.
{0,0} will select a suitable range.";

input Real yRange[2] = {0.0,0.0} "Determines the
vertical interval that is visible in the diagram.
{0,0} will select a suitable range.";

output Boolean success "Returns true on success';

output String[:] result "Returns list i.e
{\"_omc_PlotResult\", \"<fileName>\"", \"<title>\",
\"<legend>\", \"<grid>\", \"<PlotType>\", \"<logxX>\",
\"<logY>\"", \"<xLabel>\", \"<yLabel>\", \"<xRange>\",
\"<yRange>\"", \"<PlotVariables>\"}";
end plotAll;

plotParametric

Launches a plotParametric window using OMPIlot. Returns true on success.

Example command sequences:
simulate(A);plotParametric2(x,y);
simulate(A);plotParametric2(x,y,

externalWindow=true);

Interface:

function plotParametric

155

input VariableName xVariable;
input VariableName yVariable;

input Boolean externalWindow = false "Opens the
plot in a new plot window";
input String fileName = "<default>" "The filename

containing the variables. <default> will read the last
simulation result";

input String title = "Plot by OpenModelica"™ "This
text will be used as the diagram title.";

input Boolean legend = true "Determines whether or
not the variable legend is shown.";

input Boolean grid = true "Determines whether or
not a grid is shown in the diagram.";

input Boolean logX = false "Determines whether or
not the horizontal axis is logarithmically scaled.";

input Boolean logY = false "Determines whether or
not the vertical axis is logarithmically scaled.";

input String xLabel = "time"™ "This text will be
used as the horizontal label in the diagram.';
input String yLabel = "" "This text will be used

as the vertical label in the diagram.™;

input Real xRange[2] = {0.0,0.0} "Determines the
horizontal interval that is visible in the diagram.
{0,0} will select a suitable range.";

input Real yRange[2] = {0.0,0.0} '"Determines the
vertical interval that is visible in the diagram.
{0,0} will select a suitable range.";

output Boolean success "Returns true on success';

output String[:] result "Returns list i.e
{\"_omc_PlotResult\", \"<FileName>\"", \"<title>\",
\"<legend>\", \"<grid>\", \"<PlotType>\", \"<logxX>\",
\"<logY>\", \"<xLabel>\", \"<yLabel>\", \"<xRange>\",
\"<yRange>\", \"<PlotVariables>\"}";
end plotParametric;

plotParametric2

Plots the y-variables as a function of the x-variable.
Example command sequences:
simulate(A);
plotParametric2(x,y);
simulate(A, fileNamePrefix="B");
simulate(C);
plotParametric2(x,{yl,y2,y3},"B.mat™);
Interface:

function plotParametric2

input VariableName xVariable;

input VariableNames yVariables;

input String fileName = "<default>"";

output Boolean success '"Returns true on success';
end plotParametric2;

readFile

The contents of the given file are returned. Note that if the function fails, the
error message is returned as a string instead of multiple output or similar.
Interface:

function readFile
input String fileName;
output String contents;
end readFile;

readFileNoNumeric

Returns the contents of the file, with anything resembling a (real) number
stripped out, and at the end adding:
Filter count from number domain: n.

156

This should probably be changed to multiple outputs; the filtered string and
an integer.

Does anyone use this API call?
Interface:

function readFileNoNumeric
input String fileName;
output String contents;
end readFileNoNumeric;

readFilePostprocessLineDirective

Searches lines for the #modelicaLine directive. If it is found, all lines up until
the next #modelicalLine or #endModelicaLine are put on a single file,
following a #line linenumber "filename" line. This causes GCC to output an
executable that we can set breakpoints in and debug.

Note: You could use a stack to keep track of start/end of #modelicaL.ine and
match them up. But this is not really desirable since that will cause extra
breakpoints for the same line (you would get breakpoints before and after
each case if you break on a match-expression, etc).

Interface:

function readFilePostprocessLineDirective
input String fileName;
output String out;

end readFilePostprocessLineDirective;

readFileShowLineNumbers

Prefixes each line in the file with <n>:, where n is the line number.
Note: Scales O(n"2)
Interface:

function readFileShowLineNumbers
input String fileName;
output String out;

end readFileShowLineNumbers;

readSimulationResult

Reads a result file, returning a matrix corresponding to the variables and size
given.
Interface:

function readSimulationResult
input String filename;
input VariableNames variables;

input Integer size = 0 "O=read any size... If the
size is not the same as the result-file, this function
fails';

output Real result[:,:];
end readSimulationResult;

readSimulationResultSize

The number of intervals that are present in the output file.
Interface:

function readSimulationResultSize
input String fileName;
output Integer sz;

end readSimulationResultSize;

readSimulationResultVars

Returns the variables in the simulation file; you can use val() and plot()
commands using these names.
Interface:

function readSimulationResultVars
input String fileName;
output String[:] vars;

end readSimulationResultVars;

Regex

Sets the error buffer and returns -1 if the regex does not compile.

157

The returned result is the same as POSIX regex():

The first value is the complete matched string

The rest are the substrings that you wanted.

For example:

regex(lorem," \([A-Za-z]*\) \([A-Za-z]*\) ",maxMatches=3)

=> {"ipsum dolor ","ipsum","dolor"}

This means if you have n groups, you want maxMatches=n+1
Interface:

function regex

input String str;

input String re;

input Integer maxMatches = 1 "The maximum number
of matches that will be returned";

input Boolean extended = true "Use POSIX extended
or regular syntax';

input Boolean caselnsensitive = false;

output Integer numMatches "-1 is an error, 0O means
no match, else returns a number 1..maxMatches™;

output String matchedSubstrings[maxMatches]
"unmatched strings are returned as empty';
end regex;

regexBool

Returns true if the string matches the regular expression.
Interface:

function regexBool

input String str;

input String re;

input Boolean extended = true "Use POSIX extended
or regular syntax";

input Boolean caselnsensitive = false;

output Boolean matches;
end regexBool;

regularFileExists

The contents of the given file are returned.

Note that if the function fails, the error message is returned as a string instead
of multiple output or similar.

Interface:

function regularFileExists
input String fileName;
output Boolean exists;
end regularFileExists;

reopenStandardStream

Interface:

function reopenStandardStream
input StandardStream _stream;
input String filename;
output Boolean success;

end reopenStandardStream;

runScript

Runs the mos-script specified by the filename.
Interface:

function runScript
input String fileName "*._mos";
output String result;

end runScript;

Save

Interface:

function save

158

input TypeName className;
output Boolean success;

end save;
saveAll Save the entire loaded AST to file.
Interface:
function saveAll
input String fileName;
output Boolean success;
end saveAll;
saveModel Save class definition in a file.

Interface:

function saveModel
input String fileName;
input TypeName className;
output Boolean success;
end saveModel ;

saveTotalModel

Save total class definition into file of a class.

Inputs: String FileName; TypeName className
Outputs: Boolean res;

Interface:

function saveTotalModel
input String fileName;
input TypeName className;
output Boolean success;
end saveTotalModel;

saveTotalSCode

Interface:

function saveTotalSCode
input String fileName;
input TypeName className;
output Boolean success;
end saveTotalSCode;

setAnnotationVersion

Sets the annotation version.
Interface:

function setAnnotationVersion
input String annotationVersion;
output Boolean success;

end setAnnotationVersion;

setCXXCompiler

Interface:

function setCXXCompiler
input String compiler;
output Boolean success;
end setCXXCompiler;

setClassComment

Sets the class comment.
Interface:

function setClassComment
input TypeName class_;
input String filename;
output Boolean success;
end setClassComment;

setCommandLineOptions

The input is a regular command-line flag given to OMC, e.g. +d=failtrace or

+g=MetaModelica.
Interface:

159

function setCommandLineOptions
input String option;
output Boolean success;
end setCommandLineOptions;

setCompileCommand

Interface:

function setCompileCommand
input String compileCommand;
output Boolean success;

end setCompileCommand;

setCompiler

Interface:

function setCompiler
input String compiler;
output Boolean success;
end setCompiler;

setCompilerFlags

Interface:

function setCompilerFlags
input String compilerFlags;
output Boolean success;

end setCompilerFlags;

setCompilerPath

Interface:

function setCompilerPath
input String compilerPath;
output Boolean success;
end setCompilerPath;

setDebugFlags

example input: failtrace,-noevalfunc
Interface:

function setDebugFlags
input String debugFlags;
output Boolean success;
end setDebugFlags;

setEnvironmentVar

Interface:

function setEnvironmentVar
input String var;
input String value;
output Boolean success;
end setEnvironmentVar;

setIndexReductionMethod

example input: dummyDerivative
Interface:

function setlndexReductionMethod
input String method;
output Boolean success;

end setlndexReductionMethod;

setInstallationDirectoryPath

Sets the OPENMODEL 1 CAHOME environment variable. Use this method
instead of setEnvironmentVvar.
Interface:

function setinstallationDirectoryPath
input String installationDirectoryPath;
output Boolean success;

end setlnstallationDirectoryPath;

setLanguageStandard

Sets the Modelica Language Standard.
Interface:

160

function setLanguageStandard
input String inVersion;
output Boolean success;
end setlLanguageStandard;

setLinker

Interface:

function setLinker
input String linker;
output Boolean success;
end setLinker;

setLinkerFlags

Interface:

function setLinkerFlags
input String linkerFlags;
output Boolean success;
end setLinkerFlags;

setModelicaPath

See loadMode I () for a description of what the MODEL I CAPATH is used
for.
Interface:

function setModelicaPath
input String modelicaPath;
output Boolean success;
end setModelicaPath;

setNoSimplify

Sets the noSimplify flag.
Interface:

function setNoSimplify
input Boolean noSimplify;
output Boolean success;
end setNoSimplify;

setOrderConnections

Sets the orderConnection flag.
Interface:

function setOrderConnections
input Boolean orderConnections;
output Boolean success;

end setOrderConnections;

setPastOptModules

example input: latelnline,inlineArrayEqn,removeSimpleEquations
Interface:

function setPastOptModules
input String modules;
output Boolean success;
end setPastOptModules;

setPlotCommand

Interface:

function setPlotCommand
input String plotCommand;
output Boolean success;
end setPlotCommand;

setPlotSilent

Sets the plotSilent flag.
Interface:

function setPlotSilent
input Boolean silent;
output Boolean success;
end setPlotSilent;

setPreOptModules

example input:

161

removeFinalParameters,removeSimpleEquations,expandDerOperator
Interface:

function setPreOptModules
input String modules;
output Boolean success;
end setPreOptModules;

setShowAnnotations

Interface:

function setShowAnnotations
input Boolean show;
output Boolean success;
end setShowAnnotations;

setSourceFile

Interface:

function setSourceFile
input TypeName class_;
input String filename;
output Boolean success;
end setSourceFile;

setTempDirectoryPath

Interface:

function setTempDirectoryPath
input String tempDirectoryPath;
output Boolean success;

end setTempDirectoryPath;

setVectorizationLimit

Interface:

function setVectorizationLimit
input Integer vectorizationLimit;
output Boolean success;

end setVectorizationLimit;

solveLinearSystem

Solve A*X = B, using dgesv or Ip_solve (if any variable in X is integer).
Returns for solver dgesv: info>0: Singular for element i. info<0: Bad input.
Interface:

function solvelLinearSystem
input Real[size(B, 1),size(B, 1)] A;
input Real[:] B;

input LinearSystemSolver solver =
LinearSystemSolver.dgesv;
input Integer[:] isInt = {-1} "list of indices

that are integers";
output Real[size(B, 1)] X;
output Integer info;

end solvelLinearSystem;

strictRMLCheck

Checks if any loaded function.
Interface:

function strictRMLCheck

output String message "empty if there was no
problem™;
end strictRMLCheck;

stringReplace

Interface:

function stringReplace
input String str;
input String source;
input String target;
output String res;
end stringReplace;

162

Strtok

Splits the strings at the places given by the token, for example:
strtok('abcbdef™,”b™) => {"a","c","def"}
Interface:

function strtok
input String string;
input String token;
output String[:] strings;
end strtok;

System

Similar to system(3). Executes the given command in the system shell.
Interface:

function system

input String callStr "String to call: bash -c
$callStr";

output Integer retval "Return value of the system
call; usually 0 on success";
end system;

translateGraphics

Interface:

function translateGraphics
input TypeName className;
output String result;

end translateGraphics;

typeNameString

Interface:

function typeNameString
input TypeName cl;
output String out;
end typeNameString;

typeNameStrings

Interface:

function typeNameStrings
input TypeName cl;
output String out[:];
end typeNameStrings;

typeOf

Interface:

function typeOf
input VariableName variableName;
output String result;

end typeOf;

uriToFilename

Handles modelica:// and file:// URI's. The result is an absolute path on the
local system. The result depends on the current MODELICAPATH. Returns
the empty string on failure.

Interface:

function uriToFilename
input String uri;
output String filename;
end uriToFilename;

val

Works on the filename pointed to by the scripting variable
currentSimulationResult. The result is the value of the variable at a certain
time point. For parameters, any time may be given. For variables the
startTime<=time<=stopTime needs to hold. On error, nan (Not a Number) is
returned and the error buffer contains the message.

Interface:

function val
input VariableName var;

163

input Real time;
output Real valAtTime;
end val;

verifyCompiler Interface:

function verifyCompiler
output Boolean compilerWorks;
end verifyCompiler;

visualize Uses the 3D visualization package, SimpleVisual.mo, to visualize the model.
See chapter 3.4 (3D Animation) of the OpenModelica System Documentation
for more details. Writes the visulizations objects into the file
"model_name.visualize".
Example command sequence:

simulate(A,outputFormat="mat");

visualize(A);

visualize(A,"B.mat");

visualize(A,"B.mat", true);
Interface:

function visualize
input TypeName className;

input Boolean externalWindow = false "Opens the
visualize in a new window';
input String fileName = "<default>" "The filename

containing the variables. <default> will read the last
simulation result";

output Boolean success "Returns true on success';
end visualize;

writeFile Write the data to file. Returns true on success.
Interface:

function writeFile
input String fileName;
input String data;
input Boolean append = false;
output Boolean success;
end writeFile;

13.2 PySimulator

PySimulator provides a graphical user interface for performing analyses and simulating different model
types (currently Functional Mockup Units and Modelica Models are supported), plotting result variables
and applying simulation result analysis tools like Fast Fourier Transform.

164

.
=
E

:

— Lineral rad
— Lirariiy I.-|¥'I
—i'ﬂ“ﬁ%"lm'

|

i

s M ALS o

apAaosnm™ =

gL ey

i
<x rmEegTan

= B F
31 S
I Galf 3
i bc 4
B H i i i
« & Lemen w '] 1] t 1]] 11 3] am L1 LT am a1
- [o [—
I il e (TIESUPTROTRCIT Y o
o (— 1] Iefenaton i = o : 3]
= = . - -
. v ‘iartie e anged: IMadels Mactral Ansiog Fosegien Recther: f s B0
2 3 hizsmica Shectrual Arabog Emgpin Rectie 5
By 1 [} & 'I" r 1l_|--l.l..|- - irwcs cxaid rel pparwed
17 Msdelicn Blecracal iralsg Euamiples Reclie o] et @
B fbactiie Arei exaed 1 boosos DecTen g Tanmis 3acrier 2 rae =i
—_— =

Figure 13-1: OMShell screenshot for creating an FMU

Read more about the PySimulator here https://github.com/PySimulator/PySimulator.

https://github.com/PySimulator/PySimulator�

165

Chapter 14

Modelica and Python Scripting API

The following are short summaries of OpenModelica scripting commands. These commands are useful for
loading and saving classes, reading and storing data, plotting of results, and various other tasks.

The arguments passed to a scripting function should follow syntactic and typing rules for Modelica and
for the scripting function in question. In the following tables we briefly indicate the types or character of
the formal parameters to the functions by the following notation:

String typed argument, e.g. ""hello™, "myfile.mo".

TypeName — class, package or function name, e.g. MyClass, Model ica.Math.
VariableName — variable name, e.g. v1, v2, vars1[2].x, etc.

Integer or Real typed argument, e.g. 35, 3.14, xintvariable.

e options - optional parameters with named formal parameter passing.

14.1 OpenModelica Modelica Scripting Commands

The following are brief descriptions of the scripting commands available in the OpenModelica
environment.

14.1.1 OpenModelica Basic Commands

This is a selection of the most common commands related to simulation and plotting:

checkModel (className) Checks a model and returns number of variables and equations.
Inputs: TypeName className; Outputs: String res;

clear() Clears everything in OpenModelica compiler and interpreter
workspace: symboltable and variables. Outputs: Boolean res;

getMessagesString() Returns the current error message. Outputs: String
messagesString;

help(Q) Display the OpenModelica help text.

Outputs: String helpText;

importFMU(FileName, workDir)|imports a Functional Mockup Unit. Inputs: String
filename; String workdir ./ "The output directory for
imported FMU files. <default> will put the files to current
working directory."; Outputs: Boolean res;
instantiateModel (className) |Flatten model, resulting in a .mof file of flattened Modelica.
Inputs: TypeName className; Outputs: String res;

166

list(className)

Print class definition. Inputs: TypeName className;
Outputs: String classDef;

listvariables()

Print user defined variables. Outputs: VariableName res;

loadFile(fileName)

Load models from file.
Inputs: String fileName; Outputs: Boolean res;

loadModel (className)

Load the file corresponding to the class, using the Modelica class
name to file name mapping to locate the file.
Inputs: TypeName className; Outputs: Boolean res;

plot(variable, options)

Plot variable, which is a single variable name.

Inputs: VariableName variable; String title;
Boolean legend; Boolean gridLines;

Real xrange[2] i.e. {xmin,xmax};

Real yrange[2] i.e. {ymin,ymax};

Outputs: Boolean res;

plot(variables, options)

Plot variables, which is a vector of variable names.
Inputs: VariableName variables; String title;
Boolean legend; Boolean gridLines;

Real xrange[2] i.e. {xmin,xmax};

Real yrange[2] i.e. {ymin,ymax};

Outputs: Boolean res;

plotParametric(variablesl,
variables2, options)

Plot each pair of corresponding variables from the vectors of
variables variables1, variables?2 as a parametric plot.
Inputs: VariableName variablesl[:]; VariableName
variables2[size(variablesl,1)]; String title;
Boolean legend; Boolean gridLines; Real
range[2,2]; Outputs: Boolean res;

readFile(FileName)

The contents of the given file are returned. Note that if the
function fails, the error message is returned as a string instead of
multiple outputs or similar.

Inputs: String FileName; Outputs: String content;

save(className)

Save class definition.
Inputs: TypeName className Outputs: Boolean res;

saveAll (fileName)

Save the entire loaded AST (Abstract Syntax Tree internal
representation of all loaded models) as text to a file.
Inputs: String fileName; Outputs: Boolean res;

saveModel (FileName,
className)

Save class definition in a file. Inputs: String fileName;
TypeName className Outputs: Boolean res;

saveTotalModel (FileName,
className)

Save total class definition into file of a class. Inputs: String
fileName; TypeName className Outputs: Boolean res;

setDebugFlags(debugFlags)

Inputs: String debugFlags; Outputs: Boolean res;

setlnitXmlStartvalue(fileNam
e, variableName, startValue,
outputFile)

Sets the parameter start value in the model_init.xml file. No
need to recompile the model. Inputs: String fileName;
String variableName; String startValue; String
outputFile; Outputs: Boolean success;

simulate(className, options)

Simulate model, optionally setting simulation values.
Inputs: TypeName className; Real startTime;
Real stopTime; Integer numberOfintervals;

167

Real outputlinterval; String method;
Real tolerance; Real fixedStepSize;
Outputs: SimulationResult simRes;

typeOf(variableName)

Inputs: VariableName variableName; Outputs: String
res;

val(var, timepoint)

Returns the value of the variable at a certain time point.
Inputs: VariableName var; Real timepoint; Outputs:

Real valAtTime;

14.2 OpenModelica System Commands

This is a selection of common OpenModelica commands related to the operating system:

cd(dir)

Change directory. Inputs: String dir;
Outputs: Boolean res;

deleteFile(fileName)

Deletes a file with the given name. Inputs: String fileName;
Outputs: Boolean res;

dirName(path)

Returns the directory name of a file path. Inputs: String
path; Outputs: String dirName;

runScript(fileName)

Executes the script file given as argument.
Inputs: String fileName; Outputs: Boolean res;

setlLanguageStandard(
inVersion)

Sets the Modelica Language Standard. Inputs: String
inVersion; Outputs: Boolean res;

setModelicaPath(
modelicaPath)

Sets the modelica path. See loadMode I () for a description of
what the MODEL I CAPATH is used for.
Inputs: String modelicaPath; Outputs: Boolean res;

system(FileName)

Execute system command. Inputs: String fileName; Outputs:
Integer res;

writeFile(fileName, data,
optional)

Write the data to file. Returns true on success.

Inputs: String fileName; String data; Boolean
append; Outputs: Boolean res;

14.3 All OpenModelica API Calls

All OpenModelica APl commands shown in alphabetic order:

appendEnvironmentVar(var,
value)

Appends a variable to the environment variables list. Inputs:
String var; String value; Outputs: String res;

baseName(path) Returns the base name (file part) of a file path.
Inputs: String path; Outputs: String basename;
cd(dir) Change directory. Inputs: String dir;

Outputs: Boolean res;

168

checkAl IModelsRecursive(
className, protected)

Checks all models recursively and returns number of variables and
equations. Inputs: TypeName className;
Boolean protected Outputs: String res;

checkModel (className)

Checks a model and returns number of variables and equations.
Inputs: TypeName className; Outputs: String res;

checkSettings() Display some diagnostics. Outputs: CheckSettingsResult
res;
clear() Clears everything: symboltable and variables.
Outputs: Boolean res;
clearMessages() Clears the error buffer. Outputs: Boolean res;
clearVariablesQ Clear all user defined variables. Outputs: Boolean res;

codeToString(className)

Converts to a string after encoding. Inputs: $Code className;
Outputs: String res;

compareSimulationResults(
fileName, refFileName,
logFileName, refTol,
absTol ,vars)

Compares simulation results. Inputs: String fileName;
String refFileName; String logFileName; Real
refTol; Real absTol; String[:] vars; Outputs:
String res;

deleteFile(fileName)

Deletes a file with the given name. Inputs: String fileName;
Outputs: Boolean res;

dirName(path)

Returns the directory name of a file path. Inputs: String
path; Outputs: String dirName;

dumpXMLDAE(className)

Outputs the DAE system corresponding to a specific model.
Inputs: TypeName className; Outputs: String res;

echo(setEcho)

echo (false) disables Interactive output, echo(true) enables it again.
Inputs: Boolean setEcho; Outputs: Boolean newEcho;

generateCode(className)

Generate C-code and compiled into a dll. Inputs: TypeName
className; Outputs: Boolean res;

generateHeader (fileName)

Generates a C header file containing the external C interface of the
MetaModelica uniontypes in the loaded files. This C interface is
called by the parser to build nodes for the abstract syntax tree.
Inputs: String fileName; Outputs: Boolean res;

getAlgorithmCount(className)

Counts the number of Algorithm sections in a class. Inputs:
TypeName className; Outputs: Integer count;

getAlgorithmltemsCount(

Counts the number of Algorithm items in a class. Inputs:

className) TypeName className; Outputs: Integer count;
getAnnotationCount(Counts the number of Annotation sections in a class. Inputs:
className)

TypeName className; Outputs: Integer count;

getAnnotationVersion()

Returns the current annotation version. Outputs: String
annotationVersion;

getAstAsCorbaString(
fileName)

Print the whole AST on the CORBA format for records. Inputs:
String fileName; Outputs: String res;

getClassComment(className)

Returns the class comment. Inputs: TypeName className;
Outputs: String comment;

getClassNames(fileName)

Returns the list of class names defined in the class. Inputs:
String fileName; Outputs: TypeName classNames;

getClassRestriction(classNam

Returns the type of class. Inputs: TypeName className;

169

e)

Outputs: String restriction

getClassiInformation(classNam

e)

Returns the list containing the information of the class. Inputs:
TypeName className; Outputs: String information;

getClassesInModelicaPath()

Outputs: String classeslInModelicaPath;

getCompileCommand()

Outputs: String compileCommand,

getlconAnnotation(className)

Returns the icon representation of the class. Inputs: TypeName
className; Outputs: String out;

getDiagramAnnotation(classNa
me)

Returns the diagram representation of the class. Inputs: TypeName

className; Outputs: String out;

getParameterName(className)

Returns the list of parameters present in the class. Inputs:
TypeName className; Outputs: String out;

getParameterValue(className,
parameter)

Returns the parameter value. Inputs: TypeName className;
String parameter; Outputs: String value;

getComponentModifierNames(cl
assName)

Returns the list of component modifiers present in the class.
Inputs: TypeName className; Outputs: String out;

getComponentModifierValue(cl
assName, modifier)

Returns the component modifier value. Inputs: TypeName
className; String modifier; Outputs: String value;

getExtendsModifierNames(clas
sName)

Returns the list of extends modifiers present in the class. Inputs:
TypeName className; Outputs: String out;

getExtendsModifierValue(clas
sName, modifier)

Returns the extends modifier value. Inputs: TypeName
className; String modifier; Outputs: String value;

getDocumentationAnnotation
(className)

Returns the documentation annotation defined in the class.
Inputs: TypeName className; Outputs: String out[2]
"{info,revision}";

getEnvironmentVar(var)

Returns the value of the environment variable. Inputs: String
var; Outputs: String value;

getEquationCount(className)

Counts the number of Equation sections in a class. Inputs:
TypeName className; Outputs: Integer count;

getEquationltemsCount(
className)

Counts the number of Equation items in a class. Inputs:
TypeName className; Outputs: Integer count;

getErrorString(Q)

Returns the current error message. Outputs: String
errorString;

getlmportCount (className)

Counts the number of Import sections in a class. Inputs:
TypeName className; Outputs: Integer count;

getlnitialAlgorithmCount(
className)

Counts the number of Initial Algorithm sections in a class.
Inputs: TypeName className; Outputs: Integer count;

getlnitialAlgorithmltemsCoun
t(className)

Counts the number of Initial Algorithm items in a class. Inputs:
TypeName className; Outputs: Integer count;

getlnitialEquationCount(
className)

Counts the number of Initial Equation sections in a class. Inputs:

TypeName className; Outputs: Integer count;

getlnitialEquationltemsCount|
(className)

Counts the number of Initial Equation items in a class. Inputs:
TypeName className; Outputs: Integer count;

getinstallationDirectoryPath
O

Returns OPENMODEL I CAHOME if it is set; on some platforms the
default path is returned if it is not set. Outputs: String
installationDirectoryPath;

170

getLanguageStandard()

Returns the current Modelica Language Standard in use. Outputs:
String outVersion;

getMessagesString()

Returns the current error message. Outputs: String
messagesString;

getMessagesStringInternal Q)

Returns Error: message, TRANSLATION, Error, code. Outputs:
ErrorMessage[:] messagesString;

getModelicaPath()

Get the Modelica Library Path. Outputs: String
model icaPath;

getNoSimplify(Q

Returns true if noSimplify flag is set. Outputs: Boolean res;

getNthAlgorithm(className,
index)

Returns the Nth Algorithm section. Inputs: TypeName
className; Integer index; Outputs: String res;

getNthAlgorithmltem(
className, index)

Returns the Nth Algorithm Item. Inputs: TypeName
className; Integer index; Outputs: String res;

getNthAnnotationString
(className, index)

Returns the Nth Annotation section as string. Inputs: TypeName
className; Integer index; Outputs: String res;

getNthEquation(className,
index)

Returns the Nth Equation section. Inputs: TypeName
className; Integer index; Outputs: String res;

getNthEquationltem(
className)

Returns the Nth Equation Item. Inputs: TypeName className;
Integer index; Outputs: String res;

getNthImport(className,
index)

Returns the Nth Import as string. Inputs: TypeName
className; Integer index; Outputs: String out[3]
“"\"Path\",\"1d\"",\"Kind\"}";

getNthInitialAlgorithm(
className, index)

Returns the Nth Initial Algorithm section. Inputs: TypeName
className; Integer index; Outputs: String res;

getNthInitialAlgorithmltem(
className, index)

Returns the Nth Initial Algorithm Item. Inputs: TypeName
className; Integer index; Outputs: String res;

getNthInitialEquation(
className, index)

Returns the Nth Initial Equation section. Inputs: TypeName
className; Integer index; Outputs: String res;

getNthiInitialEquationltem(
className, index)

Returns the Nth Initial Equation Item. Inputs: TypeName
className; Integer index; Outputs: String res;

getOrderConnections()

Returns true if orderConnections flag is set.
Outputs: Boolean isOrderConnections;

getPackages(className)

Returns the list of packages defined in the class. Inputs:
TypeName className = $Code(AllLoadedClasses);
Outputs: TypeName classNames[:];

getPlotSilent()

Returns true if plotSilent flag is set.
Outputs: Boolean isPlotSilent;

getSettings()

Returns the settings. Outputs: String settings;

getShowAnnotations()

Outputs: Boolean show;

getSourceFile(className)

Returns the filename of the class. Inputs: TypeName
className; Outputs: String filename;

getTempDirectoryPath()

Returns the current user temporary directory location.
Outputs: String tempDirectoryPath;

getVectorizationLimit()

Outputs: Integer vectorizationLimit;

getVersion(cl)

Returns the version of the Modelica compiler. Inputs: TypeName

171

cl = $Code(OpenModelica); Outputs: String version

help(QO

Display the OpenMaodelica help text.
Outputs: String helpText;

iconv(string, from, to)

Converts one multibyte characters from one character set to
another. Inputs: String string; String from; String
to; Outputs: String res;

importFMU(FfileName, workDir)

Imports the Functional Mockup Unit. Inputs: String
filename; String workdir ./ "The output directory for
imported FMU files. <default> will put the files to current
working directory."; Outputs: Boolean res;

instantiateModel (className)

Instantiate model, resulting in a . mof file of flattened Modelica.
Inputs: TypeName className; Outputs: String res;

isModel (className)

Returns true if the given class has restriction model.
Inputs: TypeName className; Outputs: Boolean res;

isPackage(className)

Returns true if the given class is a package.
Inputs: TypeName className; Outputs: Boolean res;

isPartial (className)

Returns true if the given class is partial.
Inputs: TypeName className; Outputs: Boolean res;

list(className)

Print class definition. Inputs: TypeName className;
Outputs: String classDef;

listvariables()

Print user defined variables. Outputs: VariableName res;

loadFile(fileName)

Load models from file.
Inputs: String fileName; Outputs: Boolean res;

loadFilelnteractive(
FileName)

Outputs the class names in the parsed file (top level only). Used by
OpenModelica MDT. Inputs: String TfileName; Outputs:
TypeName names[:];

loadFilelnteractiveQualified
(fileName)

Output all the class names in the parsed file fully qualified. Inputs:
String fileName; Outputs: TypeName names[:];

loadModel (className)

Load the file corresponding to the class, using the Modelica class
name to file name mapping to locate the file.
Inputs: TypeName className; Outputs: Boolean res;

loadString(data)

Parses the data and merges the resulting AST with the loaded
AST. Inputs: String data; Outputs: TypeName names[:];

parseFile(filename)

Parses the file and returns a list of the classes found in the file.
Inputs: String filename; Outputs: TypeName names[:];

parseString(data)

Parses the string data and returns the list of classes found in
data. Inputs: String data; Outputs: TypeName names[:];

plot(variable, options)

Plots variable, which is a single variable name.
Inputs: VariableName variable; String title;
Boolean legend; Boolean gridLines;

Real xrange[2] i.e. {xmin,xmax};

Real yrange[2] i.e. {ymin,ymax};

Outputs: Boolean res;

plot(variables, options)

Plots variables, which is a vector of variable names.
Inputs: VariableName variables; String title;
Boolean legend; Boolean gridLines;

172

Real xrange[2] i.e., {xmin,xmax};
Real yrange[2] i.e., {ymin,ymax};
Outputs: Boolean res;

plotAll(options)

Plot all variables; It does not accept any variable names as input .
Inputs: String title; Boolean legend; Boolean
gridLines; Real xrange[2] i.e., {xmin,xmax};

Real yrange[2] i.e., {ymin,ymax};

Outputs: Boolean res;

plotParametric(variablesl,
variables2, options)

Plot each pair of corresponding variables from the vectors of
variables variables1, variables?2 as a parametric plot.
Inputs: VariableName variablesl[:]; VariableName
variables2[size(variablesl,1)]; String title;
Boolean legend; Boolean gridLines; Real
range[2,2]; Outputs: Boolean res;

readFile(FileName)

The contents of the given file are returned. Note that if the
function fails, the error message is returned as a string instead of
multiple outputs or similar.

Inputs: String FileName; Outputs: String content;

readFileNoNumeric(fileName)

Returns the contents of the file, with anything resembling a (real)
number stripped out, and at the end adding: Inputs: String
fileName; Outputs: String content;

readFilePostprocessLineDirec
tive(fileName)

Searches lines for the #mode li caL ine directive. Inputs: String
fileName; Outputs: String res;

readFileShowLineNumbers(
FileName)

Prefixes each line in the file with <n>: where n is the line number.
Note: Scales O(n"2)
Inputs: String fileName; Outputs: String res;

readSimulationResult(
fileName, variables, size)

Reads the simulation result for a list of variables and returns a
matrix of values (each column as a vector or values for a variable.)
Size of result is also given as input. Inputs: String fileName;
VariableName variables[:]; Integer size;

Outputs: Real res[size(variables,l),size)];

readSimulationResultSize(
FileName)

The number of intervals that are present in the output file. Inputs:
String fileName; Outputs: Integer size;

readSimulationResultVars(
FileName)

Returns the variables in the simulation file; you can use val)
and plot() commands using these names. Inputs: String
fileName; Outputs: String[:] vars;

regex(string, re, options)

Sets the error buffer and returns -1 if the regular expression does
not compile. Inputs: String string; String re; Integer
maxMatches; Boolean extended; Boolean
caselnsensitive; Outputs: Integer numMatches;
String matchedSubstrings[maxMatches];

regexBool (string, re,
options)

Returns true if the string matches the regular expression.
Inputs: String string; String re; Boolean extended;
Boolean caselnsensitive; Outputs: Boolean matches;

regularFileExists(fileName)

Returns the content of the given files. Note that if the function
fails, the error message is returned as a string instead of multiple
outputs or similar.

Inputs: String fileName; Outputs: Boolean res;

173

reopenStandardStream(
_stream, TileName)

Executes the script file given as argument.
Inputs: String fileName; StandardStream _stream;
Outputs: Boolean res;

runScript(fileName)

Executes the script file given as argument.
Inputs: String fileName; Outputs: Boolean res;

save(className)

Save class definition.
Inputs: TypeName className Outputs: Boolean res;

saveAll (FileName)

Save the entire loaded AST to file.
Inputs: String fileName; Outputs: Boolean res;

saveModel (FileName,
className)

Save class definition in a file. Inputs: String fileName;
TypeName className Outputs: Boolean res;

saveTotalModel (FileName,
className)

Save total class definition into file of a class. Inputs: String
fileName; TypeName className Outputs: Boolean res;

saveTotalSCode(fileName,
className)

Inputs: String fileName; TypeName className Outputs:
Boolean res;

setAnnotationVersion(
annotationVersion)

Sets the annotation version. Inputs: String
annotationVersion; Outputs: Boolean res;

setCXXCompiler(compiler)

Inputs: String compiler; Outputs: Boolean res;

setClassComment(className,
FileName)

Sets the class comment. Inputs: String fileName; TypeName
className Outputs: Boolean res;

saveTotalModel (FileName,
className)

Save total class definition into file of a class. Inputs: String
fileName; TypeName className Outputs: Boolean res;

setCompileCommand(
compi leCommand)

Sets the default Compilation command. Inputs: String
compi leCommand; Outputs: Boolean res;

setCompiler(compiler)

Sets the default C Compiler. Inputs: String compiler;
Outputs: Boolean res;

setCompilerFlags(
compilerFlags)

Sets the compiler flags that are used while compiling the
simulation executable. Inputs: String compilerFlags;
Outputs: Boolean res;

setCompilerPath(
compilerPath)

Sets the default compiler location. Inputs: String
compilerPath; Outputs: Boolean res;

setComponentModifierValue(cl
assName, modifier, value)

Sets the component modifier value. Inputs: TypeName
className; String modifier; String value; Outputs:
Boolean result;

setDebugFlags(debugFlags)

Sets the debug flags. For details run “omc +help=debug” on the
command line interface. Inputs: String debugFlags; Outputs:
Boolean res;

setEnvironmentVar(var,
value)

Sets an environment variable. Inputs: String var; String
value; Outputs: Boolean res;

setExtendsModifierValue(clas
sName, modifier, value)

Sets the extends modifier value. Inputs: TypeName className;
String modifier; String value; Outputs: Boolean
result;

setlndexReductionMethod(
method)

Sets the index reduction method e.g
setlndexReductionMethod (""dynamicStateSelection™).
Inputs: String method; Outputs: Boolean res;

setlnitXmlStartvalue(fileNam

Sets the parameter start value in the model_init.xml file. No

174

e, variableName, startValue,
outputFile)

need to recompile the model. Inputs: String fileName;
String variableName; String startValue; String
outputFile; Outputs: Boolean success;

setlnstallationDirectoryPath

Sets the OPENMODEL I CAHOME environment variable.

(debugFlags) Inputs: String installationDirectoryPath; Outputs:
Boolean res;

setlLanguageStandard(Sets the Modelica Language Standard. Inputs: String

inVersion)

inVersion; Outputs: Boolean res;

setLinker(linker)

Sets the linker.
Inputs: String linker; Outputs: Boolean res;

setLinkerFlags(linkerFlag)

Sets the linker flag.
Inputs: String linkerFlag; Outputs: Boolean res;

setModelicaPath(
modelicaPath)

Sets the modelica path. See loadModel() for a description of what
the MODEL I CAPATH is used for.
Inputs: String modelicaPath; Outputs: Boolean res;

setNoSimplify(noSimplify)

Sets the noSimplify flag.
Inputs: Boolean noSimplify; Outputs: Boolean res;

setOrderConnections(
debugFlags)

Sets orderering for connect equation. If set, the compiler will order
connect equations alphabetically.

Inputs: Boolean orderConnections; Outputs: Boolean
res;

setParameterValue(className,
parameter, value)

Sets the parameter value in the class, i.e., updates the parameter
definition equation. Inputs: TypeName className; String
parameter; String value; Outputs: Boolean result;

setPlotSilent(silent)

Sets the plotSilent flag. If the flag is true show the OMPIot
window and pass the arguments to it. If the flag is false don’t show
OMPIlot and just output the list of arguments. The false case is
used in OMNotebook where the plot window is not shown; instead
the arguments are read and an embedded plot window is created.
Inputs: Boolean silent; Outputs: Boolean res;

setPostOptModules(modules)

Sets the post optimization modules to use in the compiler back

end. Use the command "*omc +help=optmodules' for more

information. Example: setPostOptModules(*'latelnline™,
", "removeSimpleEquations') Inputs:

"inlineArrayEqgn',
String modulel, module2, ..; Outputs: Boolean res;

setPreOptModules(module)

Sets the pre optimization modules to use in the back end. Use the
command line command "omc +help=optmodules" for more
information. Inputs: String module; Outputs: Boolean res;

setShowAnnotations()

Show annotations in the flattened code. Inputs: Boolean show;
Outputs: Boolean res;

setSourceFile(className,
FileName)

Sets the output file name for the specified class. Inputs: TypeName
className; String fileName; Outputs: Boolean res;

setTempDirectoryPath(tempDir
ectoryPath)

Sets the current user's temporary directory path. This is not the
same as the current user's working directory which is set by the
cd() command. Inputs: String tempDirectoryPath;
Outputs: Boolean res;

setVectorizationLimit(

Sets scalarization limit. Arrays of size above this limit will not be

175

vectorizationLimit)

scalarized, i.e., expanded to a set of scalar elements.
Inputs: Integer scalarizationLimit; Outputs: Boolean
res;

simulate(className, options)

Simulate model, optionally setting simulation values.
Inputs: TypeName className; Real startTime;
Real stopTime; Integer numberOfiIntervals;
Real outputlinterval; String method;

Real tolerance; Real fixedStepSize;
Outputs: SimulationResult simRes;

stringReplace(str, source,
target)

Relace source with target within str producing res.
Inputs: String str; String source; String target;
Outputs: String res;

strtok(Q)

Splits the strings at the places given by the token, for example:
strtok("abcbdef","b") => {"a","c","def"}

Inputs: String string; String token; Outputs:
String[:] strings;

system(FileName)

Execute system command. Inputs: String fileName; Outputs:
Integer res;

typeNameString(cl) Converts the qualified class name to string. Inputs: TypeName
cl; Outputs: String out;

typeNameStrings(cl) Converts the qualified class name to strings. Inputs: TypeName
cl; Outputs: String out[:];

typeOf(variableName) Inputs: VariableName variableName; Outputs: String

res;

uriToFilename(uri)

Handles modelica:// and file:// URI's. The result is an absolute
path on the local system. The result depends on the current
MODELICAPATH. Returns the empty string on failure.
Inputs: String uri; Outputs: String fileName;

val(var, time)

Returns the value of the variable at a certain time point.
Inputs: VariableName var; Real time; Outputs: Real
valAtTime;

writeFile(fileName, data,
optional)

Write the data to file. Returns true on success.
Inputs: String fileName; String data; Boolean
append; Outputs: Boolean res;

14.3.1 Examples

The following is an interactive session with the OpenModelica environment including some of the
abovementioned commands and examples. First we start the system, and use the command line interface
from OMShell, OMNotebook, or command window of some of the other tools. The system responds with a

header line:
OpenModelica 1.9.0

We type in a very small model:

>> model test "Testing OpenModelica Scripts" Real x, y; equation x = 5.0; y = 6.0;

end test;

176

{test}

We give the command to flatten a model:

>> instantiateModel (test)

"class test
Real x;

Real y;
equation

X = 5.0;

y = 6.0;

end test;

A range expression is typed in:

>> a:=1:10
{1,2,3,4,5,6,7,8,9,10}

It is multiplied by 2:

>> a*2
{2,4,6,8,10,12,14,16,18,20}

The variables are cleared:

>> clearVariables()
true

We print the loaded class test from its internal representation:
>> list(test)
"class test \'"'Testing OpenModelica Scripts\"
Real x;
Real y;
equation
X = 5.0;
y = 6.0;
end test;

We get the name and other properties of a class:

>> getClassNames()
{test}

>> getClassComment(test)
"Testing OpenModelica Scripts”

>> isPartial (test)
false

>> isPackage(test)
false

>> isModel (test)
true

>> checkModel (test)
"Check of test completed successfully.
Class test has 2 equation(s) and 2 variable(s).
2 of these are trivial equation(s).

>> clear(Q)
true

>> getClassNames()

8

The common combination of a simulation followed by getting a value and doing a plot:

>> simulate(test, stopTime=3.0);

177

>> val(x , 2.0)
5.0

>> plot(y)

Plot by OpenModelica

r T T
o 0.5 1

>> plotAll)

15 2 25 3
time

Plot by OpenModelica
W e

(T

VanDerPol Model and Parametric Plot

>> loadFile("'C:/0OpenModelical.9.0/share/doc/omc/testmodels/VanDerPol .mo™)

true

>> instantiateModel (VanDerPol)
"class VanDerPol \"Van der Pol oscillator model\"
Real x(start = 1.0);
Real y(start = 1.0);
parameter Real lambda = 0.3;

equation
der(x) =vy;
der(y) = lambda *
end VanDerPol ;

>> simulate(VanDerPol);

>> plotParametric(x,y)

(1.0 - x"™2.0) *y - X;

178

&3 OMPlot - OpenModelica Plot = | B |

File Options

= Plot1 - x(y} I

Zoom | Pan | FitinView | Save | Print || Grid |—Log3(|—Log\‘

Plot by OpenModelica

0.8+

0.6 1

1 1.05 1.1 1.15 1.2 1.25 1.3 1.35 14

Interactive Function Calls, Reading, and Writing

We enter an assignment of a vector expression, created by the range construction expression 1:12, to be
stored in the variable x. The type and the value of the expression is returned.

>> x = 1:12
{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12}

The function bubblesort is called to sort this vector in descending order. The sorted result is returned
together with its type. Note that the result vector is of type Real [-], instantiated as Real [12], since this
is the declared type of the function result. The input Integer vector was automatically converted to a
Real vector according to the Modelica type coercion rules.

>> bubblesort(x)
{12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1}

Now we want to try another small application, a simplex algorithm for optimization. First read in a small
matrix containing coefficients that define a simplex problem to be solved:

>> a = read(“'simplex_in._txt")
,-1, 0, 0, 0, 0, O, O},
., 0,1, 0, 0, 0, O, 5},
, 0,0, 1, 0, 0, 0, 45},
., 0,0,0,1, 0, 0, 27},
, 0,0,0,0, 1,0,
,1,0,0,0,0,1,

I
|
'_\
|
P 3

24%,
4}}

Then call the simplex algorithm implemented as the Modelica function simplex1. This function returns
four results, which are represented as a tuple of four return values:

>> simplex1(a)
Tuple: 4
Real[8]: {9, 9, 4, 5, 0, 0, 33, O}
Real: 22
Integer: 9
Integer: 3

179

It is possible to compute an expression, e.g. 12:-1:1, and store the result in a file using the write
command:

>> write(12:-1:1,"test.dat")

We can read back the stored result from the file into a variable y:

>> y = read(''test.dat")
Integer[12]: {12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1}

It is also possible to give operating system commands via the system utility function. A command is
provided as a string argument. The example below shows system applied to the Linux command cat,
which here outputs the contents of the file bubblesort.mo to the output stream.

>> gystem(*'cat bubblesort.mo'™)
function bubblesort

input Real[:] x;

output Real[size(x,1)] v;
protected

Real t;
algorithm

y = X;

for 1 in 1l:size(x,1) loop

for j in 1l:size(x,1) loop
if y[i] > y[] then

t = y[i];
ylil == ylil:
vyl := ¢;
end if;
end for;
end for;

end bubblesort;
Another built-in command is cd, the change current directory command. The resulting current directory is
returned as a string.

>> cd(..™)
""/home/petfr/modelica”

14.4 OpenModelica Python Scripting Commands

The OpenModelica Python API Interface—OMPython, attempts to mimic the Modelica scripting
commands available in the OpenModelica environment, see the table in Section 13.1.4 for available Python
scripting commands. To test the command outputs, see some test examples described in section 13.1.

180

Chapter 15

Frequently Asked Questions (FAQ)

Below are some frequently asked questions in three areas, with associated answers.

15.1 OpenModelica General

Q: OpenModelica does not read the MODELICAPATH environment variable, even though this is
part of the Modelica Language Specification.

A: Use the OPENMODELICALIBRARY environment variable instead. We have temporarily
switched to this variable, in order not to interfere with other Modelica tools which might be
installed on the same system. In the future, we might switch to a solution with a settings file, that
also allows the user to turn on the MODELICAPATH functionality if desired.

Q: How do I enter multi-line models into OMShell since it evaluates when typing the Enter/Return
key?

A: There are basically three methods: 1) load the model from a file using the pull-down menu or the
loadModel command. 2) Enter the model/function as one (possibly long) line. 3) Type in the model
in another editor, where using multiple lines is no problem, and copy/paste the model into OMShell
as one operation, then push Enter. Another option is to use OMNotebook instead to enter and
evaluate models.

15.2 OMNotebook

Q: OMNotebook hangs, what to do?

A: It is probably waiting for the omc.exe (compiler) process. (Under windows): Kill the processes
omc.exe, g++.exe (C-compiler), as.exe (assembler), if present. If OMNotebook then asks whether
to restart OMC, answer yes. If not, kill the process OMNotebook.exe and restart manually.

Q: After a previous session, when starting OMNotebook again, | get a strange message.

A: You probably quit the previous OpenModelica session in the wrong way, which left the process
omc.exe running. Kill that process, and try starting OMNotebook again.

Q: | copy and paste a graphic figure from Word or some other application into OMNotebook, but
the graphic does not appear. What is wrong?

A: OMNotebook supports the graphic picture formats supported by Qt 4, including the .png, .bmp
(bitmap) formats, but not for example the gif format. Try to convert your picture into one of the

181

supported formats, (e.g. in Word, first do paste as bitmap format), and then copy the converted
version into a text cell in OMNotebook.

Q: I select a cell, copy it (e.g. Ctrl-C), and try to paste it at another place in the notebook. However,
this does not work. Instead some other text that | earlier put on the clipboard is pasted into the
nearest text cell.

A: The problem is wrong choice of cursor mode, which can be text insertion or cell insertion. If you
click inside a cell, the cursor become vertical, and OMNotebook expects you to paste text inside the
cell. To paste a cell, you must be in cell insertion mode, i.e., click between two cells (or after a
cell), you will get a vertical line. Place the cursor carefully on that vertical line until you see a small
horizontal cursor. Then you should past the cell.

Q: I am trying to click in cells to place the vertical character cursor, but it does not seem to react.

A: This seems to be a Qt feature. You have probably made a selection (e.g. for copying) in the
output section of an evaluation cell. This seems to block cursor position. Click again in the output
section to disable the selection. After that it will work normally.

Q: | have copied a text cell and start writing at the beginning of the cell. Strangely enough, the font
becomes much smaller than it should be.

A: This seems to be a Qt feature. Keep some of the old text and start writing the new stuff inside the
text, i.e., at least one character position to the right. Afterwards, delete the old text at the beginning
of the cell.

15.3 OMDev - OpenModelica Development Environment

Q: I get problems compiling and linking some files when using OMDev with the MINGW (Gnu) C
compiler under Windows.

A: You probably have some Logitech software installed. There is a known bug/incompatibility in
Logitech products. For example, if lvprcsrv.exe is running, kill it and/or prevent it to start again at
reboot; it does not do anything really useful, not needed for operation of web cameras or mice.

182

Appendix A

Major OpenModelica Releases

This Appendix lists the most important OpenModelica releases and a brief description of their contents.
Right now the versions from 1.3.1 to 1.9.2 are described.

A.1 OpenModelica 1.9.2, February 2015

The most important enhancements in the OpenModelica 1.9.2 release:

e The OpenModelica compiler has moved to a new development and release platform: the
bootstrapped OpenModelica compiler. This gives advantages in terms of better programmability,
maintenance, debugging, modularity and current/future performance increases.

e The OpenModelica graphic connection editor OMEdit has become 3-5 times faster due to faster
communication with the OpenModelica compiler linked as a DLL. This was made possible by
moving to the bootstrapped compiler.

e Further improved simulation coverage for a number of libraries.
e OMEdit graphic connection editor improvements

A.1.1 OpenModelica Compiler (OMC)

This release mainly includes improvements of the OpenModelica Compiler (OMC), including, but not
restricted to the following:
e The OpenModelica compiler has moved to a new development and release platform: the
bootstrapped OpenModelica compiler. This gives advantages in terms of better programmability,
maintenance, debugging, modularity and current/future performance increases.

e Further improved simulation coverage for a number of libraries compared to 1.9.1 (Oct 25, 2014).

For example:
o MSL321 100% compilation, 97% simulation (3% increase)
o MSL Trunk 99% compilation (1% increase), 93% simulation (3% increase)
0 ModelicaTest 3.2.1 99% compilation (2% increase), 95% simulation (6% increase)
0 ThermoSysPro 100% compilation, 80% simulation (17% increase)
o ThermoPower 97% compilation (5% increase), 85% simulation (5% increase)
o Buildings 80% compilation (1% increase), 73% simulation (1% increase)

e Further enhanced OMC compiler front-end coverage, scalability, speed and memory.

e Better initialization.

e Improved tearing.

e Improved non-linear, linear and mixed system solving.

e Common subexpression elimination support - drastically increases performance of some models.

A.1.2 OpenModelica Notebook (OMNotebook)

No changes apart from bug fixing.

183

A.1.3 OpenModelica Shell (OMShell)

No changes.

A.1.4 OpenModelica Eclipse Plug-in (MDT)

No changes apart from bug fixing.

A.1.5 OpenModelica Development Environment (OMDev)

No changes apart from bug fixing.

A.1.6 Graphic Editor OMEdit

The OpenModelica graphic connection editor OMEdit has become 3-5 times faster due to faster
communication with the OpenModelica compiler linked as a DLL. This was made possible by
moving to the bootstrapped compiler.

Enhanced simulation setup window in OMEdit, which among other things include better support for
integration methods and dassl options.

Support for running multiple simultaneous simulation.

Improved handling of modifiers.

Re-simulate with changed options, including history support and re-simulating with previous
options possibly edited.

More user friendly user interface by improved connection line drawing, added snap to grid for icons
and conversion of icons from PNG to SVG, and some additional fixes.

A.1.7 Optimization

Some smaller improvements of the Dynamic Optimization module with collocation, using Ipopt.

A.1.8 FMI Support

Further improved for FMI 2.0 model exchange import and export, now compliant according to the FMI
compliance tests. FMI 1.0 support has been further improved.

A.2 OpenModelica 1.9.1, October 2014

The most important enhancements in the OpenModelica 1.9.1 release:

Improved library support.

Further enhanced OMC compiler front-end coverage and scalability
Significant improved simulation support for libraries using Fluid and Media.
Dynamic model debugger for equation-based models integrated with OMEdit.

Dynamic algorithm model debugger with OMEdit; including support for MetaModelica when using
the bootstrapped compiler.

New features: Dynamic debugger for equation-based models; Dynamic Optimization with collocation built
into OpenModelica, performance analyzer integrated with the equation model debugger.

A.2.1 OpenModelica Compiler (OMC)

This release mainly includes improvements of the OpenModelica Compiler (OMC), including, but not
restricted to the following:

184

Further improved OMC model compiler support for a number of libraries including MSL 3.2.1,
ModelicaTest 3.2.1, PetriNet, Buildings, PowerSystems, OpenHydraulics, ThermoPower, and
ThermoSysPro.

Further enhanced OMC compiler front-end coverage, scalability, speed and memory.

Better coverage of Modelica libraries using Fluid and Media.

Automatic differentiation of algorithms and functions.

Improved testing facilities and library coverage reporting.

Improved model compilation speed by compiling model parts in parallel (bootstrapped compiler).
Support for running model simulations in a web browser.

New faster initialization that handles over-determined systems, under-determined systems, or both.
Compiler back-end partly redesigned for improved scalability and better modularity.

Better tearing support.

The first run-time Modelica equation-based model debugger, not available in any other Modelica
tool, integrated with OMEdit.

Enhanced performance profiler integrated with the debugger.

Improved parallelization prototype with several parallelization strategies, task merging and
duplication, shorter critical paths, several scheduling strategies.

Some support for general solving of mixed systems of equations.

Better error messages.

Improved bootstrapped OpenModelica compiler.

Better handling of array subscripts and dimensions.

Improved support for reduction functions and operators.

Better support for partial functions.

Better support for function tail recursion, which reduces memory usage.
Partial function evaluation in the back-end to improve solving singular systems.
Better handling of events/zero crossings.

Support for colored Jacobians.

New differentiation package that can handle a much larger number of expressions.
Support for sparse solvers.

Better handling of asserts.

Improved array and matrix support.

Improved overloaded operators support.

Improved handling of overconstrained connection graphs.

Better support for the cardinality operator.

Parallel compilation of generated code for speeding up compilation.

Split of model files into several for better compilation scalability.

Default linear tearing.

Support for impure functions.

Better compilation flag documentation.

Better automatic generation of documentation.

Better support for calling functions via instance.

New text template based unparsing for DAE, Absyn, SCode, TaskGraphs, etc.
Better support for external objects.

Improved C++ runtime.

Improved testing facilities.

185

e New unit checking implementation.
e Support for model rewriting expressions via rewriting rules in an external file.

A.2.2 OpenModelica Notebook (OMNotebook)

No changes apart from bug fixing.

A.2.3 OpenModelica Shell (OMShell)

No changes.

A.2.4 OpenModelica Eclipse Plug-in (MDT)

No changes apart from bug fixing.

A.2.5 OpenModelica Development Environment (OMDev)

No changes apart from bug fixing.

A.2.6 Graphic Editor OMEdit

e Convenient editing of model parameter values and re-simulation without recompilation after
parameter changes.
e Improved plotting.

e Better handling of flags/units/resources/crashes.

¢ Run-time Modelica equation-based model debugger that provides both dynamic run-time
debugging and debugging of symbolic transformations.

¢ Run-time Modelica algorithmic code debugger; also MetaModelica debugger with the bootstrapped
OpenModelica compiler.

A.2.7 Optimization

A builtin integrated Dynamic Optimization module with collocation, using Ipopt, is now available.

A.2.8 FMI Support

Support for FMI 2.0 model exchange import and export has been added. FMI 1.0 support has been further
improved.

A.3 OpenModelica 1.9.0, October 2013

The three most important enhancements in the OpenModelica 1.9.0 release:
e OpenModelica compiler support for most of the Fluid library.
e Support for the significantly updated library MSL 3.2.1 final version.
¢ Significantly enhanced graphical user interface in OMEdit.

New features: integration of the PySimulator analysis package; Dynamic Optimization with CasADi.

A.3.1 OpenModelica Compiler (OMC)

This release mainly includes improvements of the OpenModelica Compiler (OMC), including, but not
restricted to the following:

e A more stable and complete OMC model compiler. The 1.9.0 final version simulates many more
models than the previous 1.8.1 version and OpenModelica 1.9.0 beta versions.

e Much better simulation support for MSL 3.2.1, now 270 out of 274 example models compile (98%)
and 247 (90%) simulate, compared to 30% simulating in the 1.9.0 betal release.

186

Much better simulation for the ModelicaTest 3.2.1 library, now 412 out of 428 models compile
(96%), and 380 (88%) simulate, compared to 32% in November 2012.

Improved tearing algorithm for the compiler backend. Tearing is by default used.
Much faster matching and dynamic state selection algorithms for the compiler backend.
New index reduction algorithm implementation.

New default initialization method that symbolically solves the initialization problem much faster
and more accurately. This is the first version that in general initialize hybrid models correctly.

Better class loading from files. The package.order file is now respected and the file structure is
more thoroughly examined.

Basic support for pure/impure functions.
It is now possible to translate the error messages in the omc kernel.

Enhanced ModelicaML version with support for value bindings in requirements-driven modeling
available for the latest Eclipse and Papyrus versions. GUI specific adaptations. Automated model
composition workflows (used for model-based design verification against requirements) are
modularized and have improved in terms of performance.

FMI for co-simulation with OMC as master. Improved FMI import/export, model exchange.

Checking (when possible) that variables have been assigned to before they are used in algorithmic
code.

Full version of Python scripting.
3D graphics visualization using the Modelica3D library.

The PySimulator package from DLR for additional analysis is integrated with OpenModelica (see
Modelica2012 paper), and included in the OpenModelica distribution.

Prototype support for uncertainty computations, special feature enabled by special flag.

Parallel algorithmic Modelica support (ParModelica) for efficient portable parallel algorithmic
programming based on the OpenCL standard, for CPUs and GPUs.

Support for optimization of semiLinear according to MSL 3.3 chapter 3.7.2.5 semiLinear.

A.3.2 OpenModelica Notebook (OMNotebook)

The DrModelica interactive document has been updated and the models tested. Almost all models now
simulate with OpenModelica.

A.3.3 OpenModelica Shell (OMShell)

No changes.

A.3.4 OpenModelica Eclipse Plug-in (MDT)

Enhanced debugger for algorithmic Modelica code, supporting both standard Modelica algorithmic code
called from simulation models, and MetaModelica code.

A.3.5 OpenModelica Development Environment (OMDev)

Migration of version handling and configuration management from CodeBeamer to Trac.

A.3.6 Graphic Editor OMEdit

General GUI: backward and forward navigation support in Documentation view, enhanced
parameters window with support for Dialog annotation. Most of the images are converted from
raster to vector graphics i.e PNG to SVG.

187

e Libraries Browser: better loading of libraries, library tree can now show protected classes, show
library items class names as middle ellipses if the class name text is larger, more options via the
right click menu for quick usage.

e ModelWidget: add the partial class as a replaceable component, look for the default component
prefixes and name when adding the component.

e GraphicsView: coordinate system manipulation for icon and diagram layers. Show red box for
models that do not exist. Show default graphical annotation for the components that doesn’t have
any graphical annotations. Better resizing of the components. Properties dialog for primitive shapes
i.e Line, Polygon, Rectangle, Ellipse, Text and Bitmap.

e File Opening: open one or more Modelica files, allow users to select the encoding while opening
the file, convert files to UTF-8 encoding, allow users to open the OpenModelica result files.

e Variables Browser: find variables in the variables browser, sorting in the variables browser.

e Plot Window: clear all curves of the plot window, preserve the old selected variable and update its
value with the new simulation result.

e Simulation: support for all the simulation flags, read the simulation output as soon as is is obtained,
output window for simulations, options to set matching algorithm and index reduction method for
simulation. Display all the files generated during the simulation is now supported. Options to set
OMC command line flags.

e Options: options for loading libraries via loadModel and loadFile each time GUI starts, save the last
open file directory location, options for setting line wrap mode and syntax highlighting.

e Modelica Text Editor: preserving user customizations, new search & replace functionality, support
for comment/uncomment.

¢ Notifications: show custom dialogs to users allowing them to choose whether they want to see this
dialog again or not.

e Model Creation: Better support for creating new classes. Easy creation of extends classes or nested
classes.

e Messages Widget: Multi line error messages are now supported.

e Crash Detection: The GUI now automatically detects the crash and writes a stack trace file. The
user is given an option to send a crash report along with the stack trace file and few other useful
files via email.

e Autosave: OMEdit saves the currently edited model regularly, in order to avoid losing edits after
GUI or compiler crash. The save interval can be set in the Options menu.

A.3.7 Optimization

Dynamic optimization with XML export to the CaSAdi package is now integrated with OpenModelica.
Moreover, a native integrated Dynamic Optimization prototype using Ipopt is now in the OpenModelica
release, but currently needs a special flag to be turned on since it needs more testing and refinement before
being generally made available.

A.3.8 FMI Support
FMI co-simulation with OpenModelica as master. Improved FMI Import and export for model exchange.
Simulation of multiple instances of the FMU is now possible. Partial support for FMI 2.0 model exchange.
A.4 OpenModelica 1.8.1, March 2012

The OpenModelica 1.8.1 release has a faster and more stable OMC model compiler. It flattens and
simulates more models than the previous 1.8.0 version. Significant flattening speedup of the compiler has
been achieved for certain large models. It also contains a New ModelicaML version with support for value

188

bindings in requirements-driven modeling and importing Modelica library models into ModelicaML
models. A beta version of the new OpenModelica Python scripting is also included.

A.4.1 OpenModelica Compiler (OMC)

This release includes bug fixes and improvements of the flattening frontend part of the OpenModelica
Compiler (OMC) and several improvements of the backend, including, but not restricted to:

A faster and more stable OMC model compiler. The 1.8.1 version flattens and simulates more
models than the previous 1.8.0 version.

Support for operator overloading (except Complex numbers).

New ModelicaML version with support for value bindings in requirements-driven modeling and
importing Modelica library models into ModelicaML models.

Faster plotting in OMNotebook. The feature sendData has been removed from OpenModelica. As a
result, the kernel no longer depends on Qt. The plot3() family of functions have now replaced to
plot(), which in turn have been removed. The non-standard visualize() command has been removed
in favour of more recent alternatives.

Store OpenModelica documentation as Modelica Documentation annotations.

Re-implementation of the simulation runtime using C instead of C++ (this was needed to export
FMI source-based packages).

FMI import/export bug fixes.

Changed the internal representation of various structures to share more memory. This significantly
improved the performance for very large models that use records.

Faster model flattening, Improved simulation, some graphical API bug fixes.
More robust and general initialization, but currently time-consuming.

New initialization flags to omc and options to simulate(), to control whether fast or robust
initialization is selected, or initialization from an external (.mat) data file.

New options to API calls list, loadFile, and more.
Enforce the restriction that input arguments of functions may not be assigned to.

Improved the scripting environment. cl := $TypeName(Modelica);getClassComment(cl); now
works as expected. As does looping over lists of typenames and using reduction expressions.

Beta version of Python scripting.
Various bugfixes.

NOTE: interactive simulation is not operational in this release. It will be put back again in the near
future, first available as a nightly build. It is also available in the previous 1.8.0 release.

A.4.2 OpenModelica Notebook (OMNotebook)

Faster and more stable plottning.

A.4.3 OpenModelica Shell (OMShell)

No changes.

A.4.4 OpenModelica Eclipse Plug-in (MDT)

Small fixes and improvements.

A.45 OpenModelica Development Environment (OMDev)

No changes.

189

A.4.6 Graphic Editor OMEdit
Bug fixes.

A.4.7 New OMOptim Optimization Subsystem
Bug fixes.

A.4.8 FEMI Support

Bug fixes.

A.5 OpenModelica 1.8, November 2011

The OpenModelica 1.8 release contains OMC flattening improvements for the Media library — it now
flattens the whole library and simulates about 20% of its example models. Moreover, about half of the
Fluid library models also flatten. This release also includes two new tool functionalities — the FMI for
model exchange import and export, and a new efficient Eclipse-based debugger for
Modelica/MetaModelica algorithmic code.

A.5.1 OpenModelica Compiler (OMC)

This release includes bug fixes and improvements of the flattening frontend part of the OpenModelica
Compiler (OMC) and several improvements of the backend, including, but not restricted to:

e A faster and more stable OMC model compiler. The 1.8.1 version flattens and simulates more
models than the previous 1.7.0 version.

e Flattening of the whole Media library, and about half of the Fluid library. Simulation of
approximately 20% of the Media library example models.

e Functional Mockup Interface FMI 1.0 for model exchange, export and import, for the Windows
platform.

e Bug fixes in the OpenModelica graphical model connection editor OMEdit, supporting easy-to-use
graphical drag-and-drop modeling and MSL 3.1.

e Bug fixes in the OMOptim optimization subsystem.

e Beta version of compiler support for a new Eclipse-based very efficient algorithmic code debugger
for functions in MetaModelica/Modelica, available in the development environment when using the
bootstrapped OpenModelica compiler.

e Improvements in initialization of simulations.

e Improved index reduction with dynamic state selection, which improves simulation.

e Better error messages from several parts of the compiler, including a new API call for giving better
error messages.

e Automatic partitioning of equation systems and multi-core parallel simulation of independent parts
based on the shared-memory OpenMP model. This version is a preliminary experimental version
without load balancing.

A.5.2 OpenModelica Notebook (OMNotebook)

No changes.

A.5.3 OpenModelica Shell (OMShell)

Small performance improvements.

A.5.4 OpenModelica Eclipse Plug-in (MDT)

190

Small fixes and improvements. MDT now also includes a beta version of a new Eclipse-based very
efficient algorithmic code debugger for functions in MetaModelica/Modelica.

A.5.5 OpenModelica Development Environment (OMDev)

Third party binaries, including Qt libraries and executable Qt clients, are now part of the OMDev package.
Also, now uses GCC 4.4.0 instead of the earlier GCC 3.4.5.

A.5.6 Graphic Editor OMEdit

Bug fixes. Access to FMI Import/Export through a pull-down menu. Improved configuration of library
loading. A function to go to a specific line number. A button to cancel an on-going simulation. Support for
some updated OMC API calls.

A.5.7 New OMOptim Optimization Subsystem

Bug fixes, especially in the Linux version.

A.5.8 FMI Support

The Functional Mockup Interface FMI 1.0 for model exchange import and export is supported by this
release. The functionality is accessible via API calls as well as via pull-down menu commands in OMEdit.

A.6 OpenModelica 1.7, April 2011

The OpenModelica 1.7 release contains OMC flattening improvements for the Media library, better and
faster event handling and simulation, and fast MetaModelica support in the compiler, enabling it to
compiler itself. This release also includes two interesting new tools — the OMOpttim optimization
subsystem, and a new performance profiler for equation-based Modelica models.

A.6.1 OpenModelica Compiler (OMC)

This release includes bug fixes and performance improvements of the flattening frontend part of the
OpenModelica Compiler (OMC) and several improvements of the backend, including, but not restricted to:

e Flattening of the whole Modelica Standard Library 3.1 (MSL 3.1), except Media and Fluid.
e Progress in supporting the Media library, some models now flatten.

e Much faster simulation of many models through more efficient handling of alias variables, binary
output format, and faster event handling.

e Faster and more stable simulation through new improved event handling, which is now default.
e Simulation result storage in binary .mat files, and plotting from such files.
e Support for Unicode characters in quoted Modelica identifiers, including Japanese and Chinese.

e Preliminary MetaModelica 2.0 support. (use setCommandLineOptions({"+g=MetaModelica"})).
Execution is as fast as MetaModelica 1.0, except for garbage collection.

e Preliminary bootstrapped OpenModelica compiler: OMC now compiles itself, and the bootstrapped
compiler passes the test suite. A garbage collector is still missing.

e Many bug fixes.
A.6.2 OpenModelica Notebook (OMNotebook)

Improved much faster and more stable 2D plotting through the new OMPIlot module. Plotting from binary
.mat files. Better integration between OMEdit and OMNotebook, copy/paste between them.

191

A.6.3 OpenModelica Shell (OMShell)
Same as previously, except the improved 2D plotting through OMPIot.

A.6.4 OpenModelica Eclipse Plug-in (MDT)

Same as previously.

A.6.5 OpenModelica Development Environment (OMDev)

No changes.

A.6.6 Graphic Editor OMEdit

Several enhancements of OMEdit are included in this release. Support for Icon editing is now available.
There is also an improved much faster 2D plotting through the new OMPIlot module. Better integration
between OMEdit and OMNotebook, with copy/paste between them. Interactive on-line simulation is
available in an easy-to-use way.

A.6.7 New OMOptim Optimization Subsystem

A new optimization subsystem called OMOptim has been added to OpenModelica. Currently, parameter
optimization using genetic algorithms is supported in this version 0.9. Pareto front optimization is also
supported.

A.6.8 New Performance Profiler

A new, low overhead, performance profiler for Modelica models has been developed.

A.7 OpenModelica 1.6, November 2010

The OpenModelica 1.6 release primarily contains flattening, simulation, and performance improvements
regarding Modelica Standard Library 3.1 support, but also has an interesting new tool — the OMEdit
graphic connection editor, and a new educational material called DrControl, and an improved ModelicaML
UML/Modelica profile with better support for modeling and requirement handling.

A.7.1 OpenModelica Compiler (OMC)

This release includes bug fix and performance improvemetns of the flattening frontend part of the
OpenModelica Compiler (OMC) and some improvements of the backend, including, but not restricted to:

e Flattening of the whole Modelica Standard Library 3.1 (MSL 3.1), except Media and Fluid.

e Improved flattening speed of a factor of 5-20 compared to OpenModelica 1.5 for a number of
models, especially in the MultiBody library.

e Reduced memory consumption by the OpenModelica compiler frontend, for certain large models a
reduction of a factor 50.

e Reorganized, more modular OpenModelica compiler backend, can now handle approximately
30 000 equations, compared to previously approximately 10 000 equations.

e Better error messages from the compiler, especially regarding functions.

e Improved simulation coverage of MSL 3.1. Many models that did not simulate before are now
simulating. However, there are still many models in certain sublibraries that do not simulate.

e Progress in supporting the Media library, but simulation is not yet possible.
e Improved support for enumerations, both in the frontend and the backend.
e Implementation of stream connectors.

e Support for linearization through symbolic Jacobians.

192

e Many bug fixes.

A.7.2 OpenModelica Notebook (OMNotebook)

A new DrControl electronic notebook for teaching control and modeling with Modelica.

A.7.3 OpenModelica Shell (OMShell)

Same as previously.

A.7.4 OpenModelica Eclipse Plug-in (MDT)

Same as previously.

A.7.5 OpenModelica Development Environment (OMDev)

Several enhancements. Support for match-expressions in addition to matchcontinue. Support for real if-
then-else. Support for if-then without else-branches. Modelica Development Tooling 0.7.7 with small
improvements such as more settings, improved error detection in console, etc.

A.7.6 New Graphic Editor OMEdit

A new improved open source graphic model connection editor called OMEdit, supporting 3.1 graphical
annotations, which makes it possible to move models back and forth to other tools without problems. The
editor has been implemented by students at Linkdping University and is based on the C++ Qt library.

A.8 OpenModelica 1.5, July 2010

This OpenModelica 1.5 release has major improvements in the OpenModelica compiler frontend and some
in the backend. A major improvement of this release is full flattening support for the MultiBody library as
well as limited simulation support for MultiBody. Interesting new facilities are the interactive simulation
and the integrated UML-Modelica modeling with ModelicaML. Approximately 4 person-years of
additional effort have been invested in the compiler compared to the 1.4.5 version, e.g., in order to have a
more complete coverage of Modelica 3.0, mainly focusing on improved flattening in the compiler frontend.

A.8.1 OpenModelica Compiler (OMC)

This release includes major improvements of the flattening frontend part of the OpenModelica Compiler
(OMC) and some improvements of the backend, including, but not restricted to:

e Improved flattening speed of at least a factor of 10 or more compared to the 1.4.5 release, primarily
for larger models with inner-outer, but also speedup for other models, e.g. the robot model flattens
in approximately 2 seconds.

e Flattening of all MultiBody models, including all elementary models, breaking connection graphs,
world object, etc. Moreover, simulation is now possible for at least five MultiBody models:
Pendulum, DoublePendulum, InitSpringConstant, World, PointGravityWithPointMasses.

e Progress in supporting the Media library, but simulation is not yet possible.

e Support for enumerations, both in the frontend and the backend.

e Support for expandable connectors.

e Support for the inline and late inline annotations in functions.

e Complete support for record constructors, also for records containing other records.
e Full support for iterators, including nested ones.

e Support for inferred iterator and for-loop ranges.

e Support for the function derivative annotation.

193

e Prototype of interactive simulation.
e Prototype of integrated UML-Modelica modeling and simulation with ModelicaML.

e A new bidirectional external Java interface for calling external Java functions, or for calling
Modelica functions from Java.

e Complete implementation of replaceable model extends.

e Fixed problems involving arrays of unknown dimensions.

e Limited support for tearing.

e Improved error handling at division by zero.

e Support for Modelica 3.1 annotations.

e Support for all MetaModelica language constructs inside OpenModelica.
e OpenModelica works also under 64-bit Linux and Mac 64-bit OSX.

o Parallel builds and running test suites in parallel on multi-core platforms.

e New OpenModelica text template language for easier implementation of code generators, XML
generators, etc.

¢ New OpenModelica code generators to C and C# using the text template language.
e Faster simulation result data file output optionally as comma-separated values.
e Many bug fixes.

It is now possible to graphically edit models using parts from the Modelica Standard Library 3.1, since the
simForge graphical editor (from Politecnico di Milano) that is used together with OpenModelica has been
updated to version 0.9.0 with a important new functionality, including support for Modelica 3.1 and 3.0
annotations. The 1.6 and 2.2.1 Modelica graphical annotation versions are still supported.

A.8.2 OpenModelica Notebook (OMNotebook)

Improvements in platform availability.
e Support for 64-bit Linux.
e Support for Windows 7.
e Better support for MacOS, including 64-bit OSX.
A.8.3 OpenModelica Shell (OMShell)

Same as previously.

A.8.4 OpenModelica Eclipse Plug-in (MDT)

Minor bug fixes.

A.8.5 OpenModelica Development Environment (OMDev)

Minor bug fixes.

A.9 OpenModelica 1.4.5, January 2009
This release has several improvements, especially platform availability, less compiler memory usage, and
supporting more aspects of Modelica 3.0.

A.9.1 OpenModelica Compiler (OMC)
This release includes small improvements and some bugfixes of the OpenModelica Compiler (OMC):

e Less memory consumption and better memory management over time. This also includes a better
API supporting automatic memory management when calling C functions from within the compiler.

194

e Modelica 3.0 parsing support.

e Export of DAE to XML and MATLAB.

e Support for several platforms Linux, MacOS, Windows (2000, Xp, Vista).

e Support for record and strings as function arguments.

e Many bug fixes.

e (Not part of OMC): Additional free graphic editor SimForge can be used with OpenModelica.

A.9.2 OpenModelica Notebook (OMNotebook)

A number of improvements, primarily in the plotting functionality and platform availability.
e A number of improvements in the plotting functionality: scalable plots, zooming, logarithmic plots,
grids, etc.
e Programmable plotting accessible through a Modelica API.
e Simple 3D visualization.
e Support for several platforms Linux, MacOS, Windows (2000, Xp, Vista).

A.9.3 OpenModelica Shell (OMShell)

Same as previously.

A.9.4 OpenModelica Eclipse Plug-in (MDT)

Minor bug fixes.

A.9.5 OpenModelica Development Environment (OMDev)

Same as previously.

A.1 OpenModelica 1.4.4, Feb 2008

This release is primarily a bug fix release, except for a preliminary version of new plotting functionality
available both from the OMNotebook and separately through a Modelica API. This is also the first release
under the open source license OSMC-PL (Open Source Modelica Consortium Public License), with
support from the recently created Open Source Modelica Consortium. An integrated version handler, bug-,
and issue tracker has also been added.

A.9.6 OpenModelica Compiler (OMC)
This release includes small improvements and some bugfixes of the OpenModelica Compiler (OMC):

o Better support for if-equations, also inside when.

e Better support for calling functions in parameter expressions and interactively through dynamic
loading of functions.

e Less memory consumtion during compilation and interactive evaluation.
e A number of bug-fixes.

A.9.7 OpenModelica Notebook (OMNotebook)

Test release of improvements, primarily in the plotting functionality and platform availability.

e Preliminary version of improvements in the plotting functionality: scalable plots, zooming,
logarithmic plots, grids, etc., currently available in a preliminary version through the plot2 function.

e Programmable plotting accessible through a Modelica API.

195

A.9.8 OpenModelica Shell (OMShell)

Same as previously.

A.9.9 OpenModelica Eclipse Plug-in (MDT)

This release includes minor bugfixes of MDT and the associated MetaModelica debugger:

A.9.10 OpenModelica Development Environment (OMDev)

Extended test suite with a better structure. Version handling, bug tracking, issue tracking, etc. now
available under the integrated Codebeamer

A.10 OpenModelica 1.4.3, June 2007

This release has a number of significant improvements of the OMC compiler, OMNotebook, the MDT
plugin and the OMDev. Increased platform availability now also for Linux and Macintosh, in addition to
Windows. OMShell is the same as previously, but now ported to Linux and Mac.

A.10.1 OpenModelica Compiler (OMC)
This release includes a number of improvements of the OpenModelica Compiler (OMC):

o Significantly increased compilation speed, especially with large models and many packages.
¢ Now available also for Linux and Macintosh platforms.

e Support for when-equations in algorithm sections, including elsewhen.

e Support for inner/outer prefixes of components (but without type error checking).

e Improved solution of nonlinear systems.

e Added ability to compile generated simulation code using Visual Studio compiler.

e Added "smart setting of fixed attribute to false. If initial equations, OMC instead has fixed=true as
default for states due to allowing overdetermined initial equation systems.

e Better state select heuristics.

¢ New function getincidenceMatrix(ClassName) for dumping the incidence matrix.

e Builtin functions String(), product(), ndims(), implemented.

e Support for terminate() and assert() in equations.

o Inemitted flat form: protected variables are now prefixed with protected when printing flat class.
e Some support for tables, using omcTableTimelni instead of dymTableTimelni2.

e Better support for empty arrays, and support for matrix operations like a*[1,2;3,4].

e Improved val() function can now evaluate array elements and record fields, e.g. val(x[n]), val(x.y) .
e Support for reinit in algorithm sections.

e String support in external functions.

e Double precision floating point precision now also for interpreted expressions

e Better simulation error messages.

e Support for der(expressions).

e Support for iterator expressions such as {3*i for i in 1..10}.

e More test cases in the test suite.

e A number of bug fixes, including sample and event handling bugs.

A.10.2 OpenModelica Notebook (OMNotebook)

A number of improvements, primarily in the platform availability.

196

e Available on the Linux and Macintosh platforms, in addition to Windows.
o Fixed cell copying bugs, plotting of derivatives now works, etc.

A.10.3 OpenModelica Shell (OMShell)

Now available also on the Macintosh platform.

A.10.4 OpenModelica Eclipse Plug-in (MDT)
This release includes major improvements of MDT and the associated MetaModelica debugger:
e Greatly improved browsing and code completion works both for standard Modelica and for
MetaModelica.

e Hovering over identifiers displays type information.

e A new and greatly improved implementation of the debugger for MetaModelica algorithmic code,
operational in Eclipse. Greatly improved performance — only approx 10% speed reduction even for
100 000 line programs. Greatly improved single stepping, step over, data structure browsing, etc.

e Many bug fixes.

A.10.5 OpenModelica Development Environment (OMDev)

Increased compilation speed for MetaModelica. Better if-expression support in MetaModelica.

A.11 OpenModelica 1.4.2, October 2006

This release has improvements and bug fixes of the OMC compiler, OMNotebook, the MDT plugin and the
OMDev. OMShell is the same as previously.

A.11.1 OpenModelica Compiler (OMC)

This release includes further improvements of the OpenModelica Compiler (OMC):
e Improved initialization and index reduction.
e Support for integer arrays is now largely implemented.

e The val(variable,time) scripting function for accessing the value of a simulation result variable at a
certain point in the simulated time.

e Interactive evalution of for-loops, while-loops, if-statements, if-expressions, in the interactive
scripting mode.

e Improved documentation and examples of calling the Model Query and Manipulation API.
e Many bug fixes.

A.11.2 OpenModelica Notebook (OMNotebook)

Search and replace functions have been added. The DrModelica tutorial (all files) has been updated,
obsolete sections removed, and models which are not supported by the current implementation marked
clearly. Automatic recognition of the .onb suffix (e.g. when double-clicking) in Windows makes it even
more convenient to use.

A.11.3 OpenModelica Eclipse Plug-in (MDT)

Two major improvements are added in this release:

e Browsing and code completion works both for standard Modelica and for MetaModelica.

e The debugger for algorithmic code is now available and operational in Eclipse for debugging of
MetaModelica programs.

197

A.11.4 OpenModelica Development Environment (OMDev)

Mostly the same as previously.

A.12 OpenModelica 1.4.1, June 2006

This release has only improvements and bug fixes of the OMC compiler, the MDT plugin and the OMDev
components. The OMShell and OMNotebook are the same.

A.12.1 OpenModelica Compiler (OMC)

This release includes further improvements of the OpenModelica Compiler (OMC):
e Support for external objects.
e OMC now reports the version number (via command line switches or CORBA API getVersion()).
e Implemented caching for faster instantiation of large models.
e Many bug fixes.

A.12.2 OpenModelica Eclipse Plug-in (MDT)

Improvements of the error reporting when building the OMC compiler. The errors are now added to the
problems view. The latest MDT release is version 0.6.6 (2006-06-06).

A.12.3 OpenModelica Development Environment (OMDev)

Small fixes in the MetaModelica compiler. MetaModelica Users Guide is now part of the OMDev release.
The latest OMDev was release in 2006-06-06.

A.13 OpenModelica 1.4.0, May 2006

This release has a number of improvements described below. The most significant change is probably that
OMC has now been translated to an extended subset of Modelica (MetaModelica), and that all development
of the compiler is now done in this version..

A.13.1 OpenModelica Compiler (OMC)
This release includes further improvements of the OpenModelica Compiler (OMC):

o Partial support for mixed system of equations.

e New initialization routine, based on optimization (minimizing residuals of initial equations).

e Symbolic simplification of builtin operators for vectors and matrices.

e Improved code generation in simulation code to support e.g. Modelica functions.

e Support for classes extending basic types, e.g. connectors (support for MSL 2.2 block connectors).
e Support for parametric plotting via the plotParametric command.

e Many bug fixes.

A.13.2 OpenModelica Shell (OMShell)

Essentially the same OMShell as in 1.3.1. One difference is that now all error messages are sent to the
command window instead of to a separate log window.

A.13.3 OpenModelica Notebook (OMNotebook)

Many significant improvements and bug fixes. This version supports graphic plots within the cells in the
notebook. Improved cell handling and Modelica code syntax highlighting. Command completion of the
most common OMC commands is now supported. The notebook has been used in several courses.

198

A.13.4 OpenModelica Eclipse Plug-in (MDT)

This is the first really useful version of MDT. Full browsing of Modelica code, e.g. the MSL 2.2, is now
supported. (MetaModelica browsing is not yet fully supported). Full support for automatic indentation of
Modelica code, including the MetaModelica extensions. Many bug fixes. The Eclipse plug-in is now in use
for OpenModelica development at PELAB and MathCore Engineering AB since approximately one month.

A.13.5 OpenModelica Development Environment (OMDev)

The following mechanisms have been put in place to support OpenModelica development.

A separate web page for OMDev (OpenModelica Development Environment).

A pre-packaged OMDev zip-file with precompiled binaries for development under Windows using
the mingw Gnu compiler from the Eclipse MDT plug-in. (Development is also possible using
Visual Studio).

All source code of the OpenModelica compiler has recently been translated to an extended subset of
Modelica, currently called MetaModelica. The current size of OMC is approximately 100 000 lines
All development is now done in this version.

A new tutorial and users guide for development in MetaModelica.

Successful builds and tests of OMC under Linux and Solaris.

A.14 OpenModelica 1.3.1, November 2005

This release has several important highlights.

This is also the first release for which the New BSD (Berkeley) open-source license applies to the source
code, including the whole compiler and run-time system. This makes is possible to use OpenModelica for
both academic and commercial purposes without restrictions.

A.14.1 OpenModelica Compiler (OMC)

This release includes a significantly improved OpenModelica Compiler (OMC):

Support for hybrid and discrete-event simulation (if-equations, if-expressions, when-equations;
not yet if-statements and when-statements).

Parsing of full Modelica 2.2
Improved support for external functions.

Vectorization of function arguments; each-modifiers, better implementation of replaceable, better
handling of structural parameters, better support for vector and array operations, and many other
improvements.

Flattening of the Modelica Block library version 1.5 (except a few models), and simulation of most
of these.

Automatic index reduction (present also in previous release).
Updated User's Guide including examples of hybrid simulation and external functions.

A.14.2 OpenModelica Shell (OMShell)

An improved window-based interactive command shell, now including command completion and better
editing and font size support.

A.14.3 OpenModelica Notebook (OMNotebook)

199

A free implementation of an OpenModelica notebook (OMNOtebook), for electronic books with course
material, including the DrModelica interactive course material. It is possible to simulate and plot from this
notebook.

A.14.4 OpenModelica Eclipse Plug-in (MDT)

An early alpha version of the first Eclipse plug-in (called MDT for Modelica Development Tooling) for
Modelica Development. This version gives compilation support and partial support for browsing Modelica
package hierarchies and classes.

A.14.5 OpenModelica Development Environment (OMDev)
The following mechanisms have been put in place to support OpenModelica development.

e Bugzilla support for OpenModelica bug tracking, accessible to anybody.
e A system for automatic regression testing of the compiler and simulator, (+ other system parts)
usually run at check in time.

e Version handling is done using SVN, which is better than the previously used CVS system. For
example, name change of modules is now possible within the version handling system.

201

Appendix B

Contributors to OpenModelica

This Appendix lists the individuals who have made significant contributions to OpenModelica, in the form
of software development, design, documentation, project leadership, tutorial material, promotion, etc. The
individuals are listed for each year, from 1998 to the current year: the project leader and main author/editor
of this document followed by main contributors followed by contributors in alphabetical order.

B.1 OpenModelica Contributors 2014
Peter Fritzson, PELAB, Linkdping University, Linképing, Sweden.

Adrian Pop, PELAB, Linkdping University, Linkoping, Sweden.
Adeel Asghar, PELAB, Linkoping University, Linkping, Sweden.
Willi Braun, Fachhochschule Bielefeld, Bielefeld, Germany.

Jens Frenkel, TU Dresden, Dresden, Germany.

Lennart Ochel, Fachhochschule Bielefeld, Bielefeld, Germany.
Martin Sjolund, PELAB, Linkdping University, Linkdping, Sweden.
Per Ostlund, PELAB, Link6ping University, Link6ping, Sweden.

Peter Aronsson, MathCore Engineering AB, Link6ping, Sweden.
Bernhard Bachmann, Fachhochschule Bielefeld, Bielefeld, Germany.
Vasile Baluta, PELAB, Linkdping University, Linkdping, Sweden.
Robert Braun, IEI, Linkdping University, Linkdping, Sweden.

David Broman, PELAB, Linkdping University, Linkdping, Sweden.
Stefan Brus, PELAB, Linkdping University, Linkdping, Sweden.
Lena Buffoni, PELAB, Linkdping University, Linképing, Sweden.
Francesco Casella, Politecnico di Milano, Milan, Italy.

Filippo Donida, Politecnico di Milano, Milan, Italy.

Mahder Gebremedhin, PELAB, Linkoping University, Linkdping, Sweden.
Pavel Grozman, Equa AB, Stockholm, Sweden.

Michael Hanke, NADA, KTH, Stockholm.

Daniel Hedberg, MathCore Engineering AB, Linkdping, Sweden.
Zoheb Hossain, PELAB, Linkoping University, Linkoping, Sweden.
Alf Isaksson, ABB Corporate Research, Vasteras, Sweden.

Daniel Kanth, Bosch-Rexroth, Lohr am Main, Germany.

Tommi Karhela, VTT, Espoo, Finland.

Petter Krus, IEI, Linkdping University, Linkdping, Sweden.

Juha Kortelainen, VTT, Espoo, Finland.

Abhinn Kothari, PELAB, Linkdping University, Linkdping, Sweden.
Alexey Lebedev, Equa Simulation AB, Stockholm, Sweden.

Oliver Lenord, Siemens PLM, California, USA.

Ariel Liebman, Energy Users Association of Australia, Victoria, Australia.
Henrik Magnusson, Linkdping, Sweden.

Abhi Raj Metkar, CDAC, Trivandrum, Kerala, India.

Eric Meyers, Pratt & Whitney Rocketdyne, Palm City, Florida, USA.

202

Tuomas Miettinen, VTT, Espoo, Finland.

Afshin Moghadam, PELAB, Linkdping University, Linképing, Sweden.
Maroun Nemer, CEP Paristech, Ecole des Mines, Paris, France.

Hannu Niemistd, VTT, Espoo, Finland.

Peter Nordin, IEI, Linkdping University, Linkdping, Sweden.

Arunkumar Palanisamy, PELAB, Linkdping University, Linképing, Sweden.
Karl Pettersson, IEI, Linkdping University, Linkdping, Sweden.

Pavol Privitzer, Institute of Pathological Physiology, Praha, Czech Republic.
Jhansi Remala, PELAB, Link6ping University, Link6ping, Sweden.

Reino Ruusu, VTT, Espoo, Finland.

Per Sahlin, Equa Simulation AB, Stockholm, Sweden.

Wladimir Schamai, EADS, Hamburg, Germany.

Gerhard Schmitz, University of Hamburg, Hamburg, Germany.

Alachew Shitahun, PELAB, Linkdping University, Linkdping, Sweden.
Anton Sodja, University of Ljubljana, Ljubljana, Slovenia

Ingo Staack, IEI, Linkdping University, Linképing, Sweden.

Kristian Stavaker, PELAB, Linkoping University, Linképing, Sweden.
Sonia Tarig, PELAB, Linkdping University, Linkdping, Sweden.

Hubert Thierot, CEP Paristech, Ecole des Mines, Paris, France.

Mohsen Torabzadeh-Tari, PELAB, Linkoping University, Linkping, Sweden.
Parham Vasaiely, EADS, Hamburg, Germany.

Niklas Worschech, Bosch-Rexroth, Lohr am Main, Germany.

Robert Wotzlaw, Goettingen, Germany.

Azam Zia, PELAB, Linkdping University, Linkdping, Sweden.

B.2 OpenModelica Contributors 2013
Peter Fritzson, PELAB, Linkoping University, Link6ping, Sweden.

Adrian Pop, PELAB, Linkdping University, Linkoping, Sweden.
Adeel Asghar, PELAB, Linkdping University, Linkdping, Sweden.
Willi Braun, Fachhochschule Bielefeld, Bielefeld, Germany.

Jens Frenkel, TU Dresden, Dresden, Germany.

Lennart Ochel, Fachhochschule Bielefeld, Bielefeld, Germany.
Martin Sj6lund, PELAB, Link&ping University, Linkdping, Sweden.
Per Ostlund, PELAB, Linkdping University, Linkdping, Sweden.

Peter Aronsson, MathCore Engineering AB, Linkdping, Sweden.
Bernhard Bachmann, Fachhochschule Bielefeld, Bielefeld, Germany.
Vasile Baluta, PELAB, Linkdping University, Linkdping, Sweden.
Robert Braun, IEI, Link6ping University, Link6ping, Sweden.

David Broman, PELAB, Linkdping University, Linkdping, Sweden.
Stefan Brus, PELAB, Linkdping University, Linkdping, Sweden.
Lena Buffoni, PELAB, Linkdping University, Linkdping, Sweden.
Francesco Casella, Politecnico di Milano, Milan, Italy.

Filippo Donida, Politecnico di Milano, Milan, Italy.

Mahder Gebremedhin, PELAB, Linkdping University, Linképing, Sweden.
Pavel Grozman, Equa AB, Stockholm, Sweden.

Michael Hanke, NADA, KTH, Stockholm.

Daniel Hedberg, MathCore Engineering AB, Linkoping, Sweden.
Zoheb Hossain, PELAB, Linkdping University, Linkoping, Sweden.
Alf Isaksson, ABB Corporate Research, Vasteras, Sweden.

Daniel Kanth, Bosch-Rexroth, Lohr am Main, Germany.

203

Tommi Karhela, VTT, Espoo, Finland.

Petter Krus, IEI, Linkdping University, Linképing, Sweden.

Juha Kortelainen, VTT, Espoo, Finland.

Abhinn Kothari, PELAB, Linkdping University, Linkdping, Sweden.
Alexey Lebedev, Equa Simulation AB, Stockholm, Sweden.

Oliver Lenord, Siemens PLM, California, USA.

Ariel Liebman, Energy Users Association of Australia, Victoria, Australia.
Henrik Magnusson, Linképing, Sweden.

Abhi Raj Metkar, CDAC, Trivandrum, Kerala, India.

Eric Meyers, Pratt & Whitney Rocketdyne, Palm City, Florida, USA.
Tuomas Miettinen, VTT, Espoo, Finland.

Afshin Moghadam, PELAB, Linkdping University, Linkdping, Sweden.
Maroun Nemer, CEP Paristech, Ecole des Mines, Paris, France.

Hannu Niemistd, VTT, Espoo, Finland.

Peter Nordin, IEI, Link6ping University, Linkping, Sweden.

Arunkumar Palanisamy, PELAB, Linkdping University, Linkdping, Sweden.

Karl Pettersson, IEI, Linkdping University, Linkdping, Sweden.

Pavol Privitzer, Institute of Pathological Physiology, Praha, Czech Republic.

Jhansi Remala, PELAB, Link6ping University, Linkdping, Sweden.
Reino Ruusu, VTT, Espoo, Finland.

Per Sahlin, Equa Simulation AB, Stockholm, Sweden.

Wiladimir Schamai, EADS, Hamburg, Germany.

Gerhard Schmitz, University of Hamburg, Hamburg, Germany.
Alachew Shitahun, PELAB, Linkdping University, LinkOping, Sweden.
Anton Sodja, University of Ljubljana, Ljubljana, Slovenia

Ingo Staack, IEI, Linkdping University, Linkdping, Sweden.

Kristian Stavaker, PELAB, Linkdping University, Linkoping, Sweden.
Sonia Tarig, PELAB, Linkdéping University, Linkdping, Sweden.
Hubert Thierot, CEP Paristech, Ecole des Mines, Paris, France.

Mohsen Torabzadeh-Tari, PELAB, Linkoping University, Linkdping, Sweden.

Parham Vasaiely, EADS, Hamburg, Germany.

Niklas Worschech, Bosch-Rexroth, Lohr am Main, Germany.
Robert Wotzlaw, Goettingen, Germany.

Azam Zia, PELAB, Linkoping University, Link6ping, Sweden.

B.3 OpenModelica Contributors 2012
Peter Fritzson, PELAB, Linkdping University, Linkoping, Sweden.

Adrian Pop, PELAB, Linkdping University, Link6ping, Sweden.
Adeel Asghar, PELAB, Linkoping University, Link6ping, Sweden.
Willi Braun, Fachhochschule Bielefeld, Bielefeld, Germany.

Jens Frenkel, TU Dresden, Dresden, Germany.

Lennart Ochel, Fachhochschule Bielefeld, Bielefeld, Germany.
Martin Sj6lund, PELAB, Linkdping University, Linképing, Sweden.
Per Ostlund, PELAB, Linkoping University, Link6ping, Sweden.

Peter Aronsson, MathCore Engineering AB, Link6ping, Sweden.

David Akhvlediani, PELAB, Linkoping University, Link6ping, Sweden.
Mikael Axin, IEI, Linkdping University, Linkoping, Sweden.

Bernhard Bachmann, Fachhochschule Bielefeld, Bielefeld, Germany.
Vasile Baluta, PELAB, Linkdping University, Linkoping, Sweden.
Robert Braun, IEI, Link6ping University, Linkoping, Sweden.

204

David Broman, PELAB, Linkdping University, Linkdping, Sweden.
Stefan Brus, PELAB, Linkdping University, Linkdping, Sweden.
Francesco Casella, Politecnico di Milano, Milan, Italy.

Filippo Donida, Politecnico di Milano, Milan, Italy.

Mahder Gebremedhin, PELAB, Linkoping University, Linkodping, Sweden.
Pavel Grozman, Equa AB, Stockholm, Sweden.

Michael Hanke, NADA, KTH, Stockholm.

Daniel Hedberg, MathCore Engineering AB, Linkdping, Sweden.

Zoheb Hossain, PELAB, Linkoping University, Link6ping, Sweden.

Alf Isaksson, ABB Corporate Research, Vasteras, Sweden.

Daniel Kanth, Bosch-Rexroth, Lohr am Main, Germany.

Tommi Karhela, VTT, Espoo, Finland.

Petter Krus, IEI, Linkdping University, Linkdping, Sweden.

Juha Kortelainen, VTT, Espoo, Finland.

Abhinn Kothari, PELAB, Linkdping University, Linkdping, Sweden.
Alexey Lebedev, Equa Simulation AB, Stockholm, Sweden.

Oliver Lenord, Siemens PLM, California, USA.

Ariel Liebman, Energy Users Association of Australia, Victoria, Australia.
Henrik Magnusson, Linkdping, Sweden.

Abhi Raj Metkar, CDAC, Trivandrum, Kerala, India.

Eric Meyers, Pratt & Whitney Rocketdyne, Palm City, Florida, USA.
Tuomas Miettinen, VTT, Espoo, Finland.

Afshin Moghadam, PELAB, Linkdping University, Linképing, Sweden.
Maroun Nemer, CEP Paristech, Ecole des Mines, Paris, France.

Hannu Niemistd, VTT, Espoo, Finland.

Peter Nordin, IEI, Linkdping University, Link6ping, Sweden.

Arunkumar Palanisamy, PELAB, Linkdping University, Linképing, Sweden.
Karl Pettersson, IEI, Linkdping University, Linkdping, Sweden.

Pavol Privitzer, Institute of Pathological Physiology, Praha, Czech Republic.
Jhansi Remala, PELAB, Linkdping University, Linkdping, Sweden.

Reino Ruusu, VTT, Espoo, Finland.

Per Sahlin, Equa Simulation AB, Stockholm, Sweden.

Wladimir Schamai, EADS, Hamburg, Germany.

Gerhard Schmitz, University of Hamburg, Hamburg, Germany.

Alachew Shitahun, PELAB, Linkdping University, Linkdping, Sweden.
Anton Sodja, University of Ljubljana, Ljubljana, Slovenia

Ingo Staack, IEI, Linkdping University, Linkdping, Sweden.

Kristian Stavaker, PELAB, Linkoping University, Linképing, Sweden.
Sonia Tariq, PELAB, Linkdping University, Linkdping, Sweden.

Hubert Thierot, CEP Paristech, Ecole des Mines, Paris, France.

Mohsen Torabzadeh-Tari, PELAB, Linkdping University, Linkdping, Sweden.
Parham Vasaiely, EADS, Hamburg, Germany.

Niklas Worschech, Bosch-Rexroth, Lohr am Main, Germany.

Robert Wotzlaw, Goettingen, Germany.

Azam Zia, PELAB, Linkdping University, Linkdping, Sweden.

B.4 OpenModelica Contributors 2011
Peter Fritzson, PELAB, Linkoping University, Linkoping, Sweden.

Adrian Pop, PELAB, Linkdping University, Linkdping, Sweden.
Willi Braun, Fachhochschule Bielefeld, Bielefeld, Germany.

205

Jens Frenkel, TU Dresden, Dresden, Germany.
Martin Sj6lund, PELAB, Linképing University, Linkdping, Sweden.
Per Ostlund, PELAB, Linkoping University, Linkdping, Sweden.

Peter Aronsson, MathCore Engineering AB, Linkdping, Sweden.
Adeel Asghar, PELAB, Linkdping University, Linkdping, Sweden.
David Akhvlediani, PELAB, Linkdping University, Linkdping, Sweden.
Mikael Axin, IEI, Linkoéping University, Linképing, Sweden.
Bernhard Bachmann, Fachhochschule Bielefeld, Bielefeld, Germany.
Vasile Baluta, PELAB, Linkdping University, Linkdping, Sweden.
Robert Braun, IEI, Linkdping University, Linkdping, Sweden.

David Broman, PELAB, Linkdping University, Linkdping, Sweden.
Stefan Brus, PELAB, Linkdping University, Linkdping, Sweden.
Francesco Casella, Politecnico di Milano, Milan, Italy.

Filippo Donida, Politecnico di Milano, Milan, Italy.

Anand Ganeson, PELAB, Linkdping University, Linkdping, Sweden.

Mahder Gebremedhin, PELAB, Linkdping University, Linkdping, Sweden.

Pavel Grozman, Equa AB, Stockholm, Sweden.

Michael Hanke, NADA, KTH, Stockholm.

Daniel Hedberg, MathCore Engineering AB, Linkdping, Sweden.
Zoheb Hossain, PELAB, Linkoping University, Linkoping, Sweden.
Alf Isaksson, ABB Corporate Research, Vasteras, Sweden.

Kim Jansson, PELAB, Linkdping University, Linkdping, Sweden.
Daniel Kanth, Bosch-Rexroth, Lohr am Main, Germany.

Tommi Karhela, VTT, Espoo, Finland.

Joel Klinghed, PELAB, Linkdping University, Linkdping, Sweden.
Petter Krus, IEI, Linkdping University, Linkdping, Sweden.

Juha Kortelainen, VTT, Espoo, Finland.

Abhinn Kothari, PELAB, Linkdping University, Linkdping, Sweden.
Alexey Lebedev, Equa Simulation AB, Stockholm, Sweden.

Oliver Lenord, Siemens PLM, California, USA.

Ariel Liebman, Energy Users Association of Australia, Victoria, Australia.
Rickard Lindberg, PELAB, Link6ping University, Linkdping, Sweden
Hakan Lundvall, PELAB, Linkdping University, Linkoping, Sweden.
Henrik Magnusson, Linkdping, Sweden.

Abhi Raj Metkar, CDAC, Trivandrum, Kerala, India.

Eric Meyers, Pratt & Whitney Rocketdyne, Palm City, Florida, USA.
Tuomas Miettinen, VTT, Espoo, Finland.

Afshin Moghadam, PELAB, Linkdping University, Linképing, Sweden.
Maroun Nemer, CEP Paristech, Ecole des Mines, Paris, France.

Hannu Niemistd, VTT, Espoo, Finland.

Peter Nordin, IEI, Linkoping University, Linkoping, Sweden.
Kristoffer Norling, PELAB, Linkdping University, Linképing, Sweden.
Lennart Ochel, Fachhochschule Bielefeld, Bielefeld, Germany.

Karl Pettersson, IEI, Linkdping University, Linkdping, Sweden.

Pavol Privitzer, Institute of Pathological Physiology, Praha, Czech Republic.

Reino Ruusu, VTT, Espoo, Finland.

Per Sahlin, Equa Simulation AB, Stockholm, Sweden.

Wladimir Schamai, EADS, Hamburg, Germany.

Gerhard Schmitz, University of Hamburg, Hamburg, Germany.
Klas Sjéholm, PELAB, Linkdping University, Linkdping, Sweden.
Anton Sodja, University of Ljubljana, Ljubljana, Slovenia

206

Ingo Staack, IEI, Linkdping University, Linkdping, Sweden.

Kristian Stavaker, PELAB, Linkoping University, Linképing, Sweden.

Sonia Tarig, PELAB, Linkdping University, Linkdping, Sweden.

Hubert Thierot, CEP Paristech, Ecole des Mines, Paris, France.

Mohsen Torabzadeh-Tari, PELAB, Linkdping University, Linkdping, Sweden.
Parham Vasaiely, EADS, Hamburg, Germany.

Niklas Worschech, Bosch-Rexroth, Lohr am Main, Germany.

Robert Wotzlaw, Goettingen, Germany.

Bjorn Zachrisson, MathCore Engineering AB, Linkdping, Sweden.

Azam Zia, PELAB, Linkoping University, LinkOping, Sweden.

B.5 OpenModelica Contributors 2010
Peter Fritzson, PELAB, Linkoping University, Linkoping, Sweden.

Adrian Pop, PELAB, Linkdping University, Link6ping, Sweden.
Martin Sj6lund, PELAB, Linképing University, Linkdping, Sweden.
Per Ostlund, PELAB, Linkoping University, Linkdping, Sweden.

Peter Aronsson, MathCore Engineering AB, Linkdping, Sweden.
Adeel Asghar, PELAB, Linkoping University, Linkdping, Sweden.
David Akhvlediani, PELAB, Linkdping University, Linkdping, Sweden.
Bernhard Bachmann, Fachhochschule Bielefeld, Bielefeld, Germany.
Vasile Baluta, PELAB, Linkdping University, Linkdping, Sweden.
Simon Bjorklén, PELAB, Linkdping University, Linkdping, Sweden.
Mikael Blom, PELAB, Linkdping University, Linkdping, Sweden.
Robert Braun, IEI, Linkdping University, Linkdping, Sweden.

Willi Braun, Fachhochschule Bielefeld, Bielefeld, Germany.

David Broman, PELAB, Linkdping University, Linkdping, Sweden.
Stefan Brus, PELAB, Linkdping University, Linkdping, Sweden.
Francesco Casella, Politecnico di Milano, Milan, Italy.

Filippo Donida, Politecnico di Milano, Milan, Italy.

Henrik Eriksson, PELAB, Linkdping University, Linkoping, Sweden.
Anders Fernstrom, PELAB, Linkdping University, Linkdping, Sweden.
Jens Frenkel, TU Dresden, Dresden, Germany.

Pavel Grozman, Equa AB, Stockholm, Sweden.

Michael Hanke, NADA, KTH, Stockholm.

Daniel Hedberg, MathCore Engineering AB, Linkoping, Sweden.

Alf Isaksson, ABB Corporate Research, Vasteras, Sweden.

Kim Jansson, PELAB, Link6ping University, Linkdping, Sweden.
Daniel Kanth, Bosch-Rexroth, Lohr am Main, Germany.

Tommi Karhela, VTT, Espoo, Finland.

Joel Klinghed, PELAB, Linkdping University, Linkdping, Sweden.
Petter Krus, IEI, Linkdping University, Linkdping, Sweden.

Juha Kortelainen, VTT, Espoo, Finland.

Alexey Lebedev, Equa Simulation AB, Stockholm, Sweden.

Magnus Leksell, Linkdping, Sweden.

Oliver Lenord, Bosch-Rexroth, Lohr am Main, Germany.

Avriel Liebman, Energy Users Association of Australia, Victoria, Australia.
Rickard Lindberg, PELAB, Linkoping University, Linkoping, Sweden
Hakan Lundvall, PELAB, Linkoping University, Linképing, Sweden.
Henrik Magnusson, Linkdping, Sweden.

Eric Meyers, Pratt & Whitney Rocketdyne, Palm City, Florida, USA.

207

Hannu Niemistd, VTT, Espoo, Finland.

Peter Nordin, IEI, Linkdping University, Linkoping, Sweden.
Kristoffer Norling, PELAB, Linkdping University, Linképing, Sweden.
Lennart Ochel, Fachhochschule Bielefeld, Bielefeld, Germany.

Atanas Pavlov, Munich, Germany.

Karl Pettersson, IEI, Linkdping University, Linkdping, Sweden.

Pavol Privitzer, Institute of Pathological Physiology, Praha, Czech Republic.

Reino Ruusu, VTT, Espoo, Finland.

Per Sahlin, Equa Simulation AB, Stockholm, Sweden.

Wiladimir Schamai, EADS, Hamburg, Germany.

Gerhard Schmitz, University of Hamburg, Hamburg, Germany.

Klas Sjoholm, PELAB, Linkdping University, Linkdping, Sweden.
Anton Sodja, University of Ljubljana, Ljubljana, Slovenia

Ingo Staack, IEI, Linkdping University, Linkdping, Sweden.

Kristian Stavaker, PELAB, Linkdping University, Linkoping, Sweden.
Sonia Tarig, PELAB, Linkdping University, Linkdping, Sweden.

Mohsen Torabzadeh-Tari, PELAB, Linkdping University, Linkdping, Sweden.

Niklas Worschech, Bosch-Rexroth, Lohr am Main, Germany.
Robert Wotzlaw, Goettingen, Germany.
Bjorn Zachrisson, MathCore Engineering AB, Linkdping, Sweden.

B.6 OpenModelica Contributors 2009
Peter Fritzson, PELAB, Linkdping University, Linképing, Sweden.

Adrian Pop, PELAB, Linkdping University, LinkOping, Sweden.
Peter Aronsson, MathCore Engineering AB, Linkoping, Sweden.

David Akhvlediani, PELAB, Link6ping University, Link6ping, Sweden.
Bernhard Bachmann, Fachhochschule Bielefeld, Bielefeld, Germany.
Vasile Baluta, PELAB, Linkdping University, Linkdping, Sweden.
Constantin Belyaev, Bashpromavtomatika Ltd., Ufa, Russia

Simon Bjorklén, PELAB, Linkdping University, Linkdping, Sweden.
Mikael Blom, PELAB, Linkdping University, Linkping, Sweden.
Willi Braun, Fachhochschule Bielefeld, Bielefeld, Germany.

David Broman, PELAB, Linkdping University, Linkdping, Sweden.
Stefan Brus, PELAB, Linkdping University, Linkdping, Sweden.
Francesco Casella, Politecnico di Milano, Milan, Italy

Filippo Donida, Politecnico di Milano, Milan, Italy

Henrik Eriksson, PELAB, Linkoping University, Linkoping, Sweden.
Anders Fernstrom, PELAB, Linkdping University, Linkdping, Sweden.
Jens Frenkel, TU Dresden, Dresden, Germany.

Pavel Grozman, Equa AB, Stockholm, Sweden.

Michael Hanke, NADA, KTH, Stockholm

Daniel Hedberg, MathCore Engineering AB, Linkdping, Sweden.
Alf Isaksson, ABB Corporate Research, Vasteras, Sweden

Kim Jansson, PELAB, Link6ping University, Linkping, Sweden.
Daniel Kanth, Bosch-Rexroth, Lohr am Main, Germany

Tommi Karhela, VTT, Espoo, Finland.

Joel Klinghed, PELAB, Linkdping University, Linkdping, Sweden.
Juha Kortelainen, VTT, Espoo, Finland

Alexey Lebedev, Equa Simulation AB, Stockholm, Sweden

Magnus Leksell, Linkdping, Sweden

208

Oliver Lenord, Bosch-Rexroth, Lohr am Main, Germany

Hékan Lundvall, PELAB, Linkoping University, Linképing, Sweden.
Henrik Magnusson, Linkdping, Sweden

Eric Meyers, Pratt & Whitney Rocketdyne, Palm City, Florida, USA.

Hannu Niemistd, VTT, Espoo, Finland

Kristoffer Norling, PELAB, Linkdping University, Linképing, Sweden.
Atanas Pavlov, Munich, Germany.

Pavol Privitzer, Institute of Pathological Physiology, Praha, Czech Republic.
Per Sahlin, Equa Simulation AB, Stockholm, Sweden.

Gerhard Schmitz, University of Hamburg, Hamburg, Germany

Klas Sjoholm, PELAB, Linkdping University, Linkodping, Sweden.

Martin Sj6lund, PELAB, Linktping University, Linkdping, Sweden.
Kristian Stavaker, PELAB, Linkoping University, Linképing, Sweden.
Mohsen Torabzadeh-Tari, PELAB, Linkdping University, Linkdping, Sweden.
Niklas Worschech, Bosch-Rexroth, Lohr am Main, Germany

Robert Wotzlaw, Goettingen, Germany

Bjorn Zachrisson, MathCore Engineering AB, Linkdping, Sweden

B.7 OpenModelica Contributors 2008
Peter Fritzson, PELAB, Linkoping University, Link6ping, Sweden.

Adrian Pop, PELAB, Linkdping University, Link6ping, Sweden.
Peter Aronsson, MathCore Engineering AB, Linkdping, Sweden.

David Akhvlediani, PELAB, Linkoping University, Linkping, Sweden.
Bernhard Bachmann, Fachhochschule Bielefeld, Bielefeld, Germany.
Vasile Baluta, PELAB, Linkdping University, Linkdping, Sweden.
Mikael Blom, PELAB, Linkoping University, Linkdping, Sweden.
David Broman, PELAB, Linkdping University, Linkdping, Sweden.
Henrik Eriksson, PELAB, Linkdping University, Linkdping, Sweden.
Anders Fernstrom, PELAB, Linkdping University, Linkdping, Sweden.
Pavel Grozman, Equa AB, Stockholm, Sweden.

Daniel Hedberg, MathCore Engineering AB, Linkdping, Sweden.

Kim Jansson, PELAB, Linkoping University, Linkping, Sweden.

Joel Klinghed, PELAB, Linkdping University, Linkdping, Sweden.
Hakan Lundvall, PELAB, Linkoping University, Linképing, Sweden.
Eric Meyers, Pratt & Whitney Rocketdyne, Palm City, Florida, USA.
Kristoffer Norling, PELAB, Linkdping University, Linkoping, Sweden.
Anders Sandholm, PELAB, Linkdping University, Linkdping, Sweden.
Klas Sjoholm, PELAB, Linkdping University, Linkdping, Sweden.
Kristian Stavaker, PELAB, Linkdping University, Linkoping, Sweden.
Simon Bjorklén, PELAB, Linkdping University, Linkdping, Sweden.
Constantin Belyaev, Bashpromavtomatika Ltd., Ufa, Russia

B.8 OpenModelica Contributors 2007
Peter Fritzson, PELAB, Linkoping University, Link6ping, Sweden.

Adrian Pop, PELAB, Linkdping University, Linképing, Sweden.
Peter Aronsson, MathCore Engineering AB, Linkdping, Sweden.

David Akhvlediani, PELAB, Linkoping University, Linkping, Sweden.

209

Bernhard Bachmann, Fachhochschule Bielefeld, Bielefeld, Germany.
David Broman, PELAB, Linkdping University, Linkdping, Sweden.
Henrik Eriksson, PELAB, Linkoping University, Link6ping, Sweden.
Anders Fernstrom, PELAB, Linkdping University, Linképing, Sweden.
Pavel Grozman, Equa AB, Stockholm, Sweden.

Daniel Hedberg, MathCore Engineering AB, Linkdping, Sweden.

Ola Leifler, IDA, Link6ping University, Linkoping, Sweden.

Hékan Lundvall, PELAB, Linkoping University, Linképing, Sweden.
Eric Meyers, Pratt & Whitney Rocketdyne, Palm City, Florida, USA.
Kristoffer Norling, PELAB, Linkdping University, Linkdping, Sweden.
Anders Sandholm, PELAB, Linkdping University, Linkdping, Sweden.
Klas Sjoholm, PELAB, Linkdping University, Linkdping, Sweden.
William Spinelli, Politecnico di Milano, Milano, Italy

Kristian Stavaker, PELAB, Linkoping University, Linképing, Sweden.
Stefan Vorkoetter, MapleSoft, Waterloo, Canada.

Bjorn Zachrisson, MathCore Engineering AB, Linkdping, Sweden.
Constantin Belyaev, Bashpromavtomatika Ltd., Ufa, Russia

B.9 OpenModelica Contributors 2006
Peter Fritzson, PELAB, Linkoping University, Link6ping, Sweden.

Peter Aronsson, MathCore Engineering AB, Linkoping, Sweden.
Adrian Pop, PELAB, Link6ping University, Link6ping, Sweden.

David Akhvlediani, PELAB, Linkdping University, Linkdping, Sweden.
Bernhard Bachmann, Fachhochschule Bielefeld, Bielefeld, Germany.
David Broman, PELAB, Linkdping University, Linkdping, Sweden.
Anders Fernstrom, PELAB, Linkdping University, Linkdping, Sweden.
Elmir Jagudin, PELAB, Linkdping University, Linkdping, Sweden.
Hakan Lundvall, PELAB, Linkdping University, Linkoping, Sweden.
Kaj Nystrom, PELAB, Linkoping University, Linkping, Sweden.
Lucian Popescu, MathCore Engineering AB, Linkdping, Sweden.
Andreas Remar, PELAB, Linkdping University, Linkdping, Sweden.
Anders Sandholm, PELAB, Linkdping University, Linkdping, Sweden.

B.10 OpenModelica Contributors 2005
Peter Fritzson, PELAB, Linkdping University, Linképing, Sweden.

Peter Aronsson, PELAB, Linkdping University and MathCore Engineering AB, Linkdping, Sweden.
Adrian Pop, PELAB, Linkdping University, Linkoping, Sweden.
Hékan Lundvall, PELAB, Linkoping University, Linképing, Sweden.

Ingemar Axelsson, PELAB, Link6ping University, Linkdping, Sweden.
David Broman, PELAB, Linkdping University, Linkdping, Sweden.
Daniel Hedberg, MathCore Engineering AB, Linkdping, Sweden.
Hakan Lundvall, PELAB, Linkoping University, Linképing, Sweden.
Kaj Nystrom, PELAB, Linkdping University, Linkdping, Sweden.
Lucian Popescu, MathCore Engineering AB, Linkdping, Sweden.
Levon Saldamli, PELAB, Linkdping University, Linképing, Sweden.

B.11 OpenModelica Contributors 2004
Peter Fritzson, PELAB, Linkdping University, Linképing, Sweden.

210

Peter Aronsson, Linkdping University, Linképing, Sweden.

Bernhard Bachmann, Fachhochschule Bielefeld, Bielefeld, Germany.

Peter Bunus, PELAB, Linkdping University, Linképing, Sweden.

Daniel Hedberg, MathCore Engineering AB, Linkdping, Sweden.

Hékan Lundvall, PELAB, Linkoping University, Linképing, Sweden.

Emma Larsdotter Nilsson, PELAB, Linkoping University, Linkoping, Sweden.
Kaj Nystrom, PELAB, Linkdping University, Linkdping, Sweden.

Adrian Pop, PELAB, Linkoping University, Linkoping, Sweden.

Lucian Popescu, MathCore Engineering AB, Linkdping, Sweden.

Levon Saldamli, PELAB, Linkdping University, Linképing, Sweden.

B.12 OpenModelica Contributors 2003

Peter Fritzson, PELAB, Linkoping University, Linkoping, Sweden.

Peter Aronsson, Linkdping University, Linképing, Sweden.
Levon Saldamli, PELAB, Linkdping University, Linkdping, Sweden.

Peter Bunus, PELAB, Linkdping University, Linképing, Sweden.
Vadim Engelson, PELAB, Linkdping University, Linkdping, Sweden.
Daniel Hedberg, Linkdping University, Linkdping, Sweden.
Eva-Lena Lengquist-Sandelin, PELAB, Linkdping University, Linképing, Sweden.
Susanna Monemar, PELAB, Linkdping University, Linkdping, Sweden.
Adrian Pop, PELAB, Linkdping University, Link6ping, Sweden.
Erik Svensson, MathCore Engineering AB, Linkdping, Sweden.
B.13 OpenModelica Contributors 2002
Peter Fritzson, PELAB, Linkdping University, Linkdping, Sweden.

Levon Saldamli, PELAB, Linkdping University, Linképing, Sweden.
Peter Aronsson, Linkdping University, Linképing, Sweden.

Daniel Hedberg, Link6ping University, Linkdping, Sweden.
Henrik Johansson, PELAB, Linkdping University, Linkdping, Sweden
Andreas Karstrom, PELAB, Linkdping University, Linkdping, Sweden

B.14 OpenModelica Contributors 2001
Peter Fritzson, PELAB, Linkoping University, Link6ping, Sweden.
Levon Saldamli, PELAB, Link&ping University, Linkdping, Sweden.

Peter Aronsson, Linkdping University, Linkdping, Sweden.

B.15 OpenModelica Contributors 2000
Peter Fritzson, PELAB, Linkoping University, Linkdping, Sweden.

B.16 OpenModelica Contributors 1999
Peter Fritzson, PELAB, Linkoping University, Link6ping, Sweden

Peter Ronnquist, PELAB, Linkoping University, Linkoping, Sweden.

211

B.17 OpenModelica Contributors 1998
Peter Fritzson, PELAB, Linkoping University, Link6ping, Sweden.
David Kagedal, PELAB, Linkoping University, Linkoping, Sweden.
Vadim Engelson, PELAB, Linkdping University, Linkdping, Sweden.

212

Appendix C

Integration Methods

SimulationRuntime\lntegrationAlgorithms\IntegrationAlgorithms.pdf

Index

literate programming

	Table of Contents
	Preface
	Chapter 1 Introduction
	1.1 System Overview
	1.2 Interactive Session with Examples
	1.2.1 Starting the Interactive Session
	1.2.2 Using the Interactive Mode
	1.2.3 Trying the Bubblesort Function
	1.2.4 Trying the system and cd Commands
	1.2.5 Modelica Library and DCMotor Model
	1.2.6 The val() function
	1.2.7 BouncingBall and Switch Models
	1.2.8 Clear All Models
	1.2.9 VanDerPol Model and Parametric Plot
	1.2.10 Using Japanese or Chinese Characters
	1.2.11 Scripting with For-Loops, While-Loops, and If-Statements
	1.2.12 Variables, Functions, and Types of Variables
	1.2.13 Getting Information about Error Cause
	1.2.14 Alternative Simulation Output Formats
	1.2.15 Using External Functions
	1.2.16 Using Parallel Simulation via OpenMP Multi-Core Support
	1.2.17 Loading Specific Library Version
	1.2.18 Calling the Model Query and Manipulation API
	1.2.19 Quit OpenModelica
	1.2.20 Dump XML Representation
	1.2.21 Dump Matlab Representation

	1.3 Summary of Commands for the Interactive Session Handler
	1.4 Running the compiler from command line
	1.5 References

	Chapter 2 OMEdit – OpenModelica Connection Editor
	2.1 Starting OMEdit
	2.1.1 Microsoft Windows
	2.1.1 Linux
	2.1.2 Mac OS X

	2.2 MainWindow & Browsers
	2.2.1 Search Browser
	2.2.2 Libraries Browser
	2.2.3 Documentation Browser
	2.2.4 Variables Browser
	2.2.5 Messages Browser

	2.3 Perspectives
	2.3.1 Welcome Perspective
	2.3.2 Modeling Perspective
	2.3.3 Plotting Perspective

	2.4 Modeling a Model
	2.4.1 Creating a New Modelica class
	2.4.2 Opening a Modelica File
	2.4.3 Opening a Modelica File with Encoding
	2.4.4 Model Widget
	2.4.5 Adding Component Models
	2.4.6 Making Connections

	2.5 Simulating a Model
	2.5.1 General Tab
	2.5.2 Output Tab
	2.5.3 Simulation Flags Tab

	2.6 Plotting the Simulation Results
	2.6.1 Types of Plotting
	2.6.1.1 Time Plot
	2.6.1.2 Plot Parametric

	2.7 Re-simulating a Model
	2.8 How to Create User Defined Shapes – Icons
	2.9 Settings
	2.9.1 General
	2.9.2 Libraries
	2.9.3 Modelica Text Editor
	2.9.4 Graphical Views
	2.9.5 Simulation
	2.9.6 Messages
	2.9.7 Notifications
	2.9.8 Line Style
	2.9.9 Fill Style
	2.9.10 Curve Style
	2.9.11 Figaro
	2.9.12 Debugger
	2.9.13 FMI

	2.10 The Equation-based Debugger
	2.10.1 Enable Tracing Symbolic Transformations
	2.10.2 Load a Model to Debug
	2.10.3 Simulate and Start the Debugger
	2.10.4 Use the Transformation Debugger for Browsing

	2.11 The Algorithmic Debugger
	2.11.1 Adding Breakpoints
	2.11.2 Start the Algorithmic Debugger
	2.11.3 Debug Configurations
	2.11.4 Attach to Running Process
	2.11.5 Using the Algorithmic Debugger Window

	Chapter 3 2D Plotting
	3.1 Example
	3.2 Plotting Commands and their Options

	Chapter 4 OMNotebook with DrModelica and DrControl
	4.1 Interactive Notebooks with Literate Programming XE "literate programming"
	4.1.1 Mathematica Notebooks
	4.1.2 OMNotebook

	4.2 DrModelica Tutoring System – an Application of OMNotebook
	4.3 DrControl Tutorial for Teaching Control Theory
	4.3.1 Feedback Loop
	4.3.2 Mathematical Modeling with Characteristic Equations

	4.4 OpenModelica Notebook Commands
	4.4.1 Cells
	4.4.2 Cursors
	4.4.3 Selection of Text or Cells
	4.4.4 File Menu
	4.4.5 Edit Menu
	4.4.6 Cell Menu
	4.4.7 Format Menu
	4.4.8 Insert Menu
	4.4.9 Window Menu
	4.4.10 Help Menu
	4.4.11 Additional Features

	4.5 References

	Chapter 5 Functional Mock-up Interface - FMI
	5.1 FMI Import
	5.2 FMI Export

	Chapter 6 Optimization with OpenModelica
	6.1 Builtin Dynamic Optimization with OpenModelica and IpOpt
	6.1.1 Compiling the Modelica code
	6.1.2 An Example
	6.1.3 Different Options for the Optimizer IPOPT

	6.2 Dynamic Optimization with OpenModelica and CasADi
	6.2.1 Compiling the Modelica code
	6.2.2 An example
	6.2.3 Generated XML for Example
	6.2.4 XML Import to CasADi via OpenModelica Python Script

	6.3 Parameter Sweep Optimization using OMOptim
	6.3.1 Preparing the Model
	6.3.1.1 Parameters
	6.3.1.2 Constraints
	6.3.1.3 Objectives

	6.3.2 Set problem in OMOptim
	6.3.2.1 Launch OMOptim
	6.3.2.2 Create a new project
	6.3.2.3 Load models
	6.3.2.4 Create a new optimization problem
	6.3.2.5 Select Optimized Variables
	6.3.2.6 Select objectives
	6.3.2.7 Select and configure algorithm
	6.3.2.8 Launch
	6.3.2.9 Stopping Optimization

	6.3.3 Results
	6.3.3.1 Obtaining all Variable Values

	6.3.4 Window Regions in OMOptim GUI

	Chapter 7 MDT – The OpenModelica Development Tooling Eclipse Plugin
	7.1 Introduction
	7.2 Installation
	7.3 Getting Started
	7.3.1 Configuring the OpenModelica Compiler
	7.3.2 Using the Modelica Perspective
	7.3.3 Selecting a Workspace Folder
	7.3.4 Creating one or more Modelica Projects
	7.3.5 Building and Running a Project
	7.3.6 Switching to Another Perspective
	7.3.7 Creating a Package
	7.3.8 Creating a Class
	7.3.9 Syntax Checking
	7.3.10 Automatic Indentation Support
	7.3.11 Code Completion
	7.3.12 Code Assistance on Identifiers when Hovering
	7.3.13 Go to Definition Support
	7.3.14 Code Assistance on Writing Records
	7.3.15 Using the MDT Console for Plotting

	Chapter 8 Modelica Performance Analyzer
	8.1 Example Report Generated for the A Model
	8.1.1 Information
	8.1.2 Settings
	8.1.3 Summary
	8.1.4 Global Steps
	8.1.5 Measured Function Calls
	8.1.6 Measured Blocks
	8.1.6.1 Equations
	8.1.6.2 Variables

	8.1.7 Genenerated XML for the Example

	Chapter 9 MDT Debugger for Algorithmic Modelica
	9.1 The Eclipse-based Debugger for Algorithmic Modelica
	9.1.1 Starting the Modelica Debugging Perspective
	9.1.1.1 Create mos file
	9.1.1.2 Setting the debug configuration
	9.1.1.3 Setting/Deleting Breakpoints
	9.1.1.4 Starting the debugging session and enabling the debug perspective

	9.1.2 Debugging OpenModelica
	9.1.3 The Debugging Perspective

	Chapter 10 Modelica3D
	10.1 Windows
	10.2 MacOS

	Chapter 11 Simulation in Web Browser
	Chapter 12 Interoperability – C and Python
	12.1 Calling External C functions
	12.2 Calling Python Code
	13.1 OMPython – OpenModelica Python Interface
	13.1.1 Features of OMPython
	13.1.2 Using OMPython
	13.1.2.1 Test Commands
	13.1.2.2 Import As Library

	13.1.3 Implementation
	13.1.3.1 Client Implementation
	13.1.3.2 Parser Implementation
	13.1.3.3 The Simulation Results
	13.1.3.4 Record Construction

	13.1.4 API – List of Commands

	13.2 PySimulator

	Chapter 14 Modelica and Python Scripting API
	14.1 OpenModelica Modelica Scripting Commands
	14.1.1 OpenModelica Basic Commands

	14.2 OpenModelica System Commands
	14.3 All OpenModelica API Calls
	14.3.1 Examples

	14.4 OpenModelica Python Scripting Commands

	Chapter 15 Frequently Asked Questions (FAQ)
	15.1 OpenModelica General
	15.2 OMNotebook
	15.3 OMDev - OpenModelica Development Environment
	Index

