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Embedded software is an important part of today’s life. One reason for the increas-
ing trend of embedded systems is the introduction of coordination between previously au-
tonomous systems resulting in complex systems of systems in order to realize functionality
which cannot be achieved by each system alone [2]. The car industry is an example where
vehicles communicate with other vehicles in order to extend the car’s vision to areas ob-
structed by other vehicles. This coordination requires an intensive communication between
the systems under real-time constraints.

Modelica in version 3.2 and the StateGraph2 library for state-based modeling lack ap-
propriate support for the sketched case of modeling the real-time coordination between
autonomous systems as this coordination is often realized by communication using asyn-
chronous messages and complex state-based behavior.

In this paper, we present a Modelica library for modeling communication under hard
real-time constraints. Our library extends the StateGraph2 library by providing support
for (1) synchronous and asynchronous communication and (2) rich modeling of real-time
behavior. These extensions are based on our previous work on the MECHATRONICUML
modeling language [1]. We illustrate our extension using a robot platooning scenario.
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Figure 1: Platoon Scenario Instance and Behavior Model
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