
A Modelica Library for Real-Time Coordination
Modeling

Uwe Pohlmann1, Stefan Dziwok1, Julian Suck1, Boris Wolf1,
Chia Choon Loh2, and Matthias Tichy3

1Software Engineering Group, 2Control Engineering and Mechatronics Group,
Heinz Nixdorf Institute, University of Paderborn, Paderborn, Germany,
[upohl|stefan.dziwok|jsuck|borisw|chia.choon.loh]@upb.de

3Software Engineering Division, Chalmers University of Technology
and University of Gothenburg, Sweden, tichy@chalmers.se

Embedded software is an important part of today’s life. One reason for the increas-
ing trend of embedded systems is the introduction of coordination between previously au-
tonomous systems resulting in complex systems of systems in order to realize functionality
which cannot be achieved by each system alone [2]. The car industry is an example where
vehicles communicate with other vehicles in order to extend the car’s vision to areas ob-
structed by other vehicles. This coordination requires an intensive communication between
the systems under real-time constraints.

Modelica in version 3.2 and the StateGraph2 library for state-based modeling lack ap-
propriate support for the sketched case of modeling the real-time coordination between
autonomous systems as this coordination is often realized by communication using asyn-
chronous messages and complex state-based behavior.

In this paper, we present a Modelica library for modeling communication under hard
real-time constraints. Our library extends the StateGraph2 library by providing support
for (1) synchronous and asynchronous communication and (2) rich modeling of real-time
behavior. These extensions are based on our previous work on the MECHATRONICUML
modeling language [1]. We illustrate our extension using a robot platooning scenario.

InStop InDrive

rear:BeBot_SW

OutConfirm

OutDrive

OutStop

InStart
Platoon

InEnd
Platoon

InConfirm

InStop InDrive

front:BeBot_SW

OutEnd
Platoon

OutConfirm

OutDrive

OutStop

InStart
Platoon

InEnd
Platoon

InConfirm

cruisingSpeeddistance distance

speed speed

rearBot frontBot

d
is

ta
n

c
e

OutStart
Platoon

cruisingSpeed

OutEnd
Platoon

OutStart
Platoon

bebotStop bebotStop

InStart
Platoon

InEnd
Platoon

InConfirm

OutConfirm

OutDrive

OutStop

StartPlatBox

EndPlatBox

StopBox DriveBox

ConfirmBox

Start
Platoon

End
Platoon

Drive

Stop

Confirm

BeBot_SW_Main

No
Platoon

Rear

Platoon
Platoon

Proposed
Front Rear

Regular

Front
Platoon

cruisingSpeed

after(0.05)

InStop InDrive

?front
Platoon

?noFront
Platoon

?rear
Platoon

!noRear
Platoon

!front
Platoon

!rear
Platoon

?noRear
Platoon

!noFront
Platoon

:BeBot_SW bebotStopdistance

speed

OutEnd
Platoon

OutStart
Platoon

Figure 1: Platoon Scenario Instance and Behavior Model

This work was developed in the project ENTIME. The project ENTIME is funded by the state
of NRW, Germany and the EUROPEAN UNION, European Regional Development Fund.

References
[1] S. Becker, C. Brenner, S. Dziwok, T. Gewering, C. Heinzemann, U. Pohlmann, C. Priesterjahn,

W. Schäfer, J. Suck, O. Sudmann, and M. Tichy. The mechatronicuml method - process, syntax,
and semantics. Technical Report tr-ri-12-318, Software Engineering Group, Heinz Nixdorf
Institute, University of Paderborn, 2012.

[2] W. Schäfer and H. Wehrheim. The Challenges of Building Advanced Mechatronic Systems. In
Lionel C. Briand and Alexander L. Wolf, editors, FOSE, pages 72–84, 2007.

