
ncDataReader2 - User Manual

version 2.4.0

Contents
1 Overview 2

2 Author and License 2

3 Building and Installation 2

4 Examples 3

5 Concept 3

5.1 Interpolation 3

5.1.1 Discrete 3

5.1.2 Linear 3

5.1.3 Akima 4

5.1.4 Sine Steps (SinSteps) 4

5.1.5 Cosine Window (CosWin) 4

5.2 Transformations 5

5.3 Loading Data 5

5.4 Optimization 5

5.4.1 Value Cache 5

5.4.2 Lookup Cache 6

5.4.3 Parameter Cache 6

5.5 Scattered Points (2D) 6

5.6 File annotations / netCDF Attributes 6

6 General API 7

6.1 NcDataSet1D 7

6.2 NcVar1D 8

6.3 NcScattered2D 9

6.4 Error handling 10

6.5 Access Statistics 10

7 Easy API (EA) 10

8 Tools 11

8.1 ncdr2Dump1D 11

8.2 ncdr2ImportCSV1D 12

9 Modelica Interface 13

10 Tips and Tricks 13

11 Changes 13

1 Overview
ncDataReader2 is a library of C functions to access data stored in netCDF files using different
interpolation and extrapolation methods. The aim of this library is to provide access from simulation
systems like Modelica to data sets like weather data or measured time rows. As such systems usually
require strictly continuity of functions and their derivatives, smooth spline interpolation is included.

netCDF is a very efficient binary file format for structured multidimensional data. The netCDF library is
freely available on all major platforms. ncDataReader2 works both with netCDF versions 3.x and 4 (which
is based on HDF5).

ncDataReader2 supports reading one dimensional data (like generated or measured time rows of simple
quantities), using periodic extrapolation if needed. Interpolation methods currently supported are discrete
steps, linear, akima splines and smoothed steps.

Support for variables that depend on two dimensions (scattered points, lists of x,y,z-pairs) is included but
not very well tested. The 2D functions use the csa library for cubic spline interpolation by Pavel Sakov.

ncDataReader2 will build as a static or dynamic library on Linux, Windows and MacOS X.

2 Author and License
ncDataReader2 was developed by Joerg Raedler (joerg@j-raedler.de). The code is released under the
terms of the 'GNU Lesser General License'_. The code in the files csa.c, csa.h, csa_config.h,
svd.c and svd.h was taken from the csa library which has its own open source license.

3 Building and Installation
The build process uses cmake to configure the sources. To compile ncDataReader2 you will need
netCDF, cmake and a compiler/development system for C/C++. ncDatareader2 was tested with:

• gcc and tcc on linux platforms

• cygwin, MinGW or Microsoft Visual Studio (including the free Express Edition) on Windows
platforms

• XCode developer tools on MacOS X

Use cmake to configure the sources and build system, then build the library and examples. On linux you
use the command make . && make in the source folder to do this.

The installation procedure is not yet automated, you should copy the relevant files manually to the needed
location. To compile your programs with ncDataReader2 you need a library file and the header file(s).
Library files are:

• Linux:

• libncDataReader2.a (static) or

• libncDataReader2.so (dynamic)

• Windows (Visual Studio):

• ncDataReader2.dll and ncDataReader2.lib (dynamic) or

• ncDataReader2.lib (static)

• Windows (MinGW or cygwin):

• libncDataReader2.a (cygwin or MinGW)

• MacOS X:

• ???

http://www.modelica.org/
http://www.unidata.ucar.edu/software/netcdf/
http://www.hdfgroup.org/HDF5/
http://code.google.com/p/csa-c/
mailto:joerg@j-raedler.de
http://code.google.com/p/csa-c/
http://www.cmake.org/
http://www.cygwin.com/
http://www.mingw.org/
http://www.microsoft.com/express/

The header file is called ncDataReader2.h for the general API and ncDataReaderEA.h for the easy
API.

4 Examples
You will find some examples in the folder examples. You should run GenerateFile(.exe) first to
create the netCDF file the other example programs will need. GenerateBigFile(.exe) will create a
large file that is used by some of the examples.

Another very simple example:

#include "ncDataReader2.h"
#include <stdio.h>
int main(void) {
 NcDataSet1D *t;
 NcVar1D *y;
 t = ncDataSet1DNew("data.nc", "time", EpPeriodic, LtFull, 10);
 y = ncVar1DNew(t, "y", IpAkima, LtFull);
 printf("The value of y for time=42.0 is %g.\n", ncVar1DGet(y, 42.0));
}

This will open the independent variable time and the dependant variable y in a file data.nc, calculate
the interpolated value of y for time=42.0. The variable time will be used periodic, y will be
interpolated by the Akima method. All data will be fully loaded.

5 Concept
A one dimensional data set (NcDataSet1D) is the representation of one independent variable in a netCDF
file. This data can be equally spaced, but it doesn't need to. A one dimensional variable (NcVar1D) is the
representation of a dependant variable that has a dependency to exactly one NcDataSet1D. The value of
a NcVar1D at a certain point can be evaluated (usually interpolated). A NcDataSet1D can be referenced
by more than one NcVar1D.

Example: a file contains weathr data as time rows (e.g. hourly values). One variable (time) contains the
time values at which other quantities were measured. The other time rows (temperature, humidity,
radiation) contain the measured values. With ncDataReader2 we would reference 'time' as a
NcDataSet1D. 'temperature', 'humidity' and 'radiation' are referenced as single NcVar1D's which are
connected to the this set. For every possible value of 'time' we can now evaluate the quantities and get
(possibly interpolated) values.

You can reference the same variables in a file multiple times with different parameters as different
NcDataSet1D or NcVar1D.

5.1 Interpolation

5.1.1 Discrete
This is the simplest but fastest method. The value of a variable is the value of the last data point where the
value of the independent variable is smaller or exactly equal to the demanded point. This will lead to steps
at the intervall boundaries. Neither the function nor the derivatives are continuous.

5.1.2 Linear
Linear interpolation between the points leads to a continuous function with non-continuous derivatives and
is very fast.

5.1.3 Akima
Akima interpolation is a cubic spline interpolation method. The calculation is not fast, but the result is a
very smooth function (continuous curve and derivative). The continuity of the second derivative was
abandoned to get only local dependencies of the parameters. This is a big advantage in comparison to
normal cubic splines wheree all values of a data set have to be taken into account to calculate a single
value.

By using Akima interpolation with ncDataReader2 you can get a smooth interpolation of very large
variables by reading only a few values of the required range from the file.

5.1.4 Sine Steps (SinSteps)
This is a variation of the discrete method where the steps are smoothed by inserting parts of the sine
function. In the middle of an intervall the values are still constant (step-like behaviour) but at the intervall
boundaries a smooth transition is ensured. The amount of smoothing can be configured by defined by an
influence radius around the points. The resulting curve is continous and has a continuous first derivative.
Strictly speaking, this is not an interpolation method since the data points are usually not met.

5.1.5 Cosine Window (CosWin)
This is method does also more an approximation than a real interpolation. It will calculate the weighted
average of all points and their linear interpolation inside a window. The weighting function is cos(x) (scaled
and shifted).

The result is continuous and has a continuous first derivative. For small windows the curve will follow the
linear interpolation with some smoothing around the points. Large windows lead to more smoothing of the
dats set. The window size should be much smaller than the data range of the abscissa.

5.2 Transformations
Every variable can be automatically shifted and scaled by setting an offset and a scale factor to avoid later
conversions. This is very handy if you need to convert between different units. A NcDataSet1D can be
used in periodic mode where the data virtually continues after the end or before the start. This way you
may use a generated weather file with one year of data to simulate severals years with continuous time
values.

5.3 Loading Data
As variables in netCDF files can be very large different methods of loading are supported. Small variables
(few values) can be loaded completely into memory to get the fastest access. The other extreme is to load
every single value only on demand. This is significant slower but still fast because of the very efficient
netCDF file acces. A third possibility is to load chunks of data on demand.

5.4 Optimization
To optimize the calculation different caches can be activated. All caches are implemented as ring buffers
with a specific capacity. With a capacity of x, the last x items are cached and can be retrieved very fast.
But large capacities will lead to a large overhead and slow down the calculation. That's why the cache
sizes can can't be optimized globally but should carefully be adapted to the current problem. An example
program CacheTests(.exe) demonstrates the effect of the caches.

5.4.1 Value Cache
The value cache stores the calculated values of a NcVar1D for a specific value of the independent
variable. DAE based simulation systems tend to call the same functions with the same arguments very
often. A value cache can speed up the calculations in this case.

5.4.2 Lookup Cache
When the value of a NcVar1D is requested the first action is to search the corresponding intervall of the
NcDataSet1D with a nested search over the whole data set. For large data sets this may need a lot of
time. The lookup cache stores the last used intervalls and their boundaries. If the next requested value is
in the same interval as the last one(s), this may speed up the search.

5.4.3 Parameter Cache
Linear and Akima interpolation methods need to calculate the parameters of a linear or a cubic function for
one intervall. These parameters can be stored in a cache. If the next requested value is in the same
interval as the last one(s), this may speed up the caclulation (in particular for the Akima method).

5.5 Scattered Points (2D)
Variables that depend on two dimensions are defined as a list of 3D points that can be scattered in 3D
space. Those points are read from a two dimensional variable in the netCDF file. At initialization time a
spline surface is constructed from the points. Some parameters (npmin, npmax, k and nppc) affect the
construction and the quality of the spline surface.

After this step the interpolated value of z for arbitrary values of x and y can be calculated.

5.6 File annotations / netCDF Attributes
All the parameters like interpolation and extrapolation methods, transformations, cache sizes and other
can be explicitly set or can be read from the data file. netCDF files may contain generic attributes (global
and and variable specific). Some attributes with special names are honoured by ncDataReader2.
Parameters set with explicit functions always have precedence over annotations. The following attributes
are supported for netCDF variables:

Name Possible Values Meaning

scale_factor float value scaling factor

add_offset float value offset

extrapolation "default", "periodic" extrapolation method for indep. variables

interpolation "discrete", "linear",
"akima", "sinsteps"

interpolation method for dep. variables

load_type "auto", "full", "none",
"chunk"

data load type

chunk_size integer value chunk size for data loading

smoothing float value smoothing radius for SinSteps

window_size float value window size for CosWin

lookup_cache integer value capacity of lookup cache

value_cache integer value capacity of value cache

parameter_cache integer value capacity of parameter cache

csa_npmin integer value npmin parameter for csa

csa_npmax integer value npmax parameter for csa

csa_k integer value k parameter for csa

csa_nppc integer value nppc parameter for csa

6 General API
To use the general API you should include the header file ncDataReader2.h. Data sets and variables
are represented by C-structs. You should not try to initialize or destroy these struct objects yourself but to
use the provided functions instead.

6.1 NcDataSet1D
NcDataSet1D is a struct object which holds all information on a data set. A new NcDataSet1D will be
created with the following function:

NcDataSet1D *ncDataSet1DNew(char *fileName,
 char *varName,
 Extrapolation extra,
 LoadType loadType,
 size_t lookupCacheSize);

fileName is the name of the file, varName is the name of the independent variable. extra is the
method of extrapolation (the behaviour when the defined data range is left). The variable loadType
defines the way the data is loaded from file to memory. The parameter lookupCacheSize is the size of
the lookup cache for this data set. Use NC_LOOKUP_CACHE_AUTO to read this value from the file
annotation. If not set, no cache will be used.

Possible values for the extrapolation method (Extrapolation) are:

• EpDefault - use a method corresponding to the interpolation method. This is the first or last
value for discrete or sine steps and the linear cubic extrapolation using the parameters of the
first/last interval for linear or Akima extrapolation.

• EpPeriodic - adjust values for periodic use. The first and last values of the data set must mark
the boundaries of the periodic range. Example: time-dependant values for one whole day should
start with a value for 0:00 and end with a value for 24:00 to get a daily periodic data set. If the
first and last values of a NcVar1D are not equal, they will be replaced with an average transition
value.

• EpConstant - use the border values when outside.

• EpAuto - the extrapolation method will be read from the file annotation. If not set EpDefault
will be used.

The load type (LoadType) can be one of the following:

• LtFull - the full variable will be loaded to memory.

• LtNone - every single value will be read from the file on demand.

• LtAuto - use the file annotation. If not set, LtFull will be used for small variables and
LtNone for large ones. The limit is defined as LARGE_DATASET in ncDataReader2.h.

• LtChunk - load chunks of data on demand. The size can be set with an option. For a
NcDataSet1D this will usually be slower than LtNone because the interval search needs the
whole data range.

A NcDataSet1D should be freed with the following function when no more NcVar1D is connected to it.
This will release all used memory and close netCDF objects like variables and files.:

void ncDataSet1DFree(NcDataSet1D *dataSet);

Intervall search for a value of the independent variable:

size_t ncDataSet1DSearch(NcDataSet1D *dataSet, double *x);

Get the value for one interval:

double ncDataSet1DGetItem(NcDataSet1D *dataSet, size_t i);

Set an option for a data set with this var-arg function:

int ncDataSet1DSetOption(NcDataSet1D *dataSet, DataSetOption option, ...);

Possible options are:

• OpDataSetScaling - set scaling and offset of the variable with the following two double
arguments. This corresponds to the netCDF attributes scale_factor and add_offset.

• OpDataSetLookupCacheSize - change the capacity of the lookup cache to the value of the
following integer value.

• OpDataSetChunkSize - change the chunk size.

6.2 NcVar1D
NcVar1D is a struct object which holds all information on a variable. For existing data set objects new
variables can be defined:

NcVar1D *ncVar1DNew(NcDataSet1D *dataSet,
 char *varName,
 Interpolation inter,
 LoadType loadType);

dataSet is a NcDataSet1D object, varName the name of the dependant variable in the file. You may
choose the interpolation method (Interpolation) from the following values:

• IpDiscrete - discrete steps

• IpSinSteps - discrete steps with smoothing by a sine function. The smoothing radius can be
defined by setting the smoothing option. If not set, a value of 0.0 will be used which will lead
to the same result as IpDiscrete.

• IpLinear - piecewise linear Interpolation

• IpAkima - piecewise cubic interpolation

• IpCosWin - cossine window approximation. The window size can be defined by setting the
window_size option. If not set, a value of 1.0 will be used.

• IpAuto - determine the interpolation method from file annotations. If not set, IpAkima is used.

The possible values for LoadType are the same as for the NcDataSet1D.

The calculation of values from a NcVar1D (which is the main purpose of this library) is done with the
function:

double ncVar1DGet(NcVar1D *var, double x);

var is the NcVar1D object and x the value of the independent variable at the requested point.

To get the value of the variable (without any interpolation) in one interval you may call:

double ncVar1DGetItem(NcVar1D *var, size_t i);

A NcVar1D should be freed with the following function when it's not needed anymore. This will release all
used memory and close netCDF variable object:

void ncVar1DFree(NcVar1D *var);

Set an option for a variable with this var-arg function:

int ncVar1DSetOption(NcVar1D *var, VarOption option, ...);

Possible options are:

• OpVarScaling - set scaling and offset with the following two double arguments. This
corresponds to the netCDF attributes scale_factor and add_offset.

• OpVarSmoothing - set the following double value as the smoothing radius for the interpolation
method IpSinSteps. This value has to be smaller than the smallest interval length of the data
set.

• OpVarWindowSize - set the following double value as the window size for the interpolation
method IpCosWin. This value should be much smaller than the data range.

• OpVarValueCacheSize - set the capacity of the value cache to the following integer value.

• OpVarParameterCacheSize - set the capacity of the parameter cache to the following integer
value. This is only useful for the interpolation methods IpLinear and IpAkima.

• OpVarChunkSize - set the chunk size to the following integer value when using LtChunk.

6.3 NcScattered2D
NcScattered2D is a struct object which holds all information on a data set of scattered points and its spline
interpolation. A new NcScattered2D object can be defined with:

NcScattered2D *ncScattered2DNew(char *fileName, char *varName);

fileName is the name of the netCDF file and varName the name of the variable that contains the point
coordinates. varName should be a two dimensional variable (list of 3D points).

Befor you can request interpolated values you have to initialize the data (construct the spline surface) by
calling:

void ncScattered2DInit(NcScattered2D *data);

To get an interpolated value you may call:

double ncScattered2DGet(NcScattered2D *data, double x, double y);

A NcScattered2D object should be freed after usage by calling:

void ncScattered2DFree(NcScattered2D *data);

Several options can be set by calling this var-arg function:

int ncScattered2DSetOption(NcScattered2D *data,
 Scattered2DOption option,
 ...);

This is call is valid only befor ncScattered2DInit() was called! Possibkle options are:

• OpScattered2DScaling - set scaling and offset with the following two double arguments.
This corresponds to the netCDF attributes scale_factor and add_offset. This call will
scale and shift all three dimensions!

• OpScattered2DScalingX, OpScattered2DScalingY, OpScattered2DScalingZ - set
scaling and offset only in one dimension.

• OpScattered2DPointsMin - set the npmin parameter for csa

• OpScattered2DPointsMax - set the npmax parameter for csa

• OpScattered2DPointsPerCell - set the nppc parameter for csa

• OpScattered2DK - set the k parameter for csa

6.4 Error handling
netCDF functions may return errors. Errors are represented by an integer id and a message string. The
default error handler will print the message to stderr and exit the program, on Win32 systems it will
open an error dialog. You may replace this with your own handler function of the form:

void myhandler(int id, char *message);

by calling the function:

NcErrorHandler ncSetErrorHandler(NcErrorHandler newHandler);

This will set the function newHandler to be the new error handler and return a pointer to the previous
handler.

6.5 Access Statistics
To tune the different optimization parameters some statistics can be dumped:

void ncDataSet1DDumpStatistics(NcDataSet1D *dataSet, FILE *f);
void ncVar1DDumpStatistics(NcVar1D *var, FILE *f);

This will write some statistics about the data set or the variable to a file. f may be a writable file pointer or
NULL for stdout.

7 Easy API (EA)
The easy API was motivated by the fact that languages like Modelica cannot handle C-structs, pointers
and other language elements used in ncDataReader2. They require simple functions that return values
without large initializations blocks and local data storage.

The EA is a wrapper around the general API of the library that hides most of its details. To use the EA you
have to include the header file ncDataReaderEA.h. The EA is based on hashtables that store data sets
and variables after the first use. The main function is:

double ncEasyGet1D(char *fileName, char *varName, double x);

It will return the interpolated value of the variable varName in the netCDF file fileName at the point x.
At the first call the needed NcVar1D and NcDataSet1D objects are initialized. Following calls to this
function will reuse these objects. All parameters like extrapolation, interpolation, scaling, cache sizes and
others are read from file annotations or set to default values.

A strict requirement to get this initialization automatically done is to follow a naming convention: the
independent variable in the file must have the same name as the dimension that is used both for the
independent and the dependant variable.

The functionality for 2D interpolation is also exposed via the EA:

double ncEasyGetScattered2D(char *fileName, char *varName,
 double x, double y);

This will return the value of z for the position defined by x and y of a spline surface. This surface
represents the list of scattered points defined by the variable varName in the netCDF file fileName. All
parameters for the surface will be read from file annotations or set to default values. At the first call to this
function the data is read and the surface is constructed, following calls will reuse the objects.

If you want to clean all stored objects of the EA, you may call:

void ncEasyFree();

Access statistics for all open data sets and variables can be dumped with the function:

int ncEasyDumpStatistics(const char *fileName);

There are some more functions that return attributes of the netCDF file or of variables:

double ncEasyGetAttributeDouble(char *fileName, char *varName, char *attName);
long ncEasyGetAttributeLong(char *fileName, char *varName, char *attName);
char *ncEasyGetAttributeString(char *fileName, char *varName, char *attName);

These functions may be used to read additional data like location coordinates for weather files. Special
values will be returned on errors (like non-existent attributes), defined as NC_DOUBLE_NOVAL,
NC_LONG_NOVAL and NC_STRING_NOVAL. If varName is an empty string ("") the global attribute is
returned.

8 Tools

8.1 ncdr2Dump1D
This is a command line client that includes most of the functions for 1D variables. It will dump interpolated
values for a variable in textual form. CSV format is the default, but you may choose a gnuplot compatibel
output or provide your own template (for printf()). The usage is as following:

Usage: ncdr2Dump1D [parameter] filename
 filename name of the netCDF file or DAP-URI
mandatory parameters:
 -v string name of the variable
 -a string name of the abscissa / data set
optional parameters:
 -o string name of output file (default: stdout)
 -s float start of data range
 -e float end of data range

 -n int number of points
 -i char interpolation:
 [a]kima, [l]inear, [d]iscrete, [s]insteps, [c]oswin
 -x char extrapolation:
 [d]efault, [p]eriodic, [c]onstant
 -l char load type:
 [f]ull, [n]one, [c]hunks (see -h)
 -w float window size for coswin interpolation
 -m float smoothing radius for sinsteps interpolation (default is 0)
 -k int size of lookup cache
 -p int size of parameter cache
 -c int size of chunks for chunk loading
 -t string template string for output (used with printf())
 -g use gnuplot-compatible output (default is CSV)
 -d dump timing information and access statistics to stderr
 -h print this help and exit

8.2 ncdr2ImportCSV1D
This is a command line client that converst CSV data to netCDF files that are compatible with
ncDataReader2. The special attributes that ncDataReader2 respects can be added easily. The usage is
as following:

Usage: ncdr2ImportCSV1D [parameter] filename
 filename name of the CSV input file
optional parameters:
 -o string name of output file
 -t string comment to include in file
 -h print this help and exit
the following is stored as attributes of the variables:
 -i char interpolation:
 [a]kima, [l]inear, [d]iscrete, [s]insteps, [c]oswin
 -x char extrapolation:
 [d]efault, [p]eriodic, [c]onstant
 -l char load type:
 [f]ull, [n]one, [c]hunks (see -h)
 -w float window size for coswin interpolation
 -m float smoothing radius for sinsteps interpolation
 -k int size of lookup cache
 -p int size of parameter cache
 -v int size of value cache
 -c int size of chunks for chunk loading

The input file is a simple CSV file with the following structure:

• fields delimited by comma ','

• every row has the same number of fields

• optional header row with the variable names

• all other fields contain just numbers

• the decimal separator for numbers is a point '.'

• every column contains one variable

• first column is used as the abscissa for all variables

9 Modelica Interface
The Modelica package contains function wrappers for the Easy API as well as some examples.

10 Tips and Tricks

1. A template for ncdr2Dump1D can contain special characters like TAB or NEWLINE. In C these
characters are inserted using '\t' or '\n'. To use these characters on the Linux-shell bash you can
use the following syntax:

ncdr2Dump1D -v foo -a bar -t $'%g\t%g\n' file.nc

2. CSV files generated with software in some languages (like German) will use a comma as decimal
separator. To use such files with ncdr2ImportCSV1D you can do the following:

1. export to CSV with field separator set to semicolon ';'

2. replace every comma ',' with a point '.'

3. replace every semicolon ';' with a comma ','

The steps 2 and 3 can be done in a text editor or with the following command line (UNIX only):

tr ',;' '.,' <data.csv >data_corrected.csv

11 Changes
2.4.0

• generally worked on an improved Modelica compatibilty

• changed directory structure to improve the Modelica compatibility

• changed Modelica files to use Modelica 3.2.1

• removed the hard exit from the default error handler

• added pre-built binaries for linux32, linux64, win32 and win64

• reimplemented StringHashTable based on uthash

• fixed memory leak for easy API (ncEasyFree was never called)
2.3.1

• added command line client ncdr2ImportCSV1D to import CSV data

• changed all examples to work with optional file names

• changed Modelica files to use Modelica 3.2
2.3.0

• added CosWin approximation

• added constant extrapolation

• GenerateBigFile is much faster now

• fixed a bug with Akima and default extrapolation near the right border that existed for a long time

• added functions to dump statistics

• added error dialog for Win32, useful with Dymola

• added command line client ncdr2Dump1D to dump interpolated values

• built with netCDF 4 on Windows including DAP supported

	1 Overview
	2 Author and License
	3 Building and Installation
	4 Examples
	5 Concept
	5.1 Interpolation
	5.1.1 Discrete
	5.1.2 Linear
	5.1.3 Akima
	5.1.4 Sine Steps (SinSteps)
	5.1.5 Cosine Window (CosWin)

	5.2 Transformations
	5.3 Loading Data
	5.4 Optimization
	5.4.1 Value Cache
	5.4.2 Lookup Cache
	5.4.3 Parameter Cache

	5.5 Scattered Points (2D)
	5.6 File annotations / netCDF Attributes

	6 General API
	6.1 NcDataSet1D
	6.2 NcVar1D
	6.3 NcScattered2D
	6.4 Error handling
	6.5 Access Statistics

	7 Easy API (EA)
	8 Tools
	8.1 ncdr2Dump1D
	8.2 ncdr2ImportCSV1D

	9 Modelica Interface
	10 Tips and Tricks
	11 Changes

