OpenModelica System Documentation

Version 2009-11-09
for OpenModelical.5

November 2009

Peter Fritzson
Adrian Pop, Peter Aronsson,
David Akhvlediani, Bernhard Bachmann, Vasile Baluta,

Simon Bjoérkléen, Mikael Blom, Willi Braun, David Broman, Stefan Brus,
Francesco Casella, Filippo Donida, Henrik Eriksson, Anders Fernstrom, Jens
Frenkel, Pavel Grozman, Daniel Hedberg, Michael Hanke, Alf Isaksson, Kim

Jansson, Daniel Kanth, Tommi Karhela, Joel Klinghed, Juha Kortelainen,

Alexey Lebedev, Magnus Leksell, Oliver Lenord, Hakan Lundvall, Henrik
Magnusson, Eric Meyers, Hannu Niemisto, Kristoffer Norling, Atanas Pavlov,
Pavol Privitzer, Per Sahlin, Wladimir Schamai, Gerhard Schmitz, Klas §6holm,
Martin §j6lund, Kristian Stavaker, Mohsen Torabzadeh-Tari, Niklas Worschech,
Robert Wotzlaw, Bjorn Zackrisson

Copyright by:

Linkdping University, Sweden
Department of Computer and Information Science

Supported by:

Open Source Modelica Consortium

Copyright © 1998-2009, Linkdpings universitet, Department of Computer and Information Science.
SE-58183 Linkoping, Sweden

All rights reserved.

THIS PROGRAM IS PROVIDED UNDER THE TERMS OF THIS OSMC PUBLIC LICENSE (OSMC-PL).
ANY USE, REPRODUCTION OR DISTRIBUTION OF THIS PROGRAM CONSTITUTES RECIPIENT'S
ACCEPTANCE OF THE OSMC PUBLIC LICENSE.

The OpenModelica software and the OSMC (Open Source Modelica Consortium) Public License (OSMC-
PL) are obtained from Linkopings universitet, either from the above address, from the URL:
http://www.ida.liu.se/projectsOpenModelica, and in the OpenM odelica distribution.

This program is distributed WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE, EXCEPT AS EXPRESSLY SET
FORTH IN THE BY RECIPIENT SELECTED SUBSIDIARY LICENSE CONDITIONS OF OSMC-PL.

See the full OSMC Public License conditions for more details.

This document is part of OpenModelica: www.ida.liu.se/projects/OpenModelica
Contact: OpenModelica@ida.liu.se

Modelica® is aregistered trademark of Modelica Association.
MathModelica® is aregistered trademark of MathCore Engineering AB.

Mathematica”® is aregistered trademark of Wolfram Research Inc.

Table of Contents

T A Of CONLENES.....ceeeeetieieieeee ettt b b e bbb et ae b b e e e st bt sb e seene et e sbesbeseenenbesbeseens 3
(= = oL R 7
Chapter 1 INEFOOUCTION ...ttt b et b e et b e b b et e besbe b e b e st ebeseeseeneas 9
11 OpenModelica ENVironment SEIUCIUNE..........cc.eceeieriecececiesie st esae st st sne s 9
1.2 OpenModelica Compiler Translation StAgESccvererererereere e 10
13 Simplified Overall Structure of the COMPIENccoov e 10
14 Parsing and ADSLIaCt SYNEAX........cccviviieieerereeieese e see e e eenaesresneas 11
15 Rewriting the AST INtO SCOUE.......c.ciiiriereeee e seens 11
16 Model Flattening and INStantialion............cceoeererrieieerese e s 12
17 TheinstClass and instElement FUNCLIONS..........ccooreiiiiieneeee e 12
18 L@ 1 11 0L | SRR 14
Chapter 2 Invoking omc —the OpenM odelica Compiler/Interpreter Subsystem.........ccccccveueeee. 15
21 Command-Line Invokation of the Compiler/INterpreteroovvvveeeervsieveeceese e eeeseeens 15
211 General CoOMPIlEr FIAQS......ccoiiiiiieieiece sttt st ae s resneennens 16
2111 Example of Generating Stand-alone Simulation Code..........cccovereerererenereneneenes 16

2.1.2 Compiler DEDUQ Trate FlagS......ccouiviieiereseeeeriese st ee e sie st esaesee e e e e s sneeaeneesrennens 16
22 The OpenModelica Client-Server ArchiteCturecooveeeeeeie i 18
2.3 Client-Server Type-Checked Command APl for SCrptingcoovverereeereneeeesere s 19
FC N R = 1 0= RS PSRS 21
24 Client-Server Untyped High Performance APl for Model QUErY........ccocveeeveieveeeecie e, 22
241 DEFINITIONS.......iciceeciececeee ettt e s b s besbeeaeesbesbesbeeasesbesbeeaeenrenreas 22
24.2 EXaMPIES Of CallS... ..ottt sr e e nne s 22
2.4.3 Untyped API Functions for Model Query and Manipulation...........cccceeveeeresieseecennnnnns 23
2431 ERROR HENING.. ..ottt s s 27

244 ANNOBLIONSueiuirtieeieieete sttt ettt eb et sb e b et b e b b e bt sb s b e st bt b e e et nrenn e 27
2441 Variable ANNOLELIONS.......ccceiruirieieire sttt 27
2442 CONNECLION ANNOLBLIONS.......ciuiiieerierierieeeeeie st see e eie st be e e ae b see e ae b sbe e e e sae e seans 28
2443 Flat records for GraphiC PrimitiVES........cccceeeieiienere s 29

25 Discussion on Modelica Standardization of the Typed Command APccccocevvvveeenenen. 30
251 NaAMING CONVENLIONS......ccueitiitiieieieite st eeeeese st e e e e e ste e sseeaestesresseesestesresssensesresresssensesrens 30
252 REIUM LYPR ..ttt sttt e st st e s e e ean e e nn e ane e 30
2.5.3 ATQUMENT LYPES ..ottt ettt ettt ettt et et e b et et 30
254 Set Of APl FUNCLIONScoueitiiiiieieieniesie ettt st s s sae e e 30
255 Example of Exporting XML from aModel ..o 31
256 Example of Exporting Matlab from aModelccoiiieieiinineeeere e 34
Chapter 3 Detailed Overview of OpenModelica Packages...........cceevevevieiecvene e 35
31 Detailed Interconnection Structure of Compiler Packages..........cccccevveveeceevececieeeece e 35
3.2 OpenModelica Source Code DireCtory SITUCKUFE..........oveeeereerireeeees e 36
3.21 OpenMOodeliCa/COMPIIENTcceeie ettt e e nne s 36
3.22 OpenModelica/ ComPiler/rUNLIME.........cooiiirieeeieeee e 36
3.23 OpenNMOAEli CAtESISUITEeovieeeeeisieieee ettt st se e e 37
3.24 OpenMOodeliCAIOMSNEI........c.coie e renne s 37
3.25 OpenModeica/c_runtime— OpenModelica Run-time Libraries.........c.ccoceevoerenrccnenienns 37
T2 0 A oo 001] 11X TSNP 37

3252 LIBSIMLA i e 37

3.3 Short Overview of Compiler MOAUIES...........c.ccveeeiieieceeeee e 38

34 Descriptions of OpenModelica Compiler MOAUIESccooeeerireieeneneeee e 39
100 0 R AN o 15V a I AN = o S 1= GRS 39
3.4.2 Algorithm — Data Types and Functions for Algorithm Sections..........ccccoevveveceeverienennens 54
3.4.3 Builtin—Builtin Typesand Variables............cccoviieiiiieii e 54
34.4 Ceva — Constant Evaluation of Expressions and Command Interpretation...................... 54
345 Classinf —Inference and Check of Class RESIHCLIONS........cccoveererereeierereseeesesieeeeniene 55
3.4.6 ClassLoader — Loading of Classes from SOPENMODELICALIBRARYcccovevnnnes 55
3.4.7 Codegen —Generate C Code from DAE.........cooieiieneeeee e 55
3.4.8 Connect — Connection Set ManagemMENL..........ccccverviireerere e se e sre e nnens 55
34.9 Corba—ModeicaCompiler Corba Communication Module............ccccveveveieeieeiesiennen, 55
3.4.10 DAE - DAE Equation Management and OQULPUL............cccerereeerereneeneeeseseeesieseeseeennens 56
3.4.11 DAEEXT — External Utility Functionsfor DAE Management...........cccocvveeeeneneneeeenens 60
3.4.12 DAELow — Lower Level DAE Using Sparse Matrisesfor BLTcccovvvveeeevieresieseenens 60
3.4.13 Debug — Trace Printing Used for DebUGQINGccovierveererireieere e 60
3.4.14 Derive— Differentiation of EQuations from DAELOWccccevevirerieerereseeeeseese e 60
3.4.15 DFA —MetaModelica Pattern MatChingccoveeererereseeieseseseeeeeseese s seeseeseesresnens 60
3.4.16 Dump — Abstract Syntax Unparsing/Printing.........ccccceveveeieereneseeeeseese e 61
3.4.17 DumpGraphviz — Dump Info for Graph visualization of ASTcccceevvvrieeieneneneeeenns 61
3.4.18 Env —ENvironment Managementcccocvvereeieresereeseesesessesseessessesseessessessesseessessessens 61
3.4.19 Exp—Expression Handling after Static ANalYSIS........ccccovieiireeiesececeece e 63
3.4.20 Graphviz — Graph Visualization from Textual Representationc.ccoeeeeevereercrereenns 69
3.4.21 Inst — Code Instantiation/Elaboration of ModelicaModels...........ccovevineininincincnees 69

Tt It R © V= 4T = 1 USRS 69

34.21.2 Code Instantiation of aClassin an ENvVironmentcccceovoeveneeenenienensieseseeens 69

34.21.3 InstElementListList & Removing Declare Before Use........cocveeeveveveneccenncenens 69

34214 ThelnstElement FUNCHION ..ot 70

3.4.215 ThelnstVar FUNCHION...........ooieiiiie ettt re e 70

34.21.6 DEPENUENCIES.......eeueeieeeeieeieeie e st eee et eseestesresseestessesseeneestestesseesesteseesneensensens 70
3.4.22 Interactive —Model Management and Expression Evaluationccccceveeeeceevennnennnns 70
3.4.23 Lookup — Lookup of Classes, Variables, €tC.cccceveieiicieeese e 72
3.4.24 Main—TheMain Programccccueieriiieneeeseseseeeeseesee e sseeeeseessesseeseessessessessesnsessessens 72
3.4.25 MetaUtil — MetaModelicaHandling..........cccoceviieieeienese e 72
3.4.26 Mod—Modification HandliNg........cccocoeiiiieiiseie e 72
3.4.27 ModSim— Communication for Simulation, Plotting, €tC.cccccceeiiieiececececece e 73
3.4.28 ModUtil — Modelica Related Utility FUNCLIONS........cccoieiiiieerececeeere e 73
3.4.29 Parse— Parse Modelicaor Commands into Abstract SyntaX..........ccceeveeevevesieeveesecennns 73
3.4.30 Patternm — MetaModelica Pattern MatChing..........ccoeeveeiereneeneneseese e 73
3.4.31 Prefix —Handling Prefixesin Variable Names..........ccocevviireeceneneceeeereseseeeee e 74
3.4.32 Print — Buffered Printing to Files and Error Message Printing...........cccceoceveveeceeveseseenen, 74
3.4.33 RTOpts— Run-time Command Ling OPtioNS.........cccceeeiiireninereneneeee e 74
3.4.34 SCode— Lower Level Intermediate Representation............cceeevvreeeereneseeceesenee e 74
3.4.35 SimCodegen — Generate Simulation Code for SOIVErccccocvvviceererese e 74
3.4.36 Socket — (Depreciated) OpenModelica Socket Communication Module.......................... 75
3.4.37 Static — Static Semantic AnalysiS Of EXPreSSiONS.........ccoevervveieiieeneneseseeneseeseeeeeneenens 75
3.4.38 System — System Calls and Utility FUNCLIONS..........ccooveieriiineee e 76
3.4.39 TaskGraph — Building Task Graphs from Expressions and Systems of Equations........... 76
3.4.40 TaskGraphExt — The External Representation of Task Graphs..........ccoceeeeereereneercnenenens 76
3.4.41 Types— Representation of Typesand Type System INfOcccvvvvierecieevenececeeeee e 77
3.4.42 Util — General Utility FUNCLIONS........cccoiiiiiceciesie et 80
3.4.43 Vaues— Representation of Evaluated EXpression ValUes.........cccccveevenecereneniencseseeens 81
3.4.44 VarTransform — Binary Tree Representation of Variable Transformations...................... 81
3.4.45 XMLDump—Dumping of DAE @S XML....cccooiiiiiceiece e 81
3.4.46 DAEQuery — Dumping of DAE asMatlah........cccceiiiiinieieireeeerese e 81

Chapter 4 MetaModelica Pattern Matching Compilationcooeveeeiineneiniennneees e 82

41 MetaM odelica MatchContinUe EXPrESSION..........ccvriierierieeseseseeesie e seeseeesseseeseenesseses 82
411 MOAUIES INVOIVED. ..ottt bbb 82
O O AN o1 o PSS 82
Tt | 0 USROSV 83
4113 L 1 1 0] PP 83
A1DA DA bbbt bt b e b b e b b e 84
4.2 VaUE DIOCK EXPrESSIONeeeieiiciieieie sttt sttt st s ae e besne e e eaesrenneas 86
421 MOCUIES INVOIVED.......ooiiiieeeeeee ettt be b e ae b enas 86
T O R N oY o PSS 86
A T o TSRS PR 86
4213 L0017 o R 86
4214 SHBHIC...uieeeeeiiteitee ettt bbb bbb Rt b R e r e nr e 86
4205 PrEfIX o bbbt a e 87
Nt T oo = o = RSN SRPRPIN 87
4.3 MELAM OOEIICATTSE ... bbb 87
431 MOAUIES INVOIVEQ. ..ottt bbb et be b 87
G T O R LN o 1Y o PSP 87
G I O [1< o PSS 87
4313 DAE bbb bbbttt e e 87
1 I B T TSRO 87
51 I [0 SRR 88
43168 MEBULI ..o e e 88
4317 PAIEEITIM ...ttt b e s bt e e b b s ae e sre e 88
1 I T - oS PTSPRP 88
0 e T Y/ o= PRSP TRR 88
43110 VAIUES. ..ottt bbb bbb bt b e b e et b e 88
44 MetaMOodeliCaUNION TYPE ..ottt st s see e nes 89
Chapter 5 OMNoOtebook and OM SNELcoovviiiiiiee e 20
51 Qt90
5.2 HTML dOCUMENTALION. ...ttt bbb e sb e s 90
53 MathematiCa NOEDOOK PaIrSErccceiirierieiriiniereeee s 90
54 [T L OO 9
55 ClASS OVEIVIEI ...ttt et b bt b e b et b e b e st et e st sb e s b e b e neebesbeseeeens 98
5.6 REFEIEINCES. ...ttt e st e s te e s te e saeesaeesaeesaeesaeesseesreesanennnn 99
Chapter 6 OpenModelica EClipSE PIUgIin —MDToooiiieiecececeee et 100
Chapter 7 How to Write Test Casesfor OpenM odelica Developmentcccooeeviveneicnenene 101
7.1 (€ g To S - (= [P 101
7.2 DY Ko o L gTo I B IS A O < 101
721 Creating the MO Fil@.....cuoiieiceeee e 101
722 Creating the .mMOS FilE......cc.oiiiieeeeceeee e e 102
7221 SIMUIAion NOt FAITINGccoeiirieiereseeeee et 102
7222 SIMUIBLETON FAIl ..ot 103
7.3 Status Of SIMUIBEEA TESE CASES.....ccveiveciieieiie ettt ettt et st resbesbesaeenesnens 103
7.3 1 SHAUSTOr .MO FlES... .o 103
7.3.2 StAUSTOr MOS FIIES ...t 103
7.4 Adding Test CaseStOthe SUILE.......cceiiieeeece e e 103
75 =001 0] =PSRRI 104
AT R O <ot N = PP PP 104

EA T = 1[T0e R L= TP 105

6

Appendix A Exercises (?? Incomplete, ver ion 070204)cocovereeerenienieieneseseeese e seeesee e seenens 106
Al Exercise SimpleTestCase — Write aSIMple TeSt CaSe......eveeeerereeererereeeee e 106
A.2 Exercise UseAPIFunctions— Call Some OMC APl FUNCLIONS.........ccoooveeeeenrieneceeee e 107
A3 Exercise OM CCorbalava— Commands via Corba from a Java Clientcccceevevvernenene. 107

A.3.1 How Corba CommuniCation WOFKSccccierieiieiisi ettt 107
F N B © 1Y L@ o o)V = V7 RSOSSN 108
A4 Corba Clients for C++ and PYthON.........cccoiiiiiieere e 108
A5 Exercise newAPIFunction — Write anew Simple OMC APl Functionc.cceeeevvevvenene. 108
A.6 Exercise ASTExpTransform — Write A Small Exp AST Transformationcccceeevvne. 108
A7 Exercise CodeGen — Generate Code for anew Builtin FUNCLioON..........ccccevevvvvvecceenecine 108
A8 Exercise getClassNamesRecursive — Recursive Printout of Class Namesin a Model Hierarchy
109

Appendix B Solutionsto EXercises (??21NCOMPIELE)ccvevererieiere e 110
B.1 Solution SimpleTestCase —Write aSimple TesSt Case.......cccvveeveveiececeese e 110
B.2 Solution UseAPIFunctions — Call Some OMC APl FUNCLIONS...........cccoeeeevieieieceeeecieeas 111
B.3 Solution OM CCorbalJava— Commands via Corbafrom aJavaClientcccceceeeeevvrnnens 111
B.4 Solution Corba Clients for C++ and PYythoncccoceviieeieie e 111
B.5 Solution newAPIFunction — Write anew Simple OMC API Function............ccccceeeeveiienen. 111
B.6 Solution ASTExpTransform —Write A Small Exp AST Transformationcccceecevenens 111
B.7 Solution CodeGen — Generate Code for anew Builtin FUNCLIONccooeevevivieneeceinns 111
B.8 Solution getClassNamesRecursive — Recursive Printout of Class Namesin aModel Hierarchy

111

Appendix C Contributorsto OpenMOdEliCacccecviiiiieieie e 114
Cl1l OpenModelica Contributors 2009..........cceeieiiieieee s re e naennens 114
c.2 OpenModelica Contributors 2008............coeeiririeirene et neenes 114
C3 OpenModelica ContribULOrS 2007coeerereiirieie e ettt e e seesseeneeseens 115
C4 OpenModelica ContribUtOrs 2006...........ccecueiiieiieie s esee st sae e re e enaesnens 116
C5 OpenModelica ContribUtors 2005.........cc.coveiiirieieese e eens 116
C.6 OpenModelica ContribULOrS 2004..........coeeieieiereeree et see sttt ee e see e eneeneens 116
C.7 OpenModelica Contributors 2003..........cceeierieiereeie e e sae e ee e sre e eneeneens 117
C.8 OpenModelica Contributors 2002..........cceeveiiiiiieie s esee s e e re e enaesnens 117
C9 OpenModelica ContribULOrs 2001..........cceereriieeeeee e see et see e sreeee e seesseeneeneens 117
C.10 OpenModelica Contributors 2000.........cccceeuereiereereeseseseeseese e seesee e e seeseeseesresseessesseses 117
C.11 OpenModeica Contributors 1999.........cccceoeiiiiiieie et a e 117
C.12 OpenModelica ContribUtOrs 1998.........ccociiiiireiresie ettt neens 117

Preface

This system documentation has been prepared to simplify further development of the OpenModelica
compiler aswell as other parts of the environment. It contains contributions from a number of developers.

Chapter 1

Introduction

This document is intended as system documentation for the OpenModelica environment, for the benefit of
developers who are extending and improving OpenModelica. For information on how to use the
OpenModelica environment, see the OpenM odelica users guide.

This system documentation, version May 2006, primarily includes information about the OpenModelica
compiler. Short chapters about the other subsystems in the OpenModelica environment are also included.

1.1 OpenModelica Environment Structure

The OpenModelica environment consists of several interconnected subsystems, as depicted in Figure 1-1
below.

- Eclipse Plugin Graphical Model
Editor/Browser \ / Editor/Browser
4
Interactive y
4 . Emacs session handler Textual
Editor/Browser Model Editor

DrModelica ‘// \
NoteBook

Model Editor Modelica
Execution
Compiler
cmccmccmccmccmcan-an=d Modelica
Debugger

Figure 1-1. Theoverall architecture of the OpenMaodelica environment. Arrows denote data and control
flow. Theinteractive session handler receives commands and shows results from eval uating commands and
expressions that are translated and executed. Severa subsystems provide different forms of browsing and
textual editing of Modelica code. The debugger currently provides debugging of an extended algorithmic
subset of Modelica, and uses Emacs or Eclipse for display and positioning. The graphical model editor is not
really part of OpenModelica but integrated into the system and available from MathCore Engineering AB
without cost for academic usage.

As mentioned above, this version of the system documentation only includes the OpenModelica
compilation subsystem, translating Modelica to C code. The compiler also includes a Modelica interpreter
for interactive usage and for command and constant expression evaluation. The subsystem includes
facilities for building simulation executables linked with selected numerical ODE or DAE solvers.
Currently the default solver isDASSL.

1.2 OpenModelica Compiler Translation Stages

The Modelica trandation process is schematically depicted in Figure 1-2 below. Modelica source code
(typically .mo files) input to the compiler is first translated to a so-called flat model. This phase includes
type checking, performing all object-oriented operations such as inheritance, modifications etc., and fixing
package inclusion and lookup as well as import statements. The flat model includes a set of equations
declarations and functions, with all object-oriented structure removed apart from dot notation within names.
This process is a partial instantiation of the model, called code instantiation or elaboration in subsequent
sections.

The next two phases, the equation analyzer and eguation optimizer, are necessary for compiling models
containing equations. Finally, C code is generated which is fed through a C compiler to produce executable
code.

Modelica
Source Code

@4““‘"‘“‘“‘ Modelica model

Translator
{}4’"""""'" Flat Model
Analyzer
@4‘“‘““““" Sorted equations
Optimizer
< Optim_ized sorted
equations
Code
Generator
@«-—--- C Code
C Compiler

{}4--—-—-- Executable

Simulation

Figure 1-2. Trandation stages from Modelica code to executing simulation.

1.3 Simplified Overall Structure of the Compiler

The OpenModelica compiler is separated into a number of modules, to separate different stages of the
trandation, and to make it more manageable. The top level function is called main, and appears as follows
in simplified form that emits flat Modelica (leaving out the code generation and symbolic equation
manipulation):

function main
input String f; // file name

algorithm
ast := Parser.parse(f);
scodel := SCode.elaborate (ast) ;
scode2 := Inst.elaborate(scodel) ;

DAE.dump (scode2) ;
end main;

11

The simplified overal structure of the OpenModelica compiler is depicted in Figure 1-3, showing the most
important modules, some of which can be recognized from the above main function. The total system
contains approximately 40 modules.

Main | w_ R L ookup
w '
‘* \" \‘< 4 (Env, name) SCode.Class DAE Dump Flat Modelica
Absyn SCode DAE
Parse ,| SCode Inst DAELow
/explode
A4
(Exp.Exp, — SimCodeGen
SCode.Exp Types'Type) COdeGen
Exp.Exp Static -
C code
(Env, name)
l VauesValue
> Ceva

Figure 1-3. Some module connections and data flows in the OpenModelica compiler. The parser generates
abstract syntax (Absyn) which is converted to the simplified (SCode) intermediate form. The code
instantiation module (Inst) calls Lookup to find a name in an environment. It also generates the DAE
equation representation which is simplified by DAEL ow. The Ceval module performs compile-time or
interactive expression evaluation and returns values. The Static module performs static semantics and type
checking. The DAEL ow module performs BLT sorting and index reduction. The DAE module internally
uses Exp.Exp, Types. Type and Algorithm.Algorithm; the SCode module internally uses Absyn.

1.4 Parsing and Abstract Syntax

The function parser.parse isactualy written in C, and calls the parser generated from a grammar by the
ANTLR parser generator tool (ANTLR 1998). This parser builds an abstract syntax tree (AST) from the
source file, using the AST data types in a MetaModelica module caled absyn. The parsing stage is not
really part of the semantic description, but is of course necessary to build areal trand ator.

1.5 Rewriting the AST into SCode

The AST closely corresponds to the parse tree and keeps the structure of the source file. This has severa
disadvantages when it comes to transglating the program, and especidly if the trandation rules should be
easy to read for a human. For this reason a preparatory trandation pass is introduced which translates the
AST into an intermediate form, called scode. Besides some minor simplifications the scode structure dif-
fers from the AST in the following respects:

e All variables are described separately. In the source and in the AST several variables in a class
definition can be declared at once, asin Real x, y[17] ;. Inthe scode thisis represented as two
unrelated declarations, asif it had been written Real x; Real y[17] ;.

e Class declaration sections. In a Modéelica class declaration the public, protected, equation and
algorithm sections may be included in any number and in any order, with an implicit public section
first. In the scode these sections are collected so that all public and protected sections are
combined into one section, while keeping the order of the elements. The information about which
elements were in a protected section is stored with the element itself.

One might have thought that more work could be done at this stage, like analyzing expression types and
resolving names. But due to the nature of the Modelica language, the only way to know anything about
how the names will be resolved during elaboration is to do a more or less full elaboration. It is possible to

12

analyze a class declaration and find out what the parts of the declaration would mean if the class was to be
elaborated as-is, but since it is possible to modify much of the class while elaborating it that analysis would
not be of much use.

1.6 Model Flattening and Instantiation

To be executed, classes in a model need to be instantiated, i.e., data objects are created according to the
class declaration. There are two phases of instantiation:

e The symbolic, or compile time, phase of instantiation is usually called flattening/elaboration or
code instantiation. No data objects are created during this phase. Instead the symbolic internal
representation of the model to be executed/simulated is transformed, by performing inheritance
operations, modification operations, aggregation operations, etc.

e The creation of the data object, usually called instantiation in ordinary object-oriented terminology.
This can be done either at compile time or at run-time depending on the circumstances and choice
of implementation.

The central part of the trandation is the code instantiation or flattening/elaboration of the model. The
convention is that the top-level model in the instance hierarchy in the source file is elaborated, which
means that the equations in that model declaration, and al its subcomponents, are computed and collected.
The elaboration of a class is done by looking at the class definition, elaborating al subcomponents and
collecting al equations, functions, and agorithms. To accomplish this, the trandator needs to keep track of
the class context. The context includes the lexical scope of the class definition. This constitutes the
environment which includes the variables and classes declared previously in the same scope as the current
class, and its parent scope, and all enclosing scopes. The other part of the context is the current set of
modifiers which modify things like parameter values or redeclare subcomponents.
model M
constant Real ¢ = 5;
model Foo
parameter Real p = 3;
Real x;
equation
X = p * sin(time) + c;
end Foo;

Foo f(p = 17);
end M;

In the exampl e above, elaborating the model M means elaborating its subcomponent f, which is of type Foo.
While elaborating £ the current environment is the parent environment, which includes the constant c. The
current set of modificationsis (p = 17), which means that the parameter p in the component £ will be 17
rather than 3.

There are many semantic rules that takes care of this, but only a few are shown here. They are aso
somewhat simplified to focus on the central aspects.

1.7 The instClass and instElement Functions

The function instClass elaborates a class. It takes five arguments, the environment env, the set of mod-
ifications mod, the prefix inPrefix which is used to build a globally unique name of the component in a
hierarchical fashion, a collection of connection sets csets, and the class definition inScodeclass. It
opens a new scope in the environment where all the names in this class will be stored, and then uses a
function called instClassIn to do most of the work. Finally it generates equations from the connection
sets collected while elaborating this class. The “result” of the function is the elaborated equations and some
information about what was in the class. In the case of afunction, regarded as arestricted class, the result is
an algorithm section.

13

One of the most important functionsis instElement, that elaborates an element of a class. An element
can typically be a class definition, a variable or constant declaration, or an extends-clause. Below is shown
only therulein instElement for elaborating variable declarations.

The following are simplified versions of the instClass and instElement functions.

function instClass "Symbolic instantiation of a class"
input Env inEnv;
input Mod inMod;
input Prefix inPrefix;

input Connect.Sets inConnectsets;
input Scode.Class inScodeclass;
output list<DAE.Element> outDAEelements;
output Connect.Sets outConnectSets;
output Types.Type outType;
algorithm
(outDAEelements, outConnectSets, outType) :=
matchcontinue (inEnv, inMod, inPrefix, inConnectsets, inScodeclass)
local
Env env,envl; Mod mod; Prefix prefix;
Connect.Sets connectSets, connectSetsl;
n,r; list<DAE.Element> dael,dae?2;
case (env,mod,pre,connectSets, scodeClass as SCode.CLASS(n,_,r,_))

equation
envl = Env.openScope (env) ;
(dael, ,connectSetsl,ciStatel,tys) = instClassIn(envl,mod,prefix,
connectSets, scodeClass) ;
dae2 = Connect.equations (connectSetsl) ;
dae = listAppend(dael,dae2);
ty = mktype (ciStatel, tys);

then (dae, {}, ty);
end matchcontinue;
end instClass;

function instElement "Symbolic instantiation of an element of a class"
input Env inEnv;
input Mod inMod;
input Prefix inPrefix;
input Connect.Sets inConnectSets;
input Scode.Element inScodeElement;
output list<DAE.Element> outDAEelement;
output Env outEnv;
output Connect.Sets outConnectSets;
output list<Types.Var> outTypesVar;
algorithm

(outDAE, outEnv, outdConnectSets, outdTypesVar) :=
matchcontinue (inEnv, inMod, inPrefix, inConnectSets, inScodeElement)
local
Env env,envl; Mod mods; Prefix pre;
Connect.Sets csets,csetsl;
n, final, prot, attr, t, m;

case (env,mods,pre,csets, SCode.COMPONENT (n, final,prot,attr,t,m))

equation
vn = Prefix.prefixCrefCref (pre,Exp.CREF IDENT (n,{}));
(cl,classmod) = Lookup.lookupClassClass (env,t) // Find the class definition
mm = Mod.lookupModification (mods,n) ;
mod = Mod.merge (classmod, mm) ; // Merge the modifications
modl = Mod.merge (mod,m) ;
prel = Prefix.prefixAddadd(n, [],pre); // Ebdendthepreﬁx
(dael,csetsl,ty,st) =
instClass (env,modl,prel, csets,cl) // Elaborate the variable

eq = Mod.modEquation(modl); // Ifthevariableisdeclared with a default equation,

14

binding = makeBinding (env,attr,eq,cl); // additto theenvironment
// with the variable.

envl = Env.extendFrameFrame v (env, // Addthevaﬂabkabhuﬂngtothe
Env.FRAMEVAR (n, attr, ty,binding)) ; // environment

dae2 = instModEquation (env,pre,n,modl); // Fetchtheequation, if supplied

dae = listAppendAppend (dael, dae2); // Concatenate the equation lists

then (dae, envl,csetsl, { (n,attr,ty) })

end matchcontinue;
end instElement;

1.8 Output

The equations, functions, and variables found during elaboration (symbolic instantiation) are collected in a
list of objects of type DAEcomp :
uniontype DAEcomp
record VAR Exp.ComponentRef componentRef; VarKind varKind; end VAR;

record EQUATION Exp expl; Exp exp2; end EQUATION;
end DAEcomp;

As the final stage of trandation, functions, equations, and algorithm sections in this list are converted to C
code.

Chapter 2

Invoking omc — the OpenModelica
Compiler/interpreter Subsystem

The OpenM odelica Compiler/Interpreter subsystem (omc) can be invoked in two ways:

e Asawhole program, called at the operating-system level, e.g. as a command.
e Asaserver, caled viaa Corba client-server interface from client applications.

In the following we will describe these optionsin more detail.

2.1 Command-Line Invokation of the Compiler/Interpreter

The OpenModelica compilation subsystem is called omc (OpenModelica Compiler). The compiler can be
given file arguments as specified below, and flags that are described in the subsequent sections.

omc file.mo Return flat Modelica by code instantiating the last classin thefile file.mo

omc file.mof Put the flat Modelica produced by code instantiation of the last class within
file.mo inthefilenamed £ile.mof.

omc file.mos Run the Modelica script file caled file . mos.

omc Calling omc with no parameters will display the help:

$./omc

OpenModelica Compiler version: 1.4.5 http://www.OpenModelica.org
Please check the System Guide for full information about flags.

Usage: omc [-runtimeOptions +omcOptions] Model.mo|Model.mof |Script.mos
* runtimeOptions: call omc -help for seeing runtime options

* omcOptions:

++v|+version will print the version and exit
+s Model.mo will generate code for Model:

Model.cpp the model C++ code

Model functions.cpp the model functions C++ code

Model .makefile the makefile to compile the model.

Model init.txt the initial values for parameters
+d=interactive will start omc as a server listening on the socket interface
+d=interactiveCorba will start omc as a server listening on the Corba interface
+c=corbaName works togheter with +d=interactiveCorba;

will start omc with a different Corba session name;
this way multiple omc compilers can be started

+s generate simulation code

+annotationVersion=1.x what annotation version should we use
accept 1.x or 2.x (default) or 3.x

+noSimplify do not simplify expressions (default is to simplify)
+q run in quiet mode, ouput nothing
+metaModelica accept MetaModelica grammar and semantics
+d=flags set debug flags:
+d=bltdump dump the blt form
+d=failtrace print what function fail
+d=parsedump dump the parsing tree
+d=parseonly will only parse the given file and exit
+d=dynload display debug information on dynamic loading of compiled functions
* Examples:
omc Model.mo will produce flattened Model on standard output
omc Model.mof will produce flattened Model on standard output

omc Script.mos will run the commands from Script.mos

16

211 General Compiler Flags
The following are general flags for uses not specifically related to debugging or tracing:

omc +s file.mo/.mof Generate simulation code for the model last in file.mo oOr file.mof.
The following files are generated: modelname.cpp, modelname.h,
modelname init.txt, modelname.makefile

omc +g Quietly run the compiler, no output to stdout.
omc +d=blt Perform BLT transformation of the equations.
omc +d=interactive Run the compiler in interactive mode with Socket communication. This

functionality is depreciated and is replaced by the newer Corba
communication module, but still useful in some cases for debugging
communication. This flag only works under Linux and Cygwin.

omc +d=interactiveCorba Run the compiler in interactive mode with Corba communication. Thisis
the standard communication that is used for the interactive mode.

omc ++v Returns the version number of the OMC compiler.

21.1.1 Example of Generating Stand-alone Simulation Code

To run omc from the command line and generate simulation code use the following flag:

omc +s model.mo

Currently the classloader does not load packages from MODELICAPATH automatically, so the .mo file
must contain all used classes, i.e., a“total model” must be created.

Once you have generated the C code (and makefile, etc.) you can compile the model using

make -f modelname.makefile

2.1.2 Compiler Debug Trace Flags
Run omc with a comma separated list of flags without spaces,
"omc +d=flgl,flg2,..."

Here f1g1,f1g2,... are one of the flag names in the leftmost column of the flag description below. The
specia flag named a11 turnson al flags.

A debug trace printing is turned on by giving aflag name to the print function, like:

Debug. fprint ("1i", "Lookup information:...")
If omc isrun with the following:
omc +d=foo,1li,bar,

this line will appear on stdout, otherwise not. For backwards compatibility for debug prints not yet sorted
out, the old debug print call:

Debug.print
has been changed to a call like the following:
Debug. fprint ("olddebug", .. .)

Thus, if omc is run with the debug flag o1ddebug (or a11), these messages will appear. The calls to
Debug.print should eventually be changed to appropriately flagged calls.

Moreover, putting a " - " in front of aflag turns off that flag, i.e.:

17

omc +d=all, -dump
Thiswill turn on all flags except dump.

Using Graphviz for visualization of abstract syntax trees, can be done by giving one of the graphviz flags,
and redirect the output to a file. Then run "dot -Tps filename -o filename.ps" OF "dotty
filename".

The following is a short description of all available debug trace flags. There is less of a need for some of
these flags now when the recently developed interactive debugger with a data structure viewer is available.

e All debugtracing

all Turn on al debug tracing.

none This flag has default vaue true if no flags are given.
e Generd

info General information.

olddebug Print messages sent to the old bebug . print
e Dump

parsedump Dump the parse tree.

dump Dump the absyn tree.

dumpgraphviz Dump the absyn treein graphviz format.

daedump Dump the DAE in printed form.

daedumpgraphv Dump the DAE in graphviz format.
daedumpdebug Dump the DAE in expression form.
dumptr Dump trace.

beforefixmodout Dump the PDAE in expression form before moving the modification
equations into the vaRr declarations.

e Types
tf Types and functions.
tytr Type trace.

e Lookup
1i Lookup information.
lotr Lookup trace.
locom L ookup compare.

e Static
sei Information
setr Trace

e SCode
ecd Trace of elab classdef.

e |nstantiation

insttr Trace of code instantiation.
e Codegen

cg 7

cgtr Tracing matching rules

codegen Code generation.

e Env

18

envprint Dump the environment at each class instantiation.
envgraph Same as envprint, but using graphviz.
expenvprint Dump environment at equation elaboration.
expenvgraph dump environment at equation elaboration.

2.2 The OpenModelica Client-Server Architecture

The OpenModelica client-server architecture is schematically depicted in Figure 2-1, showing two typical
clients: agraphic model editor and an interactive session handler for command interpretation.

Parse
Client: Graphic
J L _|—> Model Editor
Server: Main Program [
Including Compiler, Corba —
Inter preter, etc. | Client: Mosh
Interactive
Session Handler
- . ‘/V
]
SCode [Interactive R — Client: Eclipse
l T \ Untyped API Plugin
Inst
1 T system Typed Checked Command API
« — lot
Ceval [« P otc

Figure2-1. Client-Server interconnection structure of the compiler/interpreter main program and interactive
tool interfaces. Messages from the Corba interface are of two kinds. The first group consists of expressions or
user commands which are evaluated by the Ceval module. The second group are declarations of classes,
variables, etc., assignments, and client-server API callsthat are handled via the Interactive module, which
also stores information about interactively declared/assigned items at the top-level in an environment
structure.

The SCode module simplifies the Absyn representation, public components are collected together,
protected ones together, etc. The Interactive modul serves the untyped API, updates, searches, and keeps
the abstract syntax representation. An environment structure is not kept/cached, but is built by Inst at each
call. Cdll Inst for more exact instantion lookup in certain cases. The whole Absyn AST is converted into
Scode when something is compiled, e.g. converting the whole standard library if something.

Commands or Modelica expressions are sent as text from the clients via the Corba interface, parsed, and
divided into two groups by the main program:

e All kinds of declarations of classes, types, functions, constants, etc., as well as equations and
assignment statements. Moreover, function calls to the untyped API also belong to this group — a
function name is checked if it belongs to the API names. The Interactive module handles this group
of declarations and untyped APl commands.

e Expressions and type checked API commands, which are handled by the Ceval module.

The reason the untyped API calls are not passed via SCode and Inst to Ceval is that Ceval can only handle
typed calls — the type is always computed and checked, whereas the untyped API prioritizes performance
and typing flexibility. The Main module checks the name of a called function name to determine if it
belongs to the untyped API, and should be routed to Interactive.

Moreover, the Interactive module maintains an environment of al interactively given declarations and
assignments at the top-level, which is the reason such items need to be handled by the Interactive module.

19

2.3 Client-Server Type-Checked Command API for Scripting

The following are short summaries of typed-checked scripting commands/ interactive user commands for
the OpenModelica environment.

The emphasis is on safety and type-checking of user commands rather than high performance run-time
command interpretation as in the untyped command interface described in Section 2.4.

These commands are useful for loading and saving classes, reading and storing data, plotting of results,
and various other tasks.

The arguments passed to a scripting function should follow syntactic and typing rules for Modelica and
for the scripting function in question. In the following tables we briefly indicate the types or character of
the formal parameters to the functions by the following notation:

String typed argument, e.g. "hello", "myfile.mo".

TypeName — class, package or function name, e.g. MyClass, Modelica.Math.
VariableName —variable name, e.g. vi, v2, varsi [2] .x, €tC.

e Integer Of Real typed argument, e.g. 35, 3.14, xintvariable.

e options —optiona parameters with named formal parameter passing.

The following are brief descriptions of the most common scripting commands available in the
OpenModelica environment. Se also some example calsin thefile

animate (className, options) |Display a3D visaulization of the latest simulation. Inputs:

(NotY etlmplemented) TypeName className; OULPULS. Boolean res;

cd(dir) Change directory. Inputs: String dir;

Outputs: Boolean res;
cd () Return current working directory. Outputs: String res;
checkModel (className) I nstantiate model, optimize equations, and report errors.
(NotY etl mplemented) Inputs. TypeName className; OUtpULS. Boolean res;
clear() Clears everything: symboltable and variables.

Outputs: Boolean res;
clearClasses () Clear all class definitions from symboltable.

(NotY etlmplemented) Outputs: Boolean res;

clearLog () (NotYetimplemented) |Clear thelog. Outputs. Boolean res;

clearVariables () Clear all user defined variables. Outputs: Boolean res;
closePlots () (NotYetimplemented) |Closeall plot windows. Outputs: Boolean res;
getLog () (NotYetlmplemented) Return log as a string. Outputs: String log;

instantiateModel (className) ||nstantiate model, resultingin a .mof file of flattened Modelica
Inputs. TypeName className; OUtpULS. Boolean res;

list (className) Print class definition. Inputs. TypeName className;

Outputs: string classDef;
list() Print all loaded class definitions. Output: String classdefs;
listVariables() Print user defined variables. Outputs: VariableName res;
loadFile (fileName) Load models from file.

Inputs: String fileName OULPULS. Boolean res;
loadModel (className) Load the file corresponding to the class, using the Modelica class

name-to-file-name mapping to locate the file.
Inputs. TypeName className OULpULS. Boolean res;

plot (variables, options) Plots vars, which is a vector of variable names.

20

Inputs VariableName variables; String title;
Boolean legend; Boolean gridLines;
Real xrange[2] i.e. {xmin,xmax};
Real yrange[2] i.e. {ymin,ymax};

Outputs: Boolean res;

plot (var, options)

Plots variable with name var.

Inputs: variableName var; String title; Boolean
legend; Boolean gridLines;
Real xrange[2] i.e. {xmin,xmax};
Real yrange[2] i.e. {ymin,ymax};

Outputs: Boolean res;

plotParametric (varsl,
vars2, options)

Plot each pair of corresponding variables from the vectors of
variablesvarsi, vars2 asaparametric plot.

Inputs: variableName varsl[:]; VariableName
vars2[size(variablesl,1)]; String title; Boolean
legend; Boolean gridLines; Real rangel[2,2];

Outputs: Boolean res;

plotParametric (varl,
var2, options)

Plot the variable var2 against var1 asaparametric plot.
Inputs VariableName varl; VariableName var2;
String title; Boolean legend; Boolean gridLines;

Real range[2,2]; OUtpUtS. Boolean res;

plotVectors(vl, v2,
(??NotY etlmplemented)

options)

Plot vectorsvi and v2 asan x-y plot. Inputs: variableName
v1l; VariableName v2; OUutputs. Boolean res;

readMatrix (fileName,
matrixName)
(??NotY etlmplemented)

Read a matrix from afile given filename and matrixname.
Inputs: String fileName; String matrixName;
Outputs: Boolean matrix[:,:];

readMatrix (fileName,
matrixName, nRows, nColumns)
(??NotY etlmplemented)

Read amatrix from afile, given file name, matrix name, #rows
and #columns. Inputs: String fileName;

String matrixName; int nRows;
Outputs: Real res[nRows,nColumns] ;

int nColumns;

readMatrixSize (fileName,
matrixName)
(??NotY etlmplemented)

Read the matrix dimension from afile given a matrix name.
Inputs: String fileName; String matrixName;
Outputs: Integer sizes[2];

readSimulationResult (

fileName, variables, size)

Reads the simulation result for alist of variables and returns a
matrix of values (each column as a vector or values for avariable.)
Size of result isalso given asinput. Inputs: String fileName;
VariableName variables|[:];
Outputs: Real res[size(variables,1),size)];

Integer size;

readSimulationResultSize (
fileName)
(??NotY etlmplemented)

Read the size of the trgjectory vector from afile. Inputs: string
fileName; OULPULS. Integer size;

runScript (fileName)

Executes the script file given as argument.
Inputs. string fileName; OUtpUtS. Boolean res;

savelog (fileName)
(??NotY etlmplemented)

Savethelogto afile.
Inputs: String fileName; Outputs. Boolean res;

saveModel (fileName,
className) (NotY etlmplemented)

Save class definitionin afile. Inputs: sString fileName;
TypeName className OULPULS. Boolean res;

save (className)

Save the model (A1) into thefileit was loaded from.

21

Inputs TypeName className

saveTotalModel (fileName,
className)
(??NotY etlmplemented)

Save total class definition into file of aclass. Inputs: string
fileName; TypeName className OULpUtS. Boolean res;

simulate (className, options)

Simulate model, optionally setting simulation values.
|npuE;TypeName className; Real startTime;
Real stopTime; Integer numberOfIntervals;
Real outputInterval; String method;

Real tolerance; Real fixedStepSize;
Outputs: SimulationResult simRes;

system(fileName)

Execute system command. Inputs. string fileName; Outputs:
Integer res;

translateModel (className)
(??NotY etlmplemented)

Instantiate model, optimize equations, and generate code. | nputs:
TypeName className; OUtpUtS. SimulationObject res;

writeMatrix (fileName,
matrixName, matrix)
(??NotY etlmplemented)

Write matrix to file given a matrix name and a matrix.
|npuK§String fileName; String matrixName; Real
matrix[:,:]; OUtputs. Boolean res;

2.3.1 Examples

The following session in OpenModelicaillustrates the use of afew of the above-mentioned functions.

>> model test Real x; end test;

Ok
>> s:=1ist (test);
>> S
"model test

Real x;
equation

der (x) =x;
end test;
n
>> instantiateModel (test)
"fclass test
Real x;
equation

der (x) = X;
end test;
n
>> gimulate (test)
record

resultFile = "C:\OpenModelical.2.l\test res.plt"

end record

>> a:=1:10
{1,2,3,4,5,6,7,8,9,10}
>> a*2

{2,4,6,8,10,12,14,16,18,20}

>> clearVariables ()
true
>> list (test)
"model test
Real x;
equation
der (x) =X;
end test;

22

>> clear ()
true
>> list ()

{}
The common combination of a simulation followed by aplot:

> simulate (mycircuit, stopTime=10.0) ;
> plot ({R1.v});

2.4 Client-Server Untyped High Performance API for Model Query

The following API is primarily designed for clients calling the OpenModelica compiler/interpreter via the
Corba (or socket) interface to obtain information about and manipulate the model structure, but the
functions can also be invoked directly as user commands and/or scripting commands. The APl has the
following general properties:

e Untyped, no type checking is performed. The reason is high performance, low overhead per call.

e All commands are sent as strings in Modelica syntax; al results are returned as strings.

¢ Polymorphic typed commands. Commands are internally parsed into Modelica Abstract syntax, but
in away that does not enforce uniform typing (analogous to what is allowed for annotations). For
example, vectors such as{true, 3.14, "hello"} can be passed even though the elements have mixed
element types, here (Boolean, Real, String), which iscurrently not allowed in the Modelica type
system.

The API for interactive/incremental development consist of a set of Maodelica functions in the Interactive
module. Calls to these functions can be sent from clients to the interactive environment as plain text and
parsed using an expression parser for Modelica. Calls to this APl are parsed and routed from the Main
module to the Interactive module if the called function name is in the set of names in this API. All API
functions return strings, e.g. if the value true is returned, the text "true" will be sent back to the caller, but
without the string quotes.

e When afunction failsto perform its action the string " -1 is returned.
e All results from these functions are returned as strings (without string quotes).

The API can be used by human users when interactively building models, directly, or indirectly by using
scripts, but also by for instance a model editor who wants to interact with the symbol table for
adding/changing/removing models and components, etc.

(??Future extension: Also describe corresponding internal calls from within OpenMaodelica)

241 Definitions

An Argument no. n, e.g. a1 isthefirst argument, A2 is the second, etc.
<ident> Identifier, e.g. A or Modelica.

<strings Modelicastring, e.g. "Nisse" Or "foo"

<exprs Arbitrary Modelica expression..

<cref> Classreference, i.e. the name of aclass, e.g. Resistor.

242 Examples of Calls

Callsfulfill the normal Modelicafunction call syntax. For example:

saveModel ("MyResistorFile.mo",MyResistor)

23

will save the model MyResistor into thefile "MyResistorFile.mo".
For creating new models it is most practical to send a model declaration to the API, since the APl aso
accepts Modelica declarations and Modelica expressions. For example, sending:

model Foo end Foo;

will create an empty model named Foo, whereas sending:

connector Port end Port;
will create anew empty connector class named Port.

Many more APl example calls can be found in the OMNotebook file Model QueryAPlexamples.onb in the
OpenModelica testmodel s directory.

2.4.3 Untyped API Functions for Model Query and Manipulation

The following are brief descriptions of the untyped APl functions available in the OpenModelica
environment for obtaining information about models and/or manipulate models. API calls are decoded by
evaluateGraphicalApi and evaluateGraphicalApiz2 in the Interactive package. Results from a call
are returned as as a text string (without the string delimiters »). The functions in the typed API (Section
2.3) are handled by the Ceval package.

Executable example calls to these functions are available in the file ModelQueryAPIexample.onb in
the OpenM odelica testmodels directory.

Additional, more extensive documentation with examples, including some functions not mentioned
below, is available in the separate file OMC_API-HowTo.pdf.

--- Source Files ---

getSourceFile (Al<string>) Gets the source file of the class given as argument (A1).
setSourceFile (Al<string>, Associates the class given asfirst argument (A1) to a source
A2<strings>)

file given as second argument (A2)

--- Environment Variables ---

getEnvironmentVar (Al<string>) Retrieves an evironment variable with the specified name.

setEnvironmentVar (Al<string>, Sets the environment variable with the specified name (A1) to

A2<string>) agiven value (A2).

--- Classes and Models ---

loadFile (Al<string>) Loads all modelsin thefile. Also in typed API. Returns list of
names of top level classesin the loaded files.

loadFileInteractiveQualified Loads all modelsin thefile. Also in typed API. Returns list of

(Al<string>)

qualified names of top level classesin the loaded files.

loadFileInteractive (Al<string>) || oadsthe file given as argument into the compiler symbol
table. ?AWhat is the difference to loadFile??

loadModel (Al<cref>) Loads the model (A1) by looking up the correct fileto load in
$OPENMODELICALIBRARY. Loads all modelsin that file into
the symbol table.

saveModel (Al<string>,A2<cref>) | Sgvesthe model (A2) in afile given by astring (A1). This call
isasointyped API.

NOTE: ?? Not yet completely implemented.

save (Al<cref>) Saves the model (A1) into the file it was previously loaded
from. Thiscall isalsointyped API.

24

deleteClass (Al<cref>)

Deletes the class from the symbol table.

renameClass (Al<cref>, A2<cref>)

Renames an already existing class with from_name Al to
to_name (A2). The rename is performed recursively in all
already loaded models which reference the class AL

NOTE: ??The implementation is currently buggy/very slow.

--- Class Attributes ---

getElementsInfo (Al<cref>)

Retrieves the Info attribute of all elements within the given
class (A1). This contains information of the element type,
filename, isReadOnly, line information, name etc., in the form
of avector containing element descriptors on record
congtructor formrec(...), 9.: "{rec(attrl=valuel,
PR
) b

attr2=value2 rec(attrl=valuel,

attr2=value2

setClassComment (Al<cref>,A2<stri
ngs)

Setsthe class (A1) string comment (A2).

addClassAnnotation (Al<crefs,
annotate=<expr>)

Adds annotation given by A2(intheform annotate=
classmod (. ..)) tothemodel definition referenced by Al.
Should be used to add Icon Diagram and Documentation
annotations.

getIconAnnotation (Al<crefs)

Returns the Icon Annotation of the class named by A1l.

getDiagramAnnotation (Al<crefs>)

Returns the Diagram annotation of the class named by A 1.
NOTEL: Since the Diagram annotations can be found in base
classes a partial code instantiation is performed that flattens the
inheritance hierarchy in order to find all annotations.

NOTEZ2: Because of the partia flattening, the format returned
is not according the Modelica standard for Diagram
annotations.

getPackages (Al<cref>)

Returns the names of all Packages in a class/package named by
Alasaligt, eg.: {Electrical,Blocks,Mechanics,
Constants,Math, STunits}

getPackages ()

Returns the names of all package definitions in the global
scope.

getClassNames (Al<cref>)

Returns the names of all class defintionsin a class/package.

getClassNames ()

Returns the names of all class definitionsin the global scope.

getClassNamesForSimulation ()

Returns alist of al “open models’ in client that are candidates
for simulation.

setClassNamesForSimulation (Al<st
rings)

Set the list of all “open models’ in client that are candidates for
simulation. The string must be on format:
“{model1,model2,model 3}”

getClassAttributes (Al<cref>)

Returns all the possible class information in the following
form: rec(attrl=valuel, attr2=value2 ...)

getClassRestriction (Al<crefs)

Returns the kind of restricted class of <cref>, e.g. "model",
"connector", "function", "package", €tC

getClassInformation (Al<crefs)

Returns alist of the following information about the class A1:
{"restriction”,"comment","filename.mo" { bool ,bool ,bool} ,{"re
adonly|writable"int,int,int,int}}

--- Restricted Class Predicates

25

isPrimitive (Al<cref>)

Returns "true" if class is of primitive type, otherwise
"false".

isConnector (Al<cref>)

Returns "true" if classisaconnector, otherwise "false".

isModel (Al<cref>)

Returns "true if classisamodel, otherwise "falser.

isRecord (Al<cref>)

Returns "true if classisarecord, otherwise "false™.

isBlock (Al<cref>)

Returns "true if classisablock, otherwise "falser.

isType (Al<cref>)

Returns "truer if classisatype, otherwise "false".

isFunction (Al<crefs>)

Returns "true" if classisafunction, otherwise "falser.

isPackage (Al<cref>)

Returns "truer if classis apackage, otherwise "false.

isClass (Al<cref>)

Returns "true" if Alisaclass, otherwise "false".

isParameter (Al<cref>)

Returns "true" if Al is a parameter, otherwise "false".
NOTE: ??Not yet implemented.

isConstant (Al<cref>)

Returns "true" if Al is a constant, otherwise "false".
NOTE: ??Not yet implemented.

isProtected (Al<cref>)

Returns "truev if Al is protected, otherwise "false".
NOTE: ??Not yet implemented.

existClass (Al<cref)

Returns "true" if class exists in symbolTable, otherwise
"false".

--- Components ---

getComponents (Al<cref>)

Returns alist of the component declarations within class A1:
"{{Atype,varida, "commentA"}, {Btype, varidB, "com
mentB"}, {...}}"

setComponentProperties (Al<crefs>,
A2<cref>,

A3<Booleans>,

A4<Boolean>,

A5<Booleans>,

A6<Boolean>,

A7<Strings>,

A8<{Boolean, Boolean}>,
A9<String>

)

Sets the following properties of a component (A2) in a class
(AL).

- A3fina (true/false)

- A4 flow (true/false)

- A5 protected(true) or public(false)
- A6 replaceable (true/false)

- A7 variablity: "constant” Or "discrete" Or
"parameter" OF ""

- A8 dynamic_ref: {inner, outer} - two boolean values.

- A9 causality: "input" Or "output" Or ""

getComponentAnnotations (Al<cref>

)

Returnsalist { ...} of al annotations of all componentsin
A1, in the same order as the components, one annotation per
component.

getCrefInfo (Al<crefs>)

Gets the component reference file and position information.
Returnsalist: {file, readonly|writable, start
line, start column, end line, end column}

>> getCrefInfo (BouncingBall)
{c:/0OpenModelical.4.1/testmodels/BouncingBall.
mo,writable,1,1,20,17}

addComponent (Al<ident>,A2<cref>,
A3<crefs>,annotate=<expr>)

Adds a component with name (A1), type (A2), and class (A3)
as arguments. Optional annotations are given with the named

26

argument annotate.

deleteComponent (Al<ident>,
A2<cref>)

Deletes a component (A1) within aclass (A2).

updateComponent (Al<ident>,
A2<crefs>,
A3<crefs>,annotate=<expr>)

Updates an already existing component with name (A1), type
(A2), and class (A3) as arguments. Optional annotations are
given with the named argument annotate.

renameComponent (Al<crefs,
A2<idents>,
A3<ident>)

Renames an already existing component with name A2 defined
in aclass with name (A1), to the new name (A3). The rename
is performed recursively in all aready loaded models which
reference the component declared in class A2. NOTE: ?7The
implementation is currently buggy/very slow.

getNthComponentAnnotation (
Al<cref>,A2<int>)

Returns the flattened annotation record of the nth component
(A2) (thefirst is has no 1) within class‘component Al. Consists
of acomma separated string of 15 values, see Annotationsin
Section 2.4.4 below, eg "false, 10,30, ..."

getNthComponentModification (
Al<cref>,A2<int>)

Returns the modification of the nth component (A2) where the
first hasno 1) of class’‘component A1.

getComponentModifierValue (Al<cre
f>, A2<cref)

Returns the value of a component (e.g. variable, parameter,
constant, etc.) (A2) inaclass (Al).

setComponentModifierValue (Al<cre
f>, A2<crefs>,A3<exp>)

Sets the modfier value of acomponent (e.g. variable,
parameter, constant, etc.) (A2) in aclass (A1) to an expression
(unevaluated) in A3.

getComponentModifierNames (Al<cre
f>, A2<crefs>)

Retrieves the names of ?? all componentsin the class.

--- Inheritance ---

getInheritanceCount (Al<crefs)

Returns the number (as a string) of inherited classes of aclass.

getNthInheritedClass (Al<crefs>,
A2<int>)

Returns the type name of the nth inherited class of aclass. The
first class has number 1.

getExtendsModifierNames (Al<cref>

)

Return the modifier names of a modification on an extends
clause. For instance:

"model test extends A(pl=3,p2(z=3)); end
test;"
getExtendsModifierNames (test,A) => {pl,p2}
getExtendsModifierValue (Al<cref> .
) Return the submodifier value of an extends clause for

instance,
test;"

"model test extends A(pl=3,p2(z=3));end
getExtendsModifiervValue (test,A,pl) =>=3

--- Connections ---

getConnectionCount (Al<cref>)

Returns the number (as a string) of connections in the model.

getNthConnection (Al<crefs>,
A2<int>)

Returns the nth connection, as a comma separated pair of
connectors, e.g. "R1.n,R2.p". Thefirst has number 1.

getNthConnectionAnnotation (
Al<crefs>,A2<int>)

Returns the nth connection annotation as comma separated list
of values of aflattened record, see Annotationsin Section 2.4.4
below.

addConnection (Al<cref>,A2<cref>,
A3<cref>, annotate=<exprs>)

Adds connection connect (21, 22) to model a3, with
annotation given by the named argument annotate.

updateConnection (Al<crefs>,

Updates an already existing connection.

27

A2<cref>,A3<crefs>,
annotate=<exprs>)

deleteConnection (Al<crefs>,
A2<cref>,A3<cref>)

Deletes the connection connect (A1,A2) inclassgiven by a3.

--- Equations ---

addEquation (Al<crefs>, A2<expr>,
A3<expr>) (??NotY etl mplemented)

Adds the equation A2=23 to the model named by A1.

getEquationCount (Al<cref>)
(??NotY etlmplemented)

Returns the number of equations (as a string) in the model
named a1. (This includes connections)

getNthEquation (Al<cref>,A2<int>)
(??NotY etlmplemented)

Returns the nth (a2) equation of the model named by A1l. e.g.
"der (x)=-1" Or "connect (A.b,C.a)". Thefirst has
number 1.

deleteNthEquation (Al<cref>,
A2<int>) (??NotY etl mplemented)

Deletes the nth (a2) equation in the model named by a1. The
first has number 1.

--- Misc ---

getVersion ()

returnsthe OMC version, e.g. "1.4.2"

dumpXMLDAE (modelname[,asInSimula
tionCode=<Booleanx>]
[,filePrefix=<String>]

[, storeInTemp=<Booleans>]
[,addMathMLCode =<Booleans>])

This command dumps the mathematical representation of a
model using an XML representation, with optional parameters
Inputs. TypeName className;

Boolean asinSimulationCode; String filePrefix;

Boolean storelnTemp;

Boolean addMathMLCode;

Outputs: String xmlFile

In particular, asInsimulationCode defines where to stop in
the trandation process (before dumping the model), the other
options are relative to the file storage: filePrefix for
specifying a different name and storeInTemp to use the
temporary directory. The optional parameter addMathMLCode
gives the possibility to don't print the MathML code within the
xml file, to make it more readableUsage is trivia, just:
addMathMLCode=true/false (default valueis false).
For an example, See Section 2.5.5.

exportDAEtoMatlab (modelname)

Dumps the incidence matrix of model in a Matlab format. See
Section 2.5.6.

243.1 ERROR Handling

When an error occurs in any of the above functions, the string " -1 is returned.

2.4.4 Annotations

Annotations can occur for severa kinds of Modelica constructs.

2.4.4.1 Variable Annotations

Variable annotations (i.e., component annotations) are modifications of the following (flattened) Modelica

record:

28

record Placement
Boolean visible = true;
Real transformation.x=0;
Real transformation.y=0;
Real transformation.scale=1;
Real transformation.aspectRatio=1;
Boolean transformation.flipHorizontal=false;
Boolean transformation.flipVertical=false;
Real transformation.rotation=0;
Real iconTransformation.x=0;
Real iconTransformation.y=0;
Real iconTransformation.scale=1;
Real iconTransformation.aspectRatio=1;
Boolean iconTransformation.flipHorizontal=false;
Boolean iconTransformation.flipVertical=false;
Real iconTransformation.rotation=0;
end Placement;

2.4.4.2 Connection Annotations

Connection annotations are modifications of the following (flattened) Modelica record:

record Line
Real points[2][:];
Integer color([3]={0,0,0};
enumeration (None, Solid, Dash,Dot,DashDot,DashDotDot) pattern = Solid;
Real thickness=0.25;
enumeration (None,Open,Filled,Half) arrow[2] = {None, None};
Real arrowSize=3.0;
Boolean smooth=false;
end Line;

Thisisthe Flat record Icon, used for Icon layer annotations

record Icon
Real coordinateSystem.extent[2,2] = {{-10, -10}, {10, 10}});
GraphicItem[:] graphics;

end Icon;

The textual representation of this flat record is somewhat more complicated, since the graphics vector can
conceptually contain different subclasses, like Line, Text, Rectangle, €tc. To solve this, we will use
record constructor functions as the expressions of these. For instance, the following annotation:
annotation (
Icon (coordinateSystem={{-10,-10}, {10,10}},

graphics={Rectangle (extent={{-10,-10}, {10,10}}),
Text ({{-10,-10}, {10,10}}, textString="Icon")}));

will produce the following string representation of the flat record Icon:

{{{-10,10},{10,10}}, {Rectangle (true, {0,0,0},{0,0,0},
LinePattern.Solid,FillPattern.None, 0.25,BorderPattern.None,
{{-10,-10},{10,10}},0),Text ({{-10,-10},{10,10}}, textString="Icon") }}

The following is the flat record for the Diagram annotation:

record Diagram
Real coordinateSystem.extent[2,2] = {{-10, -10}, {10, 10}});
GraphicItem[:] graphics;

end Diagram;

The flat records string representation is identical to the flat record of the Tcon annotation.

2443 Flat records for Graphic Primitives

record Line
Boolean visible = true;
Real points[2,:];
Integer color([3] = {0,0,0};
LinePattern pattern = LinePattern.Solid;
Real thickness = 0.25;

Arrow arrow[2] = {Arrow.None, Arrow.None};
Real arrowSize = 3.0;
Boolean smooth = false;

end Line;

record Polygon
Boolean visible = true;
Integer lineColor([3]1={0,0,0};
Integer fillColor[31={0,0,0};
LinePattern pattern = LinePattern.Solid;
FillPattern fillPattern = FillPattern.None;
Real lineThickness = 0.25;
Real points|[2,:];
Boolean smooth = false;
end Polygon;

record Rectangle
Boolean visible=true;
Integer lineColor([3]={0,0,0};
Integer fillColor[3]={0,0,0};
LinePattern pattern = LinePattern.Solid;
FillPattern fillPattern = FillPattern.None;
Real lineThickness = 0.25;
BorderPattern borderPattern = BorderPattern.None;
Real extent[2,2];
Real radius;

end Rectangle;

record Ellipse
Boolean visible = true;
Integer lineColor([3]1={0,0,0};
Integer fillColor[31={0,0,0};
LinePattern pattern = LinePattern.Solid;
FillPattern fillPattern = FillPattern.None;
Real lineThickness = 0.25;
Real extent([2,2];
end Ellipse;

record Text
Boolean visible = true;
Integer lineColor([3]1={0,0,0};
Integer fillColor([3]={0,0,0};
LinePattern pattern = LinePattern.Solid;
FillPattern fillPattern = FillPattern.None;
Real lineThickness = 0.25;
Real extent[2,2];
String textString;
Real fontSize;
String fontName;
TextStyle textStylel[:];
end Text;

record BitMap
Boolean visible = true;
Real extent([2,2];
String fileName;
String imageSource;

end BitMap;

30

2.5 Discussion on Modelica Standardization of the Typed Command
API

An interactive function interface could be part of the Modelica specification or Rationale. In order to add
this, the different implementations (OpenModelica, Dymola, and others) need to agree on a common API.
This section presents some naming conventions and other APl design issues that need to be taken into
consideration when deciding on the standard API.

25.1 Naming conventions

Proposal: function names should begin with a Non-capita letters and have a Capital character for each new
word in the name, eg.

loadModel
openModelFile

25.2 Return type

There is a difference between the currently implementations. The OpenModelica untyped API returns
strings, "oK", "-1", "false", "true", &c., whereas the typed OpenModelica command APl and Dymola
returns Boolean values, e.g true Or false.

Proposal: All functions, not returning information, like for instance getModelName, should return a
Boolean value. (??Note: This is not the final solution since we aso need to handle failure indications for
functions returning information, which can be done better when exception handling becomes available).

25.3 Argument types

There is aso a difference between implementations regarding the type of the arguments of certain
functions. For instance, Dymola uses strings to denote model and variable references, while OpenModelica
uses model/variable references directly.
For example, 1loadModel ("Resistor") in Dymola, but 1oadModel (Resistor) in OpenModelica
One could also support both aternatives, since Modelica will probably have function overloading in the
near future.

254 Set of API Functions

The major issueis of course which subset of functions to include, and what they should do.

Below is a table of Dymola and OpenMoadelica functions merged together. The table also contains a
proposal for a possible standard.

<s> == string
<cr> == component reference
[l == list constructor, e.g. [<s>] == vector of strings
Dymola OpenModelica Description Proposal
list () listVariables () List all user-defined listVariables()
variables.
listfunctions () - List builtin function listFunctions ()
names and descriptions.

31

list ()

List al loaded class
definitions.

list ()

list (<crefs>)

List model definition of
<cref>,

list (<cref>) or
list (<string>)

classDirectory () cd () Return current currentDirectory ()
directory.

eraseClasses () clearClasses () Removes models. clearClasses ()

clear() clear () Removesal, including |clearAll ()
models and variables.

- clearVariables () Removes al user clearVariables ()
defined variables.

- clearClasses () Removes al class clearClasses()
definitions.

openModel (<string>)

loadFile (<strings>)

Load all definitions
fromfile.

loadFile (<string>)

<strings>, <string>)

openModelFile (loadModel (<crefs) Load filethat contains |loadModel (<crefs>),
<string>) model. }oadMode1(<string>
saveTotalModel (- Save total model saveTotalModel (<st

definition of amodel in
afile.

rings>,<crefs>) or
saveTotalModel (<st
ring>, <string>)

saveModel (<cref>,
<string>)

Save model in afile.

saveModel (<string>
,<cref>) or
saveModel (<string>
,<string>)

- createModel (<cref>) Create new empty createModel (<cref>
model.) or ,
createModel (<strin
9>)
eraseClasses (deleteModel (<cref>) Remove model(s) from deleteModel (<cref>
{<string>}) symbol table. or _
deleteModel (<strin
9>)
instantiateModel (instantiateClass (Perform code instantiateClass (<
<string> <cref>) instantiation of class. cref>) or
" |instantiateClass (<
strings)
255 Example of Exporting XML from a Model

The following is an example of using the function dumpXMLDAE to export an XML representation of a

model.

model Circuitl

parameter Real C(min=5e-07, max=2e-06)=1e-06;

parameter Real R1=50;
parameter Real R2=50;
parameter Real R3 (min=500,
input Real 10;

Real i1;

Real 1i3;

Real v1;

max=2000)=1000;

32

Real v2;
output Real v3;

equation
Cxder (vl)=1i0 - 1i1;
vl - v2=11*R1;
v2 - v3=11*R2;
C*der (v3)=11 - 1i3;
v3=R3*i3;

end Circuitl;

loadFile('../path to mo file/Circuitl.mo');
dumpXMLDAE (Circuitl) ;

will produce the following result:

{"<?xml version="1.0" encoding="UTF-8"?>
<dae xmlns:pl="http://www.w3.0rg/1998/Math/MathML" xmlns:xlink="http://www.w3.0rg/1999/xlink"
xmins:xsi="http://www.w3.0rg/2001/X M L Schema-instance"
xsi:noNamespaceSchemal ocation="http://home.dei.polimi.it/donida/Projects/AutoEdit/l mages/DAE.xsd" >
<variables dimension="11">
<orderedVariables dimension="6">
<variablesList>
<variableid="1" name="v3" variability="continuousState" direction="output"
type="Real" index="-1" origName="v3" fixed="true" flow="NonConnector">
<classesNames> <element>Circuitl </element> </classesNames>
</variable>
<variable id="2" name="v2" variability="continuous" direction="none"
type="Red" index="-1" origName="v2" fixed="false" flow="NonConnector">
<classesNames> <element>Circuitl </element> </classesNames>
</variable>
<variableid="3" name="v1" variability="continuousState" direction="none"
type="Red" index="-1" origName="v1" fixed="true" flow="NonConnector">
<classesNames> <element>Circuitl </element> </classesNames>
</variable>
<variableid="4" name="i3" variability="continuous" direction="none"
type="Real" index="-1" origName="i3" fixed="false" flow="NonConnector">
<classesNames> <element>Circuitl </element> </classesNames>
</variable>
<variableid="5" name="i1" variability="continuous" direction="none"
type="Read" index="-1" origName="i1" fixed="false" flow="NonConnector">
<classesNames> <element>Circuitl </element> </classesNames>
</variable>
<variableid="6" name="$dummy" variability="continuousState" direction="none"
type="Real" index="-1" origName="$dummy" fixed="true" flow="NonConnector">
<attributesVaues>
<fixed string="true">
<MathML> <math xmins="http://www.w3.0rg/1998/Math/MathML"> <apply> <true/> </apply> </math> </MathML >
</fixed>
</attributesVaues>
</variable>
</variablesList>
</orderedV ariables>
<knownV ariables dimension="5">
<variablesList>
<variableid="1" name="i0" variability="continuous" direction="input"
type="Red" index="-1" origName="i0" fixed="false" flow="NonConnector">
<classesNames> <element>Circuitl </element> </classesNames>
</variable>
<variableid="2" name="R3" variability="parameter" direction="none"
type="Red" index="-1" origName="R3" fixed="true" flow="NonConnector">
<bindV alueExpression>
<bindExpression string="1000">
<MathML> <math xmins="http://www.w3.0rg/1998/Math/MathML"> <cn type="integer">1000 </cn> </math> </MathML>
</bindExpression>
</bindV alueExpression>
<classesNames> <element>Circuitl </element> </classesNames>
<attributesValues>
<minVaue string="500.0">
<MathML> <math xmlns="http://www.w3.0rg/1998/Math/MathML"> <cn type="real">500.0 </cn> </math> </MathML>

33

</minValue>
<maxV alue string="2000.0">
<MathML> <math xmlns="http://www.w3.0rg/1998/Math/MathML"> <cn type="real">2000.0 </cn> </math> </MathM L >
</maxVaue>
</attributesValues>
</variable>
<variableid="3" name="R2" variability="parameter" direction="none"
type="Red" index="-1" origName="R2" fixed="true" flow="NonConnector">
<bindV a ueExpression>
<bindExpression string="50">
<MathML> <math xmlns="http://www.w3.0rg/1998/Math/MathML"> <cn type="integer">50 </cn> </math> </MathM L >
</bindExpression>
</bindV alueExpression>
<classesNames> <element>Circuitl </element> </classesNames>
</variable>
<variable id="4" name="R1" variability="parameter" direction="none"
type="Red" index="-1" origName="R1" fixed="true" flow="NonConnector">
<bindV a ueExpression>
<bindExpression string="50">
<MathML> <math xmlns="http://www.w3.0rg/1998/Math/MathML"> <cn type="integer">50 </cn> </math> </MathM L >
</bindExpression>
</bindV alueExpression>
<classesNames> <element>Circuitl </element> </classesNames>
</variable>
<variableid="5" name="C" variability="parameter" direction="none"
type="Red" index="-1" origName="C" fixed="true" flow="NonConnector">
<bindV a ueExpression>
<bindExpression string="1e-06">
<MathML> <math xmins="http://www.w3.0rg/1998/Math/MathML"> <cn type="real">1e-06 </cn> </math> </MathML>
</bindExpression>
</bindV alueExpression>
<classesNames> <element>Circuitl </element> </classesNames>
<attributesValues>
<minVaue string="5e-07">
<MathML> <math xmins="http://www.w3.0rg/1998/Math/MathML"> <cn type="real">5e-07 </cn> </math> </MathML >
</minValue>
<maxV alue string="2e-06">
<MathML> <math xmins="http://www.w3.0rg/1998/Math/MathML"> <cn type="real">2e-06 </cn> </math> </MathML>
</maxVaue>
</attributesVaues>
</variable>
</variablesList>
</knownV ariables>
</variables>
<equations dimension="6">
<equation id="1">
C* der(vl) =i0-i1 <MathML>
<math xmIns="http://www.w3.0rg/1998/Math/MathML">
<apply> <equivalent/>
<apply>
<times/> <ci>C </ci> <apply> <diff/> <ci>v1 </ci> </apply> </apply> <apply> <minus/> <ci>i0 </ci> <ci>il </ci>
</apply>
</apply>
</math>
</MathML>
</equation>
<equation id="2">
vl-v2=i1*Rl <MahML>
<math xmlns="http://www.w3.0rg/1998/Math/MathML">
<apply> <equivaent/>
<apply> <minug/> <ci>v1 </ci> <ci>v2 </ci> </apply>
<apply> <times/> <ci>i1 </ci> <ci>R1 </ci> </apply>
</apply>
</math>
</MahML>
</equation>
<equation id="3">
v2-v3=il*R2 <MahML>
<math xmlns="http://www.w3.0rg/1998/Math/MathML">
<apply> <equivalent/>
<apply> <minusg/> <ci>v2 </ci> <ci>v3 </ci> </apply>
<apply> <times/> <ci>i1 </ci> <ci>R2 </ci> </apply>
</apply>

</math>
</MahML>
</equation>
<equation id="4">
C* der(v3)=il1-i3 <MathML> <math xmlns="http://www.w3.0rg/1998/Math/MathML">
<apply> <equivaent/>
<apply> <times/> <ci>C </ci> <apply> <diff/> <ci>v3 </ci> </apply> </apply>
<apply> <minug/> <ci>il </ci> <ci>i3 </ci> </apply>
</apply>
</math>
</MahML>
</equation>
<equation id="5">
v3=R3*i3 <MahML> <math xmlns="http://www.w3.0rg/1998/Math/MathML">
<apply> <equivalent/> <ci>v3 </ci> <apply> <times/> <ci>R3 </ci> <ci>i3 </ci> </apply> </apply>
</math>
</MahML>
</equation>
<equation id="6">
der($dummy) = sin(time * 628.318530717) <MathML> <math xmIns="http://www.w3.0rg/1998/Math/MathML">
<apply> <equivalent/> <apply> <diff/> <ci>$dummy </ci> </apply>
<apply> <sin/> <apply> <times/> <ci>time </ci> <cn type="real">628.318530717 </cn> </apply> </apply> </apply>
</math>
</MahML>
</equation>
</equations>
</dae>","The model has been dumped to xml file: Circuitl.xml"}

2.5.6 Example of Exporting Matlab from a Model

The command export dumps an XML representation of amodel, according to several optional parameters.

exportDAEtoMatlab (modelname) ;

This command dumps the mathematical representation of amodel using a Matlab representation. Example:

$ cat daequery.mos

loadFile ("BouncingBall.mo") ;
exportDAEtoMatlab (BouncingBall) ;
readFile ("BouncingBall imatrix.m");

$ omc daequery.mos
true
"The equation system was dumped to Matlab file:BouncingBall imatrix.m"

o\°

)

% number of rows: 6

M={[3,-6],[1,{'if', 'true','==' {3},{},}1.,[2,{ 'if', 'edge(impact)
{3},{s},}1,14,21,1[5,{'if", 'true','==' {4},{},}1,1[6,-51};

VL = {'foo','v_new', 'impact', 'flying','v','h'};

EqgStr = {'impact = h <= 0.0;','foo = if impact then 1 else 2;', 'when {h <= 0.0 AND
v <= 0.0,impact} then v_new = if edge(impact) then (-e) * pre(v) else 0.0; end
when; ', 'when {h <= 0.0 AND v <= 0.0, impact} then flying = v_new > 0.0; end
when;','der(v) = if flying then -g else 0.0;',6 'der(h) = v;'};

01dEqgStr={'fclass BouncingBall', 'parameter Real e = 0.7 "coefficient of

restitution";', 'parameter Real g = 9.81 "gravity acceleration";',6 'Real h(start =
1.0) "height of ball";', 'Real v "velocity of ball";',6 'Boolean flying(start = true)
"true, if ball is flying";',6 'Boolean impact;',6 'Real v _new;', 'Integer
foo;','equation',' impact = h <= 0.0;',' foo = if impact then 1 else 2;',"'
der(v) = if flying then -g else 0.0;',' der(h) = v;',' when {h <= 0.0 AND Vv <=
0.0,impact} then',' v new = if edge(impact) then (-e) * pre(v) else 0.0;','
flying = v.new > 0.0;',' reinit(v,v new);',' end when;', 'end

BouncingBall;',''};"

Chapter 3

Detailed Overview of OpenModelica Packages

This chapter gives overviews of al packages in the OpenModelica compiler/interpreter and server
functionality, as well as the detailed interconnection structure between the modules.

3.1 Detailed Interconnection Structure of Compiler Packages

A fairly detailed view of the interconnection structure, i.e., the main data flows and and dependencies
between the modules in the OpenModelica compiler, is depicted in Figure 3-1 below. (??Note that thereis a
Word bug that arbitrarily changes the width of the arrows)

: Mod Connect DAE
Main - Y T [one Flat Modelica
x "= TypesMod | SCode.Mod Exp.Componentref
[BN DAEEXT
'R A)
IR Prefix Lookup 3
prefix.Prefix | | Exp.ident . t S)éodaCIaS Derive VarTransform
nv, name) .
ClassL oader l ExpExp | | Exp.Exp Y
—1 | DAE DAE,
¥ I DAE: Equations ¥ y substlist
.mo Absyn SCode Algorithms
4 Parse ,| SCode o Inst DAELow
/explode
t DAE: Fuhctions
DAELow.DAELow
ClassInf.Event| Classinf.State (Exp.Exp, i !
I SCode.Exp Types.Type) Exp.Exp
R X l I | CodeGen |« SimCodeGen
Classnf . ValuesValue
Static
Data Type l =
. c
Modules: EXp.Exp Patternm N code
(Env, name) v t Utility
Absyn SCode Modules:
¥ » Ceval
DFA
Types DAE Dump Debug
M etaUtil Util M odUtil
Algorithm Exp Builtin
Print System RTOpts

Figure 3-1. Module connections and data flows in the OpenModelica compiler.

One can see that there are three main kinds of modules:

36

Function modules that perform a specified function, e.g. Lookup, code instantiation, etc.

Data type modules that contain declarations of certain data types, e.g. Absyn that declares the
abstract syntax.

Utility modules that contain certain utility functions that can be called from any module, e.g. the
Util module with list processing funtions.

Note that this functionality classification is not 100% clearcut, since certain modules performs several
functions. For example, the SCode module primarily defines the lower-level SCode tree structure, but also
transforms Absyn into SCode. The DAE module defines the DAE equation representation, but also has a
few routines to emit equations viathe Dump module.

We

3.2

have the following approximate description:
The Main program calls a number of modules, including the parser (Parse), SCode, etc.

The parser generates abstract syntax (Absyn) which is converted to the simplified (SCode)
intermediate form.

The code instantiation module (Inst) is the most complex module, and calls many other modules. It
calls Lookup to find a name in an environment, calls Prefix for analyzing prefixes in qualified
variable designators (components), calls Mod for modifier analysis and Connect for connect
eguation analys. It also generates the DAE equation representation which is simplified by DAELow
and fed to the SimCodeGen code generator for generating equation-based simulation code, or
directly to CodeGen for compiling Modelica functions into C functions

The Ceval module performs compile-time or interactive expression evaluation and returns values.
The Static module performs static semantics and type checking.

The DAELow module performs BLT sorting and index reduction. The DAE module internally uses
Exp.Exp, Types.Type and Algorithm.Algorithm; the SCode module internally uses Absyn

The Vartransform module called from DAEL ow performs variable substitution during the symbolic
transformation phase (BLT and index reduction).

The Patternm module performs compilation of pattern match expressions in the MetaModelica
language extension, calling the DFA and MetaUtil modules.

OpenModelica Source Code Directory Structure

The following is a short summary of the directory structure of the OpenMaodelica compiler and interactive
subsystem.

3.2.1

OpenModelica/Compiler/

Contains all MetaModelica files of the compiler, listed in Section ??.

3.2.2

OpenModelica/Compiler/runtime

This directory contains runtime modules, both for the compiler and for interactive system and
communication needs. Mostly writtenin C.

rtops.c Accessing compiler options.

printimpl.c Print routines, e.g. for debug tracing.

socketimpl.c Phased out. Should not be used. Socket communication between clients and the
OpenModelica main program.

corbaimpl.cpp Corba communication between clients and the OpenModelica main program.

ptolemyio.cpp 10 routines from the Ptolemy system to store simulation data for plotting, etc.

Open Source Modelica System Documentation 37

systemimpl.c Operating system calls.
daeext .cpp C++ routines for external DAE bit vector operations, etc.

3.2.3 OpenModelicaltestsuite

This directory contains the Modelica testsuite consisting two subdirectories mofiles and mosfiles. The
mofiles directory contains more than 200 test models. The mosfiles directory contains afew Modelica
script files consisting of commands according to the general command API.

3.2.4 OpenModelica/OMShell
Files for the OpenModelicainteractive shell, called omshel1 for OpenModelica Shell.

3.25 OpenModelica/c_runtime — OpenModelica Run-time Libraries

This directory contains files for the Modelica runtime environment. The runtime contains a number of C
files, for which object code versions are are packaged in of two libraries, 1ibc_runtime.a and
libsim.a. We group the C files under the respective library, even though the files occur directly under the
c_runtime directory.

3.25.1 libc_runtime.a

The 1ibc runtime is used for executing Modelica functions that has been generated C code for. It
contains the following files.

boolean array.* How arrays of booleans are represented in C.
integer array.* How arrays of integers are represented in C.
real array.* How arrays of reals are represented in C.
string array.* How arrays of strings are represented in C.
index spec.c Keep track of dimensionsizes of arrays.
memory pool.c Memory alocation for local variables.

read write.* Reading and writing of datato file.
utility.c Utility functions

3.25.2 libsim.a

Thelibrary 1ibsim.a isthe runtime library for simulations, it contains solvers and amain function for the
simulation. The following files are included:

simulation runtime.* Includesthemain function, solver wrappers,etc.

daux.f Auxiliary Fortran functions.

ddasrt.f DDASRT solver.

ddassl.f DASSL solver.

dlamch. f Determine machine parameters for solvers.
dlinpk.f Gaussian elimination routines, used by solvers.

lsame. f LAPACK axuiliary routine LSAME.
Non-linear solver:

hybrdl.f Non-linear solver with approximate jacobian.
hybrj.f Non-linear solver with analythical jacobian.- aternative for non-linear solver.

38

fdjacl.f
enorm. £
dpmpar.f
dogleg.f

Helper routines
Helper routines.
Helper routines
Helper routines

3.3 Short Overview of Compiler Modules

The following is a list of the OpenModelica compiler modules with a very short description of their
functionality. Chapter 3 describes these modulesin more detail.

??Note: Some new modulesin version 1.4.5 are not yet listed and described here and in Chapter 3.

Absyn
Algorithm
Builtin
Cevd
ClassInf
ClassL oader
Codegen
Connect
Corba
DAE
DAEEXT
DAELow
Debug
Derive
DFA
Dump
DumpGraphviz
Env

Exp
Graphviz
Inst
Interactive

L ookup
Main
MetaUtil
Mod
ModSim
ModuUtil
Parse
Patternm
Prefix
Print
RTOpts

Abstract Syntax

Data Types and Functions for Algorithm Sections
Builtin Types and Variables

Evaluation/interpretation of Expressions.

Inference and check of classrestrictions for restricted classes.
Loading of Classes from $SOPENMODELICALIBRARY
Generate C Code from functionsin DAE representation.
Connection Set Management

Modelica Compiler Corba Communication Module
DAE Equation Management and Output

External Utility Functions for DAE Management

Lower Level DAE Using Sparse Matrisesfor BLT
Trace Printing Used for Debugging

Differentiation of Equations from DAELow
A deterministic finite automata (DFA) used by the pattern match algorithm in Patternm.
Abstract Syntax Unparsing/Printing

Dump Info for Graph visualization of AST

Environment Management
Typed Expressions after Static Analysis /* updated)
Graph Visualization from Textual Representation

Code Instantiation/Elaboration of Modelica Models

Model management and expression evaluation — the function Interactive.evaluate. Keeps
interactive symbol tables. Contains Graphic Model Editor API.

Lookup of Classes, Variables, etc.

The Main Program. Calls Interactive, the Parser, the Compiler, etc.
MetaModelica Related Utility Functions

Modification Handling

* Depreciated, not used). Previously communication for Simulation, Plotting, etc.
Modelica Related Utility Functions

Parse Modelica or Commands into Abstract Syntax

The MetaM odelica pattern match compilation algorithm.

Handling Prefixesin Variable Names

Buffered Printing to Files and Error Message Printing

Run-time Command Line Options

Open Source Modelica System Documentation 39

SCode Simple Lower Level Intermediate Code Representation.

SimCodegen Generate simulation code for solver from equations and algorithm sectionsin DAE.
Socket (Partly Depreciated) OpenModelica Socket Communication Module

Static Static Semantic Analysis of Expressions

System System Calls and Utility Functions

TaskGraph Building Task Graphs from Expressions and Systems of Equations. Optional module.
TaskGraphExt External Representation of Task Graphs. Optiona module.

Types Representation of Types and Type System Info
Util General Utility Functions
Values Representation of Evaluated Expression Vaues

VarTransform Binary Tree Representation of Variable Transformations
XMLDump Dump the DAE representation of amodel in XML format
DAEQuery Dump the incidence matrix of amodel in Matlab format

3.4 Descriptions of OpenModelica Compiler Modules

The following are more detailed descriptions of the OpenM odelica modules.

3.4.1 Absyn — Abstract Syntax

This module defines the abstract syntax representation for Modelicain MetaModelica. It primarily contains
datatypes for constructing the abstract syntax tree (AST), functions for building and altering AST nodes
and afew functions for printing the AST:

e Abstract Syntax Tree (Close to Moddlica)
— Complete Modelica 2.2
— Including annotations and comments
e Primary AST for e.g. the Interactive module
— Model editor related representations (must use annotations)
e Functions
— A few smal functions, only working on Absyn types, e.g.:
* pathToCref (Path) => ComponentRef
. joinPaths (Path, Path) => (Path)
. etc.

The constructors defined by the Absyn module are primarily used by the walker
(Compiler/absyn builder/walker.g) whichtakesan ANTLR interna syntax tree and convertsit into
an MetaModelica abstract syntax tree. When the AST has been built, it is normally used by the SCode
module in order to build the scode representation. It is also possible to send the AST to the unparser
(Dump) in order to print it.

For details regarding the abstract syntax tree, check out the grammar in the Modelica language
specification.

The following are the types and datatypes that are used to build the AST:

An identifier, for example a variable name:
type Ident = String;

Info attribute type.

The 1nfo attribute type is not needed to represent Modelica language constructs or for the semantics.
Instead, Info contains various pieces of information needed by tools for debugging and browsing support.

uniontype Info
"Modextension: Various pieces of information needed for debugging and browsing"
record INFO
String fileName "fileName where the class is defined in"
Boolean isReadOnly "isReadOnly : (true|false). Should be true for libraries"
Integer lineNumberStart;
Integer columnNumberStart;
Integer lineNumberEnd;
Integer columnNumberEnd;
end INFO;
end Info;

Programs, the top level construct:

A program is simply a list of class definitions declared at top level in the source file, combined with a
within clause. that indicates the hierarchical position of the program.

Nodes such as BEGIN DEFINITION and END DEFINITION can be used for representing packages and
classes that are entered piecewise, e.g., first entering the package head (as BEGIN DEFINITION), then the
contained definitions, then an end package repesented as END DEFINITION.

uniontype Program
record PROGRAM
list<Class> classes "List of classes"

Within within "Within clause™
end PROGRAM;

record BEGIN DEFINITION

Path path "path for split definitions"
Restriction restriction "Class restriction"
Boolean partial "true if partial"
Boolean encapsulated_ "true if encapsulated"

end BEGIN DEFINITION;

record END DEFINITION
Ident name "name for split definitions"
end END DEFINITION;

record COMP_DEFINITION
ElementSpec element "element for split definitions"
Option<Path> insertInto "insert into, Default: NONE"
end COMP_DEFINITION;

record IMPORT DEFINITION
ElementSpec importElementFor "For split definitions"
Option<Path> insertInto "Insert into, Default: NONE" ;
end IMPORT DEFINITION;

end Program;

Within Clauses:

uniontype Within
record WITHIN
Path path;
end WITHIN;

record TOP end TOP;

end Within;

Open Source Modelica System Documentation 41

Classes:

A class definition consists of a name, a flag to indicate if this class is declared as partial, the declared
classrestriction, and the body of the declaration.
uniontype Class

record CLASS
Ident name;

Boolean partial "true if partial"

Boolean final "true if final"

Boolean encapsulated "true if encapsulated"

Restriction restricion "Restriction"

ClassDef body;

Info info "Information: FileName the class is defined in +

isReadOnly bool + start line no + start column no +
end line no + end column no";
end CLASS;

end Class;

ClassDef:

The classDef type contains the definition part of a class declaration. The definition is either explicit, with
a list of parts (public, protected, equation, and algorithm), or it is a definition derived from
another class or an enumeration type.

For a derived type, the type contains the name of the derived class and an optional array dimension
and alist of modifications.

uniontype ClassDef
record PARTS
list<ClassPart> classParts;
Option<Strings comment ;
end PARTS;

record DERIVED
TypeSpec typeSpec "typeSpec specification includes array dimensions";
ElementAttributes attributes ;
list<ElementArg> arguments;
Option<Comment > comment ;
end DERIVED;

record ENUMERATION
EnumDef enumLiterals;
Option<Comment> comment;

end ENUMERATION;

record OVERLOAD
list<Paths> functionNames;
Option<Comment> comment;

end OVERLOAD;

record CLASS_EXTENDS

Ident name "class to extend" ;
list<ElementArg> arguments;
Option<Strings comment ;

list<ClassPart> parts;
end CLASS EXTENDS;

record PDER

Path functionName;
list<Ident> wvars '"derived variablesg"
end PDER;

end ClassDef;

42

EnumDef:

The definition of an enumeration is either alist of literals or a colon, :, which defines a supertype of all
enumerations.

uniontype EnumDef
record ENUMLITERALS
list<EnumLiteral> enumLiterals "enumLiterals"
end ENUMLITERALS;

record ENUM_COLON end ENUM_COLON;

end EnumDef;

EnumLiteral:

An enumeration type contains a list of EnumLiteral, which is a name in an enumeration and an optional
comment.

uniontype EnumLiteral

record ENUMLITERAL
Ident literal
Option<Comment> comment
end ENUMLITERAL;

end EnumLiteral;
ClassPart:

A class definition contains several parts. There are public and protected component declarations, type
definitions and extends-clauses, collectively called elements. There are also equation sections and
algorithm sections. The EXTERNAL part is used only by functions which can be declared as external C or
FORTRAN functions.

uniontype ClassPart

record PUBLIC
list<ElementItem> contents;
end PUBLIC;

record PROTECTED
list<ElementItem> contents;
end PROTECTED;

record EQUATIONS
list<EquationItem> contents;
end EQUATIONS;

record INITIALEQUATIONS
list<EquationItem> contents;
end INITIALEQUATIONS;

record ALGORITHMS
list<AlgorithmItem> contents;
end ALGORITHMS;

record INITIALALGORITHMS
list<AlgorithmItem> contents;
end INITIALALGORITHMS;

record EXTERNAL
ExternalDecl externalDecl;

Open Source Modelica System Documentation 43

Option<Annotation> annotation ;
end EXTERNAL;

end ClassPart;

Elementltem:

An element item is either an element or an annotation
uniontype ElementItem

record ELEMENTITEM
Element element;
end ELEMENTITEM;

record ANNOTATIONITEM
Annotation annotation_ ;
end ANNOTATIONITEM;

end ElementItem;

Element:

The basic el ement type in Modelica.
uniontype Element

record ELEMENT
Boolean final_ ;
Option<RedeclareKeywords> redeclareKeywords "i.e., replaceable or redeclare"
InnerOuter innerOuter " inner / outer"
Ident name;
ElementSpec specification " Actual element specification" ;
Info info "The File name the class is defined in + line no + column no"

Option<ConstrainClass> constrainClass "only valid for classdef and component";
end ELEMENT;

record TEXT
Option<Ident> optName " optional name of text, e.g. model with syntax error.
We need the name to be able to browse it..."

1

String string;
Info info;
end TEXT;

end Element;

Constraining type:

Constraining type (i.e., not inheritance), specified using the extends keyword.
uniontype ConstrainClass

record CONSTRAINCLASS

ElementSpec elementSpec "must be extends"
Option<Comment> comment;
end CONSTRAINCLASS;

end ConstrainClass;

ElementSpec:

An element is something that occurs in a public or protected section in a class definition. There is one
congtructor in the ElementSpec type for each possible element type. There are class definitions
(cLASSDEF), extends clauses (EXxTENDS) and component declarations (COMPONENTS).

As an example, if the element extends TwoPin; appearsin the source, it is represented in the AST as
EXTENDS (IDENT ("TwoPin"),{}).

uniontype ElementSpec

record CLASSDEF
Boolean replaceable "true if replaceable";
Class class_;

end CLASSDEF;

record EXTENDS
Path path;
list<ElementArg> elementArg;
end EXTENDS;

record IMPORT
Import import ;
Option<Comment> comment;
end IMPORT;

record COMPONENTS
ElementAttributes attributes;
Path typeName;
list<ComponentItem> components;

end COMPONENTS ;

end ElementSpec;

InnerOuter:

One of the keywords inner or outer or the combination inner outer can be given to reference an inner,
outer or inner outer component. Thus there are four disjoint possibilities.

uniontype InnerOuter

record INNER end INNER;

record OUTER end OUTER;

record INNEROUTER end INNEROUTER;
record UNSPECIFIED end UNSPECIFIED;

end InnerQOuter;

Import:
Import statements of different kinds.
uniontype Import

record NAMED IMPORT
Ident name "name"
Path path "path"

end NAMED IMPORT;

record QUAL IMPORT
Path path "path"
end QUAL IMPORT;

record UNQUAL IMPORT

Open Source Modelica System Documentation 45

Path path "path" ;
end UNQUAL IMPORT;

end Import;

Componentltem:

Coallection of component and an optional comment.
uniontype ComponentItem

record COMPONENTITEM

Component component ;
Option<ComponentCondition> condition;
Option<Comment > comment ;

end COMPONENTITEM;

end ComponentItem;

ComponentCondition:

A Componentltem can have a condition that must be fulfilled if the component should be instantiated.

type ComponentCondition = Exp;

Component:

A component represents some kind of Modelica entity (object or variable). Note that several component
declarations can be grouped together in one ElementSpec by writing them in the same declaration in the
source. However, this type contains the information specific to one component.

uniontype Component

record COMPONENT
Ident name "component name"
ArrayDim arrayDim "Array dimensions, 1if any" ;
Option<Modification> modification "Optional modification" ;
end COMPONENT;

end Component;

Equationltem:
uniontype EquationItem

record EQUATIONITEM
Equation equation_;
Option<Comment> comment;
end EQUATIONITEM;

record EQUATIONITEMANN
Annotation annotation ;

end EQUATIONITEMANN;

end EquationItem;

Algorithmitem:

Info specific for an algorithm item.

46

uniontype AlgorithmItem

record ALGORITHMITEM
Algorithm algorithm_;
Option<Comment> comment;
end ALGORITHMITEM;

record ALGORITHMITEMANN
Annotation annotation ;

end ALGORITHMITEMANN;

end AlgorithmItem;

Equation:

Information on one (kind) of equation, different constructors for different kinds of equations
uniontype Equation

record EQ IF

Exp ifExp "Conditional expression"

list<EquationItem> equationTrueltems "true branch"

list<tuple<Exp, list<EquationItem>>> elseIfBranches;

list<EquationItem> equationElseItems "Standard 2-side egn"
end EQ IF;

record EQ EQUALS

Exp leftSide;

Exp rightSide "rightSide Connect egn"
end EQ EQUALS;

record EQ CONNECT
ComponentRef connectorl;
ComponentRef connector2;
end EQ CONNECT;

record EQ FOR

Ident forVariable;

Exp forExp;

list<EquationItem> forEquations;
end EQ FOR;

record EQ WHEN E

Exp whenExp;

list<EquationItem> whenEquations;

list<tuple<Exp, list<EquationItem>>> elseWhenEquations;
end EQ WHEN E;

record EQ NORETCALL

Ident functionName;

FunctionArgs functionArgs "fcalls without return value"
end EQ NORETCALL;

end Equation;

Algorithm:

The Algorithm type describes one algorithm statement in an algorithm section. It does not describe a
whole algorithm. The reason thistype is named like thisis that the name of the grammar rule for algorithm
statementsisalgorithm.

uniontype Algorithm

Open Source Modelica System Documentation 47

record ALG ASSIGN
ComponentRef assignComponent;
Exp value;

end ALG ASSIGN;

record ALG TUPLE ASSIGN
Exp tuple_ ;
Exp value;

end ALG TUPLE ASSIGN;

record ALG_IF
Exp ifExp;
list<AlgorithmItem> trueBranch;
list<tuple<Exp, list<AlgorithmItem>>> elseIfAlgorithmBranch;
list<AlgorithmItem> elseBranch;
end ALG IF;

record ALG FOR
Ident forVariable;
Exp forStmt;
list<AlgorithmItem> forBody;
end ALG FOR;

record ALG WHILE
Exp whileStmt;
list<AlgorithmItem> whileBody;
end ALG WHILE;

record ALG WHEN A

Exp whenStmt;

list<AlgorithmItem> whenBody;

list<tuple<Exp, list<AlgorithmItem>>> elseWhenAlgorithmBranch;
end ALG WHEN A;

record ALG NORETCALL

ComponentRef functionCall;

FunctionArgs functionArgs " general fcalls without return value"
end ALG NORETCALL;

end Algorithm;

Modifications:

Modifications are described by the Modification type. There are two forms of modifications:
redeclarations and component modifications.

uniontype Modification

record CLASSMOD
list<ElementArg> elementArgLst;
Option<Exp> expOption;

end CLASSMOD;

end Modification;

ElementArg:
Wrapper for things that modify elements, modifications and redeclarations.

uniontype ElementArg

record MODIFICATION
Boolean finalltem;
Each each_;

ComponentRef componentReg;
Option<Modification> modification;
Option<String> comment;

end MODIFICATION;

record REDECLARATION

Boolean finalItem;
RedeclareKeywords redeclareKeywords "keywords redeclare, or replaceable"
Each each_;

ElementSpec elementSpec;
Option<ConstrainClass> constrainClass "class definition or declaration"
end REDECLARATION;

end ElementArg;

RedeclareKeywords:

The keywords redeclare and replaceable can be given in three different combinations, each one by
themselves or both combined.
uniontype RedeclareKeywords
record REDECLARE end REDECLARE;
record REPLACEABLE end REPLACEABLE;

record REDECLARE REPLACEABLE end REDECLARE REPLACEABLE;
end RedeclareKeywords;

Each:

The Each attribute represented by the each keyword can be present in both MopIFICATION'S and
REDECLARATION'S.
uniontype Each
record EACH end EACH;

record NON_EACH end NON_EACH;
end Each;

ElementAttributes:

This represents component attributes which are properties of components which are applied by type
prefixes. As an example, declaring a component as input Real x; Will give the attributes ATTR (
{},false, VAR, INPUT).

uniontype ElementAttributes

record ATTR
Boolean flow_ "flow"
Variability variability "variability ; parameter, constant etc." ;
Direction direction "direction"
ArrayDim arrayDim "arrayDim"
end ATTR;

end ElementAttributes;

Variability:
Component/variable attribute variability:
uniontype Variability
record VAR end VAR;

record DISCRETE end DISCRETE;
record PARAM end PARAM;

Open Source Modelica System Documentation 49

record CONST end CONST;
end Variability;

Direction:

Component/variable attribute Direction.

uniontype Direction
record INPUT end INPUT;
record OUTPUT end OUTPUT;
record BIDIR end BIDIR;
end Direction;

ArrayDim:

Array dimensions are specified by the type aArraypim. Components in Modelica can be scalar or arrays
with one or more dimensions. This datatype is used to indicate the dimensionality of a component or atype
definition.

type ArrayDim = list<Subscripts;

Exp:
The Exp datatype is the container for representing a Modelica expression.

uniontype Exp

record INTEGER
Integer value;
end INTEGER;

record REAL
Real value;
end REAL;

record CREF
ComponentRef componentReg;
end CREF;

record STRING
String value;
end STRING;

record BOOL
Boolean value ;

end BOOL;

record BINARY "Binary operations, e.g. a*b, a+b, etc."

Exp expl;
Operator op;
Exp exp2;

end BINARY;

record UNARY '"Unary operations, e.g. -(x)"
Operator op;
Exp exp;

end UNARY;

record LBINARY "Logical binary operations: and, or"

Exp expl;
Operator op;
Exp exp2;

end LBINARY;

50

record LUNARY "Logical unary operations: not"
Operator op;
Exp exp;

end LUNARY;

record RELATION "Relations, e.g. a >= 0"

Exp expl;
Operator op;
Exp exp2 ;

end RELATION;

record IFEXP "If expressions"

Exp ifExp;

Exp trueBranch;

Exp elseBranch;

list<tuple<Exp, Exp>> elseIfBranch ;
end IFEXP;

record CALL "Function calls"
ComponentRef function ;
FunctionArgs functionArgs ;
end CALL;

record ARRAY "Array construction using { } or array()"
list<Exp> arrayExp ;
end ARRAY;

record MATRIX "Matrix construction using [1"
list<list<Exp>> matrix;

end MATRIX;

record RANGE '"matrix Range expressions, e.g. 1:10 or 1:0.5:10"

ExXp start;

Option<Exp> step;

ExXp stop;
end RANGE;

record TUPLE "Tuples used in function calls returning several values"
list<Exp> expressions;
end TUPLE;

record END "Array access operator for last element, e.g. alend]:=1;"
end END;

record CODE "Modelica AST Code constructors"
Code code;
end CODE;

end Exp;

Code:
The code datatype is a proposed meta-programming extension of Modelica. It originates from the Code
quoting mechanism, see paper in the Modelica 2003 conference.

uniontype Code

record C_TYPENAME
Path path;
end C_TYPENAME;

record C_VARIABLENAME
ComponentRef componentRef;

Open Source Modelica System Documentation 51

end C VARIABLENAME;

record C_EQUATIONSECTION
Boolean boolean;
list<EquationItem> equationItemLst;
end C EQUATIONSECTION;

record C_ALGORITHMSECTION
Boolean boolean;
list<AlgorithmItem> algorithmItemLst;
end C ALGORITHMSECTION;

record C_ELEMENT
Element element;
end C_ELEMENT;

record C_EXPRESSION
Exp exp;
end C EXPRESSION;

record C MODIFICATION
Modification modification;
end C MODIFICATION;

end Code;

FunctionArgs:

The FunctionArgs datatype consists of a list of positional arguments followed by a list of named
arguments.

uniontype FunctionArgs

record FUNCTIONARGS
list<Exp> args;
list<NamedArg> argNames;
end FUNCTIONARGS;

record FOR_ITER_ FARG

Exp from;
Ident wvar;
Exp to;

end FOR_ITER FARG;

end FunctionArgs;

NamedArg:
The Namedarg datatype consist of an Identifier for the argument and an expression giving the value of the
argument.

uniontype NamedArg

record NAMEDARG
Ident argName "argName" ;
Exp argValue "argValue" ;
end NAMEDARG;

end NamedArg;

Operator:

The operator type can represent al the expression operators, binary or unary.

52

uniontype Operator "Expression operators"
record ADD end ADD;
record SUB end SUB;
record MUL end MUL;
record DIV end DIV;
record POW end POW;
record UPLUS end UPLUS;
record UMINUS end UMINUS;
record AND end AND;
record OR end OR;
record NOT end NOT;
record LESS end LESS;
record LESSEQ end LESSEQ;
record GREATER end GREATER;
record GREATEREQ end GREATEREQ;
record EQUAL end EQUAL;
record NEQUAL end NEQUAL;

end Operator;

Subscript:

The subscript data type is used both in array declarations and component references. This might seem
strange, but it is inherited from the grammar. The NOSUB constructor means that the dimension size is
undefined when used in a declaration, and when it is used in a component reference it means a dice of the
whole dimension.

uniontype Subscript

record NOSUB end NOSUB;

record SUBSCRIPT
Exp subScript "subScript" ;
end SUBSCRIPT;

end Subscript;

ComponentRef:

A component reference is the fully or partially qualified name of a component. It is represented as a list of
identifier-subscript pairs.
uniontype ComponentRef

record CREF QUAL

Ident name;
list<Subscript> subScripts;
ComponentRef componentRef;

end CREF_ QUAL;
record CREF_ IDENT
Ident name;
list<Subscript> subscripts;
end CREF_ IDENT;

end ComponentRef;

Path:

Thetype path is used to store references to class names, or names inside class definitions.

uniontype Path

Open Source Modelica System Documentation 53

record QUALIFIED
Ident name;
Path path;

end QUALIFIED;

record IDENT
Ident name;

end IDENT;

end Path;

Restrictions:

These constructors each correspond to a different kind of class declaration in Modelica, except the last four,
which are used for the predefined types. The parser assigns each class declaration one of the restrictions,
and the actua class definition is checked for conformance during tranglation. The predefined types are

created in the Builtin module and are assigned special restrictions.

uniontype Restriction
record R _CLASS end R _CLASS;
record R MODEL end R MODEL;
record R_RECORD end R RECORD;
record R_BLOCK end R_BLOCK;
record R_CONNECTOR end R_CONNECTOR;
record R_EXP CONNECTOR end R_EXP CONNECTOR;
record R_TYPE end R TYPE;
record R _PACKAGE end R_PACKAGE;
record R_FUNCTION end R_FUNCTION;
record R_ENUMERATION end R ENUMERATION;
record R_PREDEFINED INT end R PREDEFINED INT;
record R_PREDEFINED REAL end R PREDEFINED REAL;
record R_PREDEFINED STRING end R_PREDEFINED STRING;
record R_PREDEFINED BOOL end R PREDEFINED BOOL;
record R_PREDEFINED ENUM end R_PREDEFINED ENUM;
end Restriction;

Annotation:

An Annotation isaclass modification.
uniontype Annotation

record ANNOTATION
list<ElementArg> elementArgs;
end ANNOTATION;

end Annotation;

Comment:
uniontype Comment

record COMMENT
Option<Annotation> annotation ;
Option<Strings> comment ;

end COMMENT;

end Comment ;

ExternalDecl:

Thetype ExternalDecl is used to represent declaration of an external function wrapper.
uniontype ExternalDecl

record EXTERNALDECL

Option<Idents> funcName "The name of the external function" ;
Option<Strings> lang "Language of the external function" ;
Option<ComponentRef> output "output parameter as return value" ;
list<Exp> args "only positional arguments, i.e. expression list" ;

Option<Annotation> annotation ;
end EXTERNALDECL;

end ExternalDecl;

Dependencies:

M odule dependencies of the Absyn module: Debug, Dump, Util, Print.

3.4.2 Algorithm — Data Types and Functions for Algorithm Sections

This module contains data types and functions for managing algorithm sections. The algorithmsin the AST
are analyzed by the Inst module which uses this module to represent the algorithm sections. No processing
of any kind, except for building the data structure is done in this module. It is used primarily by the Inst
module which both providesits input data and uses its "output" data.

Module dependencies: Exp, Types, SCode, Util, Print, Dump, Debug.

3.4.3 Builtin — Builtin Types and Variables

This module defines the builtin types, variables and functions in Modelica. The only exported functions
are initial env and simple initial env. There are severa builtin attributes defined in the builtin
types, such as unit, start, etc.

Module dependencies: Absyn, SCode, Env, Types, Classinf, Debug, Print.

3.4.4 Ceval — Constant Evaluation of Expressions and Command
Interpretation

This module handles constant propagation and expression evaluation, as well as interpretation and
execution of user commands, e.g. plot(...). When elaborating expressions, in the Static module, expressions
are checked to find out their type. This module also checks whether expressions are constant. In such as
case the function ceval in this module will then evaluate the expression to a constant value, defined in the
Values module.

Input:
Env: Environment with bindings.
Exp: Expression to check for constant evaluation.
Bool flag determines whether the current instantiation isimplicit.
InteractiveSymbol Table is optional, and used in interactive mode, e.g. from mosh.

Output:
Vaue: The evaluated value
InteractiveSymbol Table: Modified symbaol table.

Open Source Modelica System Documentation 55

Subscript list : Evaluates subscripts and generates constant expressions.

Module dependencies. Absyn, Env, Exp, Interactive, Values, Static, Print, Types, ModULtil, System, SCode,
Inst, Lookup, Dump, DAE, Debug, Util, Modsim, Classlnf, RTOpts, Parse, Prefix, Codegen, ClassL oader.

3.45 ClassInf — Inference and Check of Class Restrictions

This module deals with class inference, i.e., determining if a class definition adheres to one of the class
restrictions, and, if specifically declared in arestricted form, if it breaks that restriction.

The inference is implemented as a finite state machine. The function start initiaizes a new machine,
and the function trans signas transitions in the machine. Finally, the state can be checked against a
restriction with the va1id function.

Module dependencies: Absyn, SCode, Print.

3.4.6 ClassLoader — Loading of Classes from $OPENMODELICALIBRARY

This module loads classes from $OPENMODELICALIBRARY. It exports only one function: the
loadClassClass function. It is used by module Ceval when using the 1cadclass function in the
interactive environment.

Module dependencies: Absyn, System, Lookup, Interactive, Util, Parse, Print, Env, Dump.

3.4.7 Codegen — Generate C Code from DAE

Generate C code from DAE (Flat Modelica) for Modelica functions and agorithms (SimCodeGen is
generating code from equations). This code is compiled and linked to the simulation code or when
functions are called from the interactive environment.

Input: DAE

Output: (generated code output by the Print modul€)

Module dependencies. Absyn, Exp, Types, Inst, DAE, Print, Util, ModUTtil, Algorithm, Classinf, Dump,
Debug.

3.4.8 Connect — Connection Set Management

Connections generate connection sets (represented using the datatype set defined in this module) which
are constructed during code instantiation. When a connection set is generated, it is used to create a number
of equations. The kind of equations created depends on the type of the set.

The Connect module is called from the Inst module and is responsible for creation of al connect-
equations | ater passed to the DAE module.

Module dependencies: Exp, Env, Static, DAE.

3.4.9 Corba — Modelica Compiler Corba Communication Module

The Corba actual implementation differs between Windows and Unix versions. The Windows
implementation islocated in . /winruntime and the Unix versionliesin . /runtime.

56

OpenModelica does not in itself include a complete CORBA implementation. Y ou need to download
one, for example MICO from http: //www.mico.org. There aso exists some options that can be sent to
configure concerning the usage of CORBA:

e --with-CORBA=/location/of/corba/library
e --without-CORBA

No module dependencies.

3.4.10 DAE - DAE Equation Management and Output

This module defines data structures for DAE equations and declarations of variables and functions. It aso
exports some help functions for other modules. The DAE data structure is the result of flattening,
containing only flat Modelica, i.e., equations, algorithms, variables and functions.

uniontype DAElist "A DAElist is a list of Elements. Variables, equations,
functions, algorithms, etc. are all found in this list."
record DAE
list<Element> elementLst;
end DAE;

end DAElist;

type Ident = String;
type InstDims = list<Exp.Subscripts>;
type StartValue = Option<Exp.Exp>;

uniontype VarKind
record VARIABLE end VARIABLE;
record DISCRETE end DISCRETE;
record PARAM end PARAM;
record CONST end CONST;

end VarKind;

uniontype Type
record REAL end REAL;
record INT end INT;
record BOOL end BOOL;
record STRING end STRING;
record ENUM end ENUM;

record ENUMERATION
list<String> stringlLst;
end ENUMERATION;

end Type;

uniontype Flow "The Flow of a variable indicates if it is a Flow variable or not,
or if
it is not a connector variable at all."
record FLOW end FLOW;
record NON_FLOW end NON_FLOW;
record NON CONNECTOR end NON CONNECTOR;
end Flow;

uniontype VarDirection
record INPUT end INPUT;
record OUTPUT end OUTPUT;
record BIDIR end BIDIR;
end VarDirection;

uniontype Element

Open Source Modelica System Documentation

57

record VAR
Exp.ComponentRef componentRef;

VarKind varible "variable name"

VarDirection variable "variable, constant, parameter, etc."
Type input_ "input, output or bidir"

Option<Exp.Exp> one "one of the builtin types"

InstDims binding "Binding expression e.g. for parameters"
StartValue dimension "dimension of original component"

Flow value "value of start attribute"

list<Absyn.Path> flow_ "Flow of connector variable. Needed for

unconnected flow variables"
Option<VariableAttributes> variableAttributesOption;
Option<Absyn.Comment> absynCommentOption;
end VAR;

record DEFINE
Exp.ComponentRef componentRef;
Exp.EXp exp;

end DEFINE;

record INITIALDEFINE
Exp.ComponentRef componentRef;
Exp.ExXp exp;

end INITIALDEFINE;

record EQUATION

Exp.EXp exp;

Exp.Exp scalar "Scalar equation"
end EQUATION;

record ARRAY EQUATION
list<Integer> dimension "dimension sizes"
Exp.EXp exp;
Exp.Exp array "array equation"

end ARRAY EQUATION;

record WHEN EQUATION
Exp.Exp condition "Condition"
list<Element> equations "Equations"

Option<Element> elsewhen "Elsewhen should be of type" ; end WHEN EQUATION;

record IF EQUATION
Exp.Exp conditionl "Condition"
list<Element> equations2 "Equations of true branch"
list<Element> equations3 "Equations of false branch"
end IF_ EQUATION;

record INITIAL IF EQUATION
Exp.Exp conditionl "Condition"
list<Element> equations2 "Equations of true branch"
list<Element> equations3 "Equations of false branch"
end INITIAL IF EQUATION;

record INITIALEQUATION
Exp.Exp expl;
Exp.Exp exp2;

end INITIALEQUATION;

record ALGORITHM
Algorithm.Algorithm algorithm ;
end ALGORITHM;

record INITIALALGORITHM
Algorithm.Algorithm algorithm ;
end INITIALALGORITHM;

58

record COMP
Ident ident;
DAElist dAElist "a component with subelements, normally
only used at top level." ;
end COMP;

record FUNCTION
Absyn.Path path;
DAElist dAElist;
Types.Type type_;
end FUNCTION;

record EXTFUNCTION
Absyn.Path path;
DAElist dAElist;
Types.Type type ;
ExternalDecl externalDecl;
end EXTFUNCTION;

record ASSERT
Exp.EXp exp;
end ASSERT;

record REINIT
Exp.ComponentRef componentRef;
Exp.ExXp exp;

end REINIT;

end Element;

uniontype VariableAttributes
record VAR ATTR_ REAL
Option<String> quantity "quantity"
Option<String> unit "unit"
Option<String> displayUnit "displayUnit"
tuple<Option<Real>, Option<Real>> min "min , max" ;
Option<Real> initial_"Initial value"
Option<Boolean> fixed "fixed - true: default for parameter/constant,
default for other variables"
Option<Real> nominal "nominal"
Option<StateSelect> stateSelectOption;
end VAR _ATTR REAL;

record VAR ATTR_INT
Option<String> quantity "quantity"
tuple<Option<Integer>, Option<Integer>> min "min , max" ;
Option<Integer> initial "Initial value" ;
Option<Boolean> fixed "fixed - true: default for parameter/constant,
default for other variables"
end VAR _ATTR INT;

record VAR ATTR_ BOOL
Option<String> quantity "quantity"
Option<Boolean> initial_ "Initial value"
Option<Boolean> fixed "fixed - true: default for parameter/constant,
default for other variables"
end VAR ATTR BOOL;

record VAR ATTR_STRING
Option<String> quantity "quantity"
Option<String> initial "Initial value"
end VAR _ATTR STRING;

record VAR ATTR_ENUMERATION

false

false

false

Open Source Modelica System Documentation 59

Option<Strings> quantity "quantity"
tuple<Option<Exp.Exp>, Option<Exp.Exp>> min "min , max" ;
Option<Exp.Exp> start "start"
Option<Boolean> fixed "fixed - true: default for parameter/constant, false -
default for other variables"
end VAR ATTR ENUMERATION;

end VariableAttributes;

uniontype StateSelect
record NEVER end NEVER;
record AVOID end AVOID;
record DEFAULT end DEFAULT;
record PREFER end PREFER;
record ALWAYS end ALWAYS;
end StateSelect;

uniontype ExtArg
record EXTARG
Exp.ComponentRef componentRef;
Types.Attributes attributes;
Types.Type type ;
end EXTARG;

record EXTARGEXP
Exp.EXp exp;

Types.Type type ;
end EXTARGEXP;

record EXTARGSIZE
Exp.ComponentRef componentRef;
Types.Attributes attributes;
Types.Type type ;
EXp.Exp exp;

end EXTARGSIZE;

record NOEXTARG end NOEXTARG;
end ExtArg;
uniontype ExternalDecl

record EXTERNALDECL
Ident ident;

list<ExtArg> external ‘'"external function name" ;
ExtArg parameters "parameters"
String return "return type"

Option<Absyn.Annotation> language "language e.g. Library"
end EXTERNALDECL;

end ExternalDecl;

Som of the more important functions for unparsing (dumping) flat Modelicain DAE form:

The function dump unparses (converts into string or prints) abpaelist into the standard output format by
calling dumpFunctionFunction and dumpCompElement. We also have (?? explain more):
dumpStrStr: DAElist => string

dumpGraphvizGraphviz: DAElist => ()
dumpDebugDebug

dumpCompElement (classes) calls dumpElementsElements, which calls:

dumpVarsVars
dumpListList equations
dumpListList algorithm

60

dumpListList compElement (classes)

Module dependencies: Absyn, Exp, Algorithm, Types, Values.

3.4.11 DAEEXT - External Utility Functions for DAE Management

The DAEEXT module is an externally implemented module (in file runtime/daeext . cpp) used for the
BLT and index reduction algorithms in DAELow. The implementation mainly consists of bit vector
datatypes and operations implemented using std::vector<bools since such functionality is not
availablein MetaModelica.

No module dependencies.

3.4.12 DAELow — Lower Level DAE Using Sparse Matrises for BLT

This module handles a lowered form of a DAE including equations, simple equations with equal operator
only, and algorithms, in three separate lists: equations, simple equations, agorithms. The variables are
divided into two groups. 1) known variables, parameters, and constants; 2) unknown variables including
state variables and algebraic variables.

The module includes the BLT sorting algorithm which sorts the equations into blocks, and the index
reduction agorithm using dummy derivatives for solving higher index problems. It aso includes an
implementation of the Tarjan algorithm to detect strongly connected components during the BLT sorting.

Module dependencies: DAE, Exp, Vaues, Absyn, Algorithm.

3.4.13 Debug — Trace Printing Used for Debugging

Printing routines for debug output of strings. Also flag controlled printing. When flag controlled printing
functions are called, printing is done only if the given flag is among the flags given in the runtime
arguments to the compiler.

If the +d-flag, i.e, if +d=inst, 1lookup is given in the command line, only calls containing these flags
will actually print something, eg.. fprint("inst", "Starting instantiation..."). See
runtime/rtopts.c for implementation of flag checking.

M odule dependencies: Rtopts, Dump, Print.

3.4.14 Derive — Differentiation of Equations from DAELow

This module is responsible for symbolic differentiation of equations and expressions. It is currently (2004-
09-28) only used by the solve function in the Exp module for solving equations.
The symbolic differentiation is used by the Newton-Raphson method and by the index reduction.

Module dependencies: DAEL ow, Exp, Absyn, Util, Print.

3.4.15 DFA - MetaModelica Pattern Matching

This module is part of the MetaModelica language extension. This module contains a deterministic finite
automata (DFA) and a matrix data structure. These are used by the pattern match agorithm found in
Patternm. There are also several functions for handling DFAs (for instance a function for adding a new arc

Open Source Modelica System Documentation 61

to a DFA) and matrices (functions for adding a row to matrix, singling out the first row of a matrix,
removing thefirst row of amatrix, etc.). The union type Renamedpat can aso be found in this module.

A renamed pattern is a pattern (an Absyn expression) tagged with a variable name (an Absyn identifier).

This module also contains the functions that transforms a DFA into a vaue block expression with
nested if-elseif-else nodes. The function frombDFAtoIfNodes is the entry point for this transformation;
generateIfElseifAndElse, fromStatetoAbsynCode, €tc. are then invoked.

See the OMC MetaM odelica extension chapter (chapter 4) for more information.

M odule dependencies: Absyn, Util, Env, Lookup, Types, SCode, Classlnf

3.4.16 Dump — Abstract Syntax Unparsing/Printing

Printing routines for unparsing and debugging of the AST. These functions do nothing but print the data
structures to the standard output.

The main entry point for this module is the function dump which takes an entire program as an
argument, and prints it al in Modelica source form. The other interface functions can be used to print
smaller portions of a program.

Module dependencies: Absyn, Interactive, Classinf, Rtopts, Print, Util, Debug..

3.4.17 DumpGraphviz — Dump Info for Graph visualization of AST

Print the abstract syntax into a text form that can be read by the GraphViz tool (www.graphviz.org) for
drawing abstract syntax trees.

M odule dependencies: Absyn, Debug, Graphviz, Classinf, Dump.

3.4.18 Env — Environment Management

This module contains functions and data structures for environment management.

“Code ingtantiation is made in a context which consists of an environment an an ordered set of parents”’,
according to the Modelica Specification

An environment is a stack of frames, where each frame contains a number of class and variable
bindings. Each frame consist of the following:

¢ A frame name (corresponding to the class partially instantiated in that frame).

e A binary tree/hash table?? containing alist of classes.

e A binary tree/hash table?? containing a list of functions (functions are overloaded so that severa
identical function names corresponding to different functions can exist).

e Alist of unnamed items consisting of import statements.

type Env = list<Frames;

uniontype Frame
record FRAME
Option<Ident> class 1 "Class name" ;
BinTree list_2 "List of uniquely named classes and variables" ;
BinTree list 3 "List of types, which DOES NOT be uniquely named, eg. size have
several types" ;
list<Item> list 4 "list of unnamed items (imports)" ;
list<Frame> list 5 "list of frames for inherited elements" ;
list<Exp.ComponentRef> currenté "current connection set crefs" ;
Boolean encapsulated 7 "encapsulated bool=true means that FRAME is created due
to encapsulated class" ;
end FRAME;

62

end Frame;

uniontype Item
record VAR

Types.Var instantiated "instantiated component"

Option<tuple<SCode.Element, Types.Mod>> declaration "declaration if not fully
instantiated." ;

Boolean if "if it typed/fully instantiated or not" ;

Env env "The environment of the instantiated component

Contains e.g. all sub components
n .

end VAR;

record CLASS
SCode.Class class_;
Env env;

end CLASS;

record TYPE

list<Types.Type> list "list since several types with the same name can exist
in the same scope (overloading)" ;
end TYPE;

record IMPORT
Absyn.Import import ;
end IMPORT;

end Item;

The binary tree data structure BinTree used for the environment is generic and can be used in any
application. It is defined as follows:

uniontype BinTree "The binary tree data structure
The binary tree data structure used for the environment is generic and can
be used in any application."
record TREENODE
Option<TreeValue> value "Value"
Option<BinTree> left "left subtree"

Option<BinTree> right "right subtree"
end TREENODE;

end BinTree;

Each node in the binary tree can have a value associated with it.
uniontype TreeValue
record TREEVALUE
Key key;
Value value;
end TREEVALUE;
end TreeValue;
type Key = Ident "Key" ;
type Value = Item;

constant Env emptyEnv;

As an example lets consider the following Modelica code:

Open Source Modelica System Documentation 63

package A
package B
import Modelica.SIunits.*;
constant Voltage V=3.3;

function foo
end foo;

model M1
Real x,vy;
end M1;

model M2
end M2;

end B;
end A;

When instantiating m1 we will first create the environment for its surrounding scope by a recursive
instantiation on a. B giving the environment:

{

FRAME ("A", {Class:B},{},{}, false) ,
FRAME ("B", {Class:M1l, Class:M2, Variable:V}, {Type:foo},
{import Modelica.SIunits.*},false)
}

Then, the class M1 isinstantiated in a new scope/Frame giving the environment:

{

FRAME ("A", {Class:B},{},{},false) ,

FRAME ("B", {Class:Ml, Class:M2, Variable:V}, {Type:foo},
{Import Modelica.SIunits.*},false),

FRAME ("M1, {Variable:x, Variable:v},{},{}, false)

Note: The instance hierarchy (components and variables) and the class hierarchy (packages and classes) are
combined into the same data structure, enabling a uniform lookup mechanism.

The most important functionsin Env:

function newFrame : (Boolean) => Frame
function openScope : (Env,Boolean, Option<Idents>) => Env
function extendFrameC : (Env, SCode.Class) => Env
function extendFrameClasses : (Env, SCode.Program) => Env
function extendFrameV : (Env, Types.Var,
Option<tuple<SCode.Element, Types.Mod>>, Boolean) => Env
function updateFrameV : (Env, Types.Var,bool) => Env
function extendFrameT : (Env,Ident,Types.Type) => Env
function extendFrameI : (Env, Absyn.Import) => Env

function topFrame : Env => Frame
function getEnvPath: (Env) => Absyn.Path option

Module dependencies. Absyn, Vaues, SCode, Types, Classinf, Exp, Dump, Graphviz, DAE, Print, Util,
System.

3.4.19 Exp — Expression Handling after Static Analysis

This file contains the module Exp, which contains data types for describing expressions, after they have
been examined by the static analyzer in the module Static. There are of course great similarities with the
expression types in the Absyn module, but there are also several important differences.

No overloading of operators occur, and subscripts have been checked to seeif they are dlices.
Deoverloading of overloaded operators such as app (+) is performed, e.g. to operations ADD ARR,
ADD (REAL), ADD (INT) . Slice operations are also identified, e.g.:

model A Real b; end A;

model B

A allo0];
equation

a.b=£fi11(1.0,10); // a.b is a slice
end B;

All expressions are aso type consistent, and al implicit type conversions in the AST are made explicit
here, e.g. Real (1) +1.5 converted from1+1.5.

Functions:

Some expression simplification and solving is aso done here. This is used for symbolic transformations
before simulation, in order to rearrange equations into a form needed by simulation tools. The functions
simplify, solve, expContainsContains, expEqual, extendCref, etc. perform this functionality,
eg.

extendCrefCref (ComponentRef, Ident, list<Subscripts>) => ComponentRef

simplify (Exp) => Exp
The simplify function simplifies expressions that have been generated in a complex way, i.e., not a
complete expression simplification mechanism.

This module also contains functions for printing expressions, for 10, and for conversion to strings.

Moreover, graphviz output is supported.

Identifiers:
type Ident = String;

Define 1dent asan dliasfor string and useit for all identifiersin Modelica
Basic types:

uniontype Type
record INT end INT;
record REAL end REAL;
record BOOL end BOOL;
record STRING end STRING;
record ENUM end ENUM;
record OTHER "e.g. complex types, etc." end OTHER;

record T ARRAY

Type type_;
list<Integer> arrayDimensions;
end T ARRAY;

end Type;

These basic types are not used as expression types (see the Types module for expression types). They are
used to parameterize operators which may work on several simple types.

Expressions:

The Exp union type closely corresponds to the absyn . Exp union type, but is used for staticaly analyzed
expressions. It includes explicit type promotions and typed (non-overloaded) operators. It also contains
expression indexing with the AsuB constructor. Indexing arbitrary array expressions is currently not
supported in Modelica, but it is needed here.

uniontype Exp "Expressions
record ICONST
Integer integer "Integer constants"
end ICONST;

Open Source Modelica System Documentation 65

record RCONST
Real real "Real constants"
end RCONST;

record SCONST
String string "String constants"
end SCONST;

record BCONST
Boolean bool "Bool constants"
end BCONST;

record CREF

ComponentRef componentRef;

Type component "component references, e.g. a.b[2].c[1]"
end CREF;

record BINARY

Exp exp;

Operator operator;

Exp binary "Binary operations, e.g. a+4"
end BINARY;

record UNARY

Operator operator;

Exp unary "Unary operations, - (4x)" ;
end UNARY;

record LBINARY

ExXp exp;

Operator operator;

Exp logical "Logical binary operations: and, or" ;
end LBINARY;

record LUNARY

Operator operator;

Exp logical "Logical unary operations: not" ;
end LUNARY;

record RELATION

Exp exp;

Operator operator;

Exprelation "Relation, e.g. a <= 0"
end RELATION;

record IFEXP

Exp expl;

Expexp2;

Exp if 3 "If expressions"
end IFEXP;

record CALL

Absyn.Path path;

list<Exp> expLst;

Boolean tuple_"tuple"

Boolean builtin "builtin Function call" ;
end CALL;

record ARRAY

Type type_;

Boolean scalar "scalar for codegen"

list<Exp> array "Array constructor, e.g. {1,3,4}" ;
end ARRAY;

record MATRIX

66

Type type_;

Integer integer;

list<list<tuple<Exp, Boolean>>> scalar "Matrix constructor. e.g. [1,0;0,1]"
end MATRIX;

record RANGE

Type type_;

exp;

Option<Exp> expOption;

Exp range "Range constructor, e.g. 1:0.5:10" ;
end RANGE;

record TUPLE
list<Exp> PR "PR. Tuples, used in func calls returning several
arguments"
end TUPLE;

record CAST

Type type_;
Exp cast "Cast operator"
end CAST;

record ASUB

Exp exp;

Integer array "Array subscripts"
end ASUB;

record SIZE

Exp exp;

Option<Exp> the "The ssize operator"
end SIZE;

record CODE

Absyn.Code code;

Type modelica "Modelica AST constructor"
end CODE;

record REDUCTION

Absyn.Path path;

Exp expr "expr"

Ident ident;

Exp range "range Reduction expression" ;
end REDUCTION;

record END "array index to last element, e.g. alend]:=1;" end END;

end Exp;

Operators:

Operators which are overloaded in the abstract syntax are here made type-specific. The Integer addition
operator ADD (INT) and the Real addition operator ADD (REAL) are two distinct operators.

uniontype Operator

record ADD

Type type_;
end ADD;

record SUB

Type type_;
end SUB;

record MUL
Type type_;

Open Source Modelica System Documentation 67

end MUL;

record DIV

Type type_;
end DIV;

record POW

Type type_;
end POW;

record UMINUS

Type type_;
end UMINUS;

record UPLUS

Type type_ ;
end UPLUS;

record UMINUS_ARR

Type type_ ;
end UMINUS ARR;

record UPLUS_ARR

Type type_ ;
end UPLUS_ ARR;

record ADD ARR

Type type_ H
end ADD ARR;

record SUB ARR

Type type_ H
end SUB_ARR;

record MUL_ SCALAR_ ARRAY
Type a "a { b, c }"
end MUL SCALAR ARRAY;

record MUL_ ARRAY SCALAR

Type type "{a, b} c"
end MUL ARRAY SCALAR;

record MUL_ SCALAR PRODUCT
Type type_ "{a, b} {c, d}" ;
end MUL SCALAR PRODUCT;
record MUL MATRIX PRODUCT
Type type_ "{{..},..} {{..}.{..}}"
end MUL MATRIX PRODUCT;
record DIV_ARRAY SCALAR
Type type "{a, b} / c"
end DIV_ARRAY SCALAR;
record POW_ARR
Type type_;
end POW_ARR;
record AND end AND;
record OR end OR;
record NOT end NOT;

record LESS

68

Type type_;
end LESS;

record LESSEQ

Type type_ ;
end LESSEQ;

record GREATER

Type type_ ;
end GREATER;

record GREATEREQ

Type type_ ;
end GREATEREQ;

record EQUAL

Type type_;
end EQUAL;

record NEQUAL
Type type_;
end NEQUAL;
record USERDEFINED
Absyn.Path the "The fully qualified name of the overloaded operator function";
end USERDEFINED;

end Operator;

Component references:

uniontype ComponentRef "- Component references
CREF_QUAL(...) is used for qualified component names, e.g. a.b.c
CREF_IDENT(..) is used for non-qualifed component names, e.g. x "

record CREF QUAL
Ident ident;
list<Subscript> subscriptLst;
ComponentRef componentRef;
end CREF QUAL;

record CREF_IDENT

Ident ident;

list<Subscript> subscriptLst;
end CREF_ IDENT;

end ComponentRef;
The subscript and ComponentRef datatypes are simple trangations of the corresponding types in the
Absyn module.
uniontype Subscript
record WHOLEDIM "a[:,1]" end WHOLEDIM;
record SLICE

Exp a "al[1:3,1], al[l:2:10,2]"
end SLICE;

record INDEX
Exp a "al[i+1]"

end INDEX;

end Subscript;

Open Source Modelica System Documentation 69

Module dependencies: Absyn, Graphviz, Rtopts, Util, Print, ModUtil, Derive, System, Dump.

3.4.20 Graphviz — Graph Visualization from Textual Representation

Graphvizisatool for drawing graphs from a textual representation. This module generates the textual input
to Graphviz from a tree defined using the data structures defined here, e.g. Node for tree nodes. See
http://www.research.att.com/sw/tool s/graphviz/ .

Input: The tree constructed from data structures in Graphviz
Output: Textual input to graphviz, written to stdout.

3.4.21 Inst—- Code Instantiation/Elaboration of Modelica Models

This module is responsible for code instantiation of Modelica models. Code instantiation is the process of
elaborating and expanding the model component representation, flattening inheritance, and generating
eguations from connect equations.

The code instantiation process takes Modelica AST as defined in SCode and produces variables and
equations and algorithms, etc. as defined in the DAE module

This module uses module Lookup to lookup classes and variables from the environment defined in Env.
It uses the Connect module for generating equations from connect equations. The type system defined in
Types is used for code instantiation of variables and types. The Mod module is used for modifiers and
merging of modifiers.

3.4.21.1 Overview:
The Inst module performs most of the work of the flattening of models:

1. Build empty initial environment.
2. Codeinstantiate certain classesimplicitly, e.g. functions.
3. Codeinstantiate (last class or a specific class) in aprogram explicitly.

The process of code instantiation consists of the following:

1. Open anew scope => anew environment

2. Start the class state machine to recognize a possible restricted class.
3. Instantiate classin environment.

4. Generate equations.

5. Read class state & generate Type information.

3.4.21.2 Code Instantiation of a Class in an Environment
(?? Add more explanations)

Function: instClassdef
PARTS:. instElementListList
DERIVED (i.eclass A=B(mod) ;):
1. lookup class
2. elabModMod
3. Merge modifications
4. instClassIn(...,mod, ...)

3.4.21.3 InstElementListList & Removing Declare Before Use

The procedure is as follows:

70

1. First implicitly declare al local classes and add component names (calling
extendComponentsToEnvComponent sToEnv), Also merge modifications (This is done by
saving modifications in the environment and postponing to step 3, since type information is not yet
available).

2. Expand al extends nodes.

3. Perform instantiation, which resultsin DAE elements.

Note: Thisis probably the most complicated parts of the compiler!

Design issue: How can we simplify this? The complexity is caused by the removal of Declare-before-use in
combination with sequential trandlation structure (Absyn->Scode->(Exp,Mod,Env)).

3.4.21.4 The InstElement Function
Thisis ahuge function to handle el ement instantiation in detail, including the following items:

e Handling extends clauses.

e Handling component nodes (the function update components in env iscaled if used before it
is declared).

e Elaborated dimensions (?? explain).

e Instvar caled (??explan).

e ClassDefs (?? explain).

3.4.21.5 The InstVar Function

The instvar function performs code instantiation of al subcomponents of a component. It aso
instantiates each array element as ascalar, i.e., expands arrays to scalars, e.g.:

Real x[2] => Real x[1]; Real x[2]; inflat Modelica

3.4.21.6 Dependencies
Module dependencies: Absyn, Classinf, Connect, DAE, Env, Exp, SCode, Mod, Prefix, Types.

3.4.22 Interactive — Model Management and Expression Evaluation

This module contain functionality for model management, expression evaluation, etc. in the interactive
environment. The module defines a symbol table used in the interactive environment containing the
following:

e Modelicamodels (described using Absyn abstract syntax).

e Variable bindings.

e Compiled functions (so they do not need to be recompiled).

e Instantiated classes (that can be reused, not implemented. yet).

e Modelicamodelsin SCode form (to speed up instantiation. not implemented. yet).

The most important data types:

uniontype InteractiveSymbolTable "The Interactive Symbol Table"
record SYMBOLTABLE
Absyn.Program ast "The ast" ;
SCode.Program explodedAst "The exploded ast" ;
list<InstantiatedClass> instClsLst "List of instantiated classes" ;
list<InteractiveVariable> lstVarVal "List of variables with values" ;
list<tuple<Absyn.Path, Types.Type>> compiledFunctions "List of compiled
functions, fully qualified name + type" ;
end SYMBOLTABLE;
end InteractiveSymbolTable;

Open Source Modelica System Documentation 71

uniontype InteractiveStmt "The Interactive Statement:
An Statement given in the interactive environment
can either be an Algorithm statement or an expression"
record IALG
Absyn.AlgorithmItem algItem;
end IALG;

record IEXP
Absyn.Exp exp;
end IEXP;
end InteractiveStmt;

uniontype InteractiveStmts "The Interactive Statements:
Several interactive statements are used in the
Modelica scripts"
record ISTMTS
list<InteractiveStmt> interactiveStmtLst "interactiveStmtLst" ;
Boolean semicolon "when true, the result will not be shown in
the interactive environment"
end ISTMTS;
end InteractiveStmts;

uniontype InstantiatedClass "The Instantiated Class"
record INSTCLASS
Absyn.Path qualName " The fully qualified name of the inst:ed class";
list<DAE.Element> daeElementLst " The list of DAE elements";
Env.Env env "The env of the inst:ed class";
end INSTCLASS;
end InstantiatedClass;

uniontype InteractiveVariable "- Interactive Variable"
record IVAR
Absyn.Ident varIdent "The variable identifier";
Values.Value value "The expression containing the value";
Types.Type type " The type of the expression";
end IVAR;
end InteractiveVariable;

Two of the more important functions and their input/output:

function evaluate
input InteractiveStmts inInteractiveStmts;
input InteractiveSymbolTable inInteractiveSymbolTable;
input Boolean inBoolean;
output String outString;
output InteractiveSymbolTable outInteractiveSymbolTable;
algorithm

end evaluate;

function updateProgram
input Absyn.Program inPrograml;
input Absyn.Program inProgram?2;
output Absyn.Program outProgram;
algorithm

end updateProgram;

Module dependencies. Absyn, SCode, DAE, Types, Vaues, Env, Dump, Debug, Rtops, Util, Parse, Prefix,
Mod, Lookup, ClassInf, Exp, Ingt, Static, ModUtil, Codegen, Print, System, ClassL oader, Ceval.

72

3.4.23 Lookup — Lookup of Classes, Variables, etc.

This module is responsible for the lookup mechanism in Modelica. It is responsible for looking up classes,
types, variables, etc. in the environment of type Env by following the lookup rules.
The important functions are the following:

e lookupClassClass —tofindaclass.
e loockupTypeType — to find types (e.g. functions, types, etc.).
e lookupvarvar —to find avariable in the instance hierarchy.

Concerning builtin types and operators:

e Built-intypesareadded in initialEnvEnv => same lookup for all types.
e Built-in operators, like size(...), are added as functionsto initialEnvEnv.

Note the difference between Type and Class. the type of a class is defined by Classinfo state + variables
defined in the Types module.

M odule dependencies: Absyn, Classinf, Types, Exp, Env, SCode.

3.4.24 Main — The Main Program

This is the main program in the OpenModelica system. It either trandlates a file given as a command line
argument (see Chapter 2) or starts a server loop communicating through CORBA or sockets. (The Win32
implementation only implements CORBA). It performs the following functions:

e Cadlsthe parser

e Invokes the Interactive module for command interpretation which in turn calls to Ceva for
expression eval uation when needed.

e Outputsflattened DAEs if desired.

e Callscode generation modules for C code generation.

Module dependencies: Absyn, Modutil, Parse, Dump, Dumpgraphviz, SCode, DAE, DAElow, Ingt,
Interactive, Rtopts, Debug, Codegen, Socket, Print, Corba, System, Util, SimCodegen.

Optional dependencies for parallel code generation: ??

3.4.25 MetaUtil — MetaModelica Handling

This module is part of the MetaModelica language extension. This module contains several functions that
handles different MetaModelica extensions such as the list construct and the union type construct. These
functions have been moved to this module in order to more clearly separate the MetaModelica extension
code from the rest of the code in the compiler.

See the OMC MetaM odelica extension chapter (chapter 4) for more information.

Module dependencies: Types, Exp, Util, Lookup, Debug, Env, Absyn, SCode, DAE

3.4.26 Mod — Modification Handling

Modifications are simply the same kind of modifications used in the Absyn module.

Thistypeisvery similar to scode . Mod. The main differenceisthat it uses Exp . Exp in the Exp module
for the expressions. Expressions stored here are prefixed and type checked.

The datatype itself (Types.Mod) has been moved to the Types module to prevent circular
dependencies.

Open Source Modelica System Documentation 73

A few important functions:

e elabModMod (Env.Env, Prefix.Prefix, Scode.Mod) => Mod Elaborate modifications.
e merge (Mod, Mod) => Mod Merge of Modifications according to merging rulesin Modelica.

Module dependencies: Absyn, Env, Exp, Prefix, SCode, Types, Dump, Debug, Print, Inst, Static, Values,
Util.

3.4.27 ModSim — Communication for Simulation, Plotting, etc.

This module communicates with the backend (through files) for simulation, plotting etc. Called from the
Ceva module.

Module dependencies: System, Util.

3.4.28 ModUtil — Modelica Related Utility Functions

This module contains various utility functions. For example converting a path to a string and comparing
two paths. It is used pretty much everywhere. The difference between this module and the Util module is
that ModUtil contains Modelica related utilities. The Util module only contains “low-level” “generic”
utilities, for example finding elementsin lists.

Module dependencies: Absyn, DAE, Exp, Rtopts, Util, Print.

3.4.29 Parse — Parse Modelica or Commands into Abstract Syntax

Interface to external code for parsing Modelicatext or interactive commands. The parser moduleis used for
both parsing of files and statements in interactive mode. Some functions never fails, even if parsing fails.
Instead, they return an error message other than " Ok".

Input: String to parse

Output: Absyn.Program or | nteractiveStmts

Module dependencies: Absyn, Interactive.

3.4.30 Patternm — MetaModelica Pattern Matching

This module is part of the MetaModelica extension. This module contains a big part of the pattern
match algorithm. This module contains the functions that transforms a matchcontinue/match expression (an
Absyn expression) into a deterministic finite automata (DFA). The DFA is transformed into a value block
expression by functions in the DFA module. The "main” function of this module is matchMain, which
callsanumber of functions.

See the OMC MetaM odelica extension chapter (chapter 4) for more information.

Input: Absyn.Exp
Output: Absyn.Exp
Module dependencies: Absyn, DFA, Util, Env, SCode, L ookup

74

3.4.31 Prefix — Handling Prefixes in Variable Names

When performing code instantiation of an expression, there is an instance hierarchy prefix (not package
prefix) that for names inside nested instances has to be added to each variable name to be able to use it in
the flattened equation set.

An instance hierarchy prefix for a variable x could be for example a.b.c so that the fully qualified
nameisa.b.c.x, if x isdeclared inside the instance ¢, which is inside the instance b, which is inside the
instance a.

Module dependencies: Absyn, Exp, Env, Lookup, Util, Print..

3.4.32 Print — Buffered Printing to Files and Error Message Printing

This module contains a buffered print function to be used instead of the builtin print function, when the
output should be redirected to some other place. It also contains print functions for error messages, to be
used in interactive mode.

No module dependencies.

3.4.33 RTOpts — Run-time Command Line Options

This modul e takes care of command line options. It is possible to ask it what flags are set, what arguments
were given etc. This module is used pretty much everywhere where debug calls are made.

No module dependencies.

3.4.34 SCode - Lower Level Intermediate Representation

This module contains data structures to describe a Modelica model in a more convenient way than the
Absyn module does. The most important function in this module is elaborate which turns an abstract
syntax tree into an sCode representation. The scode representation is used as input to the Inst module.
o Definesalower-level elaborated AST.
e Changed types.
e Madifications
e EXxpressions (uses Exp modul€)
o ClassDef (PARTS divided into equations, elements and a gorithms)
e Algorithms uses Algorithm module
¢ Element Attributes enhanced.
e Threeimportant public Functions
¢ elaborate (Absyn.Program) => Program
e elabClassClass: Absyn.Class => Class
e DbuildModMod (Absyn.Modification option, bool) => Mod

Module dependencies. Absyn, Dump, Debug, Print.

3.4.35 SimCodegen — Generate Simulation Code for Solver

This module generates simulation code to be compiled and executed to a (numeric) solver. It outputs the
generated simulation code to afile with a given filename.

Input: DAEL ow.
Output: To file

Open Source Modelica System Documentation 75

Module dependencies: Absyn, DAElow, Exp, Util, RTOpts, Debug, System, Values.

3.4.36 Socket — (Depreciated) OpenModelica Socket Communication Module

This module is partly depreciated and replaced by the Corba implementation. It is the socket connection
module of the OpenModelica compiler, still somewhat useful for debugging, and available for Linux and
CygWin. Socket is used in interactive mode if the compiler is started with +d=interactive. External
implementation in C isin ./runtime/soecketimpl.c.

This socket communication is not implemented in the Win32 version of OpenModelica. Instead, for
Win32 build using +d=interactiveCorba.

No module dependencies.

3.4.37 Static — Static Semantic Analysis of Expressions

This module performs static semantic analysis of expressions. The analyzed expressions are built using the
congtructors in the Exp module from expressions defined in Absyn. Also, a set of properties of the
expressions is calculated during analysis. Properties of expressions include type information and a boolean
indicating if the expression is constant or not. If the expression is constant, the Ceval module is used to
evauate the expression value. A value of an expression is described using the Values module.

The main function in this module is eval exp which takes an Absyn.Exp abstract syntax tree and
transforms it into an Exp . Exp tree, while performing type checking and automatic type conversions, etc.

To determine types of builtin functions and operators, the module also contain an elaboration handler
for functions and operators. This function is called elabBuiltinHandler. Note: These functions should
only determine the type and properties of the builtin functions and operators and not evaluate them.
Constant evaluation is performed by the ceval module.

The module also contain a function for deoverloading of operators, in the deoverload function. It
transforms operators like '+' to its specific form, ADD, ADD ARR, €fC.

Interactive function calls are aso given their types by elabExpExp, Wwhich cals
elabCallInteractiveCallInteractive.

Elaboration for functions involve checking the types of the arguments by filling slots of the argument
list with first positional and then named arguments to find a matching function. The details of this
mechanism can be found in the Modelica specification. The elaboration aso contain function
deoverloading which will be added to Modelica in the future when lookup of overloaded user-defined
functionsis supported.

We summarize afew of the functions:

Expression analysis.

® clabExXpExp: Absyn.Exp => (Exp.Exp, Types.Properties) — Static analysis, finding
out properties.

e elabGraphicsExp — for graphics annotations.

e elabCrefCref —check component type, constant binding.

e elabSubscripts: Absyn.Subscript => Exp.Subscript — Determine whether subscripts are

constant
Constant propagation
® ceval

The elabExpExp function handles the following:

e constants: integer, real, string, bool
e binary and unary operations, relations

76

e conditional: ifexp
e functioncals
e arrays. array, range, matrix

The ceval function:

e Compute value of a constant expressions
e Resultsasvalues.vValue type

The canoncrefcref function:

e Convert Exp.ComponentRef to canonical form
e Convert subscripts to constant values

The elabBuiltinHandlerBuiltinHandler function:
e Handle builtin function callssuch as size, zeros, ones, £i11, €tc.

Module dependencies. Absyn, Exp, SCode, Types, Env, Vaues, Interactive, Classinf, Dump, Print,
System, Lookup, Debug, Inst, Codegen, Modutil, DAE, Util, RTOpts, Parse, ClassLoader, Mod, Prefix,
CEva

3.4.38 System — System Calls and Utility Functions

This module contain a set of system calls and utility functions, e.g. for compiling and executing stuff,
reading and writing files, operations on strings and vectors, etc.,, which are implemented in C.
Implementation in runtimesystemimpl.c In comparison, the Util module has utilities implemented in
MetaModelica.

Module dependencies: Values.

3.4.39 TaskGraph —Building Task Graphs from Expressions and Systems of
Equations

This module is used in the optional modpar part of OpenModelica for bulding task graphs for automatic
parallelization of the result of the BLT decomposition.

The exported function build taskgraph takes the lowered form of the DAE defined in the
DAEL ow module and two assignments vectors (which variable is solved in which equation) and the list of
blocks given by the BLT decomposition.

The module uses the TaskGraphExt module for the task graph datastructure itself, which is
implemented using the Boost Graph Library in C++.

Module dependencies:. Exp, DAEL ow, TaskGraphExt, Util, Absyn, DAE, CEval, Vaues, Print.

3.4.40 TaskGraphExt — The External Representation of Task Graphs

This module is the interface to the externally implemented task graph using the Boost Graph Library in
C++.

M odule dependencies: Exp, DAEL ow.

Open Source Modelica System Documentation 77

3.4.41 Types — Representation of Types and Type System Info

This module specifies the Modelica Language type system according to the Modelica Language
specification. It contains an MetaM odelica type called Type which defines types. It also contains functions
for determining subtyping etc.

There are a few known problems with this module. It currently depends on sCode.Attributes,
which in turn depends on absyn.ArrayDim. However, the only things used from those modules are
constants that could be moved to their own modules.

Identifiers:

type Ident = string

Variables;

uniontype Var "- Variables"
record VAR
Ident name "name" ;
Attributes attributes "attributes"
Boolean protected ‘'"protected"
Type type_ "type"
Binding binding " equation modification"
end VAR;
end Var;

uniontype Attributes "- Attributes"
record ATTR
Boolean flow "flow"
SCode.Accessibility accessibility "accessibility"
SCode.Variability parameter '"parameter" ;
Absyn.Direction direction "direction"
end ATTR;
end Attributes;

uniontype Binding "- Binding"
record UNBOUND end UNBOUND;

record EQBOUND
Exp.Exp exp "exp"
Option<Values.Value> evaluatedExp "evaluatedExp; evaluated exp" ;
Const constant_ "constant"

end EQBOUND;

record VALBOUND
Valuesg.Value valBound "valBound" ;
end VALBOUND;
end Binding;

Types:

type Type = tuple<TType, Option<Absyn.Path>> "A Type is a tuple of a TType
(containing the actual type)
and a optional classname
for the class where the
type originates from.";

uniontype TType "-TType contains the actual type"
record T INTEGER
list<Var> varLstInt "varLstInt"
end T INTEGER;

record T REAL
list<Var> varLstReal "varLstReal" ;
end T REAL;

78

record T STRING
list<Var> varLstString "varLstString" ;
end T STRING;

record T BOOL
list<Var> varLstBool "varLstBool"
end T BOOL;

record T ENUM end T ENUM;

record T ENUMERATION
list<String> names "names"
list<Var> varLst "varLst"
end T ENUMERATION;

record T ARRAY
ArrayDim arrayDim "arrayDim"
Type arrayType "arrayType"
end T ARRAY;

record T COMPLEX
ClassInf.State complexClassType " The type of. a class" ;
list<Var> complexVarLst " The variables of a complex type"
Option<Type> complexTypeOption " A complex type can be a subtype of another
primitive) type (through extends) .
In that case the varlist is empty"
end T COMPLEX;

record T_FUNCTION

list<FuncArg> funcArg "funcArg"

Type funcResultType "Only single-result"
end T FUNCTION;

record T TUPLE
list<Type> tupleType " For functions returning multiple values.
Used when type is not yet known"
end T TUPLE;

record T NOTYPE end T NOTYPE;

record T ANYTYPE
Option<ClassInf.State> anyClassType "Used for generic types. When class state
present the type is assumed to be a
complex type which has that restriction";
end T ANYTYPE;

end TType;
uniontype ArrayDim "- Array Dimensions"

record DIM

Option<Integer> integerOption;

end DIM;
end ArrayDim;
type FuncArg = tuple<Ident, Type> "- Function Argument"
Expression properties.

A tuple has been added to the Types representation. This is used by functions returning multiple
arguments.

Used by splitPropsProps:

Open Source Modelica System Documentation 79

uniontype Const " Variable properties: The degree of constantness of an expression
is determined by the Const datatype.
Variables declared as 'constant' will get C _CONST constantness.
Variables declared as \'parameter\' will get C_PARAM constantness and
all other variables are not constant and will get C VAR constantness."
record C_CONST end C_CONST;

record C_PARAM "\'constant\'s, should always be evaluated" end C_PARAM;

record C VAR "\'parameter\'s, evaluated if structural not constants,
never evaluated"
end C VAR;
end Const;

uniontype TupleConst "A tuple is added to the Types.
This is used by functions whom returns multiple arguments.
Used by split props"
record CONST
Const const;
end CONST;

record TUPLE CONST
list<TupleConst> tupleConstLst "tupleConstLst"
end TUPLE CONST;
end TupleConst;

uniontype Properties "Expression properties:
For multiple return arguments from functions,
one constant flag for each return argument.
The datatype “Properties\' contain information about an
expression. The properties are created by analyzing the
expressions."
record PROP

Type type_ "type"
Const constFlag "if the type is a tuple, each element have a const flag.";
end PROP;

record PROP_TUPLE

Type type_;
TupleConst tupleConst " The elements might be tuple themselfs.";
end PROP_TUPLE;

end Properties;

The datatype properties contains information about an expression. The properties are created by
analyzing the expressions.

To generate the correct set of equations, the trandator has to differentiate between the primitive types
Real, Integer, String, Boolean and types directly derived from then from other, complex types. For
arrays and matrices the type T ARRAY is used, with the first argument being the number of dimensions,
and the second being the type of the objects in the array. The Type type is used to store information
about whether a classis derived from a primitive type, and whether avariable is of one of these types.

Modification datatype:

uniontype EgMod "To generate the correct set of equations, the translator has to

differentiate between the primitive types “Reall', “Integer\',
“String\', "Boolean\' and types directly derived from then from
other, complex types. For arrays and matrices the type

T _ARRAY\' is used, with the first argument being the number of
dimensions, and the second being the type of the objects in the
array. The “Type\' type is used to store information about

whether a class is derived from a primitive type, and whether a

80

variable is of one of these types.
record TYPED
Exp.Exp modifierAsExp "modifierAsExp ; modifier as
Option<Values.Value> modifierAsValue " modifier as
Properties properties "properties"
end TYPED;

record UNTYPED
Absyn.Exp exp;
end UNTYPED;
end EgMod;

uniontype SubMod "-Sub Modification"
record NAMEMOD
Ident ident;
Mod mod;
end NAMEMOD;

record IDXMOD
list<Integer> integerLst;
Mod mod;
end IDXMOD;
end SubMod;

uniontype Mod "Modification"
record MOD
Boolean final "final"
Absyn.Each each_;
list<SubMod> subModLst;
Option<EgMod> egModOption;
end MOD;

record REDECL
Boolean final_ "final"

expression"
Value option"

list<tuple<SCode.Element, Mod>> tplSCodeElementModLst;

end REDECL;

record NOMOD end NOMOD;
end Mod;

Module dependencies: Absyn, Exp, ClassInf, Values, SCode, Dump, Debug, Print, Util.

3.4.42 Util — General Utility Functions

This module contains various utility functions, mostly list operations. It is used pretty much everywhere.
The difference between this module and the ModUtil module is that ModUtil contains Modelica related
utilities. The Util module only contains “low-level” general utilities, for example finding elementsin lists.
This modules contains many functions that use type variables. A type variable is exactly what it sounds
like, atype bound to avariable. It is used for higher order functions, i.e., in MetaM odelica the possibility to
pass a "handle" to a function into another function. But it can aso be used for generic data types, like in

C++ templates.
A typevariable in MetaModelicais written as 7?7? ' a.

For instance, in the function 1ist £fill ('a,int) => 'a list thetypevariable 'a ishere used as
ageneric typefor thefunction 1ist_£i11, which returnsalist of n elements of a certain type.

No module dependencies.

Open Source Modelica System Documentation 81

3.4.43 Values — Representation of Evaluated Expression Values

The module Vaues contains data structures for representing evaluated constant Modelica values. These
include integer, real, string and boolean values, and also arrays of any dimensionality and type.
Multidimensional arrays are represented as arrays of arrays.

uniontype Value
record INTEGER Integer integer; end INTEGER;
record REAL Real real; end REAL;
record STRING String string; end STRING;
record BOOL Boolean boolean; end BOOL;
record ENUM String string; end ENUM;
record ARRAY list<Value> valuelLst; end ARRAY;
record TUPLE list<Value> valuelLst; end TUPLE;

record RECORD
Absyn.Path record '"record name"
list<Value> orderd "orderd set of values" ;
list<Exp.Ident> comp "comp names for each value"
end RECORD;

record CODE
Absyn.Code A "A record consist of value Ident pairs"
end CODE;
end Value;

Module dependencies: Absyn, Exp.

3.4.44 VarTransform — Binary Tree Representation of Variable
Transformations

VarTransform contains Binary Tree representation of variables and variable replacements, and performs
simple variable subsitutions and transformations in an efficient way. Input is a DAE and a variable
transform list, output is the transformed DAE.

Module dependencies. Exp, DAEL ow, System, Util, Algorithm.

3.4.45 XMLDump — Dumping of DAE as XML
XML Dump contains functionality to dump the DAE representation as XML.

3.4.46 DAEQuery — Dumping of DAE as Matlab
DAEQuery contains functionality for dumping the DAE Incidence Matrix in a Matlab format.

82

Chapter 4

MetaModelica Pattern Matching Compilation

This chapter gives a more detailed description of the methods used for compilation of pattern matching as
implemented in the modules Patternm and DFA.

In addition to the pattern matching, several other language constructs have been added to the
OpenModelica Compiler (OMC). A mgjority of these constructs are MetaM odelica constructs. This chapter
describes the implementation of these constructs in order to ease the continuous implementation.

The most important construct that has been added to the OMC is the matchcontinue expression. It has
been implemented using an algorithm for pattern matching developed by Mikael Pettersson (former
PELAB member). This algorithm first transforms the matchcontinue expression into a Deterministic Finite
Automata (DFA). This DFA isthen transformed into if-elseif-else nodes.

Other constructs that have been added (or are currently being added) include the MetaModelica list
type, MetaMaodelica union type and the MetaM odelica tuple type.

A value block expression has been added to the OMC. The value block expression is simply an
expression consisting of aloca variable declaration section, an equation or algorithm section and a return
statement. Similar block constructs may be found in languages such as Java and C. This construct is only
available internally and not for the end-user. The matchcontinue expression makes use of the value block
expression.

A number of modules have been altered. The implementation of the value block expression resulted in
the altering of many modules since it created circular dependencies in the compiler and a number of data
structures and functions had to be replicated. This replication, however, should only be seen as atemporary
solution. A later version of the OMC will hopefully be able to handle circular dependencies better.

4.1 MetaModelica Matchcontinue Expression

The matchcontinue expression is transformed from an Absyn . Exp into a new Absyn . Exp, Namely avaue
block (see section 4.2). The matchcontinue expression is first encountered in the function instStatement
in the Inst module. From here the expression is dispatched to the function matchMain in Patternm.
Patternm contains the code that transforms the Absyn . Exp into aDFA.

The DFA data structure can be found in the module DFA. The DFA module also contains functions that
convert the DFA into avalue block with if-elseif-el se nodes. The pattern matching code is clearly separated
from the rest of the code since there is only one point of entry, in Inst, and the rest of the agorithm is
located in DFA and Patternm.

411 Modules Involved

41.1.1 Absyn
The abstract syntax for the matchcontinue expression was added to Absyn by Adrian Pop.

Open Source Modelica System Documentation 83

41.1.2 Inst
Two new cases have been added to the function instStatement, one for the case (vari, ...,varN)
:= matchcontinue () ... (tuple assignment) and one for the case var := matchcontinue ()

... (single variable assignment). The pattern match algorithm isinvoked (this agorithm has its entry point
in the function matchMain in the module Patternm) and a value block expression is given in return. The
reason why we single out the matchcontinue expression in this function and this module (instead of in
Static.elabExp) is that we need to know the return type(s) of the value block that we create (and the
names of the assigned variables). The return type(s) is given by the types of the variables on the left side of
the assignments. As of now, the left-hand side variables are used as the return variables of the value
block/matchcontinue expression so that no new variables have to be created.

4.1.1.3 Patternm

This module contains most of the pattern match algorithm. This module contains the functions that takes a
matchcontinue expression and transforms it into a DFA. The DFA is transformed into a value block
expression by functionsin DFA.

The "main" function of this module is matchMain, this function calls several functions. First it calls
ASTtoMatrixForm Which transforms the matchcontinue expression into a matrix and a vector/list. The
matrix contains renamed patterns (patterns containing “path” variables). The vector contains right-hand
side records (records containing equations and variables belonging to a right-hand side of the initial
matchcontinue expression).

After AsTtoMatrixForm the function matchFuncHelper is caled. This function takes care of all the
pattern matching and transforms the renamed pattern matrix and right-hand side list into a DFA. The last
thing matchMain doesisto call DFA. fromDFAtoIfNodes Which transforms the DFA into a value block
expression.

The function asTtoMatrixForm goes through each and every case-clause in the matchcontinue
expression, adds path variables to the patterns, singles out the right-hand sides and takes care of all the as-
bindings (a pattern such as e as Absyn.INTEGER (1) Will result in a new variable assignment in the
corresponding right-hand side, involving the path variable and the variable €).

The function extractFromMatchaAST Simply creates one list of patterns and one vector of right-hand
sides out of the matchcontinue expression. A matrix which contains renamed patternsis then created.

This matrix is then filled with renamed patterns by the function £i11Matrix. This function takes one
tuple at atime from the list of patterns, rename all the patterns (add path variables) and then add a new row
to the matrix.

The function addrow adds a new row to the matrix after it has invoked the function renameMain on
each pattern in the row.

The function renameMain recursively adds path variables to a pattern. The function renamePatList
calls renameMain on each patternin alist of patterns.

The function matchFuncHelper is the workhorse of the pattern match agorithm. This function
dispatches to a number of cases. Which case that should be executed is determined by the upper row of the
matrix. If the matrix, and thus the upper row, is empty, afina state is created. This can be seen as the stop
condition of the algorithm. A final state is a state that contains the variables and equations from a right-
hand side record. There are three other main cases as given below. The matchFuncHelper function will
assign a unique number, a stamp, to each state.

e Casel, al of the top-most patterns consist of wildcards. The leftmost wildcard is used to create
an arc to a new state. The function matchFuncHelper isinvoked on this new state with what is
left of the upper row (actually, since this row only contains wildcards we can discard al these
wildcards and go directly to afina state). An else arc to a new state is created; matchFuncHelper
isinvoked on this new state with the rest of the matrix with the upper-row removed.

e Case 2, the top-most column consists of wildcards and constants but no constructors (record
callsor cons expressions). Select the left-most column with a constant at the uppermost position. If
thisis the only column in the matrix do the following: Create a new arc with the constant and a new
(final) state. Create an else branch and a new state and invoke matchFuncHelper oOn this new state
with what is left of the column. Otherwise if there is more than one column left in the matrix:
Create one new arc and state for each constant and one new arc and state for al the wildcards. This
isdone by calling the functions addNewArcForEachC and addNewArcForWildcards.

e Case 3, there is a column whose top-most pattern is a constructor. Select this column. The
function matchFuncHelper cals the function matchcase3. We create a new arc for each
constructor c. For each constructor c: Select the rows that match ¢ (wildcards included). Extract the
sub patterns, create a new arc and state and invoke matchFuncHelper on what is left on the
matrix appended with the extracted sub patterns. This is mainly done in the function
addNewArcForEachCHelper. If thisisthe only column in the matrix do the following: Create an
else arc and a new "union” state for al the wildcards and constants. This is done by the function
createUnionState. Otherwise if there is more than one column left in the matrix: create an arc
and state for each constant, in the same way as for the constructors. Create one new arc and state for
all the wildcards.

An array containing states already created is passed along in the pattern match algorithm. Whenever a new
state is about to be created, we search in this array to see whether an equal state already has been created. If
this is the case we simply create a goto-state containing the name of the old state. We use the
stamps/numbers assigned to each state to jump between equal states and to access the array.

41.1.4 DFA
This module contains the DFA data structure. The DFA data structure has the following components.

e A DFA record which contains the start state, the number of states the DFA contains, an optiona
else case, and alist of variables that will be added to the local variable section in the resulting value
block.

e A dtate record which contains a state stamp (identifier), a list of outdoing arcs, and an optional
right-hand side (if the state is afinal state). There is also a goto-state record; it simply contains the
name of the state to jump to.

e An arc record which contains the state the arc is leading to, a list of numbers representing all the
right-hand sides that this arc leads to down the path, the name of the arc, and an optional renamed
pattern (the arc may be an else arc which means it does not have a renamed pattern).

This module aso contains the functions that transform a DFA into a value block expression with nested if-
elseif-else nodes. The entry point is the function frombFAtoIfNodes. This function will start by creating
some variables that are mostly needed for the failure handling (a case-clause in a matchcontinue expression
may fail which leads to the matching of the next case).

After this the function generatealgorithmBlock is invoked. The function
fromStatetoAbsynCode will be caled with the start state of the DFA. Depending on whether an else-
case exists or not we might need to generate some extracode in generateAlgorithmBlock.

The function fromstatetoAbsynCode Will take a state as input, extract the outgoing arcs from this
state, create an if-elseif-else statement for al the arcs and recursively invoke itself on each state that each
arc leadsto.

The recursive call is made by the function generateIfElseifAndElse which is the function that
creates the if-elseif-else statements. The function generateIfElseifAndElse is afunction that takes a

Open Source Modelica System Documentation 85

list of arcs as input and accumulates if-elseif casesin alist until the list of arcsis empty and the actual if-
elseif-else statement is created.

The function fromStatetoAbsynCode must keep track of the type of the incoming arc to the current
state. If the incoming arc was a constructor then new path variables must be declared and initialized to the
field values of the record. This is done by the function generatePathvarDeclerations. This function
looks up the type and name of each field in the record so that a new variable may be declared.

The module DFA aso contains the renamed patterns union type. A renamed pattern is similar to an
Absyn.Exp except that we have added a path variable to each pattern. This module also contains functions
for handling matrices: adding arow to amatrix, picking out the first row of a matrix, removing the first row
of amatrix, singling out a column from a matrix, etc..

In order to handle matchcontinue failures (a case-clause may fail which should lead to the matching of
the next case-clause) the following scheme is used.

e Asmentioned earlier, the numbers of the right-hand sides that each arc eventually leads to are saved
inalistin thearc record.

e Anarray of Boolean values is added to the final value block. The array contains one entry for each
right-hand side.

e Whenever aright-hand side section fails, we catch this failure and set the corresponding entry in the
Boolean array to false.

o Inevery if-else-elsaif statement, in the generated code, we access the Boolean array to see whether
al the right-hand sides that this arc leads to already have been visited.

An example follows.

y := matchcontinue (x)
case (1) equation .. <codel> fail(); <code2> .. then 1;
case (2) equation .. <code3> .. then 2;

end matchcontinue;

The code above would result in the following C-code (hote that the code is somewhat simplified).

{

Bool BOOLVAR[2] = {true,true};
Int LASTFINALSTATE = 0;
Bool NOTDONE = true;

while (1)
{
try {
if (x == 1 && BOOLVARI[1]) {

LASTFINALSTATE = 1;
<codel>
throw 1; //fail
<code2>

NOTDONE = false;

}

else if (x == 2 && BOOLVAR[2]) {
LASTFINALSTATE = 2;
<code3>

NOTDONE = false;

86

}

catch (...)
BOOLVAR [LASTFINALSTATE] = false;

}

if (!NOTDONE) break;

4.2 Value block Expression

The value block expression makes it possible to have equations and algorithm statements nested within
another equation or algorithm statement. This fact makes the implementation of this construct rather
complicated. Circular dependencies arise in the compiler. The compiler design also becomes unclean in the
sense that the original patterns of design are altered: we may find pieces of code in places we did not
expect.

421 Modules Involved

421.1 Absyn

A value block record has been added to Absyn . Exp. Thisrecord consists of alist of elementItems (local
variable declarations), a valueblockBody union type (this union type consists of two records, one
representing a list of equations and the other one representing a list of algorithm statements) and a result
expression.

42.1.2 Exp

A value block record has been added to this module. Since a value block may contain variable declarations
and algorithm statements (if any equations exist at the outset these are converted into algorithm assignment
statements by a function in the Static module) and since we do not want circular dependencies we had to
duplicate many data structure into Exp. We had to move (duplicate) type data structures from Types, DAE
and Algorithm. In Static when the value block is first encountered these data structures are converted from
being union types of Types, DAE and Algorithm into being union types of Exp. In Codegen they are then
converted back. This converting is done by the module Convert, see the next paragraph.

4.2.1.3 Convert

This module contains functions that convert union types from Types, DAE and Algorithm into
corresponding union typesin Exp, and then back again.

42.1.4 Static

The value block expression is first encountered in this module in the function elabExp. First a new scope
is added to the environment. After this the local variable list is elaborated and the variables are added to the
environment. After this the algorithm section is instantiated and the return expression is elaborated.
However, in order to avoid circular dependencies we had to add some extra data structures to Exp as
mentioned above. Therefore we must call functions in the module Convert that converts these data
structures. If we have avalue block with an equation section instead of an algorithm section we simply use
the function fromEquationsToAlgAssignments tO transform each equation into an agorithm
assignment statement.

Open Source Modelica System Documentation 87

4215 Prefix

In the function prefixExp we must now handle a value block expression. New functions that can add
prefixes to elements and agorithm section have been added: prefixDecls, prefixAlgorithm and
prefixStatements.

4.2.1.6 Codegen

The value block expression (an Exp . Exp record) is encountered in the function generateExpression.
First the list of elements and algorithm statements are converted from Exp union types into DAE, Types
and Algorithm union types. After this the C code is generated in arather straightforward fashion.

4.3 MetaModelica list

The MetaM odelica language contains alist construct, similar to the one found in languages like Lisp.

list<Integer> listInt;

listInt = {1,2,3,4};

listInt = comns(1,{1,2,3});

listInt (L :: {1,2,3}); // :: is the cons operator

This list type has now been added to the OMC. The C code that is generated consists of void pointers
and function calls to the C runtime functionsmk_nil and mk_cons.

431 Modules Involved

43.1.1 Absyn

The :: operator is represented by the cons record in the Exp union type in Absyn. A L1sT record has also
been added to the Exp union type. Thisone is used internally in the compiler to represent an Absyn . ARRAY
(the parser cannot decide whether curly brackets, { ... }, denotes a list or an array constructor). In some
places in the code (where type information is available), an Absyn.ARRAY expression is replaced by an
Absyn.LIST expression.

4.3.1.2 Codegen
C code is generated for the Exp . LIST and Exp . CONS expressions in the function generateExpression.
DAE.Type and Types.T LIST are handled in severa places in this module and C void pointers are
generated.

4.3.1.3 DAE

A list type has been added to the union type DaE . Type.

43.1.4 DFA

The handling of lists has been added to this module. A renamed cons pattern should result in an appropriate
if-statement. Given alist variable, we must create two new variables that should be assigned the car and cdr
parts of thelist variable. An example follows.

matchcontinue (x)

88

case (1 :: {})
The above example should result in the following (somewhat simplified) code.
if () |
Type x1 = car (x);
list<Type> x2 = cdr(x);

if (x1 == 1) {

}

An extra environment variable must be passed along. This environment contains the types of the variables
generated from a cons pattern (such as x1 and x2 above). This is needed because when we encounter a path
variable such as x1 and x2 (that have been generated from a cons pattern) we need to know the type of this
variable.

43.15 Inst

Extra clauses have been added to the functions instElement and instStatement. In the function
instElement, alist element must be dealt with separately. The basic underlying type of thelist is handled
asusual and at the end the Types. T L1ST isadded to the resulting DAE element. Nested lists, for instance
list<list<Integer>>, arealso supported.

4.3.1.6 Metautil

This module contains a number of functions that deals with the list construct. These functions are invoked
from Inst, Static and Codegen. This module was added so that the code dealing with MetaModelica
constructs would be more strictly separated from the rest of the code.

43.1.7 Patternm

The cons and empty-list patterns are handled in renameMain and in afew other functions.

43.1.8 Static

Several extra clauses have been added to the function elabExp. When the MetaModelica flag is set, we
must go through all the arguments to a function call to see if there are any aAbsyn.ARRAY expressions. If
this is the case and the underlying type is a list, we must replace this Absyn.ARRAY expression with an
Absyn.LIST expression. In the function elabeExp we also handle the Absyn.LIST and Absyn.CONS
records. The elaboration of these records resultsin an Exp . LIST OF Exp . CONS record.

4.3.1.9 Types
A T 1.IsT record has been added to the TType union type. This record is handled by for instance the
function subtype.

4.3.1.10 Values

A list value has been added to this module. However, it is not used as of how (and may never have to be
used in the future).

Open Source Modelica System Documentation 89

4.4 MetaModelica Union Type
NA.

90

Chapter 5

OMNotebook and OMShell

This chapter covers the OpenModelica electronic notebook subsystem, called OMNotebook. Both
OMNotebook and OM Shell uses the devel opment framework Qt.

51 Ot

Qt is an object-oriented, platform independent, C++ development framework created and maintained by
Trolltech. Qt includes a comprehensive class library, with more then 400 classes, and severa tools for
development. The Qt API has arich set of classes and functionality for severa types of development and
programming. In OMNotebook Qt have been used for GUI programming, file handling and XML, but Qt
can be used for database programming, networking, internationalization, OpenGL integration and much
more.

Qt is consistent across al supported platforms, which enable developers to create truly platform
independent applications. Using Qt, developers can create native applications for Windows, Mac and X11
platforms. Qt requires no virtua machines, emulation layers or bulky runtime environments. Instead Qt
writes directly to low-level graphics function like native applications, which alows Qt applications to run
natively. Trolltech have designed Qt to be easy and intuitive to use.

5.2 HTML documentation

Using Doxygen a HTML documentation have been generated from the source files. This documentation
contatins information about the different classes, functions and files belonging to OMNotebook. The
documentation is found on the SVN under OM Notebook/Doxygen_doc.

53 Mathematica Notebook Parser

OMNotebook have a parser implemented that can read Mathematica notebooks. This parser is generated by
ANTLR using grammar descriptions. This is an EBNF grammar for the Mathematica notebook fullform
format, taken from the grammar definition for the Mathematica notebook parser.

document ::= <expr>
expr ti= (FrontEnd~) * <exprheaders
| <value>

| <attribute>

Open Source Modelica System Documentation 91

exprheader 1=
Notebook [<expr> (, <rule>)*]
| List [(<listbody>)* (, <listbody>)*]
| 1ist [(<listbody>)* (, <listbody>)*]
| cell [<expr> (, <expr>)? (, <rule>)*]
| CellGroupData [<expr> (, Open|Closed))]
| TextData [<expr> (, <exprs>)* (, <rule>)*]
| StyleBox [<expr> (, <exprs>)* (, <rule>)*]
| StyleData [<expr> (, <expr>)* (, <rules>)*]
| SuperscriptBox [<expr>, <exprs>]
| SubscriptBox [<exprs>, <exprs>]
| SubsuperscriptBox [<expr> (, <expr>)* (, <rules>)*]
| UnderscriptBox [<expr> (, <expr>)* (, <rules)*]
| OverscriptBox [<expr> (, <expr>)* (, <rule>)*]
| UnderoverscriptBox [<expr> (, <expr>)* (, <rules>)*]
|FractionBox [<expr> (, <expr>)* (, <rules>)*]
|SqrtBox [<expr> (, <expr>)* (, <rules>)*]
|RadicalBox [<expr> (, <expr>)* (, <rules>)*]
| RowBox [<expr> (, <expr>)* (, <rules>)*]
| GridBox [<expr> (, <expr>)* (, <rules>)*]
| FormBox [<expr> (, <expr>)* (, <rules>)*]
| TagBox [<expr> (, <expr>)* (, <rules>)*]
| CounterBox [<expr> (, <expr>)* (, <rules>)*]
| AdjustmentBox [<expr> (, <expr>)* (, <rule>)*]
| ButtonBox [<expr> (, <expr>)* (, <rules>)*]
|InterpretationBox [<expr>, <expr>]
| Annotation [<expr> (, <expr>)* (, <rules>)*]
| Equal [<expr> (, <expr>)* (, <rule>)*]
|D1agram [<expr> (, <expr>)* (, <rules>)*]
|Icon <expr> (, <expr>)* (, <rules>)*]
|Polygon [<expr> (, <expr>)* (, <rules>)*]
| Ellipse [<expr> (, <expr>)* (, <rules>)*]
| Line [<expr> (, <exprs>)* (, <rule>)*]
| GreyLevel [<expr> (, <expr>)* (, <rules>)*]
| OLEData [<expr> (, <expr>)* (, <rule>)*]
| RGBColor [Number, Number, Number]
| Filename [<expr> (, <expr>)* (, <rules>)*]
| BoxData [<expr> (, <expr>)* (, <rules>)*]
| GraphicsData [String, String (, <rules>)*]
| DirectedInfinity [Number]
| StartModelEditor []
| ParentDirectory []
listbody ::= (<exprs>|<rules)
rule ::= Rule [<expr> (, <expr>)]
| rule [<expr> (, <expr>)]
| RuleDelayed [<expr> (, <expr>) |
value ::= String
| Number

| True

92

attribute

.o

False

Right

Left

Center

Smaller
Inherited
PaperWidth
WindowWidth
TraditionalForm
StandardForm
InputForm
OutputForm
DefaultInputFormatType
Automatic

None

Null

All

FontSlant

FontSize

FontColor
FontWeight
FontFamily
FontVariation
TextAlignment
TextJustification
InitializationCell
FormatType
PageWidth
PageHeaders
PageHeaderLines
PageFooters
PageFooterLines
PageBreakBelow
PageBreakWithin
BoxMargins
BoxBaselineShift
LineSpacing
Hyphenation
Active

Visible
Evaluatable
ButtonFuncion
ButtonData
ButtonEvaluator
ButtonStyle
CharacterEncoding
ShowStringCharacters
ScreenRectangle
AutoGeneratedPackage
AutoItalicWords
InputAutoReplacements
ScriptMinSize

Open Source Modelica System Documentation

93

StyleMenulListing
CounterIncrements
CounterAssignments
PrivateEvaluationOptions
GroupPageBreakWithin
DefaultFormatType
NumberMarks
LinebreakAdjustments
VisioLineFormat
VisioFillFormat
Extent

NamePosition
CellTags

CellFrame
CellFrameColor
CellFrameLabels
CellFrameMargins
CellFramelLabelMargins
CelllLabelMargins
CelllLabelPositioning
CellMargins
CellDingbat
CellHorizontalScrolling
CellOpen
GeneratedCell
ShowCellBracket
ShowCellLabel
CellBracketOptions
Editable

Background
CellGroupingRules
WindowSize
WindowMargins
WindowFrame
WindowElements
WindowTitle
WindowToolbars
WindowMoveable
WindowFloating
WindowClickSelect
StyleDefinitions
FrontEndVersion
ScreenStyleEnvironment
PrintingStyleEnvironment
PrintingOptions
PrintingCopies
PrintingPageRange
PrivateFontOptions
Magnification
GenerateCell
CellAutoOverwrite
ImageSize
ImageMargins

94

54 File list

ImageRegion
ImageRangeCache
ImageCache
ModelEditor

Thisfile list lists al source files belonging to OMNotebook in alphabetical order with a short description.
In addition to these files a set of files are aso generated by Qt and ANTLR, but those files are not listed
below. The lines of code (LOC) specified for each file is with comments and blank rows (counted May

2006).

File Description LOC

application.h Describe interface for the core application. 88

cell.cpp Implementation of the Cell class. 923

cell.h Definition of the Cell class, superclass for all cells. 234

cellapplication.cpp Implementation of the Cell Application class. 706

cellapplication.h Definition of the Cell Application class, 106
the main application class.

cellcommandcenter.cpp Implementation of the Cell CommandCenter class. 134

cellcommandcenter.h Definition of the CellCommandCenter class, 77
responsible for storing and executing commands.

cellcommands.cpp Implementation of all commands on cell level. 766

cellcommands.h Definition of all commands on cell level. 201

cellcursor.cpp Implementation of the CellCursor class. 580

cellcursor.h Definition of the Cell Cursor class, 131
asubclass of Cell used as a cursor within a document.

celldocument.cpp Implementation of the CellDocument class. 1359

celldocument.h Definition of the CellDocument class, 218
represent a document, contains all cells.

celldocumentview.h Describe interface for a notebook window. 93
[deprecated]

cellfactory,cpp Implementation of the CellFactory class. 208

cellfactory.h Definition of the CellFactory class, 85
responsible for creating all cells.

cellgrammar.cpp Small text application, to test grammar description. 109
[deprecated]

cellgroup.cpp Implementation of the CellGroup class. 500

cellgroup.h Definition of the CellGroup, 129
asubclass of Cell used to group together cells.

cellparserfactory.cpp Implementation of the CellParserFactory class. 96

cellstyle.h Definition and Implementation of the Cell Style class, 131
holds different style options for cells.

chaptercountervisitor.cpp Implementation of the ChapterCounterVisitor class. 187

chaptercountercisitor.h Definition of the ChapterCounterVisitor class, 92
responsible for updating chapter counters.

command.h Describe interface for a commands. 134

commandcenter.h Describe interface for a command center. 74

commandcompl etion.cpp Implementation of the CommandCompletion class. 408

commandcompletion.h Definition of the CommandCompl etion class, 103
responsible for command completion.

commands.xml XML file containing all commands and keywords for 114
CommandCompletion class.

commandunit.h Definition and Implementation of the CellStyle class, 116

Open Source Modelica System Documentation 95

holds a command/keyword for command completion.

96

copytest.cpp

cursorcommands.h
cursorposvisitor.h

document.h
documentview.h
factory.h

highlighterthread.cpp
highlighterthread.h

imagesizedlg.h

ImageSizeDlg.iu
inputcell.cpp
inputcell.h

inputcelldelegate.h

lexer.g
modelicacolors.xml
nbparser.h
notebook.cpp
notebook.h

notebookcommands.h

notebookparser.cpp
notebookparser.h

notebooksocket.cpp
notebooksocket.h

omc_communicator.cpp
omc_communicator.hpp

omcinteractiveenvironment.cpp
omcinteractiveenvironment.h

OMNotebookHelp.onb
openmodelicahighlighter.cpp

openmodelicahighlighter.h

otherdlg.h

OtherDIg.ui

parser.g
parserfactory.h

printervisitor.cpp
printervisitor.h

Small text application, to test copy function for cells.
[deprecated]

Definition and implementation of all commands on cursor level.
Definition and implementation of the CursorPosVisitor class,
responsible for calculate cell cursor position.

Describe interface for a document.

Describe interface for a notebook window.

Describe interface for a cell factory.

Implementation of the HighlighterThread class.

Definition of the HighlighterThread class,

responsible for running the syntax highlighter.

Definition and implementation of the ImageSizeDlg class, adialog
for selecting size of an image.

Define user interface for ImageSizeDIg class.

Implementation of the InputCell class.

Definition of the InputCell class,

asubclass of Cell used to enter codein.

Describe the interface for an input cell delegate.

Grammar file for ANTLR, describe tokens.
Specifies color and font settings for the highlighter.
Describe interface for a parser.

Implementation of the NotebookWindow class.
Definition of the NotebookWindow class,

main window used to display a document.
Definition and implementation of all commands on
document/notebook level.

Implementation of the NotebookParser class.

Definition of the NotebookParser class, responsible for loading
Mathematica notebooks saved in fullform.

Implementation of the NotebookSocket class.

Definition of the NotebookSocket class, for communi-cation
between different OMNotebook processes.

Implementation of the OmcCommunicator class.

Definition of the OmcCommunicator class,

responsible for low level communication with OMC.

Implementation of the OmclnteractiveEnvironment class.
Definition of the OmclnteractiveEnvironment class,
ainteractive environment for evaluation with OMC.

Help documentation about OMNotebook.
Implementation of the OpenM odelicaHighlighter class.
Definition of the OpenModelicaHighlighter class,
asyntax highlighter for modelica code.

Definition and implementation of the OtherDlg class,
adialog for selecting an integer value.

Define user interface for OtherDlg class.

Grammar filefor ANTLR, describe grammar rules.
Describe interface for a parser factory.

Definition of the CellParserFactory,

responsible for creating correct parser for agiven file.
Implementation of the PrinterVisitor class.

Definition of the PrinterVisitor class,

creates the document that is sent to a printer.

78

227
135

180
87

283
95

126

114
1592
210

81

330
47
66

3348

350

500

171
76

299
63

1420
201

297
79

543

124

116

114

226
83

302
101

Open Source Modelica System Documentation 97

puretextvisitor.cpp
puretextvisitor.h

qtapp.cpp
removehighlightervisitor.h

rule.h

seriaizingvisitor.cpp
seriaizingvisitor.h

stripstring.h

stylesheet.cpp
stylesheet.h

stylesheet.xml
syntaxhighlighter.h
textcell.cpp
textcell.h

textcursorcommands.cpp
textcursorcommands.h
treeview.cpp

treeview.h

updategroupcel lvisitor.cpp
updategroupcel lvisitor.h

updatelinkvisitor.cpp
updatelinkvisitor.h

visitor.h
walker.g

xmlnodename.h
xmlparser.cpp
xmiparser.h

Implementation of the PureTextVisitor class.
Definition of the PureTextVisitor class,
extracts document contents and save it as pure text.

Contains the main() function.

Definition and implementation of the RemoveHighlighterVisitor
class, remove documents cells from the highlighter thread.
Implementation and definition of the Rule class,

holds format rules for cells and styles.

Implementation of the SerializingVisitor class.

Definition of the SerializingVisitor class,

responsible for saving adocument in .onb format.

Static functions for text manipulation, used in walker.g.

Implementation of the Stylesheet class.

Definition of the Stylesheet class,

holds and manages the different cell styles.

XML file containing specification of ass cell styles.
Define interface for a syntax highlighter.
Implementation of the TextCell class.

Definition of the TextCell class,

asubclass of Cell used to write normal text in.

Implementation of all commands on text cursor level.
Definition of al commands on text cursor level.
Implementation of the TreeView class.

Definition of the TreeView class,

represents an item in the tree view of documents.
Implementation of the UpdateGroupcellVisitor class.
Definition of the UpdateGroupcellVisitor class,
responsible for updating groupcell state when loading.

Implementation of the UpdateLinkVisitor class.
Definition of the UpdateLinkVisitor class,
responsible for updating links when needed.
Describe interface for avisitor.

Grammar file for ANTLR, describe how to walk to created tree and

create acell structure.

Define all xml name used in the .onb file format.
Implementation of the XML Parser class.
Definition of the XML Parser class,

responsible for loading files saved in .onb format.

Sum:

179
95

87
97

101

331
111

353

521
108

146

85
871
167

604
271
220
115

123
86

176
95

96
953

85

600
111

27037

98

55 Class overview

The following diagram contains the complete static structure of OMNotebook.
:
JAN

[QApplication | [QObject] QThread

JAN

[OpenModelicaHighlighter]

«singleton»
HighlighterThread

CellApplication |
1 H «singleton»

<< create instance >>

«vitual class»
CommandCenter

CommandCompletion

CellCommandCenter

«singleton»
Stylesheet

«vitual class»

——1__ Application
'

p———
Command

o 2

Cell _Jeé——]InputTreeView]

11 JAN
InputTreeView

i

QMainWindow
JAN

«vitual class»
DocumentView
N

<<create>>

-
o «witual class» |——{ CellFactory

Document CellStyle

1

I 1 «vitual class»
CellDocument Visitor TextCell

1 . CellCursor

1

1 CellGroup

1

1

NotebookWindow

InputCell

«vitual class»

R Factory

«vitual class»

CellParserFactory

JAN

«vitual class»
NBParser

ParserFactory

QTextBrowser
JAN

<< create >>

MyTextBrowser
MyTextEdit

CursorPosVisitor ‘

ASTFactory

PrinterVisitor ‘

[AntlrNotebookLexer

PureTextVisitor |

[AntirNotebookParser

SerializingVisitor ‘

[AntirNotebookTreeParser

UpdateGroupcellVisitor |

TTIOITT

UpdateLinkVisitor ‘

TextCursorChangeFontFamily ‘ CursorMoveUpCommand ‘

4{ RemoveHighlighterVisitor

TextCursorChangeFontFace ‘ CursorMoveAfterCommand ‘

L—{ ChapterCountervisitor _|

TextCursorChangeFontSize \ CursorMoveDownCommand \

TextCursorChangeFontStretch | SaveDocumentCommand | AddCellCommand |

T T T LT

TextCursorChangeFontColor | OpenFileCommand | CreateNewCellCommand |

+—{ TextCursorChangeTextAlignment | OpenOldFileCommand | DeleteCurrentCellCommand |

t—{ TextCursorChangeVerticalAlignment | PrintDocumentCommand | DeleteSelectedCellsCommand |

TextCursorChangeMargin \ CloseFileCommand \ CopySelectedCellsCommand \

TextCursorChangePadding NewFileCommand PasteCellsCommand

TextCursorChangeBorder | ExportToPureText | ChangeStyleOnCurrentCellCommand _ f>—

INNRNEE

TextCursorinsertimage | EvalSelectedCells |

1
ChangeStyleOnSelectedCellsCommand kH
1

TextCursorlnsertLink | UpdateChapterCounters | MakeGroupCellCommand |

N N 0 N A R R N
N A R

4{
— TextCursorPasteText |

TextCursorCutText | TextCursorCopyText |

Open Source Modelica System Documentation 99

5.6 References

Anders Fernstrom. Extending OMNotebook — An Interactive Notebook for Structured Modelica
Documents.Final thesis to be presented spring 2006, Dept. Computer and Information Science, Link&ping
University, Sweden.

Trolltech, Qt Product Overview, http://www.trolltech.com/products/gt/index.htmil.

van Heesch, Dimitri, www.doxygen.org (2006), Doxygen, http://www.doxygen.org.
ANTLR, About The Parser Generator ANTLR, http://www.antlr.org/about.html.

100

Chapter 6

OpenModelica Eclipse Plugin — MDT

To be updated, until then, consult the Modelica Development Tooling (MDT) website:
http://www.ida.liu.se/labs/pel ab/modelica/OpenM odeliceslMDT

Open Source Modelica System Documentation 101

Chapter 7

How to Write Test Cases for OpenModelica
Development

This chapter is a "how-to" guide to aid in developing testcases for the omc testsuite. At the end of the file
there are examplesto illustrate the guide.

7.1 Getting Started

In case you plan to develop several testcases it might be beneficial to have a separate working directory in
the testsuite directory.To set this up you need to copy some files to that directory. Copy rtest,
translation template.mo, translation failed template.mo, simulation template.mos,
and simulation failed template.mos.

Depending on where in the directory hierarchy you put your subdirectory <DIRECTORY> including the rtest
script, you may need to modify thepath™. . /. . /build/bin/omc" inthefollowing lineinthe rtest file:

system "MODELICAUSERCFLAGS=$info{cflags} ../../build/bin/omc $f >$log2>&l";

In order to test your testcase you want to be able to run just a single case at the time. To do this, edit
Makefile.omdev.mingw under the OpenModelica directory. Add the following two lines (perhaps aso
including dependencies?):

mytest:
(cd testsuite/<DIRECTORY>; rtest -v XXX.mos)

Here <DIRECTORY > isthe specific directory where your testcase is saved.

Then in order to run your testcase, simply type the command mytest when you build the project using the
Eclipse MDT plugin (Ctrl + B).

7.2 Developing a Test Case

A complete testcase consists of 2 separate files. The .mo file containing the model you are running your
tests on and a.mos file containing the test script.

7.21 Creating the .mo File

Open translation template.mo OF translation failed template.mo, depending on if the
tranglation should fail or not.

e Save the file with a name of your choice. (Don't just copy the content to the new file since it might
result in errors.)

102

e Change the xxx to appropriate names.
e Write the code for the test model. In case your model is supposed to translate add the flat code at
the bottomof the file (as seen in the template file).

In order to obtain the flat file, enter the following command:

>omc . exe XXX.mo

at the command prompt. Copy the result to the bottom of your .mo file. It isimportant that you maintain all
information from the flattened file, including white spaces.

When commenting the flattened code as seen in the template ensure that there is a white space after
each '/l (asin the template).

7.2.2 Creating the .mos File

Open one of the templates simulation_template.mos, simulation failed template.mos depending on
whether your testcase should be simulated successfully or not. Save it with preferably the same name as the
.mofile.

7.2.2.1 Simulation not Failing
Thesimulation template.mos fileisused when the simulation should not fail.

e Change <XXX> in loadfile to the .mo file name.

e Change <XXX> in the rest of the file to the class or model name that should be simulated (the last
model/class in the mo file)

e Add appropriate startTime, stopTime, and numberOfIntervals in Simulate.

e Changethevariablesin readsimulationResult to the variables you want to test/check.

To get al the values from a variable in the smulation you use req 1] for the first variable you added in
readSimul ationResult and reg[2] for the second one and so on.

The res[x] is an aray of al simulated values from that variable with the size of
readSimulationResultSize ("<XXX> res.plt"); The size of the simulation result depends on the
interval setin simulate. TO get aspecific valuein the set/array you use res [X, Y] .

To get avalue at a specific time in the simulation you must manually look it up in the <xxx> res.plt
file.

To do that you have to out comment the line system("rm") inthe .mos file and run the test.
Then the result fileswill not be removed.

Thisis not very practical. There is a script function called val that can get the value for a specific time.
It's used like val (variableName, time). However, the function currently works only on scaar
variables, not array elements.

Get the values you are going to test as described above. In the template file there is an example of how
you can round the values to 3 digits/decimals.

x:=res[1]; // get the values
Xx:=1000*x; // multiply the values with 1000
x:=floor (x); // remove the decimals

echo (true); // turns on output
x/1000.0; // divide it with 1000 -> 3 digits/decimals and prints it.

Remove:

// {1.0,1.654,2.169,2.62,3.032,3.418}
// {2.0,2.0,2.0,2.0,2.0,2.0}
// {3.0,2.545,2.23,1.979,1.767,1.581}

and add the expected result for your test variables. One way to obtain the expected values is to simulate the
model in another simulator or compute the results manually.

Open Source Modelica System Documentation 103

7.22.2 Simulation Fail
Thesimulation failed template.mos iSused when the simulation should fail.

e Change <XXX> in loadfile to the .mo file name.
¢ Change <XXX> in simulate to the class or model name that should be simulate (the last class‘/model
in the .mo file)

Then remove

//"#Error, too few equations. Underdetermined system
// The model has 3 variables and 2 equations

and replace it with the error message expected for your model.
Note::

The expected values and the errormessage will be matched towards the printout from the simulation. Thus
the expected values and error messages have to be exactly the same as the printout or the test will fail.

Hints:

change the template mos file.

size:=readSimulationResultSize ("<XXX> res.plt");
res:=readSimulationResult ("<XXX> res.plt",{x,y,z},size);

7.3 Status of Simulated Test Cases

7.3.1 Status for .mo Files

There are three different cases of mo.files.
1. The .mo fileis correct and translates. Then status shall be correct.
2. The .mo fileisinaccurate and thus it won't translate. Status shall then be incorrect.

3. The .mo file is correct according to the modelica language specification but it has features not yet
implemented in the omc compiler. Status shall be set to correct. These tests however will be added
differently to the testsuite.

7.3.2 Status for .mos Files

Status on . mos files should aways be set to correct.

7.4 Adding Test Cases to the Suite

Move the files to the dir where they should be and add the new mo and. mos files to the makefile. Normal
correct testcases should be added at the TESTCASE label (like example 1 below). Testcases that are using
features yet not implemented in OM C should be added to the failing test label.

For testcases that have 'planted' errors in the mo-file and a 'simulation_failed' .mos file (like example 2
below), the mo-file should be added as afailing test and the .mos file as a normal test file.

104

7.5 Examples

7.5.1 Correct Test
MO-FILE

// name: Examplel
// keywords:

// status: correct
//

// Simple example

//

model Ex1
Integer Xx;
equation
X = 2+3;
end Ex1;

// fclass Ex1
// Integer x;
// equation
// x =5;
// end Ex1;

MOSHile

// name: Examplel

// keywords:

// status: correct

//

// Simple example
loadFile ("Examplel.mo") ;

simulate (Ex1l,startTime=0.0, stopTime=1.0, numberOfIntervals=2); // 2 intervals ==
3 values

echo (false); // turns of output

size := readSimulationResultSize("Exl res.plt");

res:=readSimulationResult ("Exl res.plt", {x},size);
xl:=res[1,1]; //Gets the simulated value of the model variable x at the time 0
x2:=res[1l,size]; //Gets the value of the model variable x at stoptime.

echo (true); // turns on output

x1; //prints x1, expecting 5.0
X2; //prints x2, expecting 5.0

readFile ("output.log"); // Check that output log is emtpy
system("rm -rf Exl_ * Exl.exe Exl.cpp Exl.makefile Ex1l.libs Exl.log output.log");

// Result:

// true

// record

// resultFile = "Exl res.plt"
// end record
// true

// 5.0

// 5.0

// nn

// 0

// endResult

Open Source Modelica System Documentation 105

7.5.2 Failing Test
MO-FILE

// name: Example2
// keywords:

// status: incorrect
//

// Simple example

//

model Ex2
Integer x = 5.5; //Type mismatch
equation
x = 5;
end Ex2;

MOS-FILE

// name: Example2
// keywords:
// status: correct

//
// Simple example

loadFile ("Example2.mo") ;
simulate (Ex2,startTime=0.0, stopTime=1.0, numberOfIntervals=2) ;

// 2 intervals == 3 values

getErrorString(); // simulation failed, check error string.
// Result:

// true

// record

// resultFile = "Simulation failed.

// Type mismatch in modifier, expected Integer, got modifier =5.5 of type Real
// Error occured while flattening model Ex2

// n

// end record

// nn
// endResult

106

Appendix A

Exercises (?? Incomplete, version 070204)

The following are some exercises mostly related to the OpenModelica Compiler (omc), but also about

writing atest script and using the Corba client-server interface.

A.1 Exercise SimpleTestCase — Write a Simple Test Case

Write your own testcase MyHelloWorld.mo as a MyHelloWorld.mos file and add it to the test suite. For
example, modify the existing Helloworld.mo, e.g. by changing the equation, run it within OMNotebook or
OMShell, check the values at a few points using the val-function — val(x,time). Use these to design your

own .mosfile.

Also read Chapter 7 in this document which gives more detailed instructions.

Below is the .mos file that runs and compares with the values in the comments at the end of the file. In the

.mo filethereis aso aflattened version of the file for checking the flattening.
HelloWorld.mos:

// name: HelloWorld
// keywords: equation
// status: correct

//

// Equation handling

//

loadFile ("HelloWorld.mo") ;
simulate (HelloWorld, startTime=0.0, stopTime=1.0, numberOfIntervals=2);
echo (false) ;

size := readSimulationResultSize("HelloWorld res.plt");
res:=readSimulationResult ("HelloWorld res.plt", {x},size);

X := res|[1l];

X := 1000*x;

x := floor(x); ??? Should perhaps be re-written using the val-function?
echo (true) ;

x/1000.0;

readFile ("output.log") ;

system("rm -rf HelloWorld * HelloWorld.exe HelloWorld.cpp HelloWorld.makefile
HelloWorld.libs HelloWorld.log output.log") ;
// Result:

// true

// record

// resultFile = "HelloWorld res.plt"

// end record

// true

// {1.0,0.999,0.999,0.606,0.367}

// nn

// 0

// endResult

HelloWorld.mo:

// name: HelloWorld
// keywords: equation
// status: correct

Open Source Modelica System Documentation 107

//
// Equation handling
//

model HelloWorld
Real x(start = 1);
parameter Real a = 1;
equation
der(x) = - a * x;
end HelloWorld;

// fclass HelloWorld

// Real x(start = 1.0);
// parameter Real a = 1;
// equation

// der(x) = -(a * x);
// end HelloWorld;

A.2 Exercise UseAPIFunctions — Call Some OMC API Functions

Take a look at the API table in Section 2.4.3 and in the notebook QueryAPIExamples in the testcases
directory under the OpenM odelicainstallation.

** Call a few API function.

A.3 Exercise OMCCorbaJava — Commands via Corba from a Java
Client

In this exercise you will send commands to the OMC compiler viathe Corbainterface. Please switch to the

Java perspective for this exercise. In this exercise you just play around with the Java Corba interface to
omc.

A.3.1 How Corba Communication Works

When OMC is started with: omc[.exe] +d=interactiveCorba, it writes a file in the temporary
directory with its Corba Object reference. The file is called differently depending on the OS. In Windows:
openmodelica.objid and in Linux: openmodelica.USERNAME.objid where USERNAME is the
name of the current user. The Corba clients check if this file exists, read it and use it to initialize the Corba
code that connects to OMC. The code in general looks like this:

ORB orb;
OmcCommunication omcc;

orb = ORB.init (args, null) ;

/* Convert string to object. */
org.omg.CORBA.Object obj = orb.string to object (stringifiedObjectReference) ;

/* Convert object to OmcCommunication object. */
omcc = OmcCommunicationHelper.narrow (obj) ;

In the code above the variable stringifiedobjectReference represents the contents read from the
openmodelica. [USERNAME.] objid file

All the omcCommunication*.java files are generated using an Corba IDL compiler from a very
simple omc_coomunication.idl file with the following contents:

// As simple as can be omc communication, sending and recieving of strings.
interface OmcCommunication {

string sendExpression(in string expr) ;

string sendClass(in string model) ;

}i

108

Please reffer to Corba documentation (for example http://www.mico.org) for more information about the
IDL Compiler and ORB.

A.3.2 OMCProxy.java
Provides implementation for:

e dtarting the OpenModelica compiler: omc[.exe] depending on the platform (Windows/Linux).
See method: startServer ().

e sending expressions to OMC and receiving results.
See method: String sendExpression(String e).

e initidization of Corba communication.
See method: setupOmcc (String objReference) .

A.4 Corba Clients for C++ and Python

If you are interested in calling OpenModelica compiler OMC from other languages we have available
OMC clients for C++ and Python here: http://www.ida.liu.se/~adrpo/omc/corbal

A.5 Exercise newAPIFunction — Write a new Simple OMC API Function

Write your own simple function myOwnAPIFunction() with no arguments that returns the string
“myString”

Look inthefile Interactive.mo.

Locate function evaluateGraphicalapi2

Look at the cases for some existing API functions, e.g. the one below.
Add your own case for a simple function myOwnAPIFunction ().

Below you find a case rule for one of the existing functions get Environmentvar (...):

algorithm
(outString,outInteractiveSymbolTable) :=
matchcontinue (inInteractiveStmts, inInteractiveSymbolTable)

case (ISTMTS (interactiveStmtLst = {IEXP(exp = Absyn.CALL(

function = Absyn.CREF IDENT (name = "getEnvironmentVar"),

functionArgs = Absyn.FUNCTIONARGS (args = {Absyn.STRING(value = name) },
argNames = {})))}),

(st as SYMBOLTABLE (ast = p,explodedAst = s,instClsLst = ic,

lstVarvVal = iv,compiledFunctions = cf))
)
equation
resstr = System.readEnv (name) ;
then

(resstr, st) ;

A.6 Exercise ASTExpTransform — Write A Small Exp AST
Transformation

Write a small AST transformation, e.g. in the Exp package, for example to ssmplify an expression. For
example, you can transform small powers of 3, e.g. X3, to corresponding multiplications, e.g. x*x*x.

A.7 Exercise CodeGen — Generate Code for a new Builtin Function

Open Source Modelica System Documentation 109

Make a small change in the code generator. (e.g. add a compiler-known builtin function twice(x) that
generates the code x+x, or mySin2(x) for computing sin(x)+2, or change an existing function (floor), or
something of your choice, etc.)

Depending on your ambitions, you need to change two or more of the following files. Changes to at least
Builtin.mo and Codegen.mo are necessary.

Builtin.mo — This package creates a top-level environment with all predefined classes and types.
Static.mo — This package performs type checking and certain cases of symbolic simplification.
Ceva.mo — This package performs evaluation of constant expressions.

Codegen.mo — This package performs code generation.

A simple method is to search for the string "£i11" for the builtin function £i11 in the above .mo-files.
Then you easily find the places where to insert code for your own builtin function.

A.8 Exercise getClassNamesRecursive — Recursive Printout of Class
Names in a Model Hierarchy

Write an API function: getClassNamesRecursive (cref) where cref=Component Reference.
This function should display all the loaded classes/packages hierarchically to the last depth

e each level should beindented
e Anexample of output is given below

Example call:

loadModel (Modelica)
getClassNamesRecursive (Modelica)

Output:

Modelica [package]

Blocks [packagel]
Continous [package]

Der [block]
Derivative [block]

Discrete [package]
Constants [packagel
Electrical [packagel]

Icons [package]
Math [package]
Mechanics [packagel
SIunits [package]

UsersGuide [packagel

Hints:
e Start from “getClassNames’ and think about how you can write some functions to get the output
above. See aso getClassRestriction(cref) .

110

Appendix B

Solutions to Exercises (??Incomplete)

The following are solutions to some exercisesin Appendix A.

B.1 Solution SimpleTestCase — Write a Simple Test Case
One possible solution (?? need to update this)
MyHelloworld.mos:

// name: HelloWorld
// keywords: equation
// status: correct

//

// Equation handling

//

loadFile ("HelloWorld.mo") ;
simulate (HelloWorld, startTime=0.0, stopTime=1.0, numberOfIntervals=2) ;
echo (false) ;

size := readSimulationResultSize("HelloWorld res.plt");
res:=readSimulationResult ("HelloWorld res.plt", {x},size);

X := res[1l];

X := 1000*x;

x := floor(x); ??? Should perhaps be re-written using the val-function?
echo (true) ;

x/1000.0;

readFile ("output.log") ;

system("rm -rf HelloWorld * HelloWorld.exe HelloWorld.cpp HelloWorld.makefile
HelloWorld.libs HelloWorld.log output.log") ;
// Result:

// true

// record

// resultFile = "HelloWorld res.plt"

// end record

// true

// {1.0,0.999,0.999,0.606,0.367}

// nn

// 0

// endResult

HelloWorld.mo:

// name: HelloWorld
// keywords: equation
// status: correct

//

// Equation handling

//

model HelloWorld
Real x(start = 1);

parameter Real a = 1;
equation
der(x) = - a * x;

end HelloWorld;

Open Source Modelica System Documentation 111

// fclass HelloWorld
// Real x(start = 1.0);
// parameter Real a = 1;

// equation
// der(x) = -(a * x);

// end HelloWorld;

B.2 Solution UseAPIFunctions — Call Some OMC API Functions
72fill in

** Call a few API functions.

B.3 Solution OMCCorbaJdava — Commands via Corba from a Java
Client

No solution. Just play around with the existing Java Corba communication.

B.4 Solution Corba Clients for C++ and Python

No solution. Just play around with the existing C++ or Python Corba communication implementation.

B.5 Solution newAPIFunction — Write a new Simple OMC API Function

case (ISTMTS (interactiveStmtLst = {

IEXP (exp = Absyn.CALL(function_ = Absyn.CREF IDENT (name = "myOwnAPIFunc")))}),
(st as SYMBOLTABLE (ast = p,explodedAst = s,instClsLst = ic,
lstVarVal = iv,compiledFunctions = cf)))
equation
resstr = "returned from myOwnAPIFunc";
then

(resstr, st) ;

B.6 Solution ASTExpTransform — Write A Small Exp AST
Transformation

22fillin.

B.7 Solution CodeGen — Generate Code for a new Builtin Function

2fillin.

B.8 Solution getClassNamesRecursive — Recursive Printout of Class
Names in a Model Hierarchy

Note: This solution does not display the restriction after the class name. We leave that implementation part
for the reader.

Inserted into the function evaluateGraphicalAPI in Interactive.mo:

case (ISTMTS (interactiveStmtLst = {IEXP(exp = Absyn.CALL(function_ =
Absyn.CREF_IDENT (name = "getClassNamesRecursive"),
functionArgs = Absyn.FUNCTIONARGS (args = {Absyn.CREF (componentReg = cr)})))}),

(st as SYMBOLTABLE (ast = p,explodedAst = s,instClsLst = ic,
lstVarVal = iv,compiledFunctions = cf)))

local Absyn.Path path;

equation

path = Absyn.crefToPath(cr) ;

112

resstr = getClassNamesRecursive (path, p, "");

then
(resstr, st) ;

protected function getClassnamesInClassList
input Absyn.Path inPath;
input Absyn.Program inProgram;
input Absyn.Class inClass;
output list<String> outString;
algorithm
outString:=
matchcontinue (inPath, inProgram, inClass)
local
list<String> strlist;
list<String> res;
list<Absyn.ClassPart> parts;
Absyn.Class cdef;
Absyn.Path newpath, inmodel, path;
Absyn.Program p;

case (_, ,Absyn.CLASS(body = Absyn.PARTS(classParts = parts)))
equation
strlist = getClassnamesInParts (parts) ;
then
strlist;
case (inmodel,p,Absyn.CLASS (body = Absyn.DERIVED (path = path)))
equation
(cdef,newpath) = lookupClassdef (path, inmodel, p);
res = getClassnamesInClassList (newpath, p, cdef);
then
res;

end matchcontinue;
end getClassnamesInClassList;

protected function joinPaths
input String child;
input Absyn.Path parent;
output Absyn.Path outPath;

algorithm
outPaths:=
matchcontinue (child, parent)
local
Absyn.Path r, res;
String c;
case (c, r)
equation
res = Absyn.joinPaths (r, Absyn.IDENT (c)) ;
then res;

end matchcontinue;
end joinPaths;

protected function getClassNamesRecursive "function:

getClassNamesRecursive

Returns a string with all the classes for a given path.

input Absyn.Path inPath;
input Absyn.Program inProgram;
input String indent;
output String outString;
algorithm
outString:=
matchcontinue (indent, inPath, inProgram)
local

Open Source Modelica System Documentation 113

Absyn.Class cdef;
String sl,res, parent string, result;
list<String> strlst;
Absyn.Path pp, modelpath;
Absyn.Program p;
String indent;
list<Absyn.Path> result path lst;
case (pp,p,indent)
equation
cdef = getPathedClassInProgram(pp, p);
strlst = getClassnamesInClassList (pp, p, cdef);
parent string = Absyn.pathString(pp) ;
result path 1st = Util.listMapl(strlst, joinPaths, pp);
indent = indent +& " "
result = Util.stringAppendList (Util.listMap2 (result path 1lst,
getClassNamesRecursive, p, indent)) ;
res = Util.stringAppendList ({parent string, "\n", indent, result});
then
res;
case (_, ,) then "Error";
end matchcontinue;
end getClassNamesRecursive;

114

Appendix C

Contributors to OpenModelica

This Appendix lists the individua s who have made significant contributions to OpenModelica, in the form
of software development, design, documentation, project leadership, tutorial material, etc. The individuals
are listed for each year, from 1998 to the current year: the project leader and main author/editor of this
document followed by main contributors followed by contributorsin aphabetical order.

C.1 OpenModelica Contributors 2009
Peter Fritzson, PELAB, Linkoping University, Linkoping, Sweden.

Adrian Pop, PELAB, Linkoping University, Linkoping, Sweden.
Peter Aronsson, MathCore Engineering AB, Linkdping, Sweden.

David Akhvlediani, PELAB, Linkdping University, Linkdping, Sweden.
Bernhard Bachmann, Fachhochschule Bielefeld, Bielefeld, Germany.
Vasile Baluta, PELAB, Linkoping University, Linkdping, Sweden.
Constantin Belyaev, Bashpromavtomatika Ltd., Ufa, Russia

Simon Bjorklén, PELAB, Linkoping University, Linkoping, Sweden.
Mikael Blom, PELAB, Linkdping University, Linkdping, Sweden.
Willi Braun, Fachhochschule Bielefeld, Bielefeld, Germany.

David Broman, PELAB, Linkdping University, Linkdping, Sweden.
Stefan Brus, PELAB, Linkdping University, Linkdping, Sweden.
Francesco Casella, Politecnico di Milano, Milan, Italy

Filippo Donida, Politecnico di Milano, Milan, Italy

Henrik Eriksson, PELAB, Linkdping University, Linkdping, Sweden.
Anders Fernstrém, PELAB, Linkdping University, Linkdping, Sweden.
Jens Frenkel, TU Dresden, Dresden, Germany.

Pavel Grozman, Equa AB, Stockholm, Sweden.

Michael Hanke, NADA, KTH, Stockholm

Daniel Hedberg, MathCore Engineering AB, Link&ping, Sweden.
Alf Isaksson, ABB Corporate Research, Vasteras, Sweden

Kim Jansson, PELAB, Linkdping University, Linkdping, Sweden.
Daniel Kanth, Bosch-Rexroth, Lohr am Main, Germany

Tommi Karhela, VTT, Espoo, Finland.

Joel Klinghed, PELAB, Linkoping University, Link6ping, Sweden.
Juha Kortelainen, VTT, Espoo, Finland

Alexey Lebedev, Equa Simulation AB, Stockholm, Sweden

Magnus Leksell, Linkdping, Sweden

Oliver Lenord, Bosch-Rexroth, Lohr am Main, Germany

Hakan Lundvall, PELAB, Linkoping University, Linkdping, Sweden.
Henrik Magnusson, Linkdping, Sweden

Eric Meyers, Pratt & Whitney Rocketdyne, Palm City, Florida, USA.
Hannu Niemist6, VTT, Espoo, Finland

Kristoffer Norling, PELAB, Linkdping University, Linkdping, Sweden.

Open Source Modelica System Documentation

115

Atanas Pavlov, Munich, Germany.

Pavol Privitzer, Institute of Pathological Physiology, Praha, Czech Republic
Per Sahlin, Equa Simulation AB, Stockholm, Sweden

Gerhard Schmitz, University of Hamburg, Hamburg, Germany

Klas Sjoholm, PELAB, Linkdping University, Link&ping, Sweden.

Martin §6lund, PELAB, Linkdping University, Linkdping, Sweden.
Kristian Stavéker, PELAB, Linkoping University, Linkoping, Sweden.
Mohsen Torabzadeh-Tari, PELAB, Linkdping University, Linkdping, Sweden.
Niklas Worschech, Bosch-Rexroth, Lohr am Main, Germany

Robert Wotzlaw, Goettingen, Germany

Bjorn Zachrisson, MathCore Engineering AB, Linkoping, Sweden

C.2 OpenModelica Contributors 2008
Peter Fritzson, PELAB, Link&ping University, Linkoping, Sweden.

Adrian Pop, PELAB, Link&ping University, Linkoping, Sweden.
Peter Aronsson, MathCore Engineering AB, Linkdping, Sweden.

David Akhvlediani, PELAB, Linkdping University, Linkdping, Sweden.
Bernhard Bachmann, Fachhochschule Bielefeld, Bielefeld, Germany.
Hakan Lundvall, PELAB, Link&ping University, Linkoping, Sweden.
Vasile Baluta, PELAB, Linkoping University, Linkoping, Sweden.
Mikael Blom, PELAB, Linkdping University, Linképing, Sweden.
Kristoffer Norling, PELAB, Linkdping University, Linkdping, Sweden.
Klas Sjoholm, PELAB, Linkoping University, Linkoping, Sweden.
David Broman, PELAB, Linkdping University, Linkdping, Sweden.
Henrik Eriksson, PELAB, Linkdping University, Linkdping, Sweden.
Anders Fernstrém, PELAB, Linkdping University, Linkdping, Sweden.
Daniel Hedberg, MathCore Engineering AB, Linkdping, Sweden.

Kim Jansson, PELAB, Link&ping University, Linkoping, Sweden.

Joel Klinghed, PELAB, Linkdping University, Linkdping, Sweden.
Simon Bjorklén, PELAB, Linkoping University, Linkoping, Sweden
Kristian Stavéker, PELAB, Linkoping University, Linkoping, Sweden.
Anders Sandholm, PELAB, Link&ping University, Linképing, Sweden.
Eric Meyers, Pratt & Whitney Rocketdyne, Palm City, Florida, USA.
Pavel Grozman, Equa AB, Stockholm, Sweden.

Constantin Belyaev, Bashpromavtomatika Ltd., Ufa, Russia

C.3 OpenModelica Contributors 2007
Peter Fritzson, PELAB, Link&ping University, Linkoping, Sweden.

Adrian Pop, PELAB, Linkoping University, Linkoping, Sweden.
Peter Aronsson, MathCore Engineering AB, Linkdping, Sweden.

David Akhvlediani, Linkdping University, Linkoping, Sweden.
Bernhard Bachmann, Fachhochschule Bielefeld, Bielefeld, Germany.
David Broman, PELAB, Linkdping University, Linkdping, Sweden.
Anders Fernstrém, PELAB, Linkdping University, Linkdping, Sweden.
Daniel Hedberg, MathCore Engineering AB, Link&ping, Sweden.
Héakan Lundvall, PELAB, Link&ping University, Linkoping, Sweden.
Kristoffer Norling, Linkdping University, Linkdping, Sweden.

116

Anders Sandholm, PELAB, Link&ping University, Linképing, Sweden.
Klas Sjéholm, Linkdping University, Linkdping, Sweden.

Simon Bjorklén, PELAB, Linkdping University, Linkdping, Sweden
Kristian Stavéker, PELAB, Linkoping University, Linkoping, Sweden.
William Spinelli, Politecnico di Milano, Milano, Italy

Stefan Vorkoetter, MapleSoft, Waterloo, Canada.

Constantin Belyaev, Bashpromavtomatika Ltd., Ufa, Russia

C.4 OpenModelica Contributors 2006
Peter Fritzson, PELAB, Linkoping University, Linkoping, Sweden.

Peter Aronsson, MathCore Engineering AB, Linkdping, Sweden.
Adrian Pop, PELAB, Link&ping University, Linkoping, Sweden.

David Akhvlediani, Linkdping University, Linkdping, Sweden.
Bernhard Bachmann, Fachhochschule Bielefeld, Bielefeld, Germany.
David Broman, PELAB, Linkdping University, Linkdping, Sweden.
Anders Fernstrém, PELAB, Linkdping University, Linkdping, Sweden.
Daniel Hedberg, MathCore Engineering AB, Link&ping, Sweden.
Elmir Jagudin, PELAB, Linkoping University, Linkdping, Sweden.
Hakan Lundvall, PELAB, Link&ping University, Linkoping, Sweden.
Kaj Nystrom, PELAB, Linkoping University, Linkoping, Sweden.

L ucian Popescu, MathCore Engineering AB, Linkdping, Sweden.
Andreas Remar, PELAB, Link6ping University, Linkoping, Sweden.
Anders Sandholm, PELAB, Link&ping University, Linképing, Sweden.

C.5 OpenModelica Contributors 2005
Peter Fritzson, PELAB, Link&ping University, Linkoping, Sweden.

Peter Aronsson, PELAB, Link&ping University and MathCore Engineering AB, Link&ping, Sweden.
Adrian Pop, PELAB, Link&ping University, Linkoping, Sweden.
Héakan Lundvall, PELAB, Link&ping University, Linkoping, Sweden.

Ingemar Axelsson, PELAB, Linkdping University, Linkdping, Sweden.
David Broman, PELAB, Linkdping University, Linkoping, Sweden.
Daniel Hedberg, MathCore Engineering AB, Linkdping, Sweden.
Hakan Lundvall, PELAB, Linktping University, Linkoping, Sweden.
Kaj Nystrém, PELAB, Linkoping University, Linkoping, Sweden.
Lucian Popescu, MathCore Engineering AB, Link&ping, Sweden.
Levon Saldamli, PELAB, Linkdping University, Link6ping, Sweden.

C.6 OpenModelica Contributors 2004
Peter Fritzson, PELAB, Link&ping University, Linkoping, Sweden.
Peter Aronsson, Linkdping University, Linkdping, Sweden.

Bernhard Bachmann, Fachhochschule Bielefeld, Bielefeld, Germany.

Peter Bunus, PELAB, Linkoping University, Linkoping, Sweden.

Daniel Hedberg, MathCore Engineering AB, Linkdping, Sweden.

Hakan Lundvall, PELAB, Linktping University, Linkoping, Sweden.

Emma Larsdotter Nilsson, PELAB, Linkdping University, Linkdping, Sweden.
Kaj Nystrém, PELAB, Linkoping University, Linkoping, Sweden.

Adrian Pop, PELAB, Linkoping University, Linkoping, Sweden.

Open Source Modelica System Documentation

117

L ucian Popescu, MathCore Engineering AB, Linkdping, Sweden.

Levon Saldamli, PELAB, Linkdping University, Linkdping, Sweden.
C.7 OpenModelica Contributors 2003

Peter Fritzson, PELAB, Linkdping University, Linkdping, Sweden.

Peter Aronsson, Linkdping University, Linkoping, Sweden.
Levon Saldamli, PELAB, Linkdping University, Linkdping, Sweden.

Peter Bunus, PELAB, Linkdping University, Linkdping, Sweden.
Vadim Engelson, PELAB, Linkdping University, Linkdping, Sweden.
Daniel Hedberg, Linképing University, Linkdping, Sweden.
Eva-Lena Lengquist-Sandelin, PELAB, Linkdping University, Linkdping, Sweden.
Susanna Monemar, PELAB, Linkdping University, Linkdping, Sweden.
Adrian Pop, PELAB, Link&ping University, Linkping, Sweden.
Erik Svensson, MathCore Engineering AB, Link&ping, Sweden.
C.8 OpenModelica Contributors 2002
Peter Fritzson, PELAB, Linkdping University, Linkdping, Sweden.

Levon Saldamli, PELAB, Linkdping University, Linkoping, Sweden.
Peter Aronsson, Linkdping University, Linkdping, Sweden.

Daniel Hedberg, Linkoping University, Linkdping, Sweden.

Henrik Johansson, PELAB, Linkdping University, Linkdping, Sweden

Andreas Karstrém, PELAB, Linkoping University, Link6ping, Sweden
C.9 OpenModelica Contributors 2001

Peter Fritzson, PELAB, Link&ping University, Linkping, Sweden.

Levon Saldamli, PELAB, Linkdping University, Linkdping, Sweden.

Peter Aronsson, Linkdping University, Linkdping, Sweden.

C.10 OpenModelica Contributors 2000
Peter Fritzson, PELAB, Linkdping University, Linkdping, Sweden.

C.11 OpenModelica Contributors 1999
Peter Fritzson, PELAB, Linkdping University, Linkdping, Sweden

Peter Ronnquist, PELAB, Linkoping University, Linkoping, Sweden.

C.12 OpenModelica Contributors 1998
Peter Fritzson, PELAB, Link&ping University, Linkping, Sweden.
David Kagedal, PELAB, LinkGping University, Linkdping, Sweden.
Vadim Engelson, PELAB, Linkdping University, Linkdping, Sweden.

Index

Error! Noindex entriesfound.

