OpenModelica Users Guide

Version 2010-12-17
for OpenModelica 1.6

December 2010

Peter Fritzson
Adrian Pop, Martin Sjélund, Per Ostlund, Peter Aronsson
David Akhvlediani, Syed Adeel Asghar, Bernhard Bachmann, Vasile Baluta,
Simon Bjorklén, Mikael Blom, Robert Braun, Willi Braun, David Broman,
Stefan Brus, Francesco Casella, Filippo Donida, Henrik Eriksson, Anders
Fernstrom, Jens Frenkel, Pavel Grozman, Daniel Hedberg, Michael Hanke, Alf
Isaksson, Kim Jansson, Daniel Kanth, Tommi Karhela, Joel Klinghed, Juha
Kortelainen, Petter Krus, Alexey Lebedev, Magnus Leksell, Oliver Lenord,
Ariel Liebman, Rickard Lindberg, Hakan Lundvall, Henrik Magnusson, Eric
Meyers, Hannu Niemisto, Peter Nordin, Kristoffer Norling, Lennart Ochel,
Atanas Pavlov, Karl Pettersson, Pavol Privitzer, Reino Ruusu, Per Sahlin, Ingo
Staack, Wladimir Schamai, Gerhard Schmitz, Klas Sjéholm, Anton Sodja,
Kristian Stavaker, Sonia Tariq, Mohsen Torabzadeh-Tari, Parham Vasaiely,
Niklas Worschech, Robert Wotzlaw, Bjérn Zackrisson

Copyright by:

LinkOping University, Sweden
Department of Computer and Information Science

Supported by:

Open Source Modelica Consortium

Copyright © 1998-2010, Linkdpings universitet, Department of Computer and Information Science.
SE-58183 Linkoping, Sweden

All rights reserved.

THIS PROGRAM IS PROVIDED UNDER THE TERMS OF GPL VERSION 3 AND THIS OSMC
PUBLIC LICENSE (OSMC-PL). ANY USE, REPRODUCTION OR DISTRIBUTION OF THIS
PROGRAM CONSTITUTES RECIPIENT'S ACCEPTANCE OF THE OSMC PUBLIC LICENSE.

The OpenModelica software and the OSMC (Open Source Modelica Consortium) Public License (OSMC-
PL) are obtained from Linkdpings universitet, either from the above address, from the URLs:
http://www. ida. liu.se/projects/OpenModelica or http://www.openmodelica.org, and in the
OpenModelica distribution. GNU version 3 is obtained from: http://www.gnu.org/copyleft/gpl.html.

This program is distributed WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE, EXCEPT AS EXPRESSLY SET
FORTH IN THE BY RECIPIENT SELECTED SUBSIDIARY LICENSE CONDITIONS OF OSMC-PL.

See the full OSMC Public License conditions for more details.

This document is part of OpenModelica: http://www.openmodelica.org
Contact: OpenModelica@ida.liu.se

Modelica® is a registered trademark of the Modelica Association, http://www.Modelica.org
MathModelica® is a registered trademark of MathCore Engineering AB, www.mathcore.com

Mathematica® is a registered trademark of Wolfram Research Inc, www.wolfram.com

Table of Contents

TaDIE OF CONENS......eeeeeieeete bttt b e bbbt b b e e e e bt et e b et e bt be st e e eneebeneas 3
Preface 7
(O gF=1 o) (=T R V0 f (oo 1110« o] o OSSR 9
1.1 SYSLEM OVEIVIBW ...ttt te st e st e be e e et e s aeene e e e testaeseeseestesteeneeeeneeannenes 10
L1L1 Implementation STAtUSc.cccvcieiiie ettt sreene e 11
1.2 Interactive Session With EXAMPIES.........ccceieiiiieieie et 11
1.2.1 Starting the INteractive SESSIONcccvcieieiiiieicie e 11
1.2.2 Using Compiler Debug Trace Flags in Interactive Mode.........cccccoovvveieveincceeiecc e, 12
1.2.3 Trying the BUbblesort FUNCLION.........cccciiiieieecc e 15
1.2.4 Trying the system and cd COMMANS..........ccccveiieiierieiieese et 15
1.2.5 Modelica Library and DCMOotor MOdElc.ccooveiiiiieiiiesecece e 16
126 The Val() TUNCHION c....ececce et reene e 18
1.2.7 BouncingBall and SWitCh MOCEIScccveveiiiiiiiceee e 19
1.2.8 Clear Al MOUEIS ..ottt 20
1.2.9 VanDerPol Model and Parametric PIOtccooiiiiiiiiniieiseeeeese s 21
1.2.10 Scripting with For-Loops, While-Loops, and If-Statementscccccevevevvsivevieiesieenen, 22
1.2.11 Variables, Functions, and Types of VariablesS.............ccoevviiiiiiii i, 23
1.2.12 Getting Information about Error CAUSEcccevveiverieeeeiesie e 23
1.2.13 Alternative Simulation OULPUL FOIMALS..........cccceiveiiiieieie e 24
1.2.14 Using EXternal FUNCLIONSc.ooiiiiiicicie sttt st sne e 24
1.2.15 Calling the Model Query and Manipulation APL...........cccooviiveiiereie e, 24
1.2.16 QUIt OPENIMOTEIICAveevveeeieceiee ettt e e e e e sreene e 25
1.2.17 Dump XML RePreSENtatioNc.cceiveieiieiieeeeiesie e seeie e e ste e sae e ne e e saesreeneens 25
1.2.18 Dump Matlab RepreSENtation.........ccccveieieiicieeiesc e 26
1.3 Summary of Commands for the Interactive Session Handlercccccevevevvieeiesesesnne 26
1.4 RETEIENCES ...ttt bbb bbb bt e ne bbb n et 28
Chapter 2 OMEdit — Open Modelica Connection EAItOrccccooiiiiiiiiniieieeeeee e 29
2.1 LCC L] T IS = T [S 29
2.2 HOW t0 Start OIMEGILcouiiiiieiiie e 29
2.3 Hello World model in OMEGIL..........coooiiiiiiiiiiieeeer e 29
2.3.1 Creating a NEW File....c.coiiiicce e reeneas 30
2.3.2 AdAING COMPONENTS......cciiieitiiieieite e et esie e e et e e srae e e saesteaseeaestesseessessesseaseeseessesseasens 30
2.3.3 MaKiNG CONNECLIONS.cviiiitieieie it ste ettt ettt e st e e e e tessa e s e aesteaneeseentesraenens 30
2.3.4 SIMUIAting the MOUEL........coiiiiiieee et aesreeneas 31
2.3.5 Plotting variables from simulated MOdEelSc.ccceiriieiiii i 31
2.4 Modelica Standard LIDIary ..ot enes 31
2.5 WVINOOWS ..ottt bbb bt b e s b e e et e bt e b e b e e e bt ebe st et eneebe e 31
2.5.1 LIBrary WINGOWccueiiiieicitciee ettt st ne et aesteena e e e nnesnaeneas 32
2.5.1.1 Viewing components deSCIIPLIONvciveiiiiiieiieie e eneas 32
2.5.1.2 Viewing components doCUMENTAtIONccveveiierierecierie et 32
2.5.1.3 How to check @ COMPONENT?.......c.oooiiiicicc e eneas 32
2.5.1.4 HOW t0 rename & COMPONENT?vveiuieiiieieeiieeseesieesieesteeseesteestae st e sreesteesteesreesseesseesseesnee e 32
2.5.1.5 How to delete a COMPONENL?.......ccooiiiiciccce et saesraeneas 33
2.5.2 DESIGNEN WINUOWoeviieicieite ettt s re e stesna et ebesneeneeneentesreeneas 33
2.5.3 PIOEWINUOW ...ttt bbbttt bbb bbb 33
2.5.4 MESSAQES WINUOWccuiiiieieiicieeieste sttt sttt ste et e e stesreenaeaesbeaneenaennessaanens 33
2.5.5 Documentation WINGOW ..ottt 34

2.6 DT 01U RS SPRRN 34

2.6.1 NEW DIAIOG. ... e ettt st sttt et e et et e reera e e renreeneas 35

2.6.2 SIMUIALION DIAI0G.. ... veieieiticieiese ettt te e a e teare e e e nresreeneas 36
2.6.3 Component Properties DIalog.........ccccviiueieieiieeieie e seeiesie et ne e e e e eneas 36
2.6.4 Component Attributes DIalOg........ccceviiieiiiiieciee e 36
Chapter 3 2D Plotting and 3D ANIMALIONccoiiiiiiiiieiee e 38
3.1 Enhanced Qt-based 2D Plot FUNCLIONAIILYc.coeiviiieieccc e 38
3.2 SIMPIE 2D PlOL ...ttt et e te e e tenreenaenes 39
3.2.1 All Plot Functions and their OPLioNSccviiveieieieciesese e 42

K I Ao o] 14113 SRS 44
3.2.3 Plotting all variables of @ MOUELcccoeiiiiiiiee e 45
3.2.4 Plotting DUring SIMUIALION..........c.ciiiiiiccce e 45
3.25 Programmable Drawing 0f 2D GraphiCscccceieiiiiieiiiieseeesese e e e 46
3.2.6 Plotting of table data.........cccooviieiece e 47
3.3 Java-based PtPIOt 2D PIOLLINGcveviieieeiee e 48
3.4 3D ANTMALION. ...ttt b bbb bt e bt b e sb e b e e e bt b e b et neene e 48
3.4.1 Object Based ViISUAIIZAIONc.ccveieiiiieiieie ettt sraeneas 48
3.4.2 BOUNCINGBAIL.......cooiiiiiciee ettt e e e renreeneas 49
3.4.3 Pendulum 3D EXQMPIE.....cc.oiiiieieiece ettt sttt nraeneas 51
3.5 RETEIENCES ...ttt ettt b e et b e b bt n et sa e b n et s 53
Chapter 4 OMNotebook with DrModelica and DrControl............cccooeieiiiiniiiniiceeeee, 56
4.1 Interactive Notebooks with Literate Programmingccccceeeviverieienesieeiienieseseeseesee e, 56
411 Mathematica NOEDOOKSc.oiiiiiieic e 56
.12 OMNOLEDOOKcitiiiieiietiet ettt ettt bbb e bbbt et e b e ene b e 56
4.2 DrModelica Tutoring System — an Application of OMNOotebooK............ccccevevviiviicicinnnn, 57
4.3 DrControl Tutorial — Application of OMNotebook in Control Theory...........ccccvevevereinennn. 62
4.4 OpenModelica Notebook COMMANSccveiiiiiieicceceee e 65
AATL CRIIS .t b bbb et bt bbb n e bt b e e e ne et e 65
A O 0 1o £ PP U RU P UT PR URURTUTPRURON 66
45 Selection Of TEXE OF CeIIS........ooi e 66
A5 1 FIE IMIBNU. etttk b e bt b bt b e st e e e st e bt b e b e ne et e 66
A.5.2 EGIEIMIBNU ..ttt b ettt b e bbbt b e b et e 67
453 CRINIMENU ...ttt bbbt b ettt b e b et et b et e b e e bt abe e 68
454 FOIMAE IMIBNU ...ttt bbb bt et e b e b e e e e b e s b e e beeseenenbenreeneas 68
A.5.5 INSEIT IMIBINU. ...ttt ettt bbbt e e b eb e e se et e nbesbeene e e e nbenreeneas 69
456 WINAOW MENU ..ottt ettt b et b e bbbt st se e e ne b e 69
T A o 1= | o1V 1= OSSPSR 69
4.5.8 AAItIONA] FEALUIES.c.ciuiiiiiiiiiei ettt bttt et 69
4.6 RETEIENCES ...ttt bt b e bbbt bt bt e bt bt e bt b et s 70
Chapter 5 Interactive SIMUIALIONccooviiiiiie e 73
5.1 INEFOAUCTION ...ttt b bbbt e et bt b b e e e e sbe e 73
5.2 Interactively Changeable Parametersccoceieiieiieieie et e et 73
5.3 OpenModelica Interactive Components desCriptionccccoeviveivereneneerese e 74
54 CommUNICALION INEEITACE........eiiieiiiie e 74
5.4.1 Network configuration SEHINGSccvcvveiieiiiiiieie e 75
5.4.2 OPEration IMESSAQES.ecvererteareieitesteetestesteseeseessesseassessessesseassessessesssessessessesssessessessensens 75
55 Interactive Simulation general PrOCEAUNEccveiveieiiiieie e 77
5.5.1 Initialize an Interactive SIMulation SESSION..........cccciiiririiriiere e 77
5.5.2 Interactive SIMUIation EXAMPIEcocveieiiii e 77
5.5.3 How to get an example Modelica MOdEL............ccoeiiiieiiie s 77
5.5.4 Create the Simulation FUNTIME..........cooiiiiii e 78

5.5.,5 Start an interactive SIimUlation SESSIONevviiieiieiieiie et e e 78

Chapter 6 MDT - The OpenModelica Development Tooling Eclipse Plugin............cccccevevivenene. 81
6.1 INEFOAUCTION ...ttt b e bbb bt b e b b e e neebe e 81
6.2 INSTAITALION. ...ttt bttt b e e b e 81
6.3 LCC L] T IS = T SRS 81

6.3.1 Configuring the OpenModelica COMPIIENccooveiiiieieie e 81
6.3.2 Using the Modelica PErSPECLIVEecveieiiiiciece sttt 82
6.3.3 Selecting a Workspace FOIAENccviveieiiiiecce st 82
6.3.4 Creating one or more Modelica PrOJECSccoeieiiiiieieic e 82
6.3.5 Building and RUNNING @ PTOJECL........ccviiiiieie et 82
6.3.6 Switching to ANOLher PErSPECLIVEcveieiiiieciee st 83
6.3.7 Creating @ PACKAJEcoveiiiiiiiieieie ettt st re et et e teere e e naennaeneas 83
6.3.8 CreatinNg @ ClaSS......ciiiieieiiiiisieiere ettt e st e e s e et e s re e st e testeereeneenrenraeneas 84
6.3.9 SYNLAX CHECKING ... et iieieiiii ettt sttt e s e se e b e sreaneeseentesraeneas 84
6.3.10 Automatic INdentation SUPPOIL.........cccvoieieiiiieeie et sraeneas 85
6.3.11 Code COMPIELION.......iiieieieite ettt e s re e e st e reane e e e naesrneneas 86
6.3.12 Code Assistance on Identifiers When HOVENNG.........c.coovvieiiiiieiene e 87
6.3.13 GO to DEfiNItioN SUPPOIt.......iiieieecr et aesreeneas 87
6.3.14 Code Assistance on Writing RECOIUScoviveiieiieiiciec e 87
6.3.15 Using the MDT Console for PIOtHING........ccccviiviiieieiicieece e 88

Chapter 7 Modelica Algorithmic Subset DebUgQEr.........cccovveiieieii e 89
7.1 The Eclipse-based debugging enVIrONMENLccooiiieiieiieieie e 89
7.2 Starting the Modelica Debugging Perspectivecccovcveieieieciece e 90

7.2.1 Setting the debug coNfigUIAtioN.........cvcviiiii e 90
7.2.2 Setting/Deleting BreakpointS.........cccocviiieiiieiieciee sttt 93
7.2.3 Starting the debugging session and enabling the debug perspectiveccccevveveieinnen, 93
7.3 The Debugging PErSPECLIVEcviiiieieeiee et sre e 94

Chapter 8 Interoperability — C, Java, and Pythoncccccooveiiiiiiiccc e 97
8.1 Calling EXternal C fUNCLIONSoiiiiiiieieieese e 97
8.2 Calling External Java FUNCHIONS.ccciiiiiiiiieieieese et 98
8.3 Python INteroperability.........c.ccciiiiiiiiicce e enes 99

Chapter 9 Frequently Asked QUESLIONS (FAQ)iii i 100
9.1 OPENMOEIICA GENEIALevecieeieie e re e b e saesreeneas 100
9.2 OMNOEEDOOK ...ttt sttt b et b bt se b b 101
9.3 OMDev - OpenModelica Development ENVIFONMENLcccocovevieiiiesieeiese e e 101

Index 117

Preface

This users guide provides documentation and examples on how to use the OpenModelica system, both for the
Modelica beginners and advanced users.

Chapter 1

Introduction

The OpenModelica system described in this document has both short-term and long-term goals:

The short-term goal is to develop an efficient interactive computational environment for the Modelica
language, as well as a rather complete implementation of the language. It turns out that with support of
appropriate tools and libraries, Modelica is very well suited as a computational language for
development and execution of both low level and high level numerical algorithms, e.g. for control
system design, solving nonlinear equation systems, or to develop optimization algorithms that are
applied to complex applications.

The longer-term goal is to have a complete reference implementation of the Modelica language,
including simulation of equation based models and additional facilities in the programming
environment, as well as convenient facilities for research and experimentation in language design or
other research activities. However, our goal is not to reach the level of performance and quality
provided by current commercial Modelica environments that can handle large models requiring
advanced analysis and optimization by the Modelica compiler.

The long-term research related goals and issues of the OpenModelica open source implementation of a
Modelica environment include but are not limited to the following:

Development of a complete formal specification of Modelica, including both static and dynamic
semantics. Such a specification can be used to assist current and future Modelica implementers by
providing a semantic reference, as a kind of reference implementation.

Language design, e.g. to further extend the scope of the language, e.g. for use in diagnosis, structural
analysis, system identification, etc., as well as modeling problems that require extensions such as partial
differential equations, enlarged scope for discrete modeling and simulation, etc.

Language design to improve abstract properties such as expressiveness, orthogonality, declarativity,
reuse, configurability, architectural properties, etc.

Improved implementation techniques, e.g. to enhance the performance of compiled Modelica code by
generating code for parallel hardware.

Improved debugging support for equation based languages such as Modelica, to make them even easier
to use.

Easy-to-use specialized high-level (graphical) user interfaces for certain application domains.
Visualization and animation techniques for interpretation and presentation of results.
Application usage and model library development by researchers in various application areas.

The OpenModelica environment provides a test bench for language design ideas that, if successful, can be
submitted to the Modelica Association for consideration regarding possible inclusion in the official Modelica
standard.

The current version of the OpenModelica environment allows most of the expression, algorithm, and
function parts of Modelica to be executed interactively, as well as equation models and Modelica functions to
be compiled into efficient C code. The generated C code is combined with a library of utility functions, a run-
time library, and a numerical DAE solver. An external function library interfacing a LAPACK subset and other
basic algorithms is under development.

10

11

System Overview

The OpenModelica environment consists of several interconnected subsystems, as depicted in Figure 1-1

below.

MDT Eclipse Plugin Graphical Model
Editor/Browser \ Editor/Browser
Interactive 1t

session handler — Textual

Model Editor
OMNotebook / \

DrModelica Execution |« Modelica
Model Editor Compiler
Modelica
Debugger

Figure 1-1. The architecture of the OpenModelica environment. Arrows denote data and control flow. The
interactive session handler receives commands and shows results from evaluating commands and expressions that
are translated and executed. Several subsystems provide different forms of browsing and textual editing of
Modelica code. The debugger currently provides debugging of an extended algorithmic subset of Modelica. The
graphical model editor is not really part of OpenModelica but integrated into the system.

The following subsystems are currently integrated in the OpenModelica environment:

An interactive session handler, that parses and interprets commands and Modelica expressions for
evaluation, simulation, plotting, etc. The session handler also contains simple history facilities, and
completion of file names and certain identifiers in commands.

A Modelica compiler subsystem, translating Modelica to C code, with a symbol table containing
definitions of classes, functions, and variables. Such definitions can be predefined, user-defined, or
obtained from libraries. The compiler also includes a Modelica interpreter for interactive usage and
constant expression evaluation. The subsystem also includes facilities for building simulation
executables linked with selected numerical ODE or DAE solvers.

An execution and run-time module. This module currently executes compiled binary code from
translated expressions and functions, as well as simulation code from equation based models, linked
with numerical solvers. In the near future event handling facilities will be included for the discrete and
hybrid parts of the Modelica language.

Eclipse plugin editor/browser. The Eclipse plugin called MDT (Modelica Development Tooling)
provides file and class hierarchy browsing and text editing capabilities, rather analogous to previously
described Emacs editor/browser. Some syntax highlighting facilities are also included. The Eclipse
framework has the advantage of making it easier to add future extensions such as refactoring and cross
referencing support.

OMNotebook DrModelica model editor. This subsystem provides a lightweight notebook editor,
compared to the more advanced Mathematica notebooks available in MathModelica. This basic
functionality still allows essentially the whole DrModelica tutorial to be handled. Hierarchical text
documents with chapters and sections can be represented and edited, including basic formatting. Cells

11

can contain ordinary text or Modelica models and expressions, which can be evaluated and simulated.
However, no mathematical typesetting facilities are yet available in the cells of this notebook editor.

e Graphical model editor/browser. This is a graphical connection editor, for component based model
design by connecting instances of Modelica classes, and browsing Modelica model libraries for reading
and picking component models. The graphical model editor simForge is not really part of
OpenModelica but integrated into the system. The graphical model editor also includes a textual editor
for editing model class definitions, and a window for interactive Modelica command evaluation.

e Modelica debugger. The current implementation of debugger provides debugging for an extended
algorithmic subset of Modelica, excluding equation-based models and some other features, but
including some meta-programming and model transformation extensions to Modelica. This is
conventional full-feature debugger, using Eclipse for displaying the source code during stepping,
setting breakpoints, etc. Various back-trace and inspection commands are available. The debugger also
includes a data-view browser for browsing hierarchical data such as tree- or list structures in extended
Modelica.

1.1.1 Implementation Status

In the current OpenMaodelica implementation version 1.5 (June 2010), not all subsystems are yet integrated as
well as is indicated in Figure 1-1. Currently there are two versions of the Modelica compiler, one which
supports most of standard Modelica including simulation, and is connected to the interactive session handler,
the notebook editor, and the graphic model editor, and another meta-programming Modelica compiler version
(called MetaModelica compiler) which is integrated with the debugger and Eclipse, supports meta-
programming Modelica extensions, but does not allow equation-based modeling and simulation. Those two
versions have in OpenModelica 1.5 been merged into a single Modelica compiler version. All MetaModelica
constructs now work inside OpenModelica, but more bugfixing and performance tuning remains before the
OpenModelica compiler is able to compile itself, i.e., bootstrapping the OpenModelica compiler.

1.2 Interactive Session with Examples

The following is an interactive session using the interactive session handler in the OpenModelica environment,
called OMShell — the OpenModelica Shell). Most of these examples are also available in the OpenModelica
notebook UsersGuideExamples.onb in the testmodels directory, see also Chapter 4.

1.2.1 Starting the Interactive Session

The Windows version which at installation is made available in the start menu as OpenModelica-
>0penMode lica Shel I which responds with an interaction window:

12

{ffi 0MShell - OpenModelica Shell =10f x|

File Edit Wiew Help
t 2@ s e| 0]

CpenModelica 1.4.5 =
Copyright (<) OSMC 2002-2008

To get help on using OMShell and OpenModelica, type "help()"™ and press enter.

>

-

Ready 4

We enter an assignment of a vector expression, created by the range construction expression 1:12, to be stored
in the variable x. The value of the expression is returned.

>> x 1= 1:12
{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12}

1.2.2 Using Compiler Debug Trace Flags in Interactive Mode

When running OMC in interactive mode (for instance using OMShell) one can make use of some of the
compiler debug trace flags defined in section 2.1.2 in the System Documentation. Here we give a few example
sessions.

Example Session 1

OpenModelica 1.6.0
Copyright (c) OSMC 2002-2010
To get help on using OMShell and OpenModelica, type "help()"™ and press enter.

>> setDebugFlags("'failtrace')
true

>> model A Integer t = 1.5; end A; //The type is Integer but 1.5 is of Real Type
{A}

>> instantiateModel (A)
"/*- CevalScript.cevalGenerateFunctionDAEs failed(instantiateModel)*/
/*- CevalScript.cevalGenerateFunction failed(instantiateModel)*/

13

- Inst.makeBinding failed

- Inst.instElement failed: COMPONENT(t in/out: mod: = 1.5 tp: Integer var :VAR,
baseClass: <nothing>)

Scope: A

- Inst.instClassdef failed

class :A

- Inst.instClass: A failed

Inst.instClassInProgram failed

Error: Type mismatch in modifier, expected type Integer, got modifier =1.5 of type Real
Error: Error occured while flattening model A
Error: Type mismatch in modifier, expected type Integer, got modifier =1.5 of type Real
Error: Error occured while flattening model A

Example Session 2

OpenModelica 1.6.0
Copyright (c) OSMC 2002-2009
To get help on using OMShell and OpenModelica, type "help()"™ and press enter.

>> setDebugFlags(*'dump™)

true

---DEBUG(dump) ---

IEXP(Absyn .CALL(Absyn.CREF_IDENT("*'setDebugFlags™, [1).
FUNCTIONARGS (Absyn . STRING("*'dump™),)))
---/DEBUG(dump)---

---DEBUG(dump) ---
1EXP(Absyn.CALL(Absyn.CREF_IDENT(*'getErrorString”, []), FUNCTIONARGS(,)))
--—-/DEBUG(dump)—

>> model B Integer k = 10; end B;

{B}

---DEBUG(dump) ---

Absyn.PROGRAM([

Absyn.CLASS(''B", false, false, false, Absyn_R_MODEL,
Absyn.PARTS([Absyn.PUBLIC([Absyn_ELEMENTITEM(Absyn._ELEMENT(false, _, Absyn.UNSPECIFIED
, '"‘component’, Absyn.COMPONENTS(Absyn.ATTR(false, false, Absyn.VAR, Absyn._BIDIR,

[1) ., Integer, [Absyn.COMPONENT ITEM(Absyn .COMPONENT("'k", 1, SOME(Absyn.CLASSMOD([],

SOME (Absyn . INTEGER(10)))))., NONEQ)1). Absyn.INFO(C™, false, 1, 9, 1, 23)), NONE)YD].
NONE(Q)), Absyn._INFO("™", false, 1, 1, 1, 30))

].Absyn_TOP)

---/DEBUG(dump)---

---DEBUG(dump) ---
1EXP(Absyn .CALL(Absyn.CREF_IDENT(*'getErrorString”™, []), FUNCTIONARGS(,)))
---/DEBUG(dump)—

>> instantiateModel (B)

"fclass B

Integer k = 10;
end B;
---DEBUG(dump) ---

1EXP(Absyn .CALL(Absyn.CREF_IDENT("instantiateModel™, [1),
FUNCT IONARGS (Absyn . CREF(Absyn_CREF_IDENT(C"B™, [D).)))
---/DEBUG(dump)---

---DEBUG(dump) ---

14

I1EXP(Absyn._.CALL(Absyn.CREF_IDENT('getErrorString”, [1), FUNCTIONARGS(,)))
--—-/DEBUG(dump)—

>> simulate(B, startTime=0, stopTime=1l, numberOflntervals=500, tolerance=le-4)
record SimulationResult

resultFile = "B_res.plt"

end SimulationResult;

---DEBUG(dump) ---

#ifdef __ _cplusplus

extern "C" {

#endif

#ifdef _ _cplusplus

}

#endif

1EXP(Absyn.CALL(Absyn.CREF_IDENT("'simulate™, [1),
FUNCTIONARGS (Absyn .CREF(Absyn.CREF_IDENT('B™, [1))., startTime = Absyn.INTEGER(0),
stopTime = Absyn.INTEGER(1), numberOfintervals = Absyn.INTEGER(500), tolerance =
Absyn.REAL(0.0001))))

---/DEBUG(dump)---

---DEBUG(dump) ---
1EXP(Absyn.CALL(Absyn.CREF_IDENT(*'getErrorString”, []), FUNCTIONARGS(,)))
---/DEBUG(dump)--

Example Session 3

OpenModelica 1.6.0
Copyright (c) OSMC 2002-2009
To get help on using OMShell and OpenModelica, type "help()"™ and press enter.

>> setDebugFlags("'failtrace™)
true

>> model C Integer a; Real b; equation der(a) = b; der(b) = 12.0; end C;
{C}

>> instantiateModel (C)

"/*- CevalScript.cevalGenerateFunctionDAEs failed(instantiateModel)*/
/*- CevalScript.cevalGenerateFunction failed(instantiateModel)*/
- Static.elabCall failed

function: der posargs: a

- Static.elabExp failed: der(a)

Scope: C

- iInstEquationCommon failed for eqn: der(a) = b; in scope:C

- instEquation failed egn:der(a) = b;

- Inst.instClassdef failed

class :C

- Inst.instClass: C failed

Inst_instClassInProgram failed

Error: 1llegal derivative. der(a) where a is of type Integer, which is not a subtype of
Real

Error: Wrong type or wrong number of arguments to der(a)-”.

Error: Error occured while flattening model C

Error: 1llegal derivative. der(a) where a is of type Integer, which is not a subtype of
Real

Error: Wrong type or wrong number of arguments to der(a)-”.

Error: Error occured while flattening model C

15

1.2.3 Trying the Bubblesort Function

Load the function bubblesort, either by using the pull-down menu File->Load Model, or by explicitly
giving the command:

>> loadFile("'C:/0OpenModelical.5/testmodels/bubblesort.mo™)

true

The function bubblesort is called below to sort the vector x in descending order. The sorted result is returned
together with its type. Note that the result vector is of type Real[:], instantiated as Real [12], since this is
the declared type of the function result. The input Integer vector was automatically converted to a Real
vector according to the Modelica type coercion rules. The function is automatically compiled when called if
this has not been done before.

>> bubblesort(x)
{12.0,11.0,10.0,9.0,8.0,7.0,6.0,5.0,4.0,3.0,2.0,1.0}

Another call:

>> pubblesort({4,6,2,5,8})
{8.0,6.0,5.0,4.0,2.0}

It is also possible to give operating system commands via the system utility function. A command is provided
as a string argument. The example below shows the system utility applied to the UNIX command cat, which
here outputs the contents of the file bubblesort.mo to the output stream. However, the cat command does not
boldface Modelica keywords — this improvement has been done by hand for readability.

>> cd("'C:/0OpenModelical.5/testmodels™)
>> system("'cat bubblesort.mo™)

function bubblesort
input Real[:] x;
output Real[size(x,1)] vy;

protected
Real t;
algorithm
y = X;
for i in 1l:size(x,1) loop
for j in 1l:size(x,1) loop
if y[i] > y[j] then
t = y[il;
yLil := yLil:
yOil = t;
end if;
end for;
end for;

end bubblesort;

1.2.4 Trying the system and cd Commands

Note: Under Windows the output emitted into stdout by system commands is put into the winmosh console
windows, not into the winmosh interaction windows. Thus the text emitted by the above cat command would
not be returned. Only a success code (0 = success, 1 = failure) is returned to the winmosh window. For
example:

>> system("'dir')
0

>> system("'Non-existing command'™)

16

Another built-in command is cd, the change current directory command. The resulting current directory is
returned as a string.

>> cd()
"C:\OpenModelical.5\testmodels"

>> cd("..")
"C:\OpenModelical.5"

>> cd(""C:\\OpenModel ical.5\\testmodels™™)
""C:\OpenModelical.5\testmodels"

1.2.5 Modelica Library and DCMotor Model

We load a model, here the whole Modelica standard library, which also can be done through the File->Load
Modelica Library menu item:

>> loadModel (Modelica)
true

We also load a file containing the dcmotor model:

>> loadFile("'C:/0OpenModelical.5/testmodels/dcmotor.mo™)
true

It is simulated:
>> simulate(dcmotor,startTime=0.0,stopTime=10.0)

record
resultFile = "dcmotor_res.plt"”
end record

We list the source code of the model:
>> list(dcmotor)

"model dcmotor
Modelica.Electrical .Analog.Basic.Resistor r1(R=10);
Modelica.Electrical .Analog.-Basic. Inductor il;
Modelica.Electrical .Analog.Basic.EMF emfl;
Modelica.Mechanics.Rotational. Inertia load;
Modelica.Electrical .Analog.Basic.Ground g;
Modelica.Electrical .Analog.-Sources.ConstantVoltage v;

equation
connect(v.p,rl.p);
connect(v.n,g.-p);
connect(rl.n,il.p);
connect(il.n,emfl._p);
connect(emfl.n,g.p);
connect(emfl._flange_b, load.flange_a);
end dcmotor;

We test code instantiation of the model to flat code:
>> instantiateModel(dcmotor)

"fclass dcmotor

Real rl.v "Voltage drop between the two pins (= p.v - n.v)";
Real r1.i "Current flowing from pin p to pin n";

Real rl.p.v "Potential at the pin";

Real rl.p.i1 "Current flowing into the pin";

17

Real rl.n.v "Potential at the pin";

Real rl.n.i1 "Current flowing into the pin";

parameter Real r1.R = 10 "Resistance"’;

Real il.v "Voltage drop between the two pins (= p.v - n.v)";

Real il.i "Current flowing from pin p to pin n";
Real il.p.v "Potential at the pin";

Real il.p.i1 "Current flowing into the pin";

Real il.n.v "Potential at the pin";

Real il.n.i1 "Current flowing into the pin";

parameter Real il.L = 1 "Inductance";

parameter Real emfl.k = 1 "Transformation coefficient";
Real emfl.v "Voltage drop between the two pins";

Real emfl.i "Current flowing from positive to negative pin";
Real emfl.w "Angular velocity of flange b";

Real emfl_p.v "Potential at the pin";

Real emfl._p.i "Current flowing into the pin";

Real emfl._n.v "Potential at the pin";

Real emfl.n.i "Current flowing into the pin";

Real emfl.flange_b.phi "Absolute rotation angle of flange';
Real emfl.flange _b.tau "Cut torque in the flange";

Real load.phi "Absolute rotation angle of component (= flange_a.phi = flange_b.phi)";
Real load.flange_a.phi "Absolute rotation angle of flange";
Real load.flange_a.tau "Cut torque in the flange";

Real load.flange_b.phi "Absolute rotation angle of flange';
Real load.flange _b.tau "Cut torque in the flange";
parameter Real load.J = 1 "Moment of inertia";

Real load.w "Absolute angular velocity of component";

Real load.a "Absolute angular acceleration of component™;
Real g.p.v "Potential at the pin";

Real g.p.i "Current flowing into the pin";

Real v.v "Voltage drop between the two pins (= p.v - n.v)";
Real v.i "Current flowing from pin p to pin n";

Real v.p.v "Potential at the pin";

Real v.p.i "Current flowing into the pin";

Real v.n.v "Potential at the pin™;
Real v.n.i "Current flowing into the pin";
parameter Real v.V = 1 "Value of constant voltage';
equation

ril.R * rl.i1 = rl.v;

ri.v = rl.p.v - rl.n.v;

0.0 = rl.p.i + rl.n.i;

rl.i = rl.p.i;

il.L * der(il.i) = il.v;

il.v = il.p.v - il.n.v;

0.0 = il.p.i + il.n.i;

il.1 = il.p.i;

emfl.v = emfl_p.v - emfl.n.v;

0.0 = emfl.p.i + emFl.n._i;

emfl.i = emfFl.p.i;

emfl.w = der(emfl.flange_b.phi);

emfl. kK * emFl.w = emfl.v;

emfl_flange_b.tau = -(emfl.k * emfl.i);

load.w = der(load.phi);

load.a = der(load.w);

load.J * load.a load.flange_a.tau + load.flange_b.tau;

load.flange_a.phi = load.phi;
load.flange_b.phi = load.phi;
g-p.v = 0.0;

V.V = Vv.V;

V.V = V.p.V - V.Nn.V;

18

u + load.flange_a.tau = 0.0;
i = load.flange_a.phi;

emfl.n.i + g-p-i = 0.0;

Vv.p.i + rl.p.i

V.p.v = rl.p.v;

load.flange b.tau = 0.0;
end dcmotor;

We plot part of the simulated result:
>> plot({load.w, load.phi})

true
I Plot Window - 0] x|
File Edit Insert Tools Help
J_| Open Save | Print | Select | Zoom Pan | Grid | Hold | Preferences | Active | Image
Plot by OpenlModelica
3.5
3
2.5 @ load.w
2
1.5
@ load.phi
1
0.5
1]
2 4 B 3
time
Connection closed i

1.2.6 The val() function

The val(variableName,time) scription function can be used to retrieve the interpolated value of a simulation
result variable at a certain point in the simulation time, see usage in the BouncingBall simulation below.

19

1.2.7 BouncingBall and Switch Models

We load and simulate the BouncingBall example containing when-equations and if-expressions (the Modelica
key-words have been bold-faced by hand for better readability):

>> loadFile("'C:/0OpenModelical.5/testmodels/BouncingBall._mo™)
true

>> list(BouncingBall)
"model BouncingBall
parameter Real e=0.7 "coefficient of restitution";
parameter Real g=9.81 "gravity acceleration";
Real h(start=1) "height of ball";
Real v "velocity of ball";
Boolean flying(start=true) "true, if ball is flying";
Boolean impact;
Real v_new;
equation
impact=h <= 0.0;
der(v)=if flying then -g else 0;
der(h)=v;
when {h <= 0.0 and v <= 0.0, impact} then
v_new=if edge(impact) then -e*pre(v) else 0;
flying=v_new > 0;
reinit(v, v_new);
end when;
end BouncingBall;"

Instead of just giving a simulate and plot command, we perform a runScript command on a .mos
(Modelica script) file sim_BouncingBal I .mos that contains these commands:

loadFile('BouncingBall_mo™);
simulate(BouncingBall, stopTime=3.0);

plot({h,flying});
The runScript command:

>> runScript(*'sim_BouncingBall .mos™)
"true
record

resultFile = "BouncingBall_res.plt"”
end record
true
true”

£ tmpPlot.plt _ 0] x|

File Edit Special

Plot by OpenModelica

flying ®

047 1

02r 7

0.0

0.0 [} 1.0 1.8 20 25 3n

20

We enter a switch model, to test if-equations (e.g. copy and paste from another file and push enter):

>> model Switch
Real v;
Real i;
Real il;
Real itot;
Boolean open;
equation
itot = i + il;

it open then

v = 0;
else
i =0;
end if;
1 - 11 = 0;

1-v-1i=0;

open = time >= 0.5;
end Switch;
Ok

>> simulate(Switch, startTime=0, stopTime=1);

Retrieve the value of itot at time=0 using the val(variableName,time) function:
>> val (itot,0)
1

Plot itot and open:

>> plot({itot,open})
true

£ tmpPlot.plt
File Edit Special

Plot by OpenModelica

201 7 open ®
itot ®

0.0

oo 01 02 03 04 05 06 07 08 09 1.0

We note that the variable open switches from false (0) to true (1), causing itot to increase from 1.0 to 2.0.

1.2.8 Clear All Models

Now, first clear all loaded libraries and models:

>> clear()
true

21

List the loaded models — nothing left:
>> list(Q)

1.2.9 VanDerPol Model and Parametric Plot

We load another model, the VanDerPol model (or via the menu File->Load Model):

>> loadFile("'C:/0OpenModelical.5/testmodels/VanDerPol .mo'™))
true

It is simulated:

>> simulate(VanDerPol)
record

resultFile = "VanDerPol_res._plt"
end record

It is plotted:
plotParametric(x,y);

£ tmpPlot.plt O] x|

File Edit Special

Plot by OpenModelica

-2.0 -1.45 -1.0 -0.4 0.0 0.5 1.0 1.5 20

Perform code instantiation to flat forrm of the VanDerPol model:
>> instantiateModel (VanDerPol)

"fclass VanDerPol
Real x(start=1.0);
Real y(start=1.0);
parameter Real lambda = 0.3;
equation
der(x) = vy;
der(y) = -x + lambda * (1.0 - x * xX) * y;
end VanDerPol;

22

1.2.10 Scripting with For-Loops, While-Loops, and If-Statements

A simple summing integer loop (using multi-line input without evaluation at each line into OMShell requires
copy-paste as one operation from another document):
>> k 1= 0;
for i in 1:1000 loop
k := k + 1;
end for;

>> k
500500

A nested loop summing reals and integers::

>> g = 0.0;
h :=5;
for i in {23.0,77.12,88.23} loop
for j in 1:0.5:(i+1) loop
g =9+ j;
g:=9g+h/ 2;
end for;
h := h + g;
end for;

By putting two (or more) variables or assignment statements separated by semicolon(s), ending with a variable,
one can observe more than one variable value:

>> h;g
1997 .45
1479.09

A for-loop with vector traversal and concatenation of string elements:

>> i ::nn -

Ist := {"Here ", "are ","some ","strings.'};
s = -
for i in Ist loop
S 1=s + i;
end for;
>> s

"Here are some strings."

Normal while-loop with concatenation of 10 "abc " strings:

>> sI=";
i:=1;
while i<=10 loop
s:i="abc "+s;
i:=i+1;
end while;

>> s
""abc abc abc abc abc abc abc abc abc abc ™'

A simple if-statement. By putting the variable last, after the semicolon, its value is returned after evaluation:

>> §if 552 then a = 77; end if; a
77

An if-then-else statement with elseif:

>> if false then
a = 5;

23

elseif a > 50 then
b:= "test'"; a:= 100;
else
a:=34;
end if;

Take a look at the variables a and b:
>> a;b

100
"test"

1.2.11 Variables, Functions, and Types of Variables

Assign a vector to a variable:
>> a:=1:5
{1,2,3,4,5}

Type in a function:

>> function MySqr input Real x; output Real y; algorithm y:=x*x; end MySqr;
Ok

Call the function:
>> b:=MySqr(2)
4.0

Look at the value of variable a:

>> a
{1.2,3,4,5}

Look at the type of a:

>> typeOf(a)
"Integer[]"”

Retrieve the type of b:

>> typeOf(b)
"Real”

What is the type of MySqr? Cannot currently be handled.

>> typeOf(MySqr)
Error evaluating expr.

List the available variables:

>> listVariables()
{currentSimulationResult, a, b}

Clear again:

>> clear()
true

1.2.12 Getting Information about Error Cause

Call the function getErrorString in order to get more information about the error cause after a simulation
failure:

24

>> getErrorString()

1.2.13 Alternative Simulation Output Formats

There are several output format possibilities. “plt” is default, and plt is currently the only format capable of
using val() or plot() functions. Format “csv” (comma separated values) is roughly twice as fast on data-heavy
simulations, and doesn't require all output data allocated in RAM during simulation. Format “mat” will
generate the results in the binary Matlab format. Empty does no output at all and should be by far the fastest.

simulate(... , outputFormat="mat')
simulate(... , outputFormat="csv')
simulate(... , outputFormat="plt"™)
simulate(... , outputFormat="empty')

1.2.14 Using External Functions

See Chapter 8 for more information about calling functions in other programming languages.

1.2.15 Calling the Model Query and Manipulation API

In the OpenModelica System Documentation, an external APl (application programming interface) is described
which returns information about models and/or allows manipulation of models. Calls to these functions can be
done interactively as below, but more typically by program clients to the OpenModelica Compiler (OMC)
server. Current examples or such clients are the OpenModelica MDT Eclipse plugin, OMNotebook, the
MathModelica Lite graphic model editor, etc. This API is untyped for performance reasons, i.e., no type
checking and minimal error checking is done on the calls. The results of a call is returned as a text string in
Modelica syntax form, which the client has to parse. An example parser in C++ is available in the
OMNotebook source code, whereas another example parser in Java is available in the MDT Eclipse plugin.
Below we show a few calls on the previously simulated BouncingBall model. The full documentation on
this API is available in the system documentation. First we load and list the model again to show its structure:

>>loadFile("'C:/OpenModelical.5/testmodels/BouncingBall_mo™)
true

>>list(BouncingBall)

"model BouncingBall
parameter Real e=0.7 "coefficient of restitution";
parameter Real g=9.81 "gravity acceleration";
Real h(start=1) "height of ball";
Real v "velocity of ball";
Boolean flying(start=true) "true, if ball is flying";
Boolean impact;
Real v_new;
equation
impact=h <= 0.0;
der(v)=if flying then -g else 0;
der(h)=v;
when {h <= 0.0 and v <= 0.0, impact} then
v_new=if edge(impact) then -e*pre(v) else 0;
flying=v_new > 0;
reinit(v, v_new);
end when;
end BouncingBall;

25

Different kinds of calls with returned results:

>>getClassRestriction(BouncingBall)
"model™”

>>getClassInformation(BouncingBall)
{"model",""",""" ,{false, false, false},{ "writable",1,1,18,17}}

>>isFunction(BouncingBall)
false

>>existClass(BouncingBall)
true

>>getComponents(BouncingBall)

{{Real ,e,"coefficient of restitution”, "public"”, false, false, false,
“"parameter', ''none", "unspecified"},

{Real,g,""gravity acceleration",

"public", false, false, false, "parameter", 'none", "unspecified"},
{Real,h,"height of ball", "public", false, false, false,
"unspecified”, "none", "unspecified"},

{Real,v,"velocity of ball",

"public", false, false, false, "unspecified”, "none", "unspecified"},
{Boolean,flying,"true, if ball is flying”, "public"”, false, false,
false, "unspecified”, "none'", "unspecified"},

{Boolean, impact,"",

"public"”, false, false, false, "unspecified”, "none", "unspecified"},
{Real,v_new,""", "public", false, false, false, "unspecified"”, "none",
"unspecified"}}

>>getConnectionCount(BouncingBall)
0

>>getlnheritanceCount(BouncingBall)
0

>>getComponentModifierValue(BouncingBall,e)
0.7

>>getComponentModifierNames(BouncingBall,e)

>>getClassRestriction(BouncingBall)
"model™*

>>getVersion() // Version of the currently running OMC
vy g

1.2.16 Quit OpenModelica

Leave and quit OpenModelica:
>> quitQ

1.2.17 Dump XML Representation
The command dumpXMLDAE dumps an XML representation of a model, according to several optional
parameters.

dumpXMLDAE (modelname[,asInSimulationCode=<Boolean>] [,filePrefix=<String>]
[,storelnTemp=<Boolean>] [,addMathMLCode =<Boolean>])

26

This command dumps the mathematical representation of a model using an XML representation, with optional
parameters. In particular, asInSimulationCode defines where to stop in the translation process (before
dumping the model), the other options are relative to the file storage: filePrefix for specifying a different
name and storelnTemp to use the temporary directory. The optional parameter addMathMLCode gives the
possibility to don't print the MathML code within the xml file, to make it more readable.Usage is trivial, just:
addMathMLCode=true/false (default value is false).

1.2.18 Dump Matlab Representation

The command export dumps an XML representation of a model, according to several optional parameters.
exportDAEtoMatlab(modelname) ;

This command dumps the mathematical representation of a model using a Matlab representation. Example:

$ cat daequery.mos
loadFile("'BouncingBall_mo™);
exportDAEtoMatlab(BouncingBall);
readFile("'BouncingBall_imatrix.m™);

$ omc daequery.mos
true
"The equation system was dumped to Matlab file:BouncingBall_imatrix.m"

% Incidence Matrix
%
% number of rows: 6

IM={[3,-6],[1,{"if", "true”,"==" {3} {} H.[2,{"if", "edge(impact)”
{3}.{5}.31.[4.21.[5.{"if", “true” {4}.4{}.31.16,-513};

VL = {"foo","v_new", "impact” 'flylng',' ","h"};

EqStr = {"impact = h <= 0.0;","foo = if impact then 1 else 2;","when {h <= 0.0 AND v
<= 0.0, impact} then v_new = if edge(impact) then (-e) * pre(v) else 0.0; end
when;","when {h <= 0.0 AND v <= 0.0, impact} then flying = v_new > 0.0; end
when; ", der(v) = if flying then -g else 0.0;","der(h) = v;"};

OldeEgStr={"fclass BouncingBall", "parameter Real e = 0.7 "coefficient of
restitution”; ", "parameter Real g = 9.81 "gravity acceleration"; ", "Real h(start = 1.0)
"height of ball";","Real v "velocity of ball";","Boolean flying(start = true) "true,
if ball is flying";","Boolean impact;~,"Real v_new;", "Integer foo;","equation”,”
impact = h <= 0.0;"," foo = if impact then 1 else 2;"," der(v) = if flying then -g
else 0.0;7," der(h) =v;"," when {h <= 0.0 AND v <= 0.0, impact} then"," v _new = if
edge(impact) then (e) * pre(v) else 0.0;"," Fflying = v_new > 0.0;","
reinit(v,v_new);"," end when;","end BounC|ngBaII " "}f

1.3 Summary of Commands for the Interactive Session Handler

The following is the complete list of commands currently available in the interactive session hander.
simulate(modelname) Translate a model named modelname and simulate it.

simulate(modelname[,startTime=<Real>][,stopTime=<Real>][,numberOfintervals
=<Integer>] [, outputlinterval=<Real>][,method=<String>]
[, tolerance=<Real>][, fixedStepSize=<Real>]
[,outputFormat=<String>]) Translate and simulate a model, with
optional start time, stop time, and optional number of simulation intervals or
steps for which the simulation results will be computed. Many intervales will

27

plot(vars)

plotParametric(varl, var2)

cdQO

cd(dir)

clearQ
clearVvariables()
dumpXMLDAE(modelname, ...)

give higher time resolution, but occupy more space and take longer to
compute. The default number of intervals is 500. It is possible to choose
solving method, default is “dassl”, “euler” and “rungekutta” are also
available. Output format “plt” is default and the only one that works with th
val() command, “csv” (comma separated values) and “empty” (no output) are
also available.

Plot the variables given as a vector or a scalar, e.g. plot({x1,x2}) or
plot(x1).

Plot var2 relative to varl from the most recently simulated model, e.g.
plotParametric(X,y).

Return the current directory.

Change directory to the directory given as string.
Clear all loaded definitions.

Clear all defined variables.

Dumps an XML representation of a model, according to several optional
parameters.

exportDAEtoMatlab(name) Dumps an Matlab representation of a model.

instantiateModel (modelname)Performs code instantiation of a model/class and return a string containing

listQ
list(modelname)
listVariables()
loadMode I (classname)

loadFile(str)
readFile(str)
runScript(str)
system(str)

timing(expr)

typeOf(variable)
saveMode I (str, modelname)

val (variable,timePoint)

help(O
quitQ

the flat class definition.

Return a string containing all loaded class definitions.

Return a string containing the class definition of the named class.
Return a vector of the names of the currently defined variables.

Load model or package of name classname from the path indicated by the
environment variable OPENMODEL I CAL I1BRARY.

Load Modelica file (.mo) with name given as string argument str.
Load file given as string str and return a string containing the file content.
Execute script file with file name given as string argument str.

Execute str as a system(shell) command in the operating system; return
integer success value. Output into stdout from a shell command is put into
the console window.

Evaluate expression expr and return the number of seconds (elapsed time)
the evaluation took.

Return the type of the variable as a string.

Save the model/class with name modelname in the file given by the string
argument str.

Return the value of the variable at time timePoint.
Print this helptext (returned as a string).
Leave and quit the OpenModelica environment

28

1.4 References

Peter Fritzson, Peter Aronsson, Hakan Lundvall, Kaj Nystrom, Adrian Pop, Levon Saldamli, and David
Broman. The OpenModelica Modeling, Simulation, and Software Development Environment.
In Simulation News Europe, 44/45, December 2005. See also: http://www.openmodelica.org.

Peter Fritzson. Principles of Object-Oriented Modeling and Simulation with Modelica 2.1, 940 pp., ISBN
0-471-471631, Wiley-1EEE Press, 2004.

The Modelica Association. The Modelica Language Specification WVersion 3.0, Sept 2007.
http://www.modelica.org.

http://www.modelica.org/�

29

Chapter 2
OMEdit — Open Modelica Connection Editor

OMEdit — Open Modelica Connection Editor is the new Graphical User Interface for Open Modelica. This
chapter explains the basic usage of OMEdit, how to create models, using the Modelica standard library, etc.
More detailed documentation will be provided in future releases.

2.1 Getting Started

The OMECit beta version is a part of OpenModelica 1.67; it is built using Qt 4.7. All the binaries needed to run
OMEdit are included in the OpenModelica installer. OMEdit uses the Modelica Standard Library that comes
with the OpenModelica installation. OMEdit is supporting graphic annotations 3.1.

2.2 How to Start OMEdit

OMEdit can be launched using the executable placed in
OpenModelicalnstallationDirectory/bin/OMEdit/OMEdit.exe. Alternately, choose OpenModelica > Open
Modelica Connection Editor from the start menu in Windows. A splash screen similar to the one shown in
figure 2.1 will appear indicating that it is starting OMEdit. After the splash screen the main OMEdit window
will appear; see figure 2.2.

Loading Widgets

OMEdit {X

Open Modelica Connection Editor

Figure 2.1: OMEdit Splash Screen

2.3 Hello World model in OMEdit

Since, Modelica is an equation-based language and OMEdit is a connection editor so for a hello world model
demonstration in OMEdit we will show that how a DC Motor model is created in OMEdit.

30

A st - Cpen et Erveer T S -]
File Edit View Simulation Tools

i I - o 5

-ITHH ABE L 8 LLO

Components 8 x

Modelica Standard Library
Modelica

Messages & x

OMEdit, Version: 1.0
Info: Open Modelica, Version: "1.6.0°

Modelca Library | Modelica Fies |

Figure 2.2: OMEdit Main Window

2.3.1 Creating a New File

Creating a new file/model in OMECdit is rather straightforward. In OMEdit the new file can be of type model,
class, connector, record, block, function and package. Go to File > New and then you can select any of the file
types mentioned above. Alternatively, you can also click on the drop down button beside new icon shown in
toolbar right below the File menu. See Figure 2.3.

For this hello world example we will create a new model named DCmotor. By default the newly created model
will open up in the tabbed view of OMEdit and become visible.

2.3.2 Adding components

Components available in the Modelica Standard Library are added to the model by doing a drag & drop.
Navigate to the component in library tree and then click on it, drag it to the model while holding the mouse left
button, drop the component where you want to place it in the model.

For this example we will add 4 components, Ground, Resistor, Inductor and EMF from the
Modelica.Electrical. Analog.Basic ~ package and 1 component SignalVoltage from the
Modelica.Electrical.Analog.Sources package and 1 component Inertia from the
Modelica.Mechanics.Rotational.Components package and 1 component Step from the
Modelica.Blocks.Sources package.

2.3.3 Making connections

To connect one component to another just click on any of the port of the component and it will start connection
line, take the mouse to the component where you want to finish the connection and click on the end component
port. You don’t need to hold the mouse left button for connections.

[Ele] Eda View Simultion Took
Mew L Model CtrieN
Open Cul+0 Clase

W s Chils5 Connector

b Seveds Recond

by Save All Block

© Close Ctik+Q Function
R ——~, Pac kIg!

3 OMEdit - Create New Model ===

! Wodel Hame:
[
Irsert in Package (optonal):

Modlica Files

Creste New Record

Figure 2.3: Creating new file
Check figure 2.4 to see how does the DCmotor model components looks like after connections.

2.3.4 Simulating the model

The OMEdit Simulation Center dialog can be launched either from Simulation > Simulate or by clicking the
simulate icon from the toolbar. Once the user clicks on simulate! Button, OMEdit starts the simulation
process, at the end of the simulation process the Plot Variables Window useful for plotting will appear at the
right side. Figure 2.5 shows the simulation dialog.

2.3.5 Plotting variables from simulated models

The Variables of a model are shown in the right dock window. This window is automatically launched once the
user simulates the model; the user can also launch this window manually either from Simulation > Plot
Variables or by clicking on the plot icon from toolbar. It contains the list of variables that are possible to use in
an Open Modelica Plot. The Variable window contains a tree structure of variables; there is a checkbox beside
each variable. The user can view the plotted graph window by clicking the checkbox.

Figure 2.6 shows the complete DCmotor model along with the list of plot variables and an example plot
window.

2.4 Modelica Standard Library

The Modelica Standard Library is loaded in OMEdit and it located on the left dock window. Once you have
created the Modelica model you can drag & drop the components available in the library window.

2.5 Windows

OMEdit consists of number of windows that shows different views to users.

32

2.5.1 Library Window
The Modelica Standard Library is automatically loaded in OMEdit and is located on the left dock window.
Once you have created the Modelica model you can drag & drop the components available in the library
window.
Library Window consists of two tabs one shows the Modelica Standard Library and is selected be default the
other tab shows the Modelica Files that user creates in OMEdit.

OMEdit - Open Modelica Connection Editor

File Edit View Simulation Tools

A-THH ABE 4 # RLO B
Components & X | modeli* [
Modelica Standard Library
FT clock
F CombiTimeTable
[} constant
[} Exponentials
F 1 Expsine
| | IntegerConstant
I £33 IntegerExpression
F| | integerStep
+ [} KinematicpTp
t [KinematicpTp2
F] puise
+ 1 Ramp B
b ©3 RealExpression
t [} sampleTrigger
[} sawTocth
+[1 sine
F] step
F o TimeTble
L[Trapezoid
Tables
Types
] Constants
7 Electrical 1 I k
:c[::; ‘ D Modeling | m Model Text |
] Magnetic LY e 8 x
7 math Info: Conncted: (signaivoltage 1.n, resistor L.p) -
= £ Mechrics e e s s 1
MultiBody Infos Conncted: (emfL. flange, inertia1.flange_s) E
7 oo | -

WModelica Library | Modelica Files « »

Figure 2.4: DCmotor model after connections

2.5.1.1 Viewing components description

In order to view the component details, double click the component and details will be opened in Designer
Window. Alternative way is to right click on the component and press Show Component it will do the same.

2.5.1.2 Viewing components documentation
Right click the component in the library window and select View Documentation; it will launch the
Documentation Window. See figure 2.7.

2.5.1.3 How to check a component?

Right click the component in the library window and select Check; it will launch the Check Dialog. See figure
2.7.

2.5.1.4 How to rename a component?

Right click the component in the library window and select Rename; it will launch the Rename Dialog. See
figure 2.7.

33

2.5.1.5 How to delete a component?

Right click the component in the library window and select Delete; a popup will appear asking “Are you sure
you want to delete?”

A OMEdit - Open Modelica Connection Editor

e Edi ew Simulation X

2-1UW ABE +4 #0200 0

| Components & X | modeli= (]
Modelica Standard Library * e TR ‘ | ‘
o’ Writeable Model Diagram View
e e A B
| IE ccc - — S
I ccv o4 OMEdit - Simulation ==
Conductor Ml |
EMF . :
” Simulation Center
I+ Ground
[-FE8 ot Smulation Tnterval
HeatingResistor
|-+ Inductor Start Tme: [0
I /=1 M Transformer Stop Time: [1

|- OpAmp
-5+ OpAmpDetailed

Output Interval

tumber of Intervals: 500]

Output Interval: | |

Integration

armer
TranslationalEMF

|-+~ VariableCapacitor
VanableConductor

Tolerance: |0.0001

Method: dassi -
|
|

Varisblelnductor
|5 VariableResistor
% vee
I vev

Fixed Step Size: |

&

Examples
Ideal Messages & x

Interfaces OMEdt, Version: 1.0
Lines Info: Open Modzlica, Version: "1.6.0"

El

&l

e

Semiconducters
Sensors. -

Modelica Library | Modelica Fies | ‘

&

Figure 2.5: Simulation Dialog

2.5.2 Designer Window

Designer Window is the main window of OMEdit. It consists of three views,
e Icon View: Shows the model icon view.
e Diagram View: Shows the diagram of the model created by the user.

e Modelica Text View: Shows the modelica text of the model.

2.5.3 Plot Window

The right dock window represents the Plot Window. It consists of a tree containing the list of plot variables that
are extracted from the simulation result. Each item of the tree has a checkbox beside it. The user can click on
the check box to launch the plot graph window. The user can add/remove the variables from the plot graph
window by marking/unmarking the checkbox beside the plot variable.

2.5.4 Messages Window

Messages Window is located at the bottom of the application. The Messages Window consists of 4 types of
messages,

e General Messages: Shown in black color.

34

e Informational Messages: Shown in green color.
e Warning Messages: Shown in orange color.

e Error Messages: Shown in red color.

£ oMt - Cpen Modeica Con

F-lHdG Se@ B0

Components Ex.w-sonu-‘ﬂ}

»F #HLLL

ETS S —— T

Modelica Standard Library

Modelica
UsersGuide
Thermal
Mechanics
Math
Electrical

& Blocks

Types

Tables

Figure 2.6: Plotted variables

2.5.5 Documentation Window

77 Plot Window (I A L
| File Edit Insen Tools Help ey L=_I -
pen Save Frint Select (Zoom) Pan [(Grd[Fold] Preferences [Active| Image
Plot by Of ica
i
o=
Modlll o5 ¥
ol
@restial.oh
1.5
2 @retalw - —
8 Modeling | [/] Model Text
«L5
0.5 1 15 2 5 3 35 4
e
| Connection closed

Flot Varisbles. & x

] Plot Type:

'_ﬂhl

4 DCMotar_res.plt

der{emfl.flange_b.phi)
inertial flange_atau
inestial

This window is shown when a user right clicks the component in the library window and selects View
Documentation. This shows the Open Modelica documentation of components in a web view. All externals
links present in the documentation window are opened in the default browser of the user. All local links are
opened in the same window. Figure 2.8 shows the Documentation Window view.

2.6 Dialogs

Dialogs are the sub kind of windows that are not shown by default. The user has to launch them or they will

automatically appear due to some user action.

35

ulstion Tools

2- 1P ABE 22/ % 0000

| Components ax

mocel1= £ |

Modelica Standard Library ot

= (] Rotational

= (] Components

8 BearingFriction
& Brake
SF Clutch

|--== Damper
|4 Disc
| 4@ ElsstoBacklash

L
-4l 1d

= View Documentation

[4 Inertia
{7 mnitializeFlange

—g LossyGear
B OneWayClutch

[~ RelativeStates

|-~ Spring
L %% SpringDamper
Examples
Interfaces

[Sensors L/ | Messages

[Sources

UsersGuide

[Trenslational

7 Slunits -

Modelica Library | Modelica Files. 4

OMEdit, Version: 1.0
Info: Open Modelica, Version: "1.6.0"

2.6.1 New Dialog

Figure 2.7

The new dialog can be launch from File > New > Model Type. Model type can be model, class, connector,

record, function and package.

File Edit

Tools

2-1UW ABRE 22 2 000 0

| Components 8 x

model 1= £ |

8%

Modelica Standard Library =

|-== Damper

‘ Modelica.StateGraph

- =&= Disc

|- e ElastoBackiash
b oo Fived

|4 Gearbox
Il IdealGear

| 2.y dealGearR2T
4 1dealPlanetary
-t 1dealRollingWheel
[4 Inertia

{7 initializeFlange
M LossyGear

ISR OnewayClutch
|- == RelativeStates

|-~ Spring
488 SpringDamper
Examples
Interfaces

] sensors

] sources

(]

FUI S I USSRy o Uk

+ StateGraph.UsersGuide discusses the most important aspects how to use this library.
. Examples contains the usage of this library.

A typical model generated with this library is shown in the next figure where on the left hand side a two-tank
system with 2 tank contraller and en the right hand side the top-level part of the tank controller as 2
StateGraph s shown:

UsersGuide

] Translational

[siunits

[] StateGraph Messages

Thermal OMEd, version: 1.0

® UsersGuide Info: Open Modelica, Version: *16.0°
Utilities
Modelica Library | Modelica Files. <

Figure 2.8: Documentation Window

36

2.6.2 Simulation Dialog

Simulation dialog can be launched either from Simulation > Simulate or by clicking on the Simulate button in
the toolbar. Figure 2.6 shows a simulation dialog. The simulation dialog consists of simulation variables. You
can set the value of any variable, depending on the simulation requirement. Simulation variables are,

e Simulation Interval
o Start Time
o0 Stop Time
e Output Interval
0 Number of Intervals
o Output Interval
e Integration
0 Method
o Tolerance
0 Fixed Step Size

Once the simulation is started the progress bar is shown to the user indicating that the simulation process is
running. When the simulation process is finished the simulation progress bar will disappear and the plot
variables window will appear containing the list of variables produced by the simulation process.

2.6.3 Component Properties Dialog

The components that are placed in the Designer Window can be modified by changing the properties. In order
to launch the component properties dialog of a particular component right click the component and select
Properties. See Figure 2.9.

The properties dialog contains the name of the component, class name the component belongs to and the list
of parameters of the component.

2.6.4 Component Attributes Dialog

Right click the component placed in the Designer Window and select Attributes. It will launch the attributes
dialog. Figure 2.10 shows the attributes dialog.

37

Eile Edit View Simulation Tools

A-1HdW ARE 92 % 2000
Components 8 % [model1= [|
Modelica Standard Library
= Modelica
7 Blocks
T Constants
= [Electrical

H_ | Properties
= Basic : H |
|~ Capacitor
FIE ccc
+IR cov
I Conductor
EMF b Component
Ground i u Name: [gearbox
B Gyrator Comment: Modelica, Mechanics. Rotational, Components. Gearbox
| HeatingResistor
-~ Inductor
| == M Transformer
|- OpaAmp
>+ OpAmpDetailed
I Resistor
|+= Saturatinglnductor
[-IC Transformer

»

General | parameters | Modifiers

L+

[TranslationalEMF
|~ VarizbleCapacitor
|- VariableConductor s & x
L 12 Variableinductor Tnfo: Open Modelica, Version: "L6.0" z
i 5 Info: Connctad: (lossygear L. fiange._b, idealgzarr2tL. supporta)
oty Vanablekisistar Info: Conncted: (cov 1.n2, variablzinductor 1.0)
L3 vee Info: Conncted: (varizbleinductor 1.0, opampL.out)
Info: Conncted: (gearbox1.flange_b, idealgearr 2t1.suppartR)
- vov ~ | | info: Conncted: (gearbox1.fang=_a, lossygear . suppart) -
Modelica Library | Modelica Files « »

Figure 2.9: Properties Dialog

File Edit Yiew ~Simulation Tools

2-1BW LBE 2% R00 O

Components 8 X [modelt=[|
Modelica Standard Library @ E | ” |lhdd
= Modeica -
] Blocks
] Constants
= (] Electrical
= Analog
=] Basic | = Type
|-+~ Capacitor L { -) Name: Modelica.Mechanics. Rotational. Components.Gearbox
L ccc b : ' ' Comment: ||
+IE cov
I Conductor Vesiolty
F EMF bt (2 Constant
I + Ground i o © Paramter
[- L Gyrator ® Discrete
| HeatingResistor " @ Unepeaticd peFai)

I~ Inductor
F =1 M_Transformer Causalty
[%~ OpAmp ® ot
|35 OpAmpDetailed

I Resistor

| -e= Saturatinglnductor
[-C Transformer

I TanslstionalEMF
|- ~&+ VariableCapacitor
|5 VarisbleConductor | | Messages 5 x

L Variablelnductor nfo: Open Modelica, Version: *1.6.0° =
e 5 jossygear1.fange._b, idealgearr2t 1 supportR)
[~ "> VariableResistor : Conncted: (cov1.n2, varisbleinductor 1.p) @

L& vee
: earbox 1 flange.b, idelgearr2t1 support)
-IE vov = || info: Conncted: {gearbox1.flange_a, lossygear1.suppart) 2

Modelica Library | Modelica Files. .]

©) Cutput
@ None

Figure 2.10: Attributes Dialog

38

Chapter 3

2D Plotting and 3D Animation

This chapter covers 2D plotting available from OMNotebook, OMShell or programmable plotting from your
own Modelica model. The 3D animation is currently available only from OMNotebook (and not on Mac).

3.1 Enhanced Qt-based 2D Plot Functionality

Starting with OpenModelica 1.4.5, new enhanced plotting functionality is available (Eriksson, 2008). The new
plotting is implemented based on a Qt-based (Trolltech, 2007) GUI package. This new plotting functionality
has additional features compared to the old Java-based PtPlot plotting. The simulation data is sent directly to
the plotting window in OMNotebook (or a popup window if called from OMShell), which handles the
presentation (see Figure 3-2). As OMNotebook now has access to all source data it is now be possible to
manipulate diagrams, e.g. zoom or change scales.

To allow the use of graphics functions from within Modelica models a new Modelica interface has been
developed. This utilizes an external library to communicate with OMNotebook. In addition to this, a number of
new functions that can be used for drawing geometric objects like circles, rectangles and lines have been added.

The following is a summary of the capabilities of the new 2D graphics package:

e Interaction with OMNotebook. The graphics package has been developed to be fully integrated with
OMNotebook and allow modifications of diagrams that have been previously created.

e Usage without OMNotebook. If the functionality of the graphics package is used without OMNotebook,
a new window should be opened to present the resulting graphics.

e Logarithmic scaling. Some applications of OpenModelica produce simulation data with large value
ranges, which is hard to make good plots of. One solution to this problem is to scale the diagram
logarithmically, and this is allowed by the graphics package.

e Zoom. To allow studying of small variations the user is allowed to zoom in and out in a diagram.

e Support for graphic programming. To allow creation of Modelica models that are able to draw
illustrations, show diagrams and suchlike, it is possible to use the graphics package not only from the
external APl of OMC, but also from within Modelica models. To accomplish this a hew Modelica
interface for the graphics package has been created.

e Programmable Modelica API. The Modelica API is defined by a number of Modelica functions, located
in the package Modelica.Graphics.Plot, which use external libraries to access functionality of the
graphics package.

The programmable Modelica API functions include the following:
o plot(x). Draws a two-dimensional line diagram of x as a function of time.
o plotParametric(x,y). Draws a two-dimensional parametric diagram with y as a function of x.

e plotTable([xy, .., y1; .. ; Xn, .., yn]). Draws a two-dimensional parametric diagram with y as a function
of x.

39

e drawRect(X1, X2, y1, ¥2). Draws a rectangle with vertices in (x1, y1) and (x2, y2).
o drawEllipse(x1, X2, y1, y2). Draws an ellipse with the size of a rectangle with vertices in (x1, y1) and

(x2, y2).
e drawLine(x1, x2, y1, y2). Draws a line from (x1, y1) to (x2, y2).

CORBA: answer. I.e. done

.
TCP/IP: simulation data
oMC = GraphWidget
o Rosutile
GraphCell
CORBA: plot OMNotebook

Figure 3-2. Plotting architecture with the new 2D graphics package.

3.2 Simple 2D Plot

To create a simple time plot the model Hel loWor1d defined in DrModelica is simulated. To reduce the amount
of simulation data in this example the number of intervals is limited with the argument
numberOfIntervals=10. The simulation is started with the command below.

simulate(HelloWorld, startTime=0, stopTime=4, numberOflntervals=10);

When the simulation is finished the file Helloworld res.plt contains the simulation data. The contents of
the file is the following (some formatting has been applied).

0 1
4.440892098500626e-013 0.9999999999995559
0.4444444444444444 0.6411803884299349
0.8888888888888888 0.411112290507163
1.333333333333333 0.2635971381157249
1.777777777777778 0.1690133154060587
2.222222222222222 0.1083680232218813
2.666666666666667 0.06948345122279623
3.111111111111112 0.04455142624447787
3.555555555555556 0.02856550078454138
4 0.01831563888872685

Diagrams are now created with the new graphics package by using the following command.
plot(Xx);
seems to correspond well with the data.

40

Plot by OpenModelica

1
0.8
0.6
@
0.4
0.2
-_\-_\-_‘—\—__________—_—_____
-____‘_‘—_
0.5 1 1.5 2 2.5 3 3.5 4

ki

Figure 3-3. Simple 2D plot of the Helloworld example.

By re-simulating and saving results at many more points, e.g. using the default 500 intervals, a much smoother
plot can be obtained.

simulate(HelloWorld, startTime=0, stopTime=4, numberOflntervals=500);
plot(x);

plot (x) 1

true

AN

0.6

\\\xhx | .x
0.4

0.2 T

Flot by OpenModelica

time

41

Figure 3-4. Simple 2D plot of the HellowWorld example with larger number of points.
Additional features of the new plotting are shown in Figure 3-5 and Figure 3-6.

=

File Edit Insert Tools Help

J_l Open Save | Primt | Select | Zoom Pan || fGrid | Preferences | Active

Flot by OpenModelica

r
|T Shaw line

|T Show data points

Change color

time

A

Figure 3-5. Features of the new Qt-based Plotting Package: Show data points, Change line colors, etc.

42

Il graphWindow -0 x|
File Edit Insert Tools Help

J_| Open Save | Print | Select | Zoom Pan | Grid | Preferences | Active

Flot by OpenModelica
0,36 \\

hS
0.35
\& Pan |

\‘B\ Select
0.34 |T Zoom

v erd

Clear
Huold

Antializsing \\u
0,32 Save parameters
Simulation data \
Preferences -

1.04 1.0& 1.08 1.1 1.12 1.14 1,18
time

=

Figure 3-6. Features of the new Qt-based Plotting Package: Zoom, Fit in view, Grid, etc.

3.2.1 All Plot Functions and their Options

The plot functions can be used in a number of ways, depending on the arguments that are included with the
call. The following calls are supported.

43

Command Description

plot(x) Creates a diagram with data from the last simulation that
had a variable named x.

plot({X,Y,..., z}) Like the previous command, but with several variables.

plot(model, x) Creates a diagram with data from the previously simulated
model model

plot(model, {x,y,..., z}) | Like the previous, but with several variables.

plotParametric(x, y)

Creates a parametric diagram with data from the last
simulated variables named x and y.

plotParametric(model, x, | Creates a parametric diagram with data from the previously

v) simulated model model.

plotAll Creates a diagram with all variables from the last simulated
model as functions of time.

plotAll(model) Creates a diagram with all variables from the model model

as functions of time.

All of these commands can have any number of optional arguments to further customize the the resulting
diagram. The available options and their allowed values are listed below.

Option Default value Description

grid true Determines whether or not a grid is shown in the
diagram.

title "Plot by OpenModelica™ | This text will be used as the diagram title.

interpolation | linear Determines if the simulation data should be interpolated
to allow drawing of continuous lines in the diagram.
"linear" results in linear interpolation between data
points, "constant™" keeps the value of the last known data
point until a new one is found and "none" results in a
diagram where only known data points are plotted.

legend true Determines whether or not the variable legend is shown.

points true Determines whether or not the data points should be
indicated by a dot in the diagram.

logX false Determines whether or not the horizontal axis is
logarithmically scaled.

logY false Determines whether or not the wvertical axis is
logarithmically scaled.

xRange {0, 0} Determines the horizontal interval that is visible in the
diagram. {0, 0} will select a suitable range.

yRange {0, 0} Determines the vertical interval that is visible in the
diagram. {0, 0} will select a suitable range.

antiAliasing false Determines whether or not antialiasing should be used
in the diagram to improve the visual quality.

vTitle This text will be used as the vertical label in the
diagram.

hTitle “time” This text will be used as the horizontal label in the

44

| | diagram.

3.2.2 Zooming

The left mouse button can for instance be used for zooming in on interesting parts of the diagram.The same
result can be achieved by using the optional parameters xRange and yRange. The plotParametric
command would then look like the following.

plotParametric(x, y, xRange={0.9, 1.95}, yRange={-1.5, 1.35})

-
Sl OMNotebook: (untitled)®
File Edit Cell Format [Insert Window Help

Nkl = B & X B U« O

plotParametric (x,v)

True

Plot by Cipeﬁl';ﬂod.el.ica

2

15

1 . —L e |

0.5H 1 I==sae— S N
0

-0.5

-1
-1.5}

-2

Ready Ln 1, Col 20

Figure 3-7. Zooming in an Input cell.

=
U OMNotebook: (untitled)*
File. Edit Cel Format Insert Window Help

ol =B ey X [U« | D

plotParametric(x,y)

true
Flot by ijer‘ll';ﬂod.el.ica
1
0.5[
o
-0.5} =1] =
5 ’___'___,___._'—4—""_"
—
1 : 18 1.3
Ready Ln 1, Col 20

Figure 3-8. Magnified input cell.

45

3.2.3 Plotting all variables of a model

A command, plotAll, has been introduced to plot all the variables of a model. This can be useful if a model
contains many interesting variables, as it might be easier to remove variables that are not important than to list
all those who are. The commands available for this are plotAl1 () and plotAll(model). If the optional
model parameter is omitted the last simulated model will be used. The command below applies plotAll to the
model HelloWorld. The result is shown in Figure 3-9. The simplest way to remove unimportant variables is to
use the Remove command in the Legend menu..

plotAll(HelloWorld);

plotill (HelloWoxrld)
true
Flot by OpenModelica
3| | il
K"‘Hﬁ | |
L |] HHH H 4 kit
7 | | ¥
0.5 .--..._..__.'...-:-::hh._i o Lk | M RAAdNURER R IR U UERAY YL L2 gy
T I
Tl
D
..... A AR e TR (LGRS | @ der($dummy)
.5 B 1 _’_-:__F,_r_""'ft___ SREREETRETEE “.“'! e 1R N B R I
L | [@ derx)
Ll |
1 e . ' ' I | I !
0.5 1 1.5 2 2.5 3 ~E 4
fime

Figure 3-9. Result of the plotAll command.

3.2.4 Plotting During Simulation

When running long simulations, or if plotting without need for commands like plot or plotParametric is
desired, the interface for transfer of simulation data during running simulations can be used. This is enabled by
running the following command.

enableSendData(true)

The same command, but with the parameter false, is used to disable the interface. Enabling of the interface has
some drawbacks though. The simulation time will be longer as the transfer of data will require some resources.
If the simulation data would have been plotted anyway, some of this time will be saved later however. To
reduce the amount of data that has to be transferred, and thereby reduce the time needed to do so, the
interesting variables in the model can be specified with the command setVariableFi I ter. If for instance the
model He l loWor I d is to be simulated the following commands can be used.
class HelloWorld
Real x(start = 1);
parameter Real a = 1;
equation
der(x) = - a * x;
end HelloWorld;

enableSendData(true);
setVariableFilter({x});

46

simulate(HelloWorld, startTime=0, stopTime=25);

When the simulation data has been transferred the button D will appear to the right of the input field. By
pressing this the dialog Simulation data will appear, where new curves can be created.

3.2.5 Programmable Drawing of 2D Graphics

The graphics package provides functions for drawing of basic geometrical objects in the graphics area. These
can be used from Modelica models and are executed when the model is simulated. To avoid name conflicts, the
functions have been put in the package Modelica.pltpkg. The functions of the Modelica programmable
plotting interface are described below.

o plot(model, "x™). Creates a diagram with data from the variable x in the
previously simulated model model.
o plot(model, "X, y"). Like the function above, but with more than one variable.

o plotParametric(model, "x", "y"). Creates a parametric diagram with data from the variables x and y
in the previously simulated model model.

o plotTable([x1, y1, z1, ...; X2, y2, z2, ...;...]). Draws y and z as functions of x..
e clear().Clears the active GraphWidget.

e rect(xy, X2, y1, y2). Draws a rectangle with vertices in (x1, y1) and (x2, y2).

o ellipse(xt, X2, y1, y2). Draws an ellipse with the size of a rectangle with vertices in (x1, y1) and (xz,
y2).

o line(xl, x2, y1, y2). Draws a line from (x1, y1) to (x2, y2).

¢ hold(Boolean on). Determines whether or not the active GraphWidget should be cleared before new
graphics is drawn.

o wait(ms). Waits for (at least) ms milliseconds.

The following model shows how these functions can be used to draw ellipses, rectangles, and lines.

model testGeom
parameter Integer n=10;
protected
Boolean b[n,n];
equation
for x in 1:n loop
for y in 1:n loop
when initial() then
if((y == 1) or (y == 10) or (x == 1) or (x == 10)) then
b[x,y] = pltpkg.rect(x, y, x+1, y+1, fillColor = “blue",
color = "green');
else if(y >> 4 and y <= 5 and x >= 4 and x <= 5) then
b[x,y] = pltpkg.line(x, y, x+1, y+1, color = "red");
else
b[x,y] = pltpkg.ellipse(x, y, x+1, y+1, fillColor = "yellow",
color = "black');
end if;
end if;
end when;
end for;
end for;
end testGeom;

47

Plot title

TAYEYaYAYaNaYaYa
444444
P4 44444
F4 444441
4444441
\AAAAALAALY

2 4 & 8 10
Figure 3-10. Programmable drawing of rectangles and ellipses.

3.2.6 Plotting of table data

Another way to visualize data provided by the graphics package is plotting of table data. This is done by using
the command pltpkg.plotTable, which expects a matrix of Real values as a parameter. The rows of this
matrix represent variable values. The first column is the time variable and the other columns contains values at
these points in time. The names of the variables can be specified with the argument variableNames, which is
a String list. The following model demonstrates how this command can be used.

model table
protected
Boolean b;
algorithm
b := pltpkg.pltTable([0, 0.95, 0.92, 20, 25;
10, 0.94, 0.92, 23, 28;
20, 0.94, 0.91, 32, 35;
30, 0.93, 0.90, 43, 46]);
end table;

The result is shown in Figure 3-11

45
ﬂ/_””—'__'__’__‘
40 =t
35 1 ==
30] e
_ﬂ_ﬁ_d_d_u_J_,_,_,_Fqr~*”ﬁ_ |
258 — ===
__——____ﬁ-_'_
208 _—=—
15
10
N
ole : & g
5 10 15 20 25

Figure 3-11. Plotting of table data..

48

3.3 Java-based PtPlot 2D plotting

The plot functionality in OpenModelica 1.4.4 and earlier was based on PtPlot (Lee, 2006), a Java-based plot
package produced within the Ptolemy project. To plot one uses plot commands within input cells which it
evaluates. Available plotting commands which calls Java-based plotting are as follows, still available but
renamed with a suffix 2:

// normal one variable plotting, time on the X axis

plot2(variable);

// normal multiple variable plotting, time on the X axis
plot2({variablel, variable2, variable3, .. variableN});

// to plot dependent values
plotParametric2(variableX, variableY);

For example:

simulate(HelloWorld, startTime=9, stopTime=4);
plot(x);

=

File Edit Special

Plot by OpenModelica

0ar 7

06 7

04r 7

0zr 7

0.0

0.0 0.5 1.0 1.5 20 248 3.0 3.4 4.0

Figure 3-12. Java-based PtPlot plot window.

3.4 3D Animation
There are two main approaches to add 3D graphics information to Modelica objects:

e Graphical annotations
e Graphical objects

Both of these approaches were investigated, but the second was finally chosen.

3.4.1 Object Based Visualization

Since one important goal of this work is to come up with a system for visualization that might be used for
simulations done with the Modelica MultiBody library (Otter, 2008), it follows that much can be learned from

49

investigating currently available solutions. There are commercial software packages available that can visualize
MultiBody simulations.

The MultiBody package is well suited for visualization. Entities in a MultiBody simulation correspond to
physical entities in a real world and as such have many of the properties needed to correctly display them
within a visualization of the simulation, such as position and rotation. Other properties such as color and shape
can easily be added as properties or be decided based on the object type.

Instead of using annotations to encode information about how a certain object is supposed to look when
visualized, object based visualization creates additional Modelica objects of a predetermined type that can be
known to the client actually doing the visualization. These objects contain variables such as position, rotation
and size that can be connected to the simulated variables using ordinary Modelica equations. When asked to
visualize a model, the OpenModelica compiler can find variables in the model that are in the visualization
package and only send only those datasets over to the client doing the visualization, in this case OMNotebook.

Taking inspiration from the MultiBody library, a small package has been designed that provides a minimal
set of classes that can be connected to variables in the simulation. It is created as a Modelica package and can
be included in the Modelica Library. The package is called SimpleVisual, and consists of a small hierarchy
of classes that in increasing detail can describe properties of a visualized object. It is implemented on top of the
Qt graphics package called Coin3D (Coin3D, 2008). More information is available in (Magnusson, 2008). A
comprehensive earlier work on integrating and generating 3D graphics from Modelica models is reported in
(Engelson, 2000).

This section gives a short introduction to how the SimpleVisual package is used.

3.4.2 BouncingBall

The bouncing ball model is a simple example to the Modelica language. Adding visualization of the bouncing
ball using the SimpleVisual package is very straightforward.

model BouncingBall
parameter Real e=0.7 "coefficient of restitution";
parameter Real g=9.81 "gravity acceleration";
Real h(start=10) "height of ball";
Real v "velocity of ball";
Boolean flying(start=true) "true, if ball is flying";
Boolean impact;
Real v_new;
equation
impact=h <= 0.0;
der(v)=if flying then -g else 0;
der(h)=v;
when {h <= 0.0 and v <= 0.0, impact} then
v_new=if edge(impact) then -e*pre(v) else 0;
flying=v_new > 0;
reinit(v, v_new);
end when;
end BouncingBall;

To run a simulation of the bouncing ball, create a new InputCell and call the simulate command. The simulate
command takes a model, start time, and an end time as arguments.

simulate(BouncingBall, start=0, end=5s);
3.4.2.1 Adding Visualization

The bouncing ball will be simulated with a red sphere. We will let the variable h control the y position of the
sphere. Since the ball has a size and the model describes the bouncing movement of a point, we will use that

50

size to translate the visualization slightly upwards. First, we must import the SimpleVisual package and
create an object to visualize. That is done by adding a few lines to the beginning of the BouncingBal l model,
which we rename to BouncingBal 13D to emphasize that we have made some changes:

model BouncingBall3D

import SimpleVisual.*

SimpleVisual .PositionSize ball "color=red;shape=sphere;";

The string "color=red;" is used to set the color parameter of the object and the shape parameter controls how
we will display this object in the visualization.

The next step is to connect the position of the ball object to the simulation. Since Modelica is an equation
based language, we must have the same number of variables as equations in the model. This means that even
though the only aspect of the ball that is really interesting is its y-position, each variable in the ball object must
be assigned to an equation. Setting a variable to be constant zero is a valid equation. The SimpleVisual library
contains a number of generic objects which gives the user an increasing amount of control.

SimpleVisual .Position
SimpleVisual .PositionSize
SimpleVisual .PositionRotation

SimpleVisual .PositionRotationSize
SimpleVisual .PositionRotationSize0O_set

Since we are really only interested in the position of the ball, we could use SimpleVisual.Position, but to
make it a little bit more interesting we use SimpleVisual .PositionSize and make the ball a little bigger.

obj.size[1]=5; obj.size[2]=5; obj.size[3]=5;
obj.frame_a[1]=0; obj.frame_a[2]=h+obj.size[2]/2; obj.frame_a[3]=0;

A SimpleVisual .PositionSize object has two properties; size and frame_a. All are three dimensional
real numbers, or Real[3] in Modelica.

e size controls the size of the visual representation of the object.
o frame_a contains the position of the object.

3.4.2.2 Running the Simulation and Starting Visualization

To be able to simulate the model with the added visualization, OpenModelica must load the SimpleVisual
package.

loadLibrary(Modelica.SimpleVisual)

Now, call simulate once more. This time the simulation will generate values for the added SimpleVisual object
that can be read by the visualization in OMNotebook.

simulate(BouncingBal 13D, start=0, end=5s);

To display the visualization, create an input cell and call the visualize in the input part of the cell.

visualize(BouncingBall3D);

51

L. OMNotehools: bonnengbaliSexamplesonh __J __J J
File Edit Cell Format Insert Window Help
- 5
2 Simulation
=imulats (BouncingBall, startTime=0, =stopTime=10};
[done]
wisualize (BouncingBall);
[done]
Play
.
0,753
Ready Dane Ln 1, Col 25

Figure 3-13. 3D animation of the bouncing ball model.

3.4.3 Pendulum 3D Example

This example explores a slightly more complex scenario where the visualization uses all the properties of a
SimpleVisual object. The model used is a simple ideal 2D pendulum, not modeling properties like friction, air
resistance etc.

class MyPendulum3D "Planar Pendulum"
constant Real P1=3.141592653589793;
parameter Real m=1, g=9.81, L=5;
Real F;
Real x(start=5),y(start=0);
Real vx,vy;
equation
m*der (vx)=-(x/L)*F;
m*der(vy)=-(y/L)*F-m*g;
der(x)=vx;
der(y)=vy;
XN2+yN2=L"2;
end MyPendulum3D;

Start by identifying the variables in the model that will be needed to create a visual representation of the
simulation.

¢ Real x and Real y hold the current position of the pendulum.
e Real L is a parameter which holds the length of the pendulum.

52

3.43.1 Adding the Visualization

As before, to be able to use the SimpleVisual package we must import it.

class MyPendulum3D "Planar Pendulum"
import Modelica.SimpleVisual;

Adding a sphere to represent the weight of the pendulum is done in the same way the BouncingBall was
visualized. The variables x and y hold the position.
ééél VX,VY;
SimpleVisual .PositionSize ball "color=red;shape=ball;";
equation
ball.size[1]=1.5; ball_size[2]=1.5; ball.size[3]=1.5;
ball.frame_a[1]=x; ball_frame_a[2]=y; ball_frame_a[3]=0;
m*der (vx)=-(x/L)*F;

The next step is to create a visualization of the "thread" that holds the pendulum. It will be represented by a
small elongated cube connected to the ball in one end and in the fixed center of the pendulum movement. We
will want the object to rotate with the pendulum motion so create a SimpleVisual.
PositionRotationSize object.

SimpleVisual .PositionRotationSize thread "shape=cube;"

To specify the rotation of an object, the visualization package uses two points. One is the position of the object,
frame_a, that has been demonstrated earlier. The other position, frame_b, is interpreted as the end point of a
vector from frame_a. This vector is used as the new up direction for the object. In this example, defining
frame_b is simple. The cube that represents the thread will always be pointing to (0, 0, 0). We already know
the length of the thread from the parameter L.

thread.size[1]=0.05; thread.size[2]=L; thread.size[3]=0.05;

thread.frame_a[l]=x; thread.frame_a[2]=y; thread.frame_a[3]=0;
thread.frame_b[1]=0; thread.frame_b[2]=0; thread.frame_b[3]=0;

Running this simulation and starting the visualization, we notice that everything is not quite right. The thread is
centered around the pendulum. We could calculate a new position by translating the x and y coordinates along
the rotation vector, but there is a better way. Change the object type to SimpleVisual.
PositionRotationSizeOffset. The offset parameter is a translation within the local coordinate system of
the object. To shift the center of the object to be at the bottom of the thread we add an offset of L/2 to the y
component of offset.

thread.size[1]=0.05; thread.size[2]=L; thread.size[3]=0.05;

thread.frame_a[1]=x; thread.frame_a[2]=y; thread.frame_a[3]=0;
thread.frame_b[1]=0; thread.frame_b[2]=0; thread.frame_b[3]=0;
thread.offset[1]=0; thread.offset[2]=L/2; thread.offset[3]=0;

In the final model, a simple static fixture has also been added.

class MyPendulum3D "Planar Pendulum"
import Modelica.SimpleVisual;
constant Real P1=3.141592653589793;
parameter Real m=1, g=9.81, L=5;
Real F;
Real x(start=5),y(start=0);
Real vx,vy;
SimpleVisual .PositionSize ball "color=red;shape=ball;";
SimpleVisual .PositionSize fixture "shape=cube;";
SimpleVisual .PositionRotationSizeOffset thread ''shape=cube;";

53

equation
fixture.size[1]=0.5; fixture.size[2]=0.1; Ffixture.size[3]=0.5;
fixture.frame_a[1]=0; fixture.frame_a[2]=0; fixture.frame_a[3]=0;
ball.size[1]=1.5; ball.size[2]=1.5; ball.size[3]=1.5;
ball.frame_a[l1]=x; ball_frame_a[2]=y; ball_frame_a[3]=0;
thread.size[1]=0.05; thread.size[2]=L; thread.size[3]=0.05;
thread.frame_a[1]=x; thread.frame_a[2]=y; thread.frame_a[3]=0;
thread.frame_b[1]=0; thread.frame_b[2]=0; thread.frame_b[3]=0;
thread.offset[1]=0; thread.offset[2]=L/2; thread.offset[3]=0;
m*der(vx)=-(x/L)*F;
meder(vy)=-(y/L)*F-m*g;
der(x)=vx;
der(y)=vy;
XN2+yN2=1"2;

end MyPendulum3D;

We simulate and visualize as previously:

Q!. MNoteboolcimypendul umpcxanmplesom) JJ d
' Ale Edt Cell Format Inssrt Window Help
loadModel (Modelica.SimplevVisual)
[done]
simulate (MyPendulum, startTime=0, stopTime=5);
[done]
visualize (MyPendulim) i
[Aone]
Stop
LJ
1.1
j Rearly Mnne Ini, mnl 72

Figure 3-14. Visualization with animation of 3D pendulum.

3.5 References
Trolltech. Qt. http://www.trolltech.com/, accessed July 2007.
Coin3D. www.coin3d.org, accessed August 2008.

Henrik Eriksson. Advanced OpenModelica Plotting Package for Modelica. Master Thesis, LIU-
IDA/LITH-EX-A-08/036-SE, Linkdping University Electronic Press, www.ep.liu.se, June 22,
2008.

54

Henrik Magnusson. Integrated Generic 3D visualization of Modelica Models. Master Thesis, LIU-
IDA/LITH-EX-A-08/035-SE, Linkdping University Electronic Press, www.ep.liu.se, June 27,
2008.

Martin Otter. The Modelica MultiBody Library. http://www.modelica.org/libraries/Modelica,
Modelica.Mechanics.MultiBody, accessed August 2008.

Vadim Engelson. Tools for Design, Interactive Simulation, and Visualization of Object-Oriented Models
in Scientific Computing. Ph.D. Thesis. Linkdping Studies in Science and Technology,
Dissertation No. 627, http://www.ida.liu.se/~vaden/thesis/, 2000.

Edward Lee et al. The PtPlot package The Ptolemy Project. http://ptolemy.berkeley.edu/body.htm,
accessed July 2007.

55

56

Chapter 4

OMNotebook with DrModelica and DrControl

This chapter covers the OpenModelica electronic notebook subsystem, called OMNotebook, together with the
DrModelica tutoring system for teaching Modelica, which is using such notebooks.

4.1 Interactive Notebooks with Literate Programming

Interactive Electronic Notebooks are active documents that may contain technical computations and text, as
well as graphics. Hence, these documents are suitable to be used for teaching and experimentation, simulation
scripting, model documentation and storage, etc.

4.1.1 Mathematica Notebooks

Literate Programming (Knuth 1984) is a form of programming where programs are integrated with
documentation in the same document. Mathematica notebooks (Wolfram 1997) is one of the first WYSIWYG
(What-Y ou-See-Is-What-You-Get) systems that support Literate Programming. Such notebooks are used, e.g.,
in the MathModelica modeling and simulation environment, e.g. see Figure 4-15 below and Chapter 19 in
(Fritzson 2004)

4.1.2 OMNotebook

The OMNotebook software (Axelsson 2005, Fernstrém 2006) is a new open source free software that gives an
interactive WYSIWYG (What-Y ou-See-Is-What-You-Get) realization of Literate Programming, a form of
programming where programs are integrated with documentation in the same document.

The OMNotebook facility is actually an interactive WYSIWYG (What-You-See-Is-What-Y ou-Get)
realization of Literate Programming, a form of programming where programs are integrated with
documentation in the same document. OMNotebook is a simple open-source software tool for an electronic
notebook supporting Modelica.

A more advanced electronic notebook tool, also supporting mathematical typesetting and many other
facilities, is provided by Mathematica notebooks in the MathModelica environment, see Figure 4-15.

57

E Evaluated Modeling, Code Generation, and... =] E3

Modelint E Evaluated Modeling. Code Generation. and... [H[=] E3

Simulati =
Process = E Evaluated Modeling, Code Generation, and... [l[=] [E3
Hotaes | doramen

e N

L h Ngfar unnk e . 20 Mdecht = "
using Mathe i :..u:.:h:,...- E Evaluated Modeling. Code Generation, and... !E]m

— wase recakel o the mmmra 8 ‘I
st 42 2 The Seesaw/l £+ LiRrquintarcainz |
R 20 (e woey = {. phamic :
= In ovn mroen v DLegoneimet T3, 5., 0,0, 0,030,
C Oy ranekl o reriine This can canly be shamired . 1Tdentltghmtelx 2] |
el /23, 2B, (1] = 11 Matclxtaom

orcem Mromry o=

e momsgerdi i, *7 (3620 LG SLIOE LLEEL 231 LD i

h NIRRT LOOMI3E 233250 L L. 62EEE 023000 5 smeed .

- The Zreaen £4ta, 03,
Mg (Metrixtarm, 3 The corl lum @ be e 8 uFl e -2 VL SER YH T MCRANTHENS O e muzs Thi DVER O
The precm cormm Pilcanrg clod locg mxrs @ mradaz Him £ bH, = £ vHI

Figure 4-15. Examples of Mathematica notebooks in the MathModelica modeling and simulation environment.

Traditional documents, e.g. books and reports, essentially always have a hierarchical structure. They are
divided into sections, subsections, paragraphs, etc. Both the document itself and its sections usually have
headings as labels for easier navigation. This kind of structure is also reflected in electronic notebooks. Every
notebook corresponds to one document (one file) and contains a tree structure of cells. A cell can have different
kinds of contents, and can even contain other cells. The notebook hierarchy of cells thus reflects the hierarchy
of sections and subsections in a traditional document such as a book..

4.2 DrModelica Tutoring System — an Application of OMNotebook

Understanding programs is hard, especially code written by someone else. For educational purposes it is
essential to be able to show the source code and to give an explanation of it at the same time.

Moreover, it is important to show the result of the source code’s execution. In modeling and simulation it is
also important to have the source code, the documentation about the source code, the execution results of the
simulation model, and the documentation of the simulation results in the same document. The reason is that the
problem solving process in computational simulation is an iterative process that often requires a modification
of the original mathematical model and its software implementation after the interpretation and validation of
the computed results corresponding to an initial model.

Most of the environments associated with equation-based modeling languages focus more on providing
efficient numerical algorithms rather than giving attention to the aspects that should facilitate the learning and
teaching of the language. There is a need for an environment facilitating the learning and understanding of
Modelica. These are the reasons for developing the DrModelica teaching material for Modelica and for
teaching modeling and simulation.

An earlier version of DrModelica was developed using the MathModelica environment. The rest of this
chapter is concerned with the OMNotebook version of DrModelica and on the OMNotebook tool itself.

58

DrModelica has a hierarchical structure represented as notebooks. The front-page notebook is similar to a
table of contents that holds all other notebooks together by providing links to them. This particular notebook is
the first page the user will see (Figure 4-16).

@ oOMNotebook: DrModelica.onb®

File Edit el Format Insert Window Help

Version 2006-04-11 |

DriModelic gModetica Edition

Copyright: (c) Linképing University, PELAE, 2003-2006, Wiley-IEEE Press, Modelica Association.
Contact: Opentdodelica@idalu.se;, Opentdodelica Project web site:

www ida lin sefprojects/COpentdodelica

Book web page: www.mathcore. com/drlodelica, Book author: Peter Fritzson@ida I se

Dihdodelica Authors: (2003 version) Susanns Monemar, Eva-Lena Lengouist Sandeling Peter Fritzson, Peter Bunus
Dihodelica Authors: (2005 and later updates): Peter Fritzzon

This DrdModelica notebaok has been developed ta faciliiate learning the Modelica language as well as
providing an intraduction to ahject-ariented modeling and simulation. It is based an and is
supplementary material to the Modelica hook: Feter Fritzeon: "Principles af Object-Oriented
Modeling and Simudation with Modelica™ (2004), 040 pages, Wiley-IEEE Fress, ISBN (-471-471631.
All af the examplss and exercises in DrModelica and the page references are from that book. Most af
the text in DrModelica iz also based an that bool,

Detailed Copyright and Acknowledgment Information
Getting Started Using OMNotebook
OpenModelica commands
Berkeley license OpenModelica
1 A Quick Tour of Modelica
1.1 Getting Started - First Basic Examples

There 15 a long tradition that the first sample program in any computer language is a trivial program
brifig 9 in Peter Fritzson's book). Since Modelica is an equation based

language, printite-e=siring-dessrrat make much sence. Instead, our Helle World Modelica program solves
a trivial differential equatlon The second example shows how you can write a model that solwes a
Differential Algebraic Equation Systern (p. 190, In the Van der Pol (p. 22) exatnple declaration as well as
iratialization and prefix usage are shown in a slightly more complicated way.

1.2 Classes and Instances

In Modelica objects are created anplicitly just by Declaring Instances of Classes (p. 26). Almost arything
i Medelica iz a class, but there are some keywords for specific use of the class concept, called =

Ready

Figure 4-16. The front-page notebook of the OMNotebook version of the DrModelica tutoring system.

In each chapter of DrModelica the user is presented a short summary of the corresponding chapter of the book
“Principles of Object-Oriented Modeling and Simulation with Modelica 2.1” by Peter Fritzson. The summary

59

introduces some keywords, being hyperlinks that will lead the user to other notebooks describing the keywords
in detail.

E OMNotebook: HelloWorld.onb*
File Edit Cell Format Insert Window Help

First Basic Class

1 HelloWorld

The program containg a declaration of a class called He 11 oWo rld with two fields and one equation. The first field iz
the variable x which is ittialized to a start value 2 at the time when the simulation starts. The second field is the variable
a, which 15 a constant that 13 imitiahized to 2 at the begimning of the smmulation. Such a constant 15 prefized by the
keyword parameter i order to indicate that it 1z constant dunng simulation but is a model parameter that can be
changed between simulations.

The IModelica program solves a trivial differential equation: =™ = - a * x®. The variable x1s a state variable
that can change value over time. The x ' 15 the time derivative of =

class HelloWorld
Real x({start = 1);

parameter Real a = 1;
equation
der (x) = - a * x;

end HelloWorld;

Ok

2 Simulation of HelloWorld

zimulate{ HellaoWorld, startTime=0, stopTime=4);

[done]

plot{ = };

Plot by OpenModelica
1oF T . T . T T ..

oar 7

04r 7

02r 7

0o

oo 0.4 10 1.4 20 25 an 25 40

Ready

Figure 4-17. The Hel loWor Id class simulated and plotted using the OMNotebook version of DrModelica.

Now, let us consider that the link “Helloworld” in DrModelica Section is clicked by the user. The new
HelloWorld notebook (see Figure 4-17), to which the user is being linked, is not only a textual description but
also contains one or more examples explaining the specific keyword. In this class, Hel lowWorld, a differential
equation is specified.

60

No information in a notebook is fixed, which implies that the user can add, change, or remove anything in a
notebook. Alternatively, the user can create an entirely new notebook in order to write his/her own programs or
copy examples from other notebooks. This new notebook can be linked from existing notebooks.

UL oMNotebook: drmodelica.onb 0| x|
File Edit Cell Faormat Insert ‘Window Help
Algorithms and Functions =
Algorithans
In Modelica, algoritlunic statements can only occur within Algoritlhun Sections (p. 285),
starting with the keyword algorithm. Simple Assigniment Statements (p. 287) is the
most common kind of statements in algorithi sections. There ig a gpecial form of
asszignment statement that iz only used when the right hand side contains a call to a
Function with Multiple R esults (p. 287).
The for-Statement (alzo called for-loop) is a convenient way of expressing iteration (p.
288). When using the for-loop for iteration we must be able to express the range of
values over which the iteration variable should iterate in a closed form as an iteration
expression. For cases where this is not feazible there is alzo a While-loop iteration
constiuct in Modelica (p. 290). For conditional expressions the if-Statement (p. 292) iz
used. When-Statements (p. 293) are used to express actions af event instants and are
closely related to when-equations. The Reinit (p. 296) statement can be used in
when-statements to define new values for continuous-time state variabies of a model at
an event.
The Aszzert (p. 298) statement provides a convenient means for specifying checks on
model validity within a model.
The most common usage of Teyminate (p. 298) is to give more appropriate stopping
criteria for terminating a =imulation than a fixed point in time.
Exercises J
Exercise 1
Exercise 2
Exercise 3
Exercise 4
Exercise S
Functions
The body of a Modelica function is a kind of algoritlun section that contains procedural
algorithmic code to be executed when the function ig Called (pp. 300). Since a function is
a restricted and enhanced kind of class. it 18 nossible to inherit an existing fimction El
Ready 4

Figure 4-18. DrModelica Chapter on Algorithms and Functions in the main page of the OMNotebook version of
DrModelica.

When a class has been successfully evaluated the user can simulate and plot the result, as previously depicted
in Figure 4-17 for the simple Hel 1oWor Id example model..

After reading a chapter in DrModelica the user can immediately practice the newly acquired information by
doing the exercises that concern the specific chapter. Exercises have been written in order to elucidate language
constructs step by step based on the pedagogical assumption that a student learns better “using the strategy of
learning by doing”. The exercises consist of either theoretical questions or practical programming assignments.
All exercises provide answers in order to give the user immediate feedback.

Figure 4-18 shows part of Chapter 9 of the DrModelica teaching material. Here the user can read about
language constructs, like algorithm sections, when-statements, and reinit equations, and then practice
these constructs by solving the exercises corresponding to the recently studied section.

@DMNutehuuk: Exercisel.nb -10] =]

File Edit Cell Format Insert Window Help

Exercise 1

Using Algorithm Sections

Wiite a fanction, Sum, which calculates the sum of numbers, in an array of arbitrary size.

Write a finction, Ave rags, which calculates the average of numbers, in an array of arbitrary size. Average
should use make a function call to Sum.

|]

White a class, LargestAverage, that has two arrays and calculates the average of each of them. Then
compares the averages and sets a variable to true if the first array is larger than the second and otherwise falze.

|]

Answer

Ready i

Figure 4-19. Exercise 1 in Chapter 9 of DrModelica.

Exercise 1 from Chapter 9 is shown in . In this exercise the user has the opportunity to practice different
language constructs and then compare the solution to the answer for the exercise. Notice that the answer is not
visible until the Answer section is expanded. The answer is shown in

61

Il OMNotebook: Exercisel.nb*®]

File Edit Cel Format Insert ‘Window Help

| R

Answer

Sum

function Sum
input Real[:] x;
output Real sum;
algorithm
for 1 in l:=sizei(x,1l) loop
sum := sum + =[1];
end for;

end Sum;

Average

function Average
input Real[:] x;
output Real average;
protected
Peal =um;
algorithm
average := Sumix) / size(x,1);

end Average;

LargestAverage

class Largestiwverage
parameter Integer[:] Al = {1, 2, 3, 4, 5};
parameter Integer[:] AZ = {7, 8, 9};
Real averageiAl, awveragelZ;
Boolean AlLargest(start = false);

algorithm

averageal := Average(Al);

averaged? 1= Average (&2);

if awverageil > averagelZ then
AlLargest := true;

else
AlLargest := false;

end if;

end Largestiverage;

k. 1 ' 1 E b o
Stnulation of LargestAverage

zimulate| LargestAverage);]

WWhen we look at the values in the vanables we see that A2 has the largest average (8) and therefore the
variable A 1Largest 1z falze (= 0.

Ready

s L

Figure 4-20. The answer section to Exercise 1 in Chapter 9 of DrModelica.

4.3 DrControl Tutorial — Application of OMNotebook in Control Theory

The concept of an active electronic book is appealing and provide several benefits compared to traditional
teaching methods. The basic concepts can be explained along with a source code that can be executed in the
same frame.

The hierarchical structure of DrModelica is followed in DrControl (see Figure 4-21) as well. The
concepts that are treated in this release are among others: Kalman filter modeling with noise, introducing
observer variables for estimating the inaccessible state variables. Moreover, linearization of non-linear
models with OpenModelica is explained.

iM OMNotebook: DrControl.onb (=8| %]

.l"vu= - ¥ L \-:‘:J-IJ@

Fersion 2010-08-19

m

DrC ontro|vedeiica edition

Copyright: (¢) Link6ping University, PELAB, 2003-2010.
Contact: OpenModelica@ida.liu.se
OpenModelica Project web site: www.openmodelica.org

DrControl Authors: (2010 version) Mohsen Torabzadeh-Tari and Martin Sjélund

This DrControl notebook has been developed to facilitate learning Control Theory with the
aid of Modelica language. For learning more about the Modelica language please first go
through the DrModelica notebook, an interactive and self-instructing electronic notebook.

Detailed Copyright and Acknowledgment Information]

1 Getting Started Using OMNotebook

IMPORTANT: To evaluate a cell just click in the specific cell and press shift+enter. If you
end a command by semicolon (;), the value of the command will not be returned in an output
cell. When using or saving your own files it is useful to first change the directory to the path
where your files are located. This can be done by the c¢d() command. For a more extensive

tutorial explanation on how to use a notebook. see the notebook chapter in the v
Ready

Figure 4-21. The DrControl front-end.

The theory behind Kalman filters is explained in the interactive course material which is shown in Figure 4-
22 and the implementation in Figure 4-23.

OMNotebook: Kalman.onb

File Edit Cell Format [nsert Window Help

ol = (P @ % b “\Z@\{@
1 Kalman Filter

Often we don't have access to the internal states of a system and can only measure the outputs of the system and
have to reconstruct the state of the system based on these measurements. This is normally done with an observer.
The idea with an observer is that we feedback the difference of the measured output with the estimated output. If
the estiamtion is correct then the difference should be zero.

Another difficulty is that the measured quantities often contain disturbance, i.e. noise.

{%=A52+Bu+e
9=CR+v

m

Here are e denoting a disturbance in the input signal and v is a measurement error. The quality of the estimate can
be evaluated by the difference

i K((t) — Cx(t) - Du(t))

By using this quantity as feedback we obtain the observer

% = AZ(t) + Bult) + K(y(t) — C2(t) — Du(t))

Now form the error as

b
[}
=
I
=

The differential error is

Ready Ready

Figure 4-22. Theory background about Kalman filter.

In reality noise is present in almost every physical system under study and therefore the concept of noise is
also introduced in the course material, which is purely Modelica based.

4 ONNotebook: Kalman =
File Edit Cell Format Inset Window Help

N =P s Lidh =g | @

il

model KalmanFeedback
parameter Real A[:,size(A, 1)]
parameter Real B[size(A, 1),:] {{0},{1}};
parameter Real C[:,size(a, 1)1 = {{1,0}};
parameter Real([2,1] K = [2.4;3.4];
parameter Real[1,2] L = [2.4,3.4];
parameter Real[:,:] ABL = A-B*L;
parameter Real[:,:] BL = B*L;
parameter Real[:,:] 2 = zeros(size (ABL,2),size(ARC,1));
parameter Real[:,:] ARC = A-K*C; |
[0;1:0;0 7 =1.4, —3.4,02. 4,347 0,0,;-2.4,1:0,0,-2.4,01;

10,1}, {1,0}} ;

Sy

e e i

parameter Real[:,:] Anew =
parameter Reall[: Enew = [0;1;0;0]; H
parameter Real[:,:] Fnew = [1;0;0;0];

stateSpaceNoise Kalman(stateSpace.A=Anew,stateSpace.B=Bnew, stateSpace.C=[1,0,0,0],
stateSpace.F = Fnew);

stateSpaceNoise noRalman;
end KalmanFeedback;

simulate (RalmanFeedback, stopTime=3)
plot ({Ralman.stateSpace.y[1],noRalman.stateSpace.y[1]})

true
Plot by OpenModelica

@ Kalman,stateSpace.y[1]

@ noKalman. stateSpace. y[1]

Ready Ln12,Col30

Figure 4-22. Comparison of a noising system with feedback link in DrControl.

4.4 OpenModelica Notebook Commands

OMNotebook currently supports the commands and concepts that are summarized in this section.

4.4.1 Cells

Everything inside an OMNotebook document is made out of cells. A cell basically contains a chunk of
data. That data can be text, images, or other cells. OMNotebook has four types of cells: headercell,
textcell, inputcell, and groupcell. Cells are ordered in a tree structure, where one cell can be a
parent to one or more additional cells. A tree view is available close to the right border in the notebook
window to display the relation between the cells.

o Textcell — This cell type are used to display ordinary text and images. Each textcell has a style that
specifies how text is displayed. The cell’s style can be changed in the menu Format->Styles,
example of different styles are: Text, Title, and Subtitle. The Textcell type also has support
for following links to other notebook documents.

e Inputcell — This cell type has support for syntax highlighting and evaluation. It is intended to be
used for writing program code, e.g. Modelica code. Evaluation is done by pressing the key
combination Shift+Return or Shift+Enter. All the text in the cell is sent to OMC (OpenModelica

Compiler/interpreter), where the text is evaluated and the result is displayed below the inputcell. By
double-clicking on the cell marker in the tree view, the inputcell can be collapsed causing the result
to be hidden.

Groupcell — This cell type is used to group together other cell. A groupcell can be opened or closed.
When a groupcell is opened all the cells inside the groupcell are visible, but when the groupcell is
closed only the first cell inside the groupcell is visible. The state of the groupcell is changed by the
user double-clicking on the cell marker in the tree view. When the groupcell is closed the marker is
changed and the marker has an arrow at the bottom.

4.4.2 Cursors

An OMNotebook document contains cells which in turn contain text. Thus, two kinds of cursors are needed
for positioning, text cursor and cell cursor:

4.5

Textcursor — A cursor between characters in a cell, appearing as a small vertical line. Position the
cursor by clicking on the text or using the arrow buttons.

Cellcursor — This cursor shows which cell currently has the input focus. It consists of two parts.
The main cellcursor is basically just a thin black horizontal line below the cell with input focus. The
cellcursor is positioned by clicking on a cell, clicking between cells, or using the menu item Cel I -
>Next Cell or Cell->Previous Cell. The cursor can also be moved with the key combination
Ctrl+Up or Ctrl+Down. The dynamic cellcursor is a short blinking horisontal line. To make this
visible, you must click once more on the main cellcursor (the long horizontal line). NOTE: In order
to paste cells at the cellcursor, the dynamic cellcursor must be made active by clicking on the main
cellcursor (the horisontal line).

Selection of Text or Cells

To perform operations on text or cells we often need to select a range of characters or cells.

Select characters — There are several ways of selecting characters, e.g. double-clicking on a word,
clicking and dragging the mouse, or click followed by a shift-click at an adjacent positioin selects
the text between the previous click and the position of the most recent shift-click.

Select cells — Cells can be selected by clicking on them. Holding done Ctrl and clicking on the cell
markers in the tree view allows several cells to be selected, one at a time. Several cells can be
selected at once in the tree view by holding down the Shift key. Holding down Shift selects all cells
between last selected cell and the cell clicked on. This only works if both cells belong to the same
groupcell.

4.5.1 File Menu

The following file related operations are available in the file menu:

Create a new notebook — A new notebook can be created using the menu File->New or the key
combination Ctrl+N. A new document window will then open, with a new document inside.

Open a notebook — To open a notebook use File->0pen in the menu or the key combination
Ctrl+O. Only files of the type .onb or .nb can be opened. If a file does not follow the
OMNotebook format or the FullForm Mathematica Notebook format, a message box is displayed
telling the user what is wrong. Mathematica Notebooks must be converted to fullform before they
can be opened in OMNotebook.

Save a notebook — To save a notebook use the menu item File->Save or File->Save As. If the
notebook has not been saved before the save as dialog is shown and a filename can be selected.

OMNotebook can only save in xml format and the saved file is not compatible with Mathematica.
Key combination for save is Ctrl+S and for save as Ctrl+Shift+S. The saved file by default obtains
the file extension -onb.

Print — Printing a document to a printer is done by pressing the key combination Ctrl+P or using the
menu item File->Print. A normal print dialog is displayed where the usually properties can be
changed.

Import old document — Old documents, saved with the old version of OMNotebook where a
different file format was used, can be opened using the menu item File->Import->0ld
OMNotebook File. Old documents have the extension . xml.

Export text — The text inside a document can be exported to a text document. The text is exported to
this document without almost any structure saved. The only structure that is saved is the cell
structure. Each paragraph in the text document will contain text from one cell. To use the export
function, use menu item Fi le->Export->Pure Text.

Close a notebook window — A notebook window can be closed using the menu item File->Close
or the key combination Ctrl+F4. Any unsaved changes in the document are lost when the notebook
window is closed.

Quitting OMNotebook — To quit OMNotebook, use menu item File->Quit or the key
combination Crtl+Q. This closes all notebook windows; users will have the option of closing OMC
also. OMC will not automatically shutdown because other programs may still use it. Evaluating the
command quit() has the same result as exiting OMNotebook.

4.5.2 Edit Menu

Editing cell text — Cells have a set of of basic editing functions. The key combination for these are:
Undo (Ctrl+Z), Redo (Ctrl+Y), Cut (Ctrl+X), Copy (Ctrl+C) and Paste (Ctrl+V). These functions
can also be accessed from the edit menu; Undo (Edit->Undo), Redo (Edit->Redo), Cut (Edit-
>Cut), Copy (Edit->Copy) and Paste (Edit->Paste). Selection of text is done in the usual way
by double-clicking, triple-clicking (select a paragraph), dragging the mouse, or using (Ctrl+A) to
select all text within the cell.

Cut cell — Cells can be cut from a document with the menu item Edit->Cut or the key combination
Ctrl+X. The cut function will always cut cells if cells have been selected in the tree view, otherwise
the cut function cuts text.

Copy cell — Cells can be copied from a document with the menu item Edit->Copy or the key
combination Ctrl+C. The copy function will always copy cells if cells have been selected in the tree
view, otherwise the copy function copy text.

Paste cell — To paste copied or cut cells the cell cursor must be selected in the location where the
cells should be pasted. This is done by clicking on the cell cursor. Pasteing cells is done from the
menu Edit->Paste or the key combination Ctrl+V. If the cell cursor is selected the paste function
will always paste cells. OMNotebook share the same application-wide clipboard. Therefore cells
that have been copied from one document can be pasted into another document. Only pointers to
the copied or cut cells are added to the clipboard, thus the cell that should be pasted must still exist.
Consequently a cell can not be pasted from a document that has been closed.

Find — Find text string in the current notebook, with the options match full word, match cell, search
within closed cells. Short command Ctrl+F.

Replace — Find and replace text string in the current notebook, with the options match full word,
match cell, search+replace within closed cells. Short command Ctrl+H.

View expression — Text in a cell is stored internally as a subset of HTML code and the menu item
Edit->View Expression let the user switch between viewing the text or the internal HTML
representation. Changes made to the HTML code will affect how the text is displayed.

4.5.3 Cell Menu

Add textcell — A new textcell is added with the menu item Cel 1->Add Cell (previous cell style) or
the key combination Alt+Enter. The new textcell gets the same style as the previous selected cell
had.

Add inputcell — A new inputcell is added with the menu item Cell->Add Inputcell or the key
combination Ctrl+Shift+1.

Add groupcell — A new groupcell is inserted with the menu item Cel 1->Groupcell or the key
combination Ctrl+Shift+G. The selected cell will then become the first cell inside the groupcell.

Ungroup groupcell — A groupcell can be ungrouped by selecting it in the tree view and using the
menu item Cel I->Ungroup Groupcell or by using the key combination Ctrl+Shift+U. Only one
groupcell at a time can be ungrouped.

Split cell — Spliting a cell is done with the menu item Cel1->Split cell or the key combination
Ctrl+Shift+P. The cell is splited at the position of the text cursor.

Delete cell — The menu item CellI->Delete Cell will delete all cells that have been selected in
the tree view. If no cell is selected this action will delete the cell that have been selected by the
cellcursor. This action can also be called with the key combination Ctrl+Shift+D or the key Del
(only works when cells have been selected in the tree view).

Cellcursor — This cell type is a special type that shows which cell that currently has the focus. The
cell is basically just a thin black line. The cellcursor is moved by clicking on a cell or using the
menu item Cel I->Next Cell or Cell->Previous Cell. The cursor can also be moved with the
key combination Ctrl+Up or Ctrl+Down.

4.5.4 Format Menu

Textcell — This cell type is used to display ordinary text and images. Each textcell has a style that
specifies how text is displayed. The cells style can be changed in the menu Format->Styles,
examples of different styles are: Text, Title, and Subtitle. The Textcell type also have
support for following links to other notebook documents.

Text manipulation — There are a number of different text manipulations that can be done to change
the appearance of the text. These manipulations include operations like: changing font, changing
color and make text bold, but also operations like: changing the alignment of the text and the
margin inside the cell. All text manipulations inside a cell can be done on single letters, words or
the entire text. Text settings are found in the Format menu. The following text manipulations are
available in OMNotebook:

> Font family

> Font face (Plain, Bold, Italic, Underline)

> Font size

> Font stretch

> Font color

> Text horizontal alignment

> Text vertical alignment

> Border thickness

> Margin (outside the border)

> Padding (inside the border)

4.5.5 Insert Menu

Insert image — Images are added to a document with the menu item Insert->Image or the key
combination Ctrl+Shift+M. After an image has been selected a dialog appears, where the size of the
image can be chosen. The images actual size is the default value of the image. OMNotebook
stretches the image accordantly to the selected size. All images are saved in the same file as the rest
of the document.

Insert link — A document can contain links to other OMNotebook file or Mathematica notebook and
to add a new link a piece of text must first be selected. The selected text make up the part of the link
that the user can click on. Inserting a link is done from the menu Insert->Link or with the key
combination Ctrl+Shift+L. A dialog window, much like the one used to open documents, allows the
user to choose the file that the link refers to. All links are saved in the document with a relative file
path so documents that belong together easily can be moved from one place to another without the
links failing.

4.5.6 Window Menu

Change window — Each opened document has its own document window. To switch between those
use the Window menu. The window menu lists all titles of the open documents, in the same order
as they were opened. To switch to another document, simple click on the title of that document.

4.5.7 Help Menu

About OMNotebook — Accessing the about message box for OMNotebook is done from the menu
Help->About OMNotebook.

About Qt — To access the message box for Qt, use the menu Help->About Qt.

Help Text — Opening the help text (document OMNotebookHelp.onb) for OMNotebook can be
done in the same way as any OMNotebook document is opened or with the menu Help->Help
Text. The menu item can also be triggered with the key F1.

4.5.8 Additional Features

Links — By clicking on a link, OMNotebook will open the document that is referred to in the link.

Update link — All links are stored with relative file path. Therefore OMNotebook has functions that
automatically updating links if a document is resaved in another folder. Every time a document is
saved, OMNotebook checks if the document is saved in the same folder as last time. If the folder
has changed, the links are updated.

Evaluate several cells — Several inputcells can be evaluated at the same time by selecting them in
the treeview and then pressing the key combination Shift+Enter or Shift+Return. The cells are
evaluated in the same order as they have been selected. If a groupcell is selected all inputcells in
that groupcell are evaluated, in the order they are located in the groupcell.

Command completion — Inputcells have command completion support, which checks if the user is
typing a command (or any keyword defined in the file commands.xml) and finish the command. If
the user types the first two or three letters in a command, the command completion function fills in
the rest. To use command completion, press the key combination Ctrl+Space or Shift+Tab. The
first command that matches the letters written will then appear. Holding down Shift and pressing
Tab (alternative holding down Ctrl and pressing Space) again will display the second command that
matches. Repeated request to use command completion will loop through all commands that match
the letters written. When a command is displayed by the command completion functionality any
field inside the command that should be edited by the user is automatically selected. Some
commands can have several of these fields and by pressing the key combination Ctrl+Tab, the next

field will be selected inside the command.
> Active Command completion: Ctrl+Space / Shift+Tab
> Next command: Ctrl+Space / Shift+Tab
> Next field in command: Ctrl+Tab’

e Generated plot — When plotting a simulation result, OMC uses the program Ptplot to create a plot.
From Ptplot OMNotebook gets an image of the plot and automatically adds that image to the output
part of an inputcell. Like all other images in a document, the plot is saved in the document file
when the document is saved.

o Stylesheet —-OMNotebook follows the style settings defined in stylesheet.xml and the correct style is
applied to a cell when the cell is created.

e Automatic Chapter Numbering — OMNotebook automatically numbers different chapter,
subchapter, section and other styles. The user can specify which styles should have chapter
numbers and which level the style should have. This is done in the stylesheet.xml file. Every style
can have a <chapterLevel> tag that specifies the chapter level. Level 0 or no tag at all, means that
the style should not have any chapter numbering.

e Scrollarea — Scrolling through a document can be done by using the mouse wheel. A document can
also be scrolled by moving the cell cursor up or down.

e Syntax highlighter — The syntax highlighter runs in a separated thread which speeds up the loading
of large document that contains many Modelica code cells. The syntax highlighter only highlights
when letters are added, not when they are removed. The color settings for the different types of
keywords are stored in the file modelicacolors.xml. Besides defining the text color and
background color of keywords, whether or not the keywords should be bold or/and italic can be
defined.

e Change indicator — A star (*) will appear behind the filename in the title of notebook window if the
document has been changed and needs saving. When the user closes a document that has some
unsaved change, OMNotebook asks the user if he/she wants to save the document before closing. If
the document never has been saved before, the save-as dialog appears so that a filename can be
choosen for the new document.

e Update menus — All menus are constantly updated so that only menu items that are linked to actions
that can be performed on the currently selected cell is enabled. All other menu items will be
disabled. When a textcell is selected the Format menu is updated so that it indicates the text settings
for the text, in the current cursor position.

4.6 References

Eric Allen, Robert Cartwright, Brian Stoler. DrJava: A lightweight pedagogic environment for Java. In
Proceedings of the 33rd ACM Technical Symposium on Computer Science Education
(SIGCSE 2002) (Northern Kentucky — The Southern Side of Cincinnati, USA, February 27
— March 3, 2002).

Ingemar Axelsson. OpenModelica Notebook for Interactive Structured Modelica Documents. Final
thesis, LITH-IDA-EX-05/080-SE, Linkdping University, Linképing, Sweden, October 21,
2005.

Anders Fernstrom, Ingemar Axelsson, Peter Fritzson, Anders Sandholm, Adrian Pop. OMNotebook —
Interactive WYSIWYG Book Software for Teaching Programming. In Proc. of the
Workshop on Developing Computer Science Education — How Can It Be Done?.
Linkdping University, Dept. Computer & Inf. Science, Linkoping, Sweden, March 10,
2006.

Anders Fernstrom. Extending OMNotebook — An Interactive Notebook for Structured Modelica
Documents. Final thesis, LITH-IDA-EX--06/057—SE, Dept. Computer and Information
Science, Linkdping University, Sweden, September 4, 2006.

Peter Fritzson. Principles of Object Oriented Modeling and Simulation with Modelica 2.1, 940 pages,
ISBN 0-471-471631, Wiley-IEEE Press. Feb. 2004.

Knuth, Donald E. Literate Programming. The Computer Journal, NO27(2), pp. 97-111, May 1984.

Eva-Lena Lengquist-Sandelin, Susanna Monemar, Peter Fritzson, and Peter Bunus. DrModelica — A
Web-Based Teaching Environment for Modelica. In Proceedings of the 44th Scandinavian
Conference on Simulation and Modeling (SIMS’2003), available at www.scan-sims.org.
Vasteras, Sweden. September 18-19, 2003.

The Modelica Association. The Modelica Language Specification Version 3.0, Sept 2007.
http://www.modelica.org.

Stephen Wolfram. The Mathematica Book. Wolfram Media Inc, 1997.

Chapter 5

Interactive Simulation

5.1 Introduction

In order to offer a user-interactive and time synchronous simulation, OM has an additional subsystem to
fulfill general requirements on such simulations.

This module is part of the simulation runtime core and is called “OpenModelica Interactive” (OMI).
OMI will result in an executable simulation application, such as the non interactive simulation. The
executable file will be generated by the OMC, which contains the full Modelica model as C/C++ code with
all required equations, conditions and different solvers to simulate a whole system or a single system
component. This executable file offers a non-interactive and an interactive simulation runtime.

The following are some general functionalities of an interactive simulation runtime:

e The user will be able to stimulate the system during a running system simulation and to observe its’
reaction immediately.

e Simulation runtime behavior will be controllable and adaptable to offer an interaction with a user.

o A user will receive simulation results during a simulation synchronous to the real-time. Since
network process time and some other factors like scheduling of processes from the operation
system this is not given at any time.

e In order to offer a stable simulation, a runtime will inform a user interface of errors and
consequential simulation aborts.

e Simulation results will not under-run or exceed a tolerance compared to a thoroughly reliable value,
for a correct simulation.

e Communication between a simulation runtime and a user interface will use a well defined interface
and be base on a common technology, in this case network communication.

5.2 Interactively Changeable Parameters

An important modification/addition to the semantics of the Modelica language during interactive
simulation is the fact that parameters are changeable while simulating interactively using OMI. All
properties using the prefix “parameter” can be changed during an interactive simulation. The fully qualified
name is used as a unique identifier, so a parameter value can be found and changed regardless of its
hierarchical position in the model.

5.3 OpenModelica Interactive Components description

OpenModelica Interactive Interactive GUI
(As Server/Service) : (As Client)
1
Simulation Units 1 Communication Units |
1
-------------------- LR EEEEEEEEEEEEEEEE S
OMI Subsystem I | I
1 1
! o : :
1 Control ' Simulation
<4=———-- Contro < : — Control
1 h |
| 1
1 i |
1 1
I i |
I : I
: Lo
1 :
1 : !
1 ! |
: Y o
L 1 | Simulation
< : Transfer : | > DataFlow

The OpenModelica Interactive subsystem is also separated into different modules, following are important
for the user to communicate with:

Control: The “Control” module is the interface between OMI and a Ul. It is implemented as a single
thread to support parallel tasks and independent reactivity. As the main controlling and
communication instance at simulation initialization phase and while simulation is running it
manages simulation properties and also behavior. A client can permanently send operations as
messages to the “Control” unit, it can react at any time to feedback from the other internal OMI
components and it also sends messages to a client, for example error or status messages.

Transfer: Similar to a consumer, the “Transfer” thread tries to get simulation results from a result
manager and sends them to the Ul immediately after starting a simulation. If the communication
takes longer than a calculation step, it is also possible to create more than one consumer. The
“Transfer” uses a property filter mask containing all property names whose result values are
important for the Ul. The Ul must set this mask using the “setfilter” operation from chapter 2.1.3.2,
otherwise the transfer sends only the actual simulation time. This is very useful for increasing the
communication speed while sending results to the Ul.

5.4 Communication Interface

The network communication technology “TCP/IPv4” (later IPv6) will be used to send and receive
messages. Each system has its own server and client implementations to receive and send messages
respectively. The Control and Transfer are the OMI components which are designated for a communication
over TCP/IP.

5.4.1 Network configuration Settings

Name

Description

URL

Control Server

Waits for requests from the Ul

By Default, waits for connection on:
127.0.0.1:10501

Control Client

Replies to the Ul and sends other
synchronization messages to it

By Default, tries to connect on:
127.0.0.1:10500

Transfer Client

Sends simulation results to a Ul

By Default, tries to connect on:
127.0.0.1:10502

OMI server and client components: Communication behaviour and configuration by default

Name

Description

URL

Control Client

Requests to the OMI Control Server

By Default, tries to connect on:
127.0.0.1:10501

Control Server
Control

Waits for information from the OMI

Client

By Default, waits for connection on:
127.0.0.1:10500

Transfer Server

Waits for simulation results from the
OMI Transfer Client

By Default, waits for connection on:
127.0.0.1:10502

Ul server and client components: Suggested configuration by default

5.4.2 Operation Messages

To use messages parsing there is a need to specify a communications protocol.
A string message begins with a specified prefix and ends with a specified suffix.
The prefix describes the request type, for example an operation. Depending on the request type, some
additional information and parameters can append on it. The suffix is to check if the message has been
received correctly and if the sender has created it correctly. All parts should be separated with “#”.
A sequence number is helpful to manage operation request and reply, a Ul has to send a sequence

number combined with an operation.

The following are all available message strings between a Ul and the OMI system:

Request from Ul to Control

Ul Request Description OMI::Control Reply
start#SEQ#end Starts or continues the simulation done#SEQ#end
pause#SEQ#end Pauses the running simulation done#SEQ#end
stop#SEQ#end Stops the running simulation and done#SEQ#end
resets all values to the beginning
shutdown#SEQ#end Shuts the simulation down done#SEQ#end
setfilter#SEQ# Sets the filter for variables and done#SEQ#end
varl:var2# parameters which should send
parl:par2# from OMI to the client Ul
end
useindex#SEQ#end Uses indexes as attribute names. done#SEQ#end
The index will be used at
transmitting results to a client. This
will cause much less data to
transmit. (??Not implemented yet)
setcontrolclienturl#SEQ# Changes the IP and port of the done#SEQ#end
ip#port# Control Server. Otherwise the
end default configuration will be used.
settransferclienturl#SEQ# Changes the IP and port of the done#SEQ#end

ip#port# Control Server. Otherwise the

end default configuration will be used.

changetime#SEQ#Tn#end Changes the simulation time and done#SEQ#end
goes back to a specific time step

changevalue#SEQ#Tn# Changes the value of the appended done#SEQ#end

parl=2.3:par2=33.3# parameters and stets the simulation

end time back to the point where the
user clicked in the Ul

error#TYPE#end Error handling not implemented Error: *

yet

Table 5-1 Available messages from a Ul to OMI (Request-Reply)

Messages from Control to Ul

OMI::Control

Description

ul

Error: MESSAGE

If an error occurs the OMI::Control
generates an error messages and
sends the messages with the prefix
“Error:” to the Ul (not implemented

yet)

Up to the Ul developers

Table 5-2 Available messages from OMI::Control to Ul

Messages from Transfer to Ul

OMI::Transfer

Description

ul

result#|D#Tn# Sends the simulation result for a None
varl=Val:var2=Val# time step Tn to the client Ul, using
parl=Val:par2=Val# the property names as identifier.
end Maybe a result ID is important to
identify the results which are
obsolete (not implemented yet).
result#|D#Tn# Sends the simulation result for a None

1=Val:2=Val#
1=Val:2=Val#
end

time step Tn to the client Ul, using
an index as identifier. This requires
a convention about the used index
mask. Transfer optimization.
NOTE: Operation from Ul needed,
Mask creation using the standard
array index is recommended.
Maybe a result ID is important to
identify the results which are
obsolete (not implemented yet).

Table 5-3 Available messages from OMI::Transfer to Ul

5.5 Interactive Simulation general Procedure

5.5.1 Initialize an Interactive Simulation Session

Start the OpenModelica Shell or OMNotebook which is available in the start menu as
OpenModelica->OpenModelica Shell or OpenModelica->OMNotebook.

{ifi oMShell - Opentodelica Shell =10/ x|

File Edit Wiew Help
t @RS 20|

OpenModelica 1.4.5

Copyright (c) ©SMC 2002-2008
To get help on using OMShell and OpenModelica, type "help ()" and press enter.
e

1. Load a model or file.
Optional: You can check if your model or file has been loaded correctly with the operation “list()”

2. Build the model using the operation “buildModel(...)” with the following parameters:
a) Model main class name: Name of the main class of your model.
b) numberOfintervals: Number of output values in an interval of one second. For Example:
“numberOfintervall=5" means that 5 results will be put out every one second (0s, 0.2s, 0.4s, 0.6s,
0.8s, 1.0s...).
c) Note: You can use all parameters which are accepted from the operation “buildModel” except the
parameters “Start” and “Stop”. These parameters are unnecessary because an interactive simulation
always starts at the time “0s” and runs as long as it won’t be stopped or aborted.

3. Execute the created simulation runtime with the parameter “-interactive” and with a port for the
control server optionally “-port xxxxx”. After starting the runtime it will wait until a client connects
to its control server port. Now you can enter the operations mentioned above.

5.5.2 Interactive Simulation Example

In this chapter we will explain how to simulate a Modelica system interactively. This procedure should be a
default step by step procedure for using OMI with an Ul.

5.5.3 How to get an example Modelica Model

The application sample for Windows is present in C:\OpenModelical.6.0\share\doc\omc\interactive-
simulation. Also read C:\OpenModelical.6.0\share\doc\omc\interactive-simulation\README.txt.

The source code for the client is in the Subversion repository: trunk/c_runtime/interactive.

An application test is in the Subversion repository here: trunk/testsuite/interactive-simulation.

See here how to get the code: https://www.openmodelica.org/index.php/developer/source-code

https://www.openmodelica.org/index.php/developer/source-code�

5.5.4 Create the simulation runtime

We will use an example system based on a demonstration model which is given in the Modelica book by
Peter Fritzson [[2], Page 386].

TanksConnec ted PI

aln 5 . ot 'Iflll'l= e ™ ot
an an
—L] [] [] []
toctuator t&ctuator

tSenzor

—h

cln

TanksConnectedPl structure diagram

Please follow the steps to create an executable simulation runtime file.

1. Start OMShell “Start->OpenModelica->OpenModelica Shell”
2. Enter the operation “loadModel(TwoTanks)”
NOTE: We assume that the TwoTanks model is in the ModelicaLibary OM installation folder
(...\OpenModelical.6.0\ModelicaLibrary\TwoTanks) otherwise please load the file from its
location (...\OpenModelical.6.0\share\doc\omc\interactive-simulation*.zip).
3. Use the “buildModel” operation with the following parameters to build the TwoTanks model:
buildModel(TwoTanks. TanksConnectedPl, numberOfintervals=5)
-lalx]

File Edit “iew Help
y 2@ & 2 0|

OpenModelica 1.5.0 =
Copyright (<) oM ZO0Z-Z008

To get help on using OMZhell and CpenModelica, type "help()" and
press enter.

*> loadModel (TwoTanksa)
true

»» buildModel (TwoTanks. TanksConnectedPI, numberOfInterwvals=5)
{"TWDTanks.TankannnectedPI","TWDTanks.TankannnectedPI_init.txt"}

=

5.5.5 Start an interactive Simulation Session

Start the created simulation runtime it should be located in the “tmp” folder of the OM
installation folder (...\OpenModelical.6.0\tmp\TwoTanks.TanksConnectedPl.exe)

Use the parameters “~interactive —port xxxxx”. NOTE: If the default port (10501) should
be used ignore the parameter “—port”. Now the simulation runtime will be waiting until a Ul
client has been connected on its port.

Start the client: “client.exe”.

YSimulationDemo_G... [ll[=]

OpenModelica 1.5.8 — OpenModelica Interactive Uer 8.7
Interactive Simulation Environment Demonstration GUI

To get help and a list of available operations.
To start the environment deomstrator.
MAKE SURE THE SIMULATION RUNTIME IS RUNMIHG
[ports] To change ports of communication units
[exit] To exit this application.

Enter Operation for Environment: _

(Deprecated: Now enter “start” into the console and wait until the client is successfully connected.)

Enter following operation for the simulation runtime:

setcontrolclienturl#1#127.0.0.1#10500#end
settransferclienturl#2#127.0.0.1#10502#end
setfilter#3#tankl. h#source.flowLevel#end

Start the simulation with: start#4#end

NOTE: After starting the simulation your keyboard entries and the results will be displayed in the same
console and you can’t see what you are typing. Please pause the simulation first than enter a longer
operation string.

Pause the simulation with: pause#5#end

Change a Value with: changevalue#6#xx.x#source.flowLevel=0.04#end.

For example if time is higher than 60 and lower than 200 enter >
changevalue#6#60 .0#source . flowLevel=0.0004#end

Transfer-Server recived message: resultd#iBs . 2#itankl . h=08.258086#so0urce.f lowLevel=0_02#end Il

Transfer—-Server recived message: resulti#l1Bs._4fitankl . h=08.258006#source.f lowLevel=0_02#end
Tranzfer—-Server recived message: result#iB5.6#itankl . h=0.250086#s0urce.f lowLevel=A.02#end
Tranzfer—-Server recived message: result#iBs.B8#tankl . h=0.250086#source.flowLevel=A.02#end
Tranzfer—-Server recived message: resulti#iBeHitankl.h=0.258806#source.flovLevel=0.02#end
» recived message: resultH#iB6.2#tankl .h=0.258085H#so0urce.f lowLevel=A.02#fend
» recived message: result#lB6 . 4fitankl .h=0.258085%H#so0urce.f lowLevel=A_82#end
» recived message: result#lB6 . 6Htankl h=0.258005%H#so0urce.f lowLevel=A_82H#end
» recived message: result#lB6 . 8Htankl .h=0.258005%H#zource.f lowLevel=A_82H#end
» recived message: 1e¢u1t#137#tank1 h=8. 25335_#suurce.flnuLeuel=B.B2ﬂend
» recived message: BS#izource . f lowLeve 1=8_82#end
» recived message: . h=8. BS#izource . f lowLeve 1=8_82#end
» recived H . . . B5fisource.f lowLevel=0.82Hfend
» recived HIE™
Transfer—-Server recived
Transfer—-Server recived H sU
Transfer—-Server recived H 1eou1t#138 4itankl .h=8.
Transfer—-Server recived message: result#lBB.6Htankl _h=B. source.flowLevel=A.02Hend

Shutdown the simulation runtime and the environment with: shutdown#7#end

Chapter 6

6.1

MDT — The OpenModelica Development Tooling
Eclipse Plugin

Introduction

The Modelica Development Tooling (MDT) Eclipse Plug-In as part of OMDev — The OpenModelica
Development Environment integrates the OpenModelica compiler with Eclipse. MDT, together with the
OpenModelica compiler, provides an environment for working with Modelica development projects.

The following features are available:

6.2

Browsing support for Modelica projects, packages, and classes

Wizards for creating Modelica projects, packages, and classes

Syntax color highlighting

Syntax checking

Browsing of the Modelica Standard Library or other libraries

Code completion for class names and function argument lists.

Goto definition for classes, types, and functions.

Displaying type information when hovering the mouse over an identifier.

Installation

The installation of MDT is accomplished by following the below installation instructions. These
instructions assume that you have successfully downloaded and installed Eclipse (http://www.eclipse.org).

1.

agkrown

©ooNo

o
w

Start Eclipse

Select Help->Software Updates->Find and Install ... fromthe menu

Select ‘Search for new features to install’ and click ‘Next’

Select ‘New Remote Site...’

Enter ‘MDT’ as name and
‘http://www.ida.liu.se/labs/pelab/modelica/OpenModelica/MDT’ as URL and click ‘OK’
Make sure ‘MDT’ is selected and click ‘Finish’

In the updates dialog select the “MDT’ feature and click ‘Next’

Read through the license agreement, select ‘I accept...” and click ‘Next’

Click “Finish’ to install MDT

Getting Started

6.3.1 Configuring the OpenModelica Compiler

MDT needs to be able to locate the binary of the compiler. It uses the environment variable
OPENMODELICAHOME to do so.

If you have problems using MDT, make sure that OPENMODELICAHOME is pointing to the folder
where the Open Modelica Compiler is installed. In other words, OPENMODELICAHOME must point to
the folder that contains the Open Modelica Compiler (OMC) binary. On the Windows platform it’s called
omc.exe and on Unix platforms it’s called omc.

http://www.ida.liu.se/labs/pelab/OpenModelica/MDT�

6.3.2 Using the Modelica Perspective

The most convenient way to work with Modelica projects is to use to the Modelica perspective. To switch
to the Modelica perspective, choose the Window menu item, pick Open Perspective followed by
Other... Select the Model ica option from the dialog presented and click OK..

6.3.3 Selecting a Workspace Folder

Eclipse stores your projects in a folder called a workspace. You need to choose a workspace folder for this
session, see Figure 5-23

Figure 5-23. Eclipse Setup — Switching Workspace.

6.3.4 Creating one or more Modelica Projects

To start a new project, use the New Modelica Project Wizard. It is accessible through Fi le->New->
Modelica Project or by right-clicking in the Modelica Projects view and selecting New->Model ica
Project.

Figure 5-24. Eclipse Setup — creating a Modelica project in the workspace.

You need to disable automatic build for the project(s) (Figure 5-25).

Figure 5-25. Eclipse Setup — disable automatic build for the projects.

Repeat the procedure for all the projects you need, e.g. for the exercises described in the MetaModelica
users guide: 01_experiment, 02a_expl, 02b_exp2, 03_assignment, 04a_assigntwotype, etc.

NOTE: Leave open only the projects you are working on! Close all the others!

6.3.5 Building and Running a Project
After having created a project, you eventually need to build the project (Figure 5-26).

£ Modehon - Functionsme - Echpss SO -
Fle B3 Mefactr Mavgele Sewdh | Promct Mum Widew Hep
= = i e et dridentabiont ErT -

g=) = a=)
&]

] |

Writable: fnsert

Figure 5-26. Eclipse MDT - Building a project.

There are several options: building, building from scratch (clean), running, see Figure 5-27.

Figure 5-27. Eclipse — building and running a project.

You may also open additional views, e.g as in Figure 5-28.

Figure 5-28. Eclipse — Opening views.

6.3.6 Switching to Another Perspective

If you need, you can (temporarily) switch to another perspective, e.g. to the Java perspective for working
with an OpenModelica Java client as in Figure 5-29.

ieis
Fle [ot Refactor Mavgale Seach Propct Run Window Hel

| [Proiess | I Conscle £ . Emering | Search % on | B
stermingted> OMOey MIWGW [Program] c:\OMDe ook marys bin'meke exe
UL EATe mOR.SUL gEEN.OUT mALN mAin.Ns Hain.s

m -t A Typas.o Funceions.o Hain.e Main.h Types.c Types.h Funesions.e S

Figure 5-29. Eclipse — Switching to another perspective — e.g. the Java Perspective.

6.3.7 Creating a Package

To create a new package inside a Modelica project, select File->New->Modelica Package. Enter the

desired name of the package and a description of what it contains. Note: for the exercises we already have
existing packages.

|f New Modelica Package Bl

Modelica Package

Create a new Modelica package.

Source folder: [F’F’C 970 l [Browse...]
Name: [C ore l

Description: |This package contains the core stuff |

[]is encapsulated package

[Finish l [Cancel

Figure 5-30. Creating a new Modelica package.

6.3.8 Creating a Class

To create a new Modelica class, select where in the hierarchy that you want to add your new class and
select File->New->Model ica Class. When creating a Modelica class you can add different restrictions
on what the class can contain. These can for example be model, connector, block, record, or
function. When you have selected your desired class type, you can select modifiers that add code blocks
to the generated code. ‘Include initial code block’ will for example add the line ‘initial
equation’ to the class.

|(New Modelica Class x|
Modelica Class

Create a new Modelica class.

Source folder: [PPCO70/Core l [Browse... l
Name: |ALU |
Type

Modifiers: include initial equation block

[Dis partial class

O

[Einish l [Cancel

Figure 5-31. Creating a new Modelica class.

6.3.9 Syntax Checking

Whenever a build command is given to the MDT environment, modified and saved Modelica (.mo) files
are checked for syntactical errors. Any errors that are found are added to the Problems view and also
marked in the source code editor. Errors are marked in the editor as a red circle with a white cross, a
squiggly red line under the problematic construct, and as a red marker in the right-hand side of the editor. If

you want to reach the problem, you can either click the item in the Problems view or select the red box in
the right-hand side of the editor.

Modelica - ALU.mo - Eclipse SDK
File Edit MNawvigate Search Project SWT Hierarchy Run Window Help

R o (ot >

o o

' = "\ = Ty
% Modeli... &2 8 ALU.mo 8
- & PPCO70 block ALU [« m

=
i Core equation

B ALU.mo .

I package.mo ||© inital equation
.project
[» =i System Library

end ALU;

(4] D
-

Console | [£! Problems 2 T ¥ =0

2 errors, 0 warnings, 0 infos

Description Resource |In Folder Location
@ unexpected token ALU.mo PPCO70/Core line 5
a unexpected token ALLU.mo PPCO70/Core line 5

4] | [v])]|al | [+)

e, A

Figure 5-32. Syntax checking.

6.3.10 Automatic Indentation Support

MDT currently has support for automatic indentation. When typing the Return (Enter) key, the next line is
indented correctly. You can also correct indentation of the current line or a range selection using CTRL+I
or “Correct Indentation” action on the toolbar or in the Edit menu.

6.3.11 Code Completion

MDT supports Code Completion in two variants. The first variant, code completion when typing a dot after
a class (package) name, shows alternatives in a menu. Besides the alternatives, Modelica documentation
from comments is shown if is available. This makes the selection easyer.

= Modelica - DCEngine.mo - Eclipse SDK

File Edit Refactor Mawigate Search Run Project Window Help
Tj'L;:;JI;.I at %' ¥ |t o

[Modelica Projects 23 =0 *DCEngine.ma oo
- Iﬁ- EngineSimulation model DCEngine
+- [DCEngine.ma import Modelica.|
=l .project e i
-2, Standard Library quation & Blocks
- EE Madelica _) EEC:::nstants
end DCEngine; EBEIectrin:aI
+- £ Blacks
+-F3 Constants £ 1cons
+- 3 Electrical £ Math
-3 Trons 3 Mechanics
=1 £ Math B s1uniits
+ acos £ Thermal
+ asin
+ aktan
+ akanz
baselconl

Figure 5-33. Code completion when typing a dot.

The second variant is useful when typing a call to a function. It shows the function signature (formal
parameter names and types) in a popup when typing the parenthesis after the function name, here the
signature Real sin(SI.Angle u) of the sin function:

= Modelica - DCEngine.mo - Eclipse SDK

File Edit Refactor Mawigate Search Fun Project ‘Window Help

"

L=1.'L|:,JI=I a8 %" «.:l;- JE::":::"

[MY] Modelica Projects &2 =0 *LCEMgine.mo &a
-1 1= EngineSimulation model DCEngine
+ DiCEngine. mo import Modelica.Math. *;
|=| project output FReal x;
—| -2, Standard Library egquation
= £ Modelica Real sin{SLAngle U} |
+- {4 Blocks x = sinj|
+-f Constants
+- £ Electrical B
end DCEngine:
+- 4 Icons o

Figure 5-34. Code completion at a function call when typing left parenthesis.

6.3.12 Code Assistance on Identifiers when Hovering

When hovering with the mouse over an identifier a popup with information about the identifier is
displayed. If the text is too long, the user can press F2 to focus the popup dialog and scroll up and down to
examine all the text. As one can see the information in the popup dialog is syntax-highlighted.

S — Zisi
arrect Indentation J Py e - £ | B Modelica 2
— = =g
input String inString: |

input Inte .InteractiveSymbolTzble inlnterzetiveSymbolTable;
output
output
ocutput

algo
: tInteractiveSymbolTzble) :=
ontinue (inString, inInteractiveSymbolTable)

local [

String str,msg,res_l,res,evalstr,expmsg, debugscr;

SywbolTable isywb,newisymbi

ble> vars_l,vars;
5.TTvpe, Option<ibsyn.Pathy»>> cf_l,cf;

ctive LoadedFile> 1£;

case (str,isymb)

equation
true = Upil.strnemp("quis()", stz
then
false, "0k\n", isymb) ;

Path path;
end FULLYQUALIFIED;
end Fath;

Figure 5-35. Displaying information for identifiers on hovering

6.3.13 Go to Definition Support

Besides hovering information the user can press CTRL+click to go to the definition of the identifier.
When pressing CTRL the identifier will be presented as a link and when pressing mouse click the editor will
go to the definition of the identifier.

6.3.14 Code Assistance on Writing Records

When writing records, the same functionality as for function calls is used. This is useful especially in
MetaModelica when writing cases in match constructs.

lodelica - Absyn.mo - Eclipse SD

File Edit MNavigate Search Project Run Window Help

Ici-Ee| & & |

[Fi' Modelica Projects 53

| # iz | @ |-

> #5 {0+ - | Correct Indentation

L

= By

E]---kg OpenModelica [trunk]
""" 7 org.modelica,mdt. core

""" =1 org.modelica.mdt.debug.ui
""" =1 org.modelica. mdt. feature
""" 7 org.modelica.mdt.omc

""" =] org.modelica.mdt.site

27 org.modelica.mdt, test

""" 57 org.modelica.mdt.ui

""" I£1 org.modelica.mdt.debug. core

4]

local ComponentRef crefl, cref?; list<Exp> argsl,srgsZ; Boole
blst = Util_listThreadMap (argsl, argsZ, expEqual);
equal = Util _boolAndlist(blst);
then egqual;
case (MATRIX (argsl) MATRIX(argsZ))
local ComponentRef crefl,crefiZ; list<list<Exp>> argsl,srgsZ;
blst = Util_listListThreadMap (argsl,argszs, expEqual);
equal = Util.boolAndList (Util.listFlatteniblat));
then egqual;
|[RANGE{Exp start, Cption<Exp > step, Exp stop) |
case (EANGE(#ll,SOME(ElE),elSE,RANGEteZl,SOMEdeZZJ,EZSJJ
local Exp ell,elZ, el3, el eiZ, e23;
Boolean bl,bZ,bB3;

equation
bl = expEqualiell,ezl);
bZ = expEguel (elZ, eZZ);
b2 = expEqualiell,eZ3);

equal = Util _boolAndlist{{bl, bZ, b3});
then egqual;

case (RBRNGE(ell, ,el3) RANGE(eZl, ,e23))
local Exp ell,elZ,el3, el eii,eZ3;
Boolean bl b2 b3;
eguation
Bl = expEqual {ell.e2l);

Figure 5-36. Code assistance when writing cases with records in MetaModelica.

6.3.15

Using the MDT Console for Plotting

& Modelica - demo/BouncingBallmo - Eclipse SDK o =] [
File Edit MNavigate Search Project Run Field Assist Window Help
|/mi | & [#-0-@-|&|+ | & | @ |5 |coretindentation | 2] -5l - 00 G- - 25 [Modeles & 22va
[t Modelica Projects 52 = BouncingBal.mo 32 _ [w] VanDerPol.ma W = =]
el = 1Smodel BouncingBall B
B 2 dema 2 parameter Real
; BouncingBall.mo 2 Par_a.meter Rea
Helloworld.mo 4 Bl _-A(fca = s
[t vanDerPal.mo 2 ST of ball®; >)
| project & | Boolean start=trme) "true, if ball is flying";
i i B ‘ &
B Libraries: C:\OpenModelical. 4. 4iModelicall | | | S001ean mpact:
£ Modelica . Pl v e
. w0 extends Icons.Lirary: g discrete Integer n bounce (start=0):
1 Blocks 10 equation
B Constants 11 | Ampact. R
H Electrical 12 | der(v) if flying then -g else 0;
m Icons der(h) = v;
B Math
B Mechanics when {h 0.0 and v <= 0.0,impact} then
B slunits v new = if edge (impact) then -espre(v) else Of
= g
- F UsersGuide - v_aew _> 0;
B ModelicaAdditions o (v, v_new);
J] 19 n_bounce=pre (n_bounce)+1;
20 end when;
B Outine 5 =0 1gBall;

o

B M souncinggall
L .

© flying

< g

10 ¥

; impact

@ n_bounce

oy

o

° v_new

INo consoles. mldiéblay at this time.

(2 Problems [] gonsole £2 [l Bookmarks | & Progress|

AEr O

1 Java Stack Trace Console

Eyzcvs

3New Console View

4MDT Console

7 559 Consale
i 6 TdConsole

J | 7 EEEEE

Figure 5-37. Activate the MDT Console

£ Modelica - demo/BouncingBall.mo - Eclipse SDK i
Fle Edt Naigate Search Project Run Field dssit Window Help

| =loix]

- @3 -0-&- &+ | ® | @ |3 |cremndetation | 5]~ 000 O 579 | 5 Modelica &) Java
[Modlica Prajects 53 om BouncingBall.ma 22 [n] ¥anDerPol.mo) = E‘
&) | =0 1%model BouncingBall A
E & demo 2| Paragel souncingBa
BauncingBall.mo ® | PaTA parameter Real e

HelloWorld.mo parameter Re

nDerPol.mo - €24 Real h(start=1)
Ll project & | Bool File Edit Special
i g | mses
- Libraries: C:\OperModelica 1,4, 4\Modelcal ;“j "true, if ball is flying":
B8 Modelica reah Plot by OpenModelica
{10 extends Icons Library; 2| disg peay v new; o o
£ Blocks 10 Aty g sorete Integer n_bounce (start=0);
B8 Constants s | R — G
| G- decrical 12 | der(v) = if flying then -¢ else 0;
| 1o 15 der(m) = v i
&8 Math o i
| G- mechanis 15 .0 and v <= 0.0, impact} then
[= — ig impact) then —e"pre(v) else 0; 047
‘ B UsersGuide [t 0 o
3 Modelicaadditions o 2 = e i
13 n_kounce=pre(n_kounce)+l;
4 13 fopd et
L L end when; g
5% outine % S Ol 21 lend BouncingBall; 0.0 0.5 1.0
o] I
El M Boundinggal 5. probiems (B = 830 (i sookmarks | & progress | e B-Fj-=0
0 @
Lo g e = =
e g =
Lie g
ioo impact
-0 n_bounce
oy
Lo y_new

Figure 5-38. Simulation from MDT Console

Chapter 7

Modelica Algorithmic Subset Debugger

This chapter presents a comprehensive Modelica debugger for an extended algorithmic subset of the
Modelica language called MetaModelica. This replaces debugging of algorithmic code using primitive
means such as print statements or asserts which is complex, time-consuming and error- prone.

The debugger is portable since it is based on transparent source code instrumentation techniques that are
independent of the implementation platform.

The usual debugging functionality found in debuggers for procedural or traditional object-oriented
languages is supported, such as setting and removing breakpoints, single-stepping, inspecting variables,
back-trace of stack contents, tracing, etc. The debugger is integrated with Eclipse.

7.1 The Eclipse-based debugging environment

The debugging framework is based on the Eclipse environment and is implememented as a set of plugins
which are available from Modelica Development Tooling (MDT) environment. Some of the debugger
functionality is presented below. In the right part a variable value is expored. In the top-left part the stack
trace is presented. In the middle-left part the execution point is presented.

- Debusg - Main.mo - Lolipse SOK

18] 2]
Pl Edt Madgate Search Project n Feldisssr Wiedew Kelp
[R R o e A e R e e e EilBous s
3% Debug 11N B m 5. W= on MMh | =)
E1 i 0ncD Piodetcn Developement Tooing (MOTH Hame | vaue -]
-l o B & shwm CLASET] Absmyr, CLASS[T]
S in theead (stepping) & STRAMNG ‘Bla’
M, iranalateFie (ime; 376, 59 13) # lsse false
ol Cobmieygranrome s pa'cle \Dpernbludeica'buid bin i exe <yt foyfleplyPort=1285 dogEve < @ lose
@ fuse
@ LenumiAbsyn, R_MODEL

B & abeyn,

4 o2 P | |
i:omue;rndu_-m'_L-anﬂ'gEmm T - AWt w 7 ='C|"i
™ P

checkClassdefSoing nSimng) = » Bnglean

B @ absym COMPONENTITEM[Y]
B @ absyn COMPONENT[

COMPOHENTITEM(]
Ay, COMPONENT(T]

& STRING
= @ ST
= @ Absyn SUBSCRIPTIS]
ER[1]

B & Abgm.an

abgyn.Program rProgram, DAE DAkl 2, absyr. et
Irneractive, interacoveSymboTTeble
e InteractuetymanTanie ninteracees y=h

resctatnngsle (Serg Retath, Tna
nrBadiendd) = Bnolean

Figure 6-39. Debugging functionality.

7.2 Starting the Modelica Debugging Perspective

To be able to run in debug mode, one has to go through the following steps:
1. setting the debug configuration
2. setting breakpoints
3. running the debug configuration

All these steps are presented below using images.

7.2.1 Setting the debug configuration

While the Modelica perspective is activated the user should click on the bug icon on the toolbar and select
Debug in order to access the dialog for building debug configurations.

& Modelica - Eclipse SDK

File Edit Mavigate Search Project Run FieldAssist Window Help

=

& =

o occinen:)
(£ .externalToolB
M Functions.mo
[t Main.ma

@ Types.mo

- |X| .project

@ Functions.c
@ Functions.h

- |=] Functions.o
Functions.srz
@ Main.c

- | =] main.exe

@ Main.h

& lFE~-0-a- |3 |4 |

i 110_petrol

-?’.?. 2 09_pamtrans

e 3 08_pamded

_-ne' 407_pam

A 505_advanced

7% & 040_modassigntwatype
?’.". 7 04a_assigntwotype
¥ & 03_sssignment

-?T-’. 9 01_experiment

-?’.-e. D2a_expl

@@ |;

e

Debug As

% Debug...

Organize Favorites. ..

- (=] Main.o
-+ |=] Main.srz
@ Make.mk
| @ Makefile

El README txt
... e e

enll B _dack 2%
< | @

=

EE Qutline &2
An outline is not available.

Problems | B Console 53 Bnokmarks|ngrEss‘
<terminated > OMDey-MINGW [Program] C:\OMDev\toolsimsysibinimake.exe

compiling/linking in debug mode with LIBRMI—rml_g and RMLARGS= -Idebug
gec —mme-cygwin - —0F mit—frame-pointer —I"/c/C /zml//include”/plain —o Mein.o Main.c
/e/CMDev/tocls/zml/binfzmle —g —Wz,-Onc-cps —c Types

piling/linking in debug wode with LIBRMI=rml_g =nd RMLARGS= -Idebug

" fe/CMDev/tesls /xml/ /bin/zml” -Zplain —Zdebug —OCnc-cps Types.we

Figure 6-40. Accessing the debug configuration dialog.

To create the debug configuration, right click on the classification Modelica Development Tooling
(MDT) and select New as in figure below. Then give a name to the configuration, select the debugging
executable to be executed and give it command line parameters. There are several tabs in which the user
can select additional debug configuration settings like the environment in which the executable should be

run.

& Modelica - Main.mo - Eclipse SDK

File Edit Mavigate Search Project Run Mindow Help
It & @ | 3-0-Q | 57 | (0« |corectindentation | o[» Gl vt oo oy

i Modlca Frojects 33 =

Codegen.mog | Create, manage, and run configurations
[]---@ Connect.ma Run or Debug a MetaModelica program
) B Constants.mo
I:I---E:s‘ Corba.mo

[S B
[DAEma RIELEE Name: [OMCD
(- [\ DAEEXT.mo [oeAeer
e filter texd
- [DAELow.mo B m Sm_uce| =] gommon‘ P&, Environment
B[4 Debug.mo [E] cfc++ attach to Local Application
I:I---@ Derive.mo E C/C++ Local Application
[Dump.mo -[£] Cjc++ Postmortem debugger
- [DumpGraphviz. -4 Eclipse Application Program; I C:'bin'‘cygwinthome \adrpa runtime-EdipseApplication{OpenMadelica'buildbin temcd exe E!OLI
B[4 Envimo 4 Equinox 0SG Framewark
-3 Erorme B Java Applet
[]---E ErrorExt.mo r@ Java Application Arquments:
-4 Exp.
s Hs vz Bean +c=debug +d=interactiveCorba

[Graphviz.mo Ju JUnit
[+ B Inst.mo j% Junit Plug-n Test
[]---E; Interactive.mo E-5# Modelica Developement Tooling (MOT)
[} B Lookup.mo % OMCD

WMain,ma &, Remote Java Application

-3 Main E SWT Application

5= outline 52 :
E # Main

checkClassdef
fixModelicaOutput
handleCommand
interactivemode
interactivemodeCor
isFlatModelicaFile

isModelicaFile
isModelicaScriptFile Apply. Revert

F
F
F
F
E

F main =
[makeDebugResult

F modpar @ g&l]
F optimizeDae v reTaes e oo T

[~ readsetings |H

I~ readsettingsFile

Figure 6-41. Creating the Debug Configuration.

€ Hodehca - Ecipse SDK] =181x
Flo Edt Navigote Search Fropct Run Fkdissst Window Heb
[i e e S B e B [| 3 Modeica =
S x -
Create, manage, and run configurations $7
2 i pame: [01_sioerent
[N, 5 source [O Gomeon [B
-]
» Program: | 01 _txpesimentjmain.exe
segaments:
0
R Modeica Deveiopamant Tos

1 Click Browse and
e select the executable —
you just built. o

T, Remate Java Acokeaton]
1= SWT Appication

B Test = T 2 Types.e
o ol [| et |
s Types.e

0 i N |

Give parameters ooy o ni .8 <t 3 eesion -t

= to the program] 5]
Wsen| |3 EO G 0L AD S = m——— ' 0. | G| (32 Wedors.. o] (] Moot [Vodeben - Y wtted -pavt| | | [« MM W@ 557

Figure 6-42. Specifying the executable to be run in debug mode.

7.2.2 Setting/Deleting Breakpoints

ehica - Mainmo - Edipae SOK e

Fie Edt Mavigate Sewth Froject Run Feidissst Window e

Ird=lel e | =0 Q- |8 |2 o= 9@ i -1 Gi=i - | ot intentston 1|] Modeiea o

= = =M i
bachige Hain

Eome i AT CET=D -

.

= i Mn o« X Rllnwid#@-3-70
B F ﬂ;{\z:i:;’&l 01, e <ogCmcPorte 2796 <boRephPort=2757 <bpfventPort=2758 <bgSonaPort=2797 10
Double click on the
ruler to set/delete
breakpoints
o i
| vrtable | Traar | 151 | 8 Doenidodeics Compler 1.4.3s Orine | Jliee | T

Figure 6-43. Setting/deleting breakpoints.

7.2.3 Starting the debugging session and enabling the debug

perspective
elica - Mairimo - Echipse SOK =18l
Fie Edt Mavigste Sewch Froject Run Feidissst Window e
e~ O Qo |G| | o [@@ e e o | Comctindentaton E1| £ Modebca o
[T m—— r—— =0
A o

y

- XR[wiE[#@-5-50
SxDement Tookng (MOT)] C: 01, e SgCacPort=1795 boRechPort=1757 <bpSventPort=279 <bgSonabert=279 10
moort Functions; \

Click and select the
debug configuration.
The debugging will start.

" - .
| Wiritable | Insert e 5 3

| {5 Ooeniodeica Compiler 1,435 Orine. | I[[fr-

Figure 6-44. Starting the debugging session.

£= Modelica - Main.mo - Eclipse SDK

File Edit Mavigate Search Project Run Fieldassist

Window Help

|# -]9]9]

+ | correct Indentation

Iti-al@ls-0-Q-|:
[t Modelica Projects 2 = ml
AL
R 01_experiment
""" W O2a_expl
""" &7 02b_exp2

1| 03_assignment

1| O4a_assigntwotype
120 04b_modassigntwotype
17 05_advanced

127 06_OMCANdCorba

/fimport Types;
import Functioms;

S function main

algorithm

matchocontinue arg

%)

case (n_str::

input list<String> arg;

-1~ mainfist<String = arg)
- @ jmport Functions;

local
..... i:; 03_pamded Integer i, n; - = = = i I
..... 57 09_pamtrans String str, n_str; AR et x|
""" 151 10_petrol equation : .
_____ B documenitation This kind of launch is configured to open the Debug perspective when it
_____ BT ete suspends.
i 2 This Debug perspective is designed to support application debugging. It
i P incorporates views for displaying the debug stack, variables and breakpoint
str = intStringi{i)| management.
printi{str); '
// test function Do you want to open this perspective now?
print{™\nCalling &
print{"\nCalling & I_ : S
Remember my decision
5% Qutine 53 3w w ¥¥=0 o
- Yes I Mo
B # Main mfﬂ Console &3

Bookmar|

01_experiment [Modelica D

it

Figure 6-45. Eclipse will ask if the user wants to switch to the debugging perspective.

7.3

Fle Edt Refactor Mavigate Search Projct Run Faldassst Window Help

The Debugging Perspective

Jrir @l %-0-0-Q- |0 |®F |- || -t G - | cmtidean
% Debug 53 % 5 - _%!»ﬁo;&%l i T = O 00 varasies 52 &ulwnb| .
E B 01_sxpenment [Modelcs Developement Toalng (MOT; Hiame. | vale |
MOT EEET] strig b8t
ot Main thresd (stanoing) B @ nsy sty
= Man.man fine: 17, %1 7}
wi Crbnioygn'bame oo Metabodeboa V) |_ipermentiman.exe ~hyCmaPorte 3050 -dgileni 3051 <hgEventPorta3052
4] | L3 | K _'1:’
[B om0 x N [= 01 [utine [i Modesca progects 33 N = O
L-package Main = «|a%°
s - 1 01 exparment
4 import Puncrions; 17 028_expl
5 B 0b_eap2
£S5 funot n 15 03 _sssgrment
input list<Strings args e L Tr——
¢ algorithm 1 04_modassgntmatyne
=i & 05_schvarced
matchoontinue arg
case (n_strii_) 17 05_OMCAnaCorba
L | & 07_pam
187 08 pamded
String str, n_scr; & o9 _pamirans
T 10_petrad
16 documentation
1 etc
;IJ
- By 1w 05| 2 @ - 75 - 20
01 0 oINPT t= 2050
2

right now.

=]

Use the buttons to step.
Only step into works

Browse variables here.
Also there 1s a tab with
breakpoints.

L o

147

Figure 6-46. The debugging perspective.

| BB Coeriodsica Compler 1,438 Orire

Debug - Mainumo - Eclipse SDK

Fle Edt Refecor Navgats Searth Project Run FeidAssst Window Hep
|| s |

] e -0~ | = | @) =g~ o | o tmaran
5 Detng 52 a > W B DR B T O] e vanstes 13 resigonn]
5 B8 01_exparment [Moskica Develootment Taging (49T]] Hame | voiun
£ vo7 B % ag strng kst
i~ Main thread (steoping) @ nstr sting
= Marman fre: 17,55 7)
¥l Crbmieygun ome adoa MetsModelo 0 1_sxpsrmentiman exe -cbgCmePorie 050 hgRen!yPortm 1051 CopEvenPortm3052
| 2fld
xpore .
import Functicas:
functien main
imput list<ftrings arg:

algorithe

lomil

wquaz

4

01_exparment

intagar 4,
String atz, n_str:

matchontinue ary
1 case in_ssrii

5 conssie 51 Tawks| EmerLog)|

Tooieg 0T

ra

.

B k| laiilrB

Figure 6-47. Switching between perspectives.

Switch between Debug

sri-=0

and Modelica Perspective

Chapter 8

Interoperability — C, Java, and Python

Below is information and examples about the OpenModelica external C and Java interfaces, as well as
examples of Python interoperability.

8.1 Calling External C functions
The following is a small example (ExternalLibraries.mo) to show the use of external C functions:

model ExternallLibraries
Real x(start=1.0),y(start=2.0);

equation
der(x)=-ExternalFuncl(x);
der(y)=-ExternalFunc2(y);

end ExternalLibraries;

function ExternalFuncl
input Real Xx;
output Real y;
external
y=ExternalFuncl_ext(x) annotation(Library="libExternalFuncl_ext.o",
Include="#include \"ExternalFuncl_ext_h\""");
end ExternalFuncl;

function ExternalFunc2
input Real Xx;
output Real y;
external "C" annotation(Library="libExternalFunc2.a",
Include="#include \"ExternalFunc2.h\""");
end ExternalFunc2;

These C (.c) files and header files (.h) are needed:

/* file: ExternalFuncl.c */
double ExternalFuncl_ext(double x)

double res;
res = x+2.0*x*X;
return res;

}

/* Header file ExternalFuncl_ext.h for ExternalFuncl function */
double ExternalFuncl_ext(double);

/* file: ExternalFunc2.c */
double ExternalFunc2(double x)

double res;
res = (x-1.0)*(x+2.0);
return res;

}

/* Header file ExternalFunc2.h for ExternalFunc2 */
double ExternalFunc2(double);

The following script file ExternalLibraries.mos will perform everything that is needed, provided you
have gcc installed in your path:

loadFile("ExternalLibraries.mo™);
system(*'gcc -c -0 libExternalFuncl_ext.o ExternalFuncl.c");

system(*'gcc -c -o libExternalFunc2.a ExternalFunc2.c™);
simulate(ExternalLibraries);

We run the script:

>> runScript(“ExternalLibraries.mos™);
and plot the results:

>> plot({x,y});

< tmpPlot. pit
File Edit Special

Plot by OpenModelica

L e e T e
'5.'.
157 .
107 .
05|]

0o 041 02z 03 04 05 06 OF 08 09 10

8.2 Calling External Java Functions

There exists a bidirectional OpenModelica-Java CORBA interface, which is capable of passing both
standard Modelica data types, as well as abstract syntax trees and list structures to and from Java and
process them in either Java or the OpenModelica Compiler.

The following is a small example (ExternalJavaLib.mo) to show the use of external Java function
calls in Modelica, i.e., only the case calling Java from Modelica:

model ExternalJavalib

Real x(start=1.0);
equation

der(x)=- ExternalJavalLog(x);
end ExternalJavalLib;

function ExternalJavalog

input Real Xx;

output Real y;
external "Java" y=7java.lang.Math.log’(x) annotation(JavaMapping = "'simple');
end ExternalJavalog;

The datatypes are mapped according to the tables below. There is one mapping for interacting with
existing Java code (simple), and a default mapping that handles all OpenModelica datatypes. The
definitions of the default datatypes exist in the Java package org.openmodelica (see SOPENMODELICA-
HOME/share/java/modelica_java.jar).

For more complete examples on how to use the Java interface, download the OpenModelica source code
and view the examples in testsuite/java.

Modelica Default Mapping JavaMapping = "'simple**
Real ModelicaReal double
Integer Modelicalnteger int
Boolean ModelicaBoolean bool
String ModelicaString String
Record ModelicaRecord

T[] ModelicaArray<T>

MetaModelica Default Mapping

list<T> ModelicaArray<T>

tuple<T1, ..., Tn> ModelicaTuple

Option<T> ModelicaOption<T>

Uniontype IModelicaRecord

8.3 Python Interoperability

The interaction with Python can be perfomed in four different ways whereas one is illustrated below.
Assume that we have the following Modelica code (Cal ledbyPython.mo):

model CalledbyPython
Real x(start=1.0),y(start=2.0);
parameter Real b = 2.0;
equation
der(x) = -b*y;
der(y) = x;
end CalledbyPython;

In the following Python (.py) files the above Modelica model is simulated via the OpenModelica scripting
interface.

file: PythonCaller.py

#1/usr/bin/python

import sys,os

global newb = 0.5

os.chdir(rrC:\Users\Documents\python*)

execTile("CreateMosFile.py™)
os.popen(r'C:\OpenModelical.-4_.5\bin\omc.exe CalledbyPython.mos™).read()
execfile("RetrResult.py”)

file: CreateMosFile.py

#1/usr/bin/python

mos_file = open(~CalledbyPython.mos",’w”,1)

mos_file.write("loadFile(\"Cal ledbyPython_mo\");\n"")

mos_TFile.write('setComponentModifierValue(CalledbyPython,b,Code(="+str(newb)+™)
)s\n™)

mos_file.write("simulate(CalledbyPython,stopTime=10);\n"")

mos_Ffile.close()

Tile: RetrResult._py
#1/usr/bin/python

def zeros(n): #
vec = [0.0]
for i in range(int(n)-1): vec = vec + [0.0]
return vec

res_file = open(''CalledbyPython_res.plt”,"r",1)

line = res_file.readline()
size = int(res_Ffile.readlineQ.-split("=")[1D
time = zeros(size)

y zeros(size)
while line != ["DataSet: time\n"]: line = res_file.readline(Q).split(",")[0:1]
for j in range(int(size)): time[j]=Float(res_file.readline().split(",")[0]D
while line I= ["DataSet: y\n"]: line=res_file.readline().split(",")[0:1]
for j in range(int(size)): y[j]=Float(res_file.readline(Q).split(",")[1D
res_file.close()
A second option of simulating the above Modelica model is to use the command bui IdModel instead of
the simulate command and setting the parameter value in the initial parameter file,
CalledbyPython_init.txt instead of using the command setComponentModifiervalue. Then the
file CalledbyPython.exe is just executed.
The third option is to use the Corba interface for invoking the compiler and then just use the
scripting interface to send commands to the compiler via this interface.
The fourth variant is to use external function calls to directly communicate with the executing
simulation process.

Chapter 9

Frequently Asked Questions (FAQ)

Below are some frequently asked questions in three areas, with associated answers.

9.1 OpenModelica General

e Q: Why are not the MultiBody and Media libraries included in the OpenModelica distribution.

e A: These libraries need special features in the Modelica language which are not yet implemented in
OpenModelica. We are working on it, but it will take some time.

e Q: | did not find the graphic editor MathModelica Lite in the OpenModelica distribution. Where
can | find it?

e A: You can download it via a link at the OpenModelica web site, e.g. the one placed under the
OpenModelica Environment heading, Graphic Editor bullet.

e Q: OpenModelica 1.4.5 does not read the MODELICAPATH environment variable, even though
this is part of the Modelica Language Specification.

e A: Use the OPENMODELICALIBRARY environment variable instead. We have temporarily
switched to this variable, in order not to interfere with other Modelica tools which might be
installed on the same system. In the future, we might switch to a solution with a settings file, that
also allows the user to turn on the MODELICAPATH functionality if desired.

e Q: How do I enter multi-line models into OMShell since it evaluates when typing the Enter/Return
key?

e A: There are basically three methods: 1) load the model from a file using the pull-down menu or the
loadModel command. 2) Enter the model/function as one (possibly long) line. 3) Type in the model
in another editor, where using multiple lines is no problem, and copy/paste the model into OMShell

9.2

9.3

as one operation, then push Enter. Another option is to use OMNotebook instead to enter and
evaluate models.

OMNotebook

Q: OMNotebook hangs, what to do?

A: It is probably waiting for the omc.exe (compiler) process. (Under windows): Kill the processes
omc.exe, g++.exe (C-compiler), as.exe (assembler), if present. If OMNotebook then asks whether
to restart OMC, answer yes. If not, kill the process OMNotebook.exe and restart manually.

Q: After a previous session, when starting OMNotebook again, | get a strange message.

A: You probably quit the previous OpenModelica session in the wrong way, which left the process
omc.exe running. Kill that process, and try starting OMNotebook again.

Q: I copy and paste a graphic figure from Word or some other application into OMNotebook, but
the graphic does not appear. What is wrong?

A: OMNotebook supports the graphic picture formats supported by Qt 4, including the .png, .bmp
(bitmap) formats, but not for example the gif format. Try to convert your picture into one of the
supported formats, (e.g. in Word, first do paste as bitmap format), and then copy the converted
version into a text cell in OMNotebook.

Q: Plotting does not work in OMNotebook.

A: You probably have an old version of Java installed. Update your installation, and try again.
(Another known problem, soon to be fixed, is that plotting of parameters and constants does not yet
work).

Q: I select a cell, copy it (e.g. Ctrl-C), and try to paste it at another place in the notebook. However,
this does not work. Instead some other text that | earlier put on the clipboard is pasted into the
nearest text cell.

A: The problem is wrong choice of cursor mode, which can be text insertion or cell insertion. If you
click inside a cell, the cursor become vertical, and OMNotebook expects you to paste text inside the
cell. To paste a cell, you must be in cell insertion mode, i.e., click between two cells (or after a
cell), you will get a vertical line. Place the cursor carefully on that vertical line until you see a small
horizontal cursor. Then you should past the cell.

Q: lam trying to click in cells to place the vertical character cursor, but it does not seem to react.

A: This seems to be a Qt feature. You have probably made a selection (e.g. for copying) in the
output section of an evaluation cell. This seems to block cursor position. Click again in the output
section to disable the selection. After that it will work normally.

Q: I have copied a text cell and start writing at the beginning of the cell. Strangely enough, the font
becomes much smaller than it should be.

A: This seems to be a Qt feature. Keep some of the old text and start writing the new stuff inside the
text, i.e., at least one character position to the right. Afterwards, delete the old text at the beginning
of the cell.

OMDev - OpenModelica Development Environment

Q: | get problems compiling and linking some files when using OMDev with the MINGW (Gnu) C
compiler under Windows.

A: You probably have some Logitech software installed. There is a known bug/incompatibility in
Logitech products. For example, if Ivprcsrv.exe is running, kill it and/or prevent it to start again at
reboot; it does not do anything really useful, not needed for operation of web cameras or mice.

Appendix A

Major OpenModelica Releases

This Appendix lists the most important OpenModelica releases and a brief description of their contents.
However, right now the versions from 1.3.1 to 1.6 are described.

A.1 OpenModelica 1.6, November 2010

The OpenModelica 1.6 release primarily contains flattening, simulation, and performance improvements
regarding Modelica Standard Library 3.1 support, but also has an interesting new tool — the OMEdit
graphic connection editor, and a new educational material called DrControl, and an improved ModelicaML
UML/Modelica profile with better support for modeling and requirement handling.

A.1.1 OpenModelica Compiler (OMC)

This release includes bug fix and performance improvemetns of the flattening frontend part of the
OpenModelica Compiler (OMC) and some improvements of the backend, including, but not restricted to:

Flattening of the whole Modelica Standard Library 3.1 (MSL 3.1), except Media and Fluid.

Improved flattening speed of a factor of 5-20 compared to OpenModelica 1.5 for a number of
models, especially in the MultiBody library.

Reduced memory consumption by the OpenModelica compiler frontend, for certain large models a
reduction of a factor 50.

Reorganized, more modular OpenModelica compiler backend, can now handle approximately
30 000 equations, compared to previously approximately 10 000 equations.

Better error messages from the compiler, especially regarding functions.

Improved simulation coverage of MSL 3.1. Many models that did not simulate before are now
simulating. However, there are still many models in certain sublibraries that do not simulate.

Progress in supporting the Media library, but simulation is not yet possible.
Improved support for enumerations, both in the frontend and the backend.
Implementation of stream connectors.

Support for linearization through symbolic Jacobians.

Many bug fixes.

A.1.2 OpenModelica Notebook (OMNotebook)

A new DrControl electronic notebook for teaching control and modeling with Modelica.

A.1.3 OpenModelica Shell (OMShell)

Same as previously.

A.1.4 OpenModelica Eclipse Plug-in (MDT)

Same as previously.

A.1.5 OpenModelica Development Environment (OMDev)

Several enhancements. Support for match-expressions in addition to matchcontinue. Support for real if-
then-else. Support for if-then without else-branches. Modelica Development Tooling 0.7.7 with small
improvements such as more settings, improved error detection in console, etc.

A.1.6 New Graphic Editor OMEdit

A new improved open source graphic model connection editor called OMEdit, supporting 3.1 graphical
annotations, which makes it possible to move models back and forth to other tools without problems. The
editor has been implemented by students at Linkdping University and is based on the C++ Qt library.

A.2 OpenModelica 1.5, July 2010

This OpenModelica 1.5 release has major improvements in the OpenModelica compiler frontend and some
in the backend. A major improvement of this release is full flattening support for the MultiBody library as
well as limited simulation support for MultiBody. Interesting new facilities are the interactive simulation
and the integrated UML-Modelica modeling with ModelicaML. Approximately 4 person-years of
additional effort have been invested in the compiler compared to the 1.4.5 version, e.g., in order to have a
more complete coverage of Modelica 3.0, mainly focusing on improved flattening in the compiler frontend.

A.2.1 OpenModelica Compiler (OMC)

This release includes major improvements of the flattening frontend part of the OpenModelica Compiler
(OMC) and some improvements of the backend, including, but not restricted to:

e Improved flattening speed of at least a factor of 10 or more compared to the 1.4.5 release, primarily
for larger models with inner-outer, but also speedup for other models, e.g. the robot model flattens
in approximately 2 seconds.

o Flattening of all MultiBody models, including all elementary models, breaking connection graphs,
world object, etc. Moreover, simulation is now possible for at least five MultiBody models:
Pendulum, DoublePendulum, InitSpringConstant, World, PointGravityWithPointMasses.

e Progress in supporting the Media library, but simulation is not yet possible.

e Support for enumerations, both in the frontend and the backend.

e Support for expandable connectors.

e Support for the inline and late inline annotations in functions.

o Complete support for record constructors, also for records containing other records.
o Full support for iterators, including nested ones.

e Support for inferred iterator and for-loop ranges.

e Support for the function derivative annotation.

e Prototype of interactive simulation.

e Prototype of integrated UML-Modelica modeling and simulation with ModelicaML.

e A new bidirectional external Java interface for calling external Java functions, or for calling
Modelica functions from Java.

o Complete implementation of replaceable model extends.
e Fixed problems involving arrays of unknown dimensions.
e Limited support for tearing.

e Improved error handling at division by zero.

e Support for Modelica 3.1 annotations.

e Support for all MetaModelica language constructs inside OpenModelica.

e OpenModelica works also under 64-bit Linux and Mac 64-bit OSX.

e Parallel builds and running test suites in parallel on multi-core platforms.

¢ New OpenModelica text template language for easier implementation of code generators, XML

generators, etc.

o New OpenModelica code generators to C and C# using the text template language.

e Faster simulation result data file output optionally as comma-separated values.

e Many bug fixes.
It is now possible to graphically edit models using parts from the Modelica Standard Library 3.1, since the
simForge graphical editor (from Politecnico di Milano) that is used together with OpenModelica has been

updated to version 0.9.0 with a important new functionality, including support for Modelica 3.1 and 3.0
annotations. The 1.6 and 2.2.1 Modelica graphical annotation versions are still supported.

A.2.2 OpenModelica Notebook (OMNotebook)

Improvements in platform availability.
e Support for 64-bit Linux.
e Support for Windows 7.
e Better support for MacOS, including 64-bit OSX.

A.2.3 OpenModelica Shell (OMShell)

Same as previously.

A.2.4 OpenModelica Eclipse Plug-in (MDT)

Minor bug fixes.

A.2.5 OpenModelica Development Environment (OMDev)

Minor bug fixes.

A.3 OpenModelica 1.4.5, January 2009

This release has several improvements, especially platform availability, less compiler memory usage, and
supporting more aspects of Modelica 3.0.

A.3.1 OpenModelica Compiler (OMC)
This release includes small improvements and some bugfixes of the OpenModelica Compiler (OMC):

e Less memory consumption and better memory management over time. This also includes a better
API supporting automatic memory management when calling C functions from within the compiler.

e Modelica 3.0 parsing support.

o Export of DAE to XML and MATLAB.

e Support for several platforms Linux, MacOS, Windows (2000, Xp, Vista).

e Support for record and strings as function arguments.

e Many bug fixes.

e (Not part of OMC): Additional free graphic editor SimForge can be used with OpenModelica.

A.3.2 OpenModelica Notebook (OMNotebook)

A number of improvements, primarily in the plotting functionality and platform availability.

¢ A number of improvements in the plotting functionality: scalable plots, zooming, logarithmic plots,
grids, etc.

e Programmable plotting accessible through a Modelica API.
e Simple 3D visualization.
e Support for several platforms Linux, MacOS, Windows (2000, Xp, Vista).

A.3.3 OpenModelica Shell (OMShell)

Same as previously.

A.3.4 OpenModelica Eclipse Plug-in (MDT)

Minor bug fixes.

A.3.5 OpenModelica Development Environment (OMDev)

Same as previously.

A.1 OpenModelica 1.4.4, Feb 2008

This release is primarily a bug fix release, except for a preliminary version of new plotting functionality
available both from the OMNotebook and separately through a Modelica API. This is also the first release
under the open source license OSMC-PL (Open Source Modelica Consortium Public License), with
support from the recently created Open Source Modelica Consortium. An integrated version handler, bug-,
and issue tracker has also been added.

A.3.6 OpenModelica Compiler (OMC)

This release includes small improvements and some bugfixes of the OpenModelica Compiler (OMC):

e Better support for if-equations, also inside when.

e Better support for calling functions in parameter expressions and interactively through dynamic
loading of functions.

e Less memory consumtion during compilation and interactive evaluation.
e A number of bug-fixes.

A.3.7 OpenModelica Notebook (OMNotebook)

Test release of improvements, primarily in the plotting functionality and platform availability.

e Preliminary version of improvements in the plotting functionality: scalable plots, zooming,
logarithmic plots, grids, etc., currently available in a preliminary version through the plot2 function.

e Programmable plotting accessible through a Modelica API.

A.3.8 OpenModelica Shell (OMShell)

Same as previously.

A.3.9 OpenModelica Eclipse Plug-in (MDT)

This release includes minor bugfixes of MDT and the associated MetaModelica debugger:

A.3.10 OpenModelica Development Environment (OMDev)

Extended test suite with a better structure. Version handling, bug tracking, issue tracking, etc. now
available under the integrated Codebeamer

A.4 OpenModelica 1.4.3, June 2007

This release has a number of significant improvements of the OMC compiler, OMNotebook, the MDT
plugin and the OMDev. Increased platform availability now also for Linux and Macintosh, in addition to
Windows. OMShell is the same as previously, but now ported to Linux and Mac.

A.4.1 OpenModelica Compiler (OMC)

This release includes a number of improvements of the OpenModelica Compiler (OMC):

Significantly increased compilation speed, especially with large models and many packages.
Now available also for Linux and Macintosh platforms.

Support for when-equations in algorithm sections, including elsewhen.

Support for inner/outer prefixes of components (but without type error checking).

Improved solution of nonlinear systems.

Added ability to compile generated simulation code using Visual Studio compiler.

Added "smart setting of fixed attribute to false. If initial equations, OMC instead has fixed=true as
default for states due to allowing overdetermined initial equation systems.

Better state select heuristics.

New function getlincidenceMatrix(ClassName) for dumping the incidence matrix.

Builtin functions String(), product(), ndims(), implemented.

Support for terminate() and assert() in equations.

In emitted flat form: protected variables are now prefixed with protected when printing flat class.
Some support for tables, using omcTableTimelni instead of dymTableTimelni2.

Better support for empty arrays, and support for matrix operations like a*[1,2;3,4].

Improved val() function can now evaluate array elements and record fields, e.g. val(x[n]), val(x.y) .
Support for reinit in algorithm sections.

String support in external functions.

Double precision floating point precision now also for interpreted expressions

Better simulation error messages.

Support for der(expressions).

Support for iterator expressions such as {3*i for i in 1..10}.

More test cases in the test suite.

A number of bug fixes, including sample and event handling bugs.

A.4.2 OpenModelica Notebook (OMNotebook)

A number of improvements, primarily in the platform availability.

Available on the Linux and Macintosh platforms, in addition to Windows.

o Fixed cell copying bugs, plotting of derivatives now works, etc.

A.4.3 OpenModelica Shell (OMShell)

Now available also on the Macintosh platform.

A.4.4 OpenModelica Eclipse Plug-in (MDT)
This release includes major improvements of MDT and the associated MetaModelica debugger:

o Greatly improved browsing and code completion works both for standard Modelica and for
MetaModelica.

e Hovering over identifiers displays type information.

e A new and greatly improved implementation of the debugger for MetaModelica algorithmic code,
operational in Eclipse. Greatly improved performance — only approx 10% speed reduction even for
100 000 line programs. Greatly improved single stepping, step over, data structure browsing, etc.

e Many bug fixes.

A.45 OpenModelica Development Environment (OMDev)

Increased compilation speed for MetaModelica. Better if-expression support in MetaModelica.

A.5 OpenModelica 1.4.2, October 2006

This release has improvements and bug fixes of the OMC compiler, OMNotebook, the MDT plugin and the
OMDev. OMShell is the same as previously.

A.5.1 OpenModelica Compiler (OMC)

This release includes further improvements of the OpenModelica Compiler (OMC):
e Improved initialization and index reduction.
e Support for integer arrays is now largely implemented.

e The val(variable,time) scripting function for accessing the value of a simulation result variable at a
certain point in the simulated time.

e Interactive evalution of for-loops, while-loops, if-statements, if-expressions, in the interactive
scripting mode.

e Improved documentation and examples of calling the Model Query and Manipulation API.
e Many bug fixes.
A.5.2 OpenModelica Notebook (OMNotebook)

Search and replace functions have been added. The DrModelica tutorial (all files) has been updated,
obsolete sections removed, and models which are not supported by the current implementation marked
clearly. Automatic recognition of the .onb suffix (e.g. when double-clicking) in Windows makes it even
more convenient to use.

A.5.3 OpenModelica Eclipse Plug-in (MDT)
Two major improvements are added in this release:

e Browsing and code completion works both for standard Modelica and for MetaModelica.

e The debugger for algorithmic code is now available and operational in Eclipse for debugging of
MetaModelica programs.
A.5.4 OpenModelica Development Environment (OMDev)

Mostly the same as previously.

A.6 OpenModelica 1.4.1, June 2006

This release has only improvements and bug fixes of the OMC compiler, the MDT plugin and the OMDev
components. The OMShell and OMNotebook are the same.

A.6.1 OpenModelica Compiler (OMC)

This release includes further improvements of the OpenModelica Compiler (OMC):
e Support for external objects.
e OMC now reports the version number (via command line switches or CORBA API getVersion()).
e Implemented caching for faster instantiation of large models.
e Many bug fixes.

A.6.2 OpenModelica Eclipse Plug-in (MDT)

Improvements of the error reporting when building the OMC compiler. The errors are now added to the
problems view. The latest MDT release is version 0.6.6 (2006-06-06).

A.6.3 OpenModelica Development Environment (OMDev)

Small fixes in the MetaModelica compiler. MetaModelica Users Guide is now part of the OMDev release.
The latest OMDev was release in 2006-06-06.

A.7 OpenModelica 1.4.0, May 2006

This release has a number of improvements described below. The most significant change is probably that
OMC has now been translated to an extended subset of Modelica (MetaModelica), and that all development
of the compiler is now done in this version..

A.7.1 OpenModelica Compiler (OMC)
This release includes further improvements of the OpenModelica Compiler (OMC):

e Partial support for mixed system of equations.

e New initialization routine, based on optimization (minimizing residuals of initial equations).

e Symbolic simplification of builtin operators for vectors and matrices.

e Improved code generation in simulation code to support e.g. Modelica functions.

e Support for classes extending basic types, e.g. connectors (support for MSL 2.2 block connectors).
e Support for parametric plotting via the plotParametric command.

e Many bug fixes.

A.7.2 OpenModelica Shell (OMShell)

Essentially the same OMShell as in 1.3.1. One difference is that now all error messages are sent to the
command window instead of to a separate log window.

A.7.3 OpenModelica Notebook (OMNotebook)

Many significant improvements and bug fixes. This version supports graphic plots within the cells in the
notebook. Improved cell handling and Modelica code syntax highlighting. Command completion of the
most common OMC commands is now supported. The notebook has been used in several courses.

A.7.4 OpenModelica Eclipse Plug-in (MDT)

This is the first really useful version of MDT. Full browsing of Modelica code, e.g. the MSL 2.2, is now
supported. (MetaModelica browsing is not yet fully supported). Full support for automatic indentation of
Modelica code, including the MetaModelica extensions. Many bug fixes. The Eclipse plug-in is now in use
for OpenModelica development at PELAB and MathCore Engineering AB since approximately one month.

A.7.5 OpenModelica Development Environment (OMDev)
The following mechanisms have been put in place to support OpenModelica development.
e A separate web page for OMDev (OpenModelica Development Environment).

e A pre-packaged OMDev zip-file with precompiled binaries for development under Windows using
the mingw Gnu compiler from the Eclipse MDT plug-in. (Development is also possible using
Visual Studio).

e All source code of the OpenModelica compiler has recently been translated to an extended subset of
Modelica, currently called MetaModelica. The current size of OMC is approximately 100 000 lines
All development is now done in this version.

e A new tutorial and users guide for development in MetaModelica.
e Successful builds and tests of OMC under Linux and Solaris.

A.8 OpenModelica 1.3.1, November 2005

This release has several important highlights.

This is also the first release for which the New BSD (Berkeley) open-source license applies to the source
code, including the whole compiler and run-time system. This makes is possible to use OpenModelica for
both academic and commercial purposes without restrictions.

A.8.1 OpenModelica Compiler (OMC)
This release includes a significantly improved OpenModelica Compiler (OMC):

e Support for hybrid and discrete-event simulation (if-equations, if-expressions, when-equations;
not yet if-statements and when-statements).

e Parsing of full Modelica 2.2
e Improved support for external functions.

e Vectorization of function arguments; each-modifiers, better implementation of replaceable, better
handling of structural parameters, better support for vector and array operations, and many other
improvements.

e Flattening of the Modelica Block library version 1.5 (except a few models), and simulation of most
of these.

e Automatic index reduction (present also in previous release).
e Updated User's Guide including examples of hybrid simulation and external functions.

A.8.2 OpenModelica Shell (OMShell)

An improved window-based interactive command shell, now including command completion and better
editing and font size support.

A.8.3 OpenModelica Notebook (OMNotebook)

A free implementation of an OpenModelica notebook (OMNOtebook), for electronic books with course
material, including the DrModelica interactive course material. It is possible to simulate and plot from this
notebook.

A.8.4 OpenModelica Eclipse Plug-in (MDT)

An early alpha version of the first Eclipse plug-in (called MDT for Modelica Development Tooling) for
Modelica Development. This version gives compilation support and partial support for browsing Modelica
package hierarchies and classes.

A.8.5 OpenModelica Development Environment (OMDev)
The following mechanisms have been put in place to support OpenModelica development.

e Bugzilla support for OpenModelica bug tracking, accessible to anybody.

o A system for automatic regression testing of the compiler and simulator, (+ other system parts)
usually run at check in time.

e Version handling is done using SVN, which is better than the previously used CVS system. For
example, name change of modules is now possible within the version handling system.

Appendix B

Contributors to OpenModelica

This Appendix lists the individuals who have made significant contributions to OpenModelica, in the form
of software development, design, documentation, project leadership, tutorial material, promotion, etc. The
individuals are listed for each year, from 1998 to the current year: the project leader and main author/editor
of this document followed by main contributors followed by contributors in alphabetical order.

B.1 OpenModelica Contributors 2010

Peter Fritzson, PELAB, Linkdping University, Linkdping, Sweden.

Adrian Pop, PELAB, Linkdping University, Linkdping, Sweden.
Martin Sjolund, PELAB, Linkdping University, Linkdping, Sweden.
Per Ostlund, PELAB, Linkdping University, Linkdping, Sweden.

Peter Aronsson, MathCore Engineering AB, Linkoping, Sweden.

Syed Adeel Asghar, PELAB, Linkdping University, Linkdping, Sweden.
David Akhvlediani, PELAB, Linkdping University, Linkdping, Sweden.
Bernhard Bachmann, Fachhochschule Bielefeld, Bielefeld, Germany.
Vasile Baluta, PELAB, Linkdping University, Linkdping, Sweden.
Simon Bjérklén, PELAB, Linkdping University, Linkdping, Sweden.
Mikael Blom, PELAB, Linkdping University, Linkdping, Sweden.
Robert Braun, IEI, Linkdping University, Linkdping, Sweden.

Willi Braun, Fachhochschule Bielefeld, Bielefeld, Germany.

David Broman, PELAB, Linkoping University, Linkdping, Sweden.
Stefan Brus, PELAB, Linkdping University, Linkdping, Sweden.
Francesco Casella, Politecnico di Milano, Milan, Italy.

Filippo Donida, Politecnico di Milano, Milan, Italy.

Henrik Eriksson, PELAB, Linkdping University, Linkdping, Sweden.
Anders Fernstrom, PELAB, Linképing University, Link6ping, Sweden.
Jens Frenkel, TU Dresden, Dresden, Germany.

Pavel Grozman, Equa AB, Stockholm, Sweden.

Michael Hanke, NADA, KTH, Stockholm.

Daniel Hedberg, MathCore Engineering AB, Linkdping, Sweden.

Alf Isaksson, ABB Corporate Research, Vasteras, Sweden.

Kim Jansson, PELAB, Linkdping University, Linkdping, Sweden.
Daniel Kanth, Bosch-Rexroth, Lohr am Main, Germany.

Tommi Karhela, VTT, Espoo, Finland.

Joel Klinghed, PELAB, Linkdping University, Linkdping, Sweden.
Petter Krus, IEI, Linképing University, Linkdping, Sweden.

Juha Kortelainen, VTT, Espoo, Finland.

Alexey Lebedev, Equa Simulation AB, Stockholm, Sweden.

Magnus Leksell, Linképing, Sweden.

Oliver Lenord, Bosch-Rexroth, Lohr am Main, Germany.

Ariel Liebman, Energy Users Association of Australia, Victoria, Australia.

Rickard Lindberg, PELAB, Linkdping University, Linkdping, Sweden
Hakan Lundvall, PELAB, Linkoping University, Linkdping, Sweden.
Henrik Magnusson, Linkdping, Sweden.

Eric Meyers, Pratt & Whitney Rocketdyne, Palm City, Florida, USA.
Hannu Niemist6, VTT, Espoo, Finland.

Peter Nordin, IEI, Linkdping University, Linkdping, Sweden.
Kristoffer Norling, PELAB, Linkdping University, Linkdping, Sweden.
Lennart Ochel, Fachhochschule Bielefeld, Bielefeld, Germany.

Atanas Pavlov, Munich, Germany.

Karl Pettersson, IEI, Linkdping University, Linkdping, Sweden.

Pavol Privitzer, Institute of Pathological Physiology, Praha, Czech Republic.
Reino Ruusu, VTT, Espoo, Finland.

Per Sahlin, Equa Simulation AB, Stockholm, Sweden.

WIladimir Schamai, EADS, Hamburg, Germany.

Gerhard Schmitz, University of Hamburg, Hamburg, Germany.

Klas Sjoholm, PELAB, Linkdping University, Linkdping, Sweden.
Anton Sodja, University of Ljubljana, Ljubljana, Slovenia

Ingo Staack, IEI, Linképing University, Linkoping, Sweden.

Kristian Stavaker, PELAB, Linkoping University, Linkoping, Sweden.
Sonia Tariq, PELAB, Linkdping University, Linkdping, Sweden.
Mohsen Torabzadeh-Tari, PELAB, Linkoping University, Linkoping, Sweden.
Niklas Worschech, Bosch-Rexroth, Lohr am Main, Germany.

Robert Wotzlaw, Goettingen, Germany.

Bjorn Zachrisson, MathCore Engineering AB, Linkoping, Sweden.

B.2 OpenModelica Contributors 2009

Peter Fritzson, PELAB, Linkdping University, Linkdping, Sweden.

Adrian Pop, PELAB, Linkdping University, Linkdping, Sweden.
Peter Aronsson, MathCore Engineering AB, Linkoping, Sweden.

David Akhvlediani, PELAB, Linkdping University, Linkdping, Sweden.
Bernhard Bachmann, Fachhochschule Bielefeld, Bielefeld, Germany.
Vasile Baluta, PELAB, Linkdping University, Linkdping, Sweden.
Constantin Belyaev, Bashpromavtomatika Ltd., Ufa, Russia

Simon Bjérklén, PELAB, Linkdping University, Linkdping, Sweden.
Mikael Blom, PELAB, Linkdping University, Linkdping, Sweden.
Willi Braun, Fachhochschule Bielefeld, Bielefeld, Germany.

David Broman, PELAB, Linkoping University, Linkdping, Sweden.
Stefan Brus, PELAB, Linkdping University, Linkdping, Sweden.
Francesco Casella, Politecnico di Milano, Milan, Italy

Filippo Donida, Politecnico di Milano, Milan, Italy

Henrik Eriksson, PELAB, Linkdping University, Linkdping, Sweden.
Anders Fernstrom, PELAB, Linkdping University, Linkdping, Sweden.
Jens Frenkel, TU Dresden, Dresden, Germany.

Pavel Grozman, Equa AB, Stockholm, Sweden.

Michael Hanke, NADA, KTH, Stockholm

Daniel Hedberg, MathCore Engineering AB, Linkdping, Sweden.

Alf Isaksson, ABB Corporate Research, Vasteras, Sweden

Kim Jansson, PELAB, Linkdping University, Linkdping, Sweden.
Daniel Kanth, Bosch-Rexroth, Lohr am Main, Germany

Tommi Karhela, VTT, Espoo, Finland.

Joel Klinghed, PELAB, Link&ping University, Linkdping, Sweden.
Juha Kortelainen, VTT, Espoo, Finland

Alexey Lebedev, Equa Simulation AB, Stockholm, Sweden

Magnus Leksell, Linképing, Sweden

Oliver Lenord, Bosch-Rexroth, Lohr am Main, Germany

Hékan Lundvall, PELAB, Linkoping University, Linkoping, Sweden.
Henrik Magnusson, Linkdping, Sweden

Eric Meyers, Pratt & Whitney Rocketdyne, Palm City, Florida, USA.
Hannu Niemist6, VTT, Espoo, Finland

Kristoffer Norling, PELAB, Linkdping University, Linkdping, Sweden.
Atanas Pavlov, Munich, Germany.

Pavol Privitzer, Institute of Pathological Physiology, Praha, Czech Republic.
Per Sahlin, Equa Simulation AB, Stockholm, Sweden.

Gerhard Schmitz, University of Hamburg, Hamburg, Germany

Klas Sjoholm, PELAB, Linkdping University, Linkdping, Sweden.
Martin Sjolund, PELAB, Linkdping University, Linkdping, Sweden.
Kristian Stavaker, PELAB, Linkoping University, Linkoping, Sweden.
Mohsen Torabzadeh-Tari, PELAB, Linkoping University, Linkping, Sweden.
Niklas Worschech, Bosch-Rexroth, Lohr am Main, Germany

Robert Wotzlaw, Goettingen, Germany

Bjorn Zachrisson, MathCore Engineering AB, Linkdping, Sweden

B.3 OpenModelica Contributors 2008
Peter Fritzson, PELAB, Linkdping University, Linkdping, Sweden.

Adrian Pop, PELAB, Linkdping University, Linkdping, Sweden.
Peter Aronsson, MathCore Engineering AB, Linkdping, Sweden.

David Akhvlediani, PELAB, Linkdping University, Linkdping, Sweden.
Bernhard Bachmann, Fachhochschule Bielefeld, Bielefeld, Germany.
Vasile Baluta, PELAB, Linkdping University, Linkdping, Sweden.
Mikael Blom, PELAB, Linkdping University, Linkdping, Sweden.
David Broman, PELAB, Linkoping University, Linkdping, Sweden.
Henrik Eriksson, PELAB, Linkdping University, Linkdping, Sweden.
Anders Fernstrom, PELAB, Linkdping University, Linkdping, Sweden.
Pavel Grozman, Equa AB, Stockholm, Sweden.

Daniel Hedberg, MathCore Engineering AB, Linkdping, Sweden.

Kim Jansson, PELAB, Linkdping University, Linkdping, Sweden.

Joel Klinghed, PELAB, Link&ping University, Linkdping, Sweden.
Hékan Lundvall, PELAB, Linkoping University, Linkdping, Sweden.
Eric Meyers, Pratt & Whitney Rocketdyne, Palm City, Florida, USA.
Kristoffer Norling, PELAB, Linkdping University, Linkdping, Sweden.
Anders Sandholm, PELAB, Linkdping University, Linkdping, Sweden.
Klas Sjoholm, PELAB, Linkdping University, Linkdping, Sweden.
Kristian Stavaker, PELAB, Linkoping University, Linkoping, Sweden.
Simon Bjorklén, PELAB, Linkdping University, Linkdping, Sweden.
Constantin Belyaev, Bashpromavtomatika Ltd., Ufa, Russia

B.4 OpenModelica Contributors 2007

Peter Fritzson, PELAB, Linkdping University, Linkdping, Sweden.

Adrian Pop, PELAB, Linkdping University, Linkdping, Sweden.
Peter Aronsson, MathCore Engineering AB, Linkdping, Sweden.

David Akhvlediani, PELAB, Linkdping University, Linkdping, Sweden.
Bernhard Bachmann, Fachhochschule Bielefeld, Bielefeld, Germany.
David Broman, PELAB, Linkoping University, Linkdping, Sweden.
Henrik Eriksson, PELAB, Linkdping University, Linkdping, Sweden.
Anders Fernstrom, PELAB, Linkdping University, Linkdping, Sweden.
Pavel Grozman, Equa AB, Stockholm, Sweden.

Daniel Hedberg, MathCore Engineering AB, Linkdping, Sweden.

Ola Leifler, IDA, Linkdping University, Linkdping, Sweden.

Hékan Lundvall, PELAB, Linkoping University, Linkdping, Sweden.
Eric Meyers, Pratt & Whitney Rocketdyne, Palm City, Florida, USA.
Kristoffer Norling, PELAB, Linkdping University, Linkdping, Sweden.
Anders Sandholm, PELAB, Linkdping University, Linkdping, Sweden.
Klas Sjoholm, PELAB, Linkdping University, Linkdping, Sweden.
William Spinelli, Politecnico di Milano, Milano, Italy

Kristian Stavaker, PELAB, Linkoping University, Linkoping, Sweden.
Stefan Vorkoetter, MapleSoft, Waterloo, Canada.

Bjorn Zachrisson, MathCore Engineering AB, Linkoping, Sweden.
Constantin Belyaev, Bashpromavtomatika Ltd., Ufa, Russia

B.5 OpenModelica Contributors 2006

Peter Fritzson, PELAB, Linkdping University, Linkdping, Sweden.

Peter Aronsson, MathCore Engineering AB, Linkoping, Sweden.
Adrian Pop, PELAB, Linkdping University, Linkdping, Sweden.

David Akhvlediani, PELAB, Linkdping University, Linkdping, Sweden.
Bernhard Bachmann, Fachhochschule Bielefeld, Bielefeld, Germany.
David Broman, PELAB, Linkoping University, Linkdping, Sweden.
Anders Fernstrom, PELAB, Linkdping University, Linkdping, Sweden.
Elmir Jagudin, PELAB, Linkdping University, Linkdping, Sweden.
Hékan Lundvall, PELAB, Linképing University, Linkdping, Sweden.
Kaj Nystrom, PELAB, Linkdping University, Linkdping, Sweden.
Lucian Popescu, MathCore Engineering AB, Linkdping, Sweden.
Andreas Remar, PELAB, Linképing University, Linkdping, Sweden.
Anders Sandholm, PELAB, Linkdping University, Linkdping, Sweden.

B.6 OpenModelica Contributors 2005

Peter Fritzson, PELAB, Linkdping University, Linkdping, Sweden.

Peter Aronsson, PELAB, Linkdping University and MathCore Engineering AB, Linkdping, Sweden.
Adrian Pop, PELAB, Linkdping University, Linkdping, Sweden.
Hékan Lundvall, PELAB, Linképing University, Linkoping, Sweden.

Ingemar Axelsson, PELAB, Linkdping University, Linkdping, Sweden.
David Broman, PELAB, Linkoping University, Linkdping, Sweden.
Daniel Hedberg, MathCore Engineering AB, Linkdping, Sweden.
Hékan Lundvall, PELAB, Linképing University, Linkdping, Sweden.

Kaj Nystrom, PELAB, Linkdping University, Linkdping, Sweden.
Lucian Popescu, MathCore Engineering AB, Linkdping, Sweden.
Levon Saldamli, PELAB, Linkdping University, Linkdping, Sweden.

B.7 OpenModelica Contributors 2004
Peter Fritzson, PELAB, Linkdping University, Linkdping, Sweden.

Peter Aronsson, Linkdping University, Linkdping, Sweden.

Bernhard Bachmann, Fachhochschule Bielefeld, Bielefeld, Germany.

Peter Bunus, PELAB, Linkoping University, Linkdping, Sweden.

Daniel Hedberg, MathCore Engineering AB, Linkdping, Sweden.

Hékan Lundvall, PELAB, Linképing University, Linkdping, Sweden.

Emma Larsdotter Nilsson, PELAB, Linkdping University, Linkdping, Sweden.
Kaj Nystrom, PELAB, Linkdping University, Linkdping, Sweden.

Adrian Pop, PELAB, Linkdping University, Linkdping, Sweden.

Lucian Popescu, MathCore Engineering AB, Linkdping, Sweden.

Levon Saldamli, PELAB, Linkdping University, Linkdping, Sweden.

B.8 OpenModelica Contributors 2003
Peter Fritzson, PELAB, Linkdping University, Linkdping, Sweden.

Peter Aronsson, Linkdping University, Linkdping, Sweden.
Levon Saldamli, PELAB, Linkdping University, Linkdping, Sweden.

Peter Bunus, PELAB, Linkoping University, Linkdping, Sweden.

Vadim Engelson, PELAB, Linkdping University, Linkdping, Sweden.

Daniel Hedberg, Linkdping University, Linkdping, Sweden.

Eva-Lena Lengquist-Sandelin, PELAB, Linkoping University, Linkoping, Sweden.
Susanna Monemar, PELAB, Linkdping University, Linkdping, Sweden.

Adrian Pop, PELAB, Linkdping University, Linkdping, Sweden.

Erik Svensson, MathCore Engineering AB, Linkdping, Sweden.

B.9 OpenModelica Contributors 2002

Peter Fritzson, PELAB, Linkdping University, Linkdping, Sweden.

Levon Saldamli, PELAB, Linkdping University, Linkdping, Sweden.
Peter Aronsson, Linkdping University, Linkdping, Sweden.

Daniel Hedberg, Linkdping University, Linkdping, Sweden.
Henrik Johansson, PELAB, Linképing University, Linkdping, Sweden
Andreas Karstrom, PELAB, Linkdping University, Linkdping, Sweden

B.10 OpenModelica Contributors 2001

Peter Fritzson, PELAB, Linkdping University, Linkdping, Sweden.
Levon Saldamli, PELAB, Linkdping University, Linkdping, Sweden.

Peter Aronsson, Linkdping University, Linkdping, Sweden.

B.11 OpenModelica Contributors 2000

Peter Fritzson, PELAB, Linkdping University, Linkdping, Sweden.

B.12 OpenModelica Contributors 1999
Peter Fritzson, PELAB, Linkdping University, Linkdping, Sweden

Peter Ronnquist, PELAB, Linkdping University, Linkdping, Sweden.

B.13 OpenModelica Contributors 1998
Peter Fritzson, PELAB, Linkdping University, Linkdping, Sweden.
David Kagedal, PELAB, Linkoping University, LinkGping, Sweden.
Vadim Engelson, PELAB, Linkdping University, Linkdping, Sweden.

Index

literate programming

	Table of Contents
	Preface
	Chapter 1 Introduction
	1.1 System Overview
	1.1.1 Implementation Status

	1.2 Interactive Session with Examples
	1.2.1 Starting the Interactive Session
	1.2.2 Using Compiler Debug Trace Flags in Interactive Mode
	1.2.3 Trying the Bubblesort Function
	1.2.4 Trying the system and cd Commands
	1.2.5 Modelica Library and DCMotor Model
	1.2.6 The val() function
	1.2.7 BouncingBall and Switch Models
	1.2.8 Clear All Models
	1.2.9 VanDerPol Model and Parametric Plot
	1.2.10 Scripting with For-Loops, While-Loops, and If-Statements
	1.2.11 Variables, Functions, and Types of Variables
	1.2.12 Getting Information about Error Cause
	1.2.13 Alternative Simulation Output Formats
	1.2.14 Using External Functions
	1.2.15 Calling the Model Query and Manipulation API
	1.2.16 Quit OpenModelica
	1.2.17 Dump XML Representation
	1.2.18 Dump Matlab Representation

	1.3 Summary of Commands for the Interactive Session Handler
	1.4 References

	Chapter 2 OMEdit – Open Modelica Connection Editor
	2.1 Getting Started
	2.2 How to Start OMEdit
	2.3 Hello World model in OMEdit
	2.3.1 Creating a New File
	2.3.2 Adding components
	2.3.3 Making connections
	2.3.4 Simulating the model
	2.3.5 Plotting variables from simulated models

	2.4 Modelica Standard Library
	2.5 Windows
	2.5.1 Library Window
	2.5.1.1 Viewing components description
	2.5.1.2 Viewing components documentation
	2.5.1.3 How to check a component?
	2.5.1.4 How to rename a component?
	2.5.1.5 How to delete a component?
	2.5.2 Designer Window
	2.5.3 Plot Window
	2.5.4 Messages Window
	2.5.5 Documentation Window

	2.6 Dialogs
	2.6.1 New Dialog
	2.6.2 Simulation Dialog
	2.6.3 Component Properties Dialog
	2.6.4 Component Attributes Dialog

	Chapter 3 2D Plotting and 3D Animation
	3.1 Enhanced Qt-based 2D Plot Functionality
	3.2 Simple 2D Plot
	3.2.1 All Plot Functions and their Options
	3.2.2 Zooming
	3.2.3 Plotting all variables of a model
	3.2.4 Plotting During Simulation
	3.2.5 Programmable Drawing of 2D Graphics
	3.2.6 Plotting of table data

	3.3 Java-based PtPlot 2D plotting
	3.4 3D Animation
	3.4.1 Object Based Visualization
	3.4.2 BouncingBall
	3.4.2.1 Adding Visualization
	3.4.2.2 Running the Simulation and Starting Visualization

	3.4.3 Pendulum 3D Example
	3.4.3.1 Adding the Visualization

	3.5 References

	Chapter 4 OMNotebook with DrModelica and DrControl
	4.1 Interactive Notebooks with Literate Programming
	4.1.1 Mathematica Notebooks
	4.1.2 OMNotebook

	4.2 DrModelica Tutoring System – an Application of OMNotebook
	4.3 DrControl Tutorial – Application of OMNotebook in Control Theory
	4.4 OpenModelica Notebook Commands
	4.4.1 Cells
	4.4.2 Cursors

	4.5 Selection of Text or Cells
	4.5.1 File Menu
	4.5.2 Edit Menu
	4.5.3 Cell Menu
	4.5.4 Format Menu
	4.5.5 Insert Menu
	4.5.6 Window Menu
	4.5.7 Help Menu
	4.5.8 Additional Features

	4.6 References

	Chapter 5 Interactive Simulation
	5.1 Introduction
	5.2 Interactively Changeable Parameters
	5.3 OpenModelica Interactive Components description
	5.4 Communication Interface
	5.4.1 Network configuration Settings
	5.4.2 Operation Messages

	5.5 Interactive Simulation general Procedure
	5.5.1 Initialize an Interactive Simulation Session

	5.5.2 Interactive Simulation Example
	5.5.3 How to get an example Modelica Model
	5.5.4 Create the simulation runtime
	5.5.5 Start an interactive Simulation Session

	Chapter 6 MDT – The OpenModelica Development Tooling Eclipse Plugin
	6.1 Introduction
	6.2 Installation
	6.3 Getting Started
	6.3.1 Configuring the OpenModelica Compiler
	6.3.2 Using the Modelica Perspective
	6.3.3 Selecting a Workspace Folder
	6.3.4 Creating one or more Modelica Projects
	6.3.5 Building and Running a Project
	6.3.6 Switching to Another Perspective
	6.3.7 Creating a Package
	6.3.8 Creating a Class
	6.3.9 Syntax Checking
	6.3.10 Automatic Indentation Support
	6.3.11 Code Completion
	6.3.12 Code Assistance on Identifiers when Hovering
	6.3.13 Go to Definition Support
	6.3.14 Code Assistance on Writing Records
	6.3.15 Using the MDT Console for Plotting

	Chapter 7 Modelica Algorithmic Subset Debugger
	7.1 The Eclipse-based debugging environment
	7.2 Starting the Modelica Debugging Perspective
	7.2.1 Setting the debug configuration
	7.2.2 Setting/Deleting Breakpoints
	7.2.3 Starting the debugging session and enabling the debug perspective

	7.3 The Debugging Perspective

	Chapter 8 Interoperability – C, Java, and Python
	8.1 Calling External C functions
	8.2 Calling External Java Functions
	8.3 Python Interoperability

	Chapter 9 Frequently Asked Questions (FAQ)
	9.1 OpenModelica General
	9.2 OMNotebook
	9.3 OMDev - OpenModelica Development Environment
	Index

