OpenModelica System Documentation

Version 2010-11-19
for OpenModelica 1.6

November 2010

Peter Fritzson
Adrian Pop, Martin Sjélund, Per Ostlund, Peter Aronsson
David Akhvlediani, Syed Adeel Asghar, Bernhard Bachmann, Vasile Baluta,
Simon Bjorklén, Mikael Blom, Robert Braun, Willi Braun, David Broman,
Stefan Brus, Francesco Casella, Filippo Donida, Henrik Eriksson, Anders
Fernstrom, Jens Frenkel, Pavel Grozman, Daniel Hedberg, Michael Hanke, Alf
Isaksson, Kim Jansson, Daniel Kanth, Tommi Karhela, Joel Klinghed, Juha
Kortelainen, Petter Krus, Alexey Lebedev, Magnus Leksell, Oliver Lenord,
Ariel Liebman, Rickard Lindberg, Hdkan Lundvall, Henrik Magnusson, Eric
Meyers, Hannu Niemisto, Peter Nordin, Kristoffer Norling, Lennart Ochel,
Atanas Pavlov, Karl Pettersson, Pavol Privitzer, Reino Ruusu, Per Sahlin, Ingo
Staack, Wladimir Schamai, Gerhard Schmitz, Klas Sjoholm, Anton Sodja,
Kristian Stavédker, Sonia Tariq, Mohsen Torabzadeh-Tari, Parham Vasaiely,
Niklas Worschech, Robert Wotzlaw, Bjorn Zackrisson

Copyright by:

Link6ping University, Sweden
Department of Computer and Information Science

Supported by:

Open Source Modelica Consortium

Copyright © 1998-2010, Linkdpings universitet, Department of Computer and Information Science.
SE-58183 Linkdping, Sweden

All rights reserved.

THIS PROGRAM IS PROVIDED UNDER THE TERMS OF GPL VERSION 3 AND THIS OSMC
PUBLIC LICENSE (OSMC-PL). ANY USE, REPRODUCTION OR DISTRIBUTION OF THIS
PROGRAM CONSTITUTES RECIPIENT'S ACCEPTANCE OF THE OSMC PUBLIC LICENSE.

The OpenModelica software and the OSMC (Open Source Modelica Consortium) Public License (OSMC-
PL) are obtained from Link&pings universitet, either from the above address, from the URLs:
http://www.ida.liu.se/projects/OpenModelica or http://www.openmodelica.org, and in the
OpenModelica distribution. GNU version 3 is obtained from: http://www.gnu.org/copyleft/gpl.html.

This program is distributed WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE, EXCEPT AS EXPRESSLY SET
FORTH IN THE BY RECIPIENT SELECTED SUBSIDIARY LICENSE CONDITIONS OF OSMC-PL.

See the full OSMC Public License conditions for more details.

This document is part of OpenModelica: http://www.openmodelica.org
Contact: OpenModelica@ida.liu.se

Modelica® is a registered trademark of the Modelica Association, http:/www.Modelica.org
MathModelica® is a registered trademark of MathCore Engineering AB, www.mathcore.com

Mathematica® is a registered trademark of Wolfram Research Inc, www.wolfram.com

Table of Contents

TaADLE OF COMIEIES. ..c..etieniiieitieiieteeet ettt b ettt s bttt e st e b s bt bt ea e et e sbeebeentenbesbeebeenee 3
PrElACE oo et e et e rbeeat e e raeeraeetaeetaeeteeenbeenbeenaeenrennaeans 9
L4 gF=T o] 1=T b R 1 £ oo (U T £ o] o ST PSSSRSTSR 11
1.1 OpenModelica Environment StruCtUre............ccvevverierienienieneeie et eie e eie e eve e sae e eens 11
1.2 OpenModelica Compiler Translation Stagescccveveerieriieneeriieie ettt 12
1.3 Simplified Overall Structure of the COMPIler...........cccviviiiiriiiiiie e 12
1.4 Parsing and ADSLract SYNEAX......c.cccuiriieiirieeieeieeie e eteeee st e setesteseaeseeesseesseesseenseenseenseas 13
1.5 Rewriting the AST int0 SCOAEC.......c.vecviiiiieiieiieieeie ettt ees 13
1.6 Model Flattening and InStantiation.............c.cceceueeriieriieerieenie e erreesree e eeee e esereesenes 14
1.7 The instClass and instElement FUNCHONSc.evvuiriiriinieiiesiecieseee e 14
1.8 OULPUL ettt ettt ettt et e ettt e et e e st e e e b te e bt e e eabeesabeesabeesabeeeabeeebeeesnseean 16
Chapter 2 Invoking omc — the OpenModelica Compiler/Interpreter Subsystem..............ccco...... 17
2.1 Command-Line Invokation of the Compiler/Interpreter...........oocveveevievieneenienierieneeseenne 17
2.1.1 General Compiler FIAgS.......cooieriierieriieieeie ettt ettt ettt teeneeenae e enee 18
2.1.1.1 Example of Generating Stand-alone Simulation Code..........c.cccceevverieecienieniennnnne. 18

2.1.2 Compiler Debug Trace FIags.........cccverieriiiiiniieiieitcie ettt 18
2.2 The OpenModelica Client-Server ATChiteCtUreccvecveeriierieerieeie e 20
2.3 Client-Server Type-Checked Command API for Scriptingcccveevveeiiecieeiiencienienieeeeenne. 22
B TR N =5 €111 o) (<3PS UUSRUPRNE 24
2.4 Client-Server Untyped High Performance API for Model Query..........cccoevveviveieecieeiennnnne. 25
24,1 DEIINTHONS c.teeiieiieiieie ettt ete ettt eteeteeteesbeeebeeebessaessbessaesaaesseesseesseesseesseesseesseenseenses 26
2.4.2 EXAMPIES OF CallS.....ccociiiiiiiiiieiiieciie ettt ettt e et sreesereesseeestaeessneesssaessnaennns 26
2.4.3 Untyped API Functions for Model Query and Manipulation...........cccceeeeevveneenieniennenne. 26
2431 ERROR Handling.......c.ccoeririiiieiiiiiieieeiesitetee ettt st s 31

2,44 ANNOLALIONS ..veeutiiiietieiietiete et et et et et et e eate et e eateeateeatesateeatesatesaeesatesatesatesatesaeesaeesanenas 31
24.4.1 Variable ANNOLAtIONS.ccverieiieiieeieeie ettt ste st e siee st e s e sitesaeesseesseesaeesees 31
2442 ConNEction ANNOLALIONSeeveeuvertertertietenienteettetenteeteette e stesbeetentesbesbeestentesbeeseeneens 31
2.4.4.3 Flat records for Graphic PrimitiVesccoecueeviiiieeiiiiieieeieeieeee e 32

2.5 Discussion on Modelica Standardization of the Typed Command API...........cccccoeviiiencen. 33
2.5.1 NamiNG CONVENTIONS ..uveetietietierteerteerteerteenteesteeteeseesessesssesssessesssesssesssesssesssesssesssesssesses 33

B Y 1 4 1 1 o< ST 34
2.5.3 ATGUIMENLE LYPES .vvieerieiiiieiiieeitieesteerteesteesteeeseeessseessseesssaessseessseeassseessseessseessseessseesseennes 34
2.54 Set Of API FUNCLIONSooviiiiiiiiieiieiiniecitetee ettt sttt sttt s eaaens 34
2.5.5 Example of Exporting XML from a Model........c.ccceeviiriiiiiiiiciiiiieiecieeeeeee e 35
2.5.6 Example of Exporting Matlab from a Modelc.ccccevvviiiriiiniiecieeecee e 38
Chapter 3 Detailed Overview of OpenModelica Packages............ccovovvviiereninninnneese e 39
3.1 Detailed Interconnection Structure of Compiler Packagescccecvevieviienienieneeniieieeiens 39
3.2 OpenModelica Source Code DIirectory StruCTUTE.cueeueeriierieiieiie ettt 40
3.2.1 OpenModelica/COmPIler/cooierieriieriierieieeie ettt ettt e te et s 40
3.2.2 OpenModelica/Compiler/IUntime.coeeuerieririeienienieeieeienesie sttt eite et eieeneens 40
3.2.3 OpenMOodeliCa/tESESUILEccvverrieriieitieriiesie ettt este et eteeteebeeaeeaeenaeesbeesaeensesssesssessnennns 41
3.2.4 OpenModelica/OMSREIL........ccooviiiiiiiiiieieeeeeee ettt e 41
3.2.5 OpenModelica/c_runtime — OpenModelica Run-time Libraries...........cccceevevieecreeieennnnne. 41
3.2.5.1 JIDC TUNTIIMC. . c.tievieiieiieitiesitesie et este et et e e ete e teesteeseesseesseesseenseensaenseenseensaenseensenn 41
3252 TIDSIIMLA c.eietite ettt ettt 41

33 Short Overview of Compiler MOAUIES..........cccuerierierieniieriecieeesee et 42

34 Descriptions of OpenModelica Compiler Modulesc.ccccoeeierieriienienienieneeeeeeeie e 44

3.4.1 ADSYN — ADSEIACE SYNEAX c.eevviiiiieiiieiiieiieiieeteeteeste et e e teesteesteeste e beesbeebeesseenseenseenseenseenns 44
3.4.2 Algorithm — Data Types and Functions for Algorithm Sections............cccecceeverveereennenne. 59
3.4.3 Builtin — Builtin Types and Variablesccccoeveiieiiinienierieseeeee e 59
3.4.4 Ceval — Constant Evaluation of Expressions and Command Interpretation...................... 59
3.4.5 ClassInf - Inference and Check of Class Restrictions..........cccceevueenieeneeneeneeneeiecieeenee 59
3.4.6 ClassLoader — Loading of Classes from SOPENMODELICALIBRARYccccccovueuennee 60
3.4.7 Connect — Connection Set Management............ccceecueeriieriienieerieeieeieeieere e eeesneseneseneenns 60
3.48 Corba— Modelica Compiler Corba Communication Moduleccccceevvvevirenreenneennne. 60
349 DAE - DAE Equation Management and OUtPUL...........ccceererriirrieeieeie e 60
3.4.10 DAEEXT — External Utility Functions for DAE Management...............ccccceeveerveerueennnne. 64
3.4.11 DAELow — Lower Level DAE Using Sparse Matrises for BLTc.ccccccevevevieeninennne. 64
3.4.12 Debug — Trace Printing Used for Debuggingcccceevievierrirnieeiieeieeieee e 65
3.4.13 Derive — Differentiation of Equations from DAELOWcccevievienieniienieeeie e 65
3.4.14 DFA — MetaModelica Pattern MatChingc.ccccoveieviiiiiiiieiiesieceeceeeeesie e 65
3.4.15 Dump — Abstract Syntax Unparsing/Printing...........cccceevverieniienienieniienieeie e e 65
3.4.16 DumpGraphviz — Dump Info for Graph visualization of ASTcccceevieviinienieiene 65
3.4.17 Env — Environment Management...........cc.ccceevueeiieriienieenieeiteeieeieeneeeeesesseessnessnessnesssennns 66
3.4.18 Exp — Expression Handling after Static Analysis.........cccceeveiveriieriiieinieeie e 68
3.4.19 Graphviz — Graph Visualization from Textual Representationcccceecvevieecveeeennnnnne. 73
3.4.20 Inst— Code Instantiation/Elaboration of Modelica Models...........ccceevevrieviienieeniieieennne, 73

3.4.20.1 OVEIVIEW: ..ottt ettt ettt et sa et sh st eanenesae e ennesnesueenens 73

3.4.20.2 Code Instantiation of a Class in an Environmentccocceereereeneeneeneeneeneennn 74

3.4.20.3 InstElementListList & Removing Declare Before Useccecvvvviviirvenieniennennen. 74

3.4.20.4 The InstElement FUNCHONcccoiiiiiiiiiniiiiieieccecrcecceer et 74

3.4.20.5 The InstVar FUNCHON.c..coeiiiiiniiiiiceccieectecsteteese sttt 74

3.4.20.6 DEPENACICIES. .. .eevreeieeieiiesiienitesteesttesteesttesttesseesseesseesseenseesseesseenseesseasseesssenseenssenseen 75
3.4.21 Interactive — Model Management and Expression Evaluationccccceeeveviiecieeieennnnne. 75
3.4.22 Lookup — Lookup of Classes, Variables, €1C.ccceereerieriirriieniieieeieeie e 76
3.4.23 Main — The Main Programcccceevieiiiiiinieniiestesiteie ettt eaeete e snaesnae e ene 76
3.4.24 MetaUtil — MetaModelica Handling............ccoccueeiiiieiiinieiiesieceeseeseee e 77
3.4.25 Mod — Modification Handling............ccccveviiiiriieiiieniieeie et sveeeree e 77
3.4.26 ModUtil — Modelica Related Utility FUNCHONScoovveriieniieiieieeieeeee e 77
3.4.27 Parse — Parse Modelica or Commands into Abstract SyntaX..........cccceceeevvevievieesieeieennenne 77
3.4.28 Patternm — MetaModelica Pattern Matching.............ccoeveiiiiiiiieriieniiceie e 78
3.4.29 Prefix — Handling Prefixes in Variable Names...........cceccvevieeriieniienienieeieeieee e 78
3.4.30 Print — Buffered Printing to Files and Error Message Printing...........ccccccvevvevieecieeieennnnne. 78
3.431 RTOpts — Run-time Command Line OPtions...........cccvevevirrciienriererirenreenreesreesseeeeneenens 78
3.4.32 SCode — Lower Level Intermediate Representation............ceeceevverieerieenieenieenieeie e 78
3.4.33 SimCode - Code generation using Susan templatescceeceereeeieerieecieerieeie e 79
3.4.34 SimCodeC - Code generation fOr C.........ccccuerieriieiieniiesieeie et eve e ee e e eeas 79
3.4.35 Socket — (Depreciated) OpenModelica Socket Communication Module.......................... 79
3.4.36 Static — Static Semantic Analysis Of EXPressions........ccoecvevverieneenieneeneenieese e eie e 79
3.4.37 System — System Calls and Utility FUNCHONS.........ccccoieeiiiriieiieiieieeie e 80
3.4.38 TaskGraph — Building Task Graphs from Expressions and Systems of Equations........... 81
3.4.39 TaskGraphExt — The External Representation of Task Graphs..........ccccccvevveviecieeieennnne. 81
3.4.40 TplAbsyn - Abstract Syntax for Susan Templates..........ccccceeviirviieciieiieeiieeieeiecee e 81
3.4.41 TplCodegen - Code Generation for Susan Templatesccceecvvevviieerieenieenieereeeeeeene 81
3.4.42 TplMain - Main Functions and Basic Tests for Susan Templates............cccceeveeveriennnnne. 81

3.4.43 TplParser - Parser for Susan Templates..........ccceceevieriieiiiiiieiie e 81

3.4.44 Types — Representation of Types and Type System Info........coceeevieviiiieiiecnicecieee, 82
3.4.45 Util — General Utility FUNCHONScc.eeviiiieriiiiieieesie ettt eve e eveeae e eee 85
3.4.46 Values — Representation of Evaluated Expression Valuescccoccvevevievciienciienieesieennne, 86
3.4.47 VarTransform — Binary Tree Representation of Variable Transformations...................... 86
3.4.48 XMLDump — Dumping of DAE aS XML.......ccccccteiiiiiiniieieeieeieeeeie et 86
3.4.49 DAEQuery — Dumping of DAE as Matlab..........ccccoeiiiiiiiniieieeece e 86
Chapter 4 MetaModelica Pattern Matching Compilationcccoocvviviieiininiinniee e 87
4.1 MetaModelica Matchcontinue EXPreSsion.........ecvecierieneenienienieesieesieeieesieesseeseeseeveeveens 87
4.1.1 Modules INVOIVE........coieiiiiiiiiieieieicteee ettt s 87
4.1.1.1 AADSYI ottt ettt b ettt eb ettt ene 87
4.1.1.2 IS ettt bbb bbb b e sbe et been 88
4.1.13 o 111574 110 A USSR 88

A1 1A DF A ettt ettt ettt ebe 89

4.2 Value blOCK EXPIESSIONeevvieiieiiieiieiieiieieeie et et ettt ete et eaeeeveebeesseeteensesnsesnseansesnsenns 91
4.2.1 Modules INVOIVEA......ccoiiiiieiieciieciiecteeceeee ettt ettt ettt e ebeesteeveesbeenbeesseensaenseessesnsaens 91
42.1.1 N 01) 7 o HP USSR PR UURRRURRN 91
4212 D ettt bbbttt b e b et 91
42.1.3 (10711075 o U UURTOUSRRPRN 91
42.14 SEALIC ..ttt ettt b ettt bttt st ebe e 91
42.1.5 PrOTIX Lottt 92
42.1.6 COAOEEN.. ..ottt ettt ettt e e et e be e be e be e be e seeseeseessaenseenseenseenseensean 92

43 MetaMOAEIICA LISteeiiiiiieieete ettt ettt ettt et 92
4.3.1 Modules INVOIVE........coiiiiriiniiiiiiecceeeeeere ettt st s eeeenees 92
4.3.1.1 ADSTIN ittt h ettt s be bt e bt sbeeseenten 92
43.1.2 COAOEEN.. ..ottt ettt ettt ettt e bt et e e te e be e beesseessaeseeseessaenseenseenseenseensean 92
43.1.3 DIAE ettt bbbttt eae 92
43.14 DIFA et ettt s b et b e s bttt be s enaen 92
43.1.5 531 USROS 93
43106 MELAULIL c.couiiiiiiiiitc ettt b ettt 93
4.3.1.7 PatteInIm «...oouiiiiiiiieieee ettt ettt en 93
4.3.1.8 21 1 (USRS 93
43.1.9 1 011 SRR 93

A3 110 VAlUES..ceiitiieieietet ettt ettt bttt ettt ebe 93

4.4 MetaModelica Union TYPEeecuierieriieriieeiieieeieeeieeieeieesteesteesveesteesseeseesseesseesseesseeseesseensenns 94
Chapter 5 RUN-TIME SYSTEM?? ..ottt sttt bt ne et e e e 95
Chapter 6 Interactive SIMulation FaCilities..........ccoceriiiiieieiece s 96
6.1 Interactive Simulation RUNTIMEcooiiiiiiiiiiiiiiiceeeee e 96
6.2 OpenMOodelica INTETACTIVEcccvieiiieiiieeiie ettt eeeeeeeee e e b e e sbeeesaeessaeeesaessseeessaeensaeas 97
6.2.1 The OpenModelica SUDSYSIEIMccueiiiriiriiiiieiierterie ettt ettt 98
6.2.1.1 OpenModelica Subsystem Service Interface..........oecveevieeiieciieiiiecieeceeiecieeeeeeeeen 98

6.2.2 The OpenModelica Interactive SUDSYSIEM........cceecvieriieriieriieiieie e eie e e eee e 98
6.2.2.1 OMIEICONLIOL. ..ottt s 99
6.2.2.2 OMIERESUIEMANAZETcvveiieiieiieiiesieeitesie et et et et e et e teesteesteessaenseenseenseeseennean 99

6.2.2.3 OMIE:CAlCULAION. ... e a e e 101

6.2.2.4 OMIETTANSTRT ..ttt ettt st sttt saeesreesaeeseeeseeneas 101

6.2.3 Communication Interface (ATChItECtUIE).......cccuevvirierieriiiierieiiece et 102

6.2.3.1 COMIMUIICATION 1..vtentienieeiiieteeie et et et et et et e enbe e be e bt ebeeabeenbeenseenbeenseenseenseenseenes 102

6.2.4 OpenModelica Interactive Structure and Behaviourcccccevveriienienienienieneeeenen, 105

6.2.5 Testing of the OpenModelica Interactive simulation runtimeccceeververeeneerneennenn 109

o Back t0 BACK TESS ...cuvveiieiieiieiieiieteeieeit ettt ettt ettt ettt eateenteseteenteenaeenneenee e 109

6.2.0 RETETEICES ...veevieiieiieiieieeie ettt ettt ettt te et e e be et e e beesbeesbeesbeesseenseesseesseesseessensseessens 111

Chapter 7 OMNotebook and OMSHhEIlcccooiiiiiii e 113

7.1 0 ittt ettt ettt ettt ettt e e te st et e he et e eat et e bt e Rt e st et e ehtesten b e beettestenseeteestessenseeseessannn 113

7.2 HTML dOCUMENTALION.eeitiiiieiieiiesiierteeieesieesieenteesteesttesteeteesteeseeseenseeseenseenseenseensennsens 113

7.3 Mathematica NOtebOOK Parserccuoviiiiiriiiieiierierieeeeeee et e 113

7.4 FLE LISt 1.ttt ettt ettt ettt et et e beeteesb et e b e eteense s e ebeeseensenseeaeesnenes 117

7.5 CLASS OVETVIEW ..e.evieeiieiiieiieeiteeite et eeteeeteesteeeteessessaessseesseesseessessseasseesseessesssesssesssesssesssesnsennsen 121

7.6 RETCIENCES ...ttt ettt ettt ettt e bt et e e b e e beebeebeesbeessaenbaenseesseenss 122

Chapter 8 OpenModelica Eclipse PlUugin — IMDTccooiiieieiiieieee e 123

Chapter 9 How to Write Test Cases for OpenModelica Developmentcccceoveveveicrnennnn, 124

9.1 GELHNG STATTEA ..eouveeiieiieiieie ettt ettt ettt ettt e et e et e et e e beesbeesbeesbeesseesseesseesseessensseensens 124

9.2 Developing @ TSt CaSE.....cccuviiriierieerieeriieeieeeieeesiteetreesereesebeesseesseesnseeassaessseesseensseessnes 124

9.2.1 Creating the .m0 Filecccueiiiiiiiiieieeeeee ettt en 124

9.2.2 Creating the .mOS File......c.cccuiiiiiiiiiiiieciececectereesese ettt be e e eneees 125

9.2.2.1 Simulation NOot FAIlINGc.cccciiiiiiiiieciieciieceeeee e e e 125

9.2.22 SIMUIAtion Failccooiiiiiiiieieeeee e 126

9.3 Status of SIMUIAtEd TESt CASESeevvvereieriieriieriieriierteereesie et et eteeteeteeteeaeesesstesssessaesnnenns 126

9.3.1 Status for ;MO FIleS....cc.ooiiiiiiiiiiiieeeee e e 126

9.3.2 Status fOr .MOS FIleSeoouiiiiiiieiieie e 126

9.4 Adding Test Cases t0 the SUILEc.eccviviieiiiiieeieeie ettt aeeeee s ens 126

9.5 EXAMPIES ..ottt ettt ettt ettt et e et e b e e b e e be e be e st e enbe e beebeenbe e ba e teebeennnenes 127

9.5.1 COTTEOE TESL ..ttt ettt st et esat e et e e st e s bt e sabeeebeeeane 127

0.5.2 FalliNE TSt ..eeuieiieiieiieeitesiteett ettt ettt ettt et et eteebe e st enseenseenseenseenseenseenseenseenseensean 128

F N o] L Lo L) AN T o 1= SRS 129

Al Exercise SimpleTestCase — Write a Simple Test Casecocevveeeiieiieriieniieniieieeieeeeeee 129

A2 Exercise UseAPIFunctions — Call Some OMC API Functions............cccecvevververirenreenneennen. 130

A3 Exercise OMCCorbaJava — Commands via Corba from a Java Client.............cccccverueennenee. 130

A.3.1 How Corba Communication WOTKScccerieriierienieniieiieieeieeieeieeie et 130

Y TR @11 (@ o 1) 4 -7 T USSR 131

A4 Corba Clients for C++ and PYthon.........cccooviiiiiiiieiieiieieeiee et 131

A5 Exercise newAPIFunction — Write a new Simple OMC API Functioncccccvveennneen. 131

A.6 Exercise ASTExpTransform — Write A Small Exp AST Transformationcceccoueeueeee. 131

A7 Exercise CodeGen — Generate Code for a new Builtin Function............cccoccvevvenvenienieenen. 131
A8 Exercise getClassNamesRecursive — Recursive Printout of Class Names in a Model Hierarchy

132
AppPendiX B SOIULIONS 10 EXEICISESciuviieiiiiiiieeiesiesie sttt se et e st e e sresre s e neesreens 133
B.1 Solution SimpleTestCase — Write a Simple Test Case........cevverierieriereenieenieenieeieeieenens 133

B.2 Solution UseAPIFunctions — Call Some OMC API Functions.........cccccceeeeeeeeiuveeeeeeeeeennnns 134

B.3 Solution OMCCorbaJava — Commands via Corba from a Java Client...........ccccceevuvevurenne 134
B.4 Solution Corba Clients for C++ and Pythoncccocveiieiieiiniiieiieeeeee e 134
B.5 Solution newAPIFunction — Write a new Simple OMC API Function..........c...cccecverurennenne. 134
B.6 Solution ASTExpTransform — Write A Small Exp AST Transformationc.cccecueeueenne 134
B.7 Solution CodeGen — Generate Code for a new Builtin Functionc.ccoceevienininnnnn, 134
B.8 Solution getClassNamesRecursive — Recursive Printout of Class Names in a Model Hierarchy
134

Appendix C Contributors to OPeNMOUEIICEccceiiiiiriie s 137
C.1 OpenModelica Contributors 2010.......c.eeiieriierieriieriierieereesterteesteeseesse e esseeseeseeseeseensees 137
C.2 OpenModelica Contributors 2009..........ccueieeiieerieerieerieerieeeieeeiee e e sreesreesseeeeneenenes 138
C3 OpenModelica Contributors 2008..........cceerierieriierieriierieeritereeieeieeie ettt ebeennees 139
C4 OpenModelica Contributors 2007ccverierierierieniieniesieneesieesieesseesseesseesseenseeseesseenses 139
C.S5 OpenModelica Contributors 2000..........cc.verierierieriierieenieerieeseesteesreesseesseesseesseeseeseesseesens 140
C.6 OpenModelica Contributors 2005........c.cocuieriierieriieiieieerieetereeteeie ettt ettt ebeennees 140
C.7 OpenModelica Contributors 2004ccverierieriieriierierieereesitesteesieesseesseesseeseeseeseeseenseas 140
C.8 OpenModelica Contributors 2003ccuveiiierieiieriierieereereere et et esre e esseesseeseesseeseenseas 141
C.9 OpenModelica Contributors 2002..........ccuviviieerieerieerieerrieeieeeieeesreesreesseesseesseeensneensnes 141
C.10 OpenModelica Contributors 2001c.eevuieriieiirerieeie e ete e ere e e eeeeee e eeeseeesaeesseeneas 141
C.11 OpenModelica Contributors 2000cceeruierireciieriieieeie e ereeee e eeeeeesseeeseesseesseesseenes 141
C.12 OpenModelica Contributors 1999...........cccuiiviiiiiiiieiie ettt eee e reeseree e enes 141
C.13 OpenModelica Contributors 1998c.cooieiiiiiiiiiiieieeie ettt 142
INAEX oottt ettt et et e s te e e te e te e teeeheeebeeebe e be e be e beebeeteenbaenaeeeseenreenes 143

Preface

This system documentation has been prepared to simplify further development of the OpenModelica
compiler as well as other parts of the environment. It contains contributions from a number of developers.

Chapter 1

Introduction

This document is intended as system documentation for the OpenModelica environment, for the benefit of
developers who are extending and improving OpenModelica. For information on how to use the
OpenModelica environment, see the OpenModelica users guide.

This system documentation, version May 2006, primarily includes information about the OpenModelica
compiler. Short chapters about the other subsystems in the OpenModelica environment are also included.

1.1 OpenModelica Environment Structure

The OpenModelica environment consists of several interconnected subsystems, as depicted in Figure 1-1
below.

Eclipse Plugin Graphical Model

' =" Editor/Browser / Editor/Browser
A
Interactive wt
—

session handler Textual

1
1
]
)
: Model Editor
]
) DrModelica / \
: NoteBook
' Model Editor Execution Modelica
) Compiler
)
) \ /
: _____________________ Modelica
Debugger

Figure 1-1. The overall architecture of the OpenModelica environment. Arrows denote data and control
flow. The interactive session handler receives commands and shows results from evaluating commands and
expressions that are translated and executed. Several subsystems provide different forms of browsing and
textual editing of Modelica code. The debugger currently provides debugging of an extended algorithmic
subset of Modelica, and uses Eclipse for display and positioning. The graphical model editor is not really part
of OpenModelica but integrated into the system and available from Politecnico di Milano.

This version of the system documentation only includes the OpenModelica compilation subsystem,
translating Modelica to C code. The compiler also includes a Modelica interpreter for interactive usage and
for command and constant expression evaluation. The subsystem includes facilities for building simulation
executables linked with selected numerical ODE or DAE solvers. Currently the default solver is DASSL.

1.2 OpenModelica Compiler Translation Stages

The Modelica translation process is schematically depicted in Figure 1-2 below. Modelica source code
(typically .mo files) input to the compiler is first translated to a so-called flat model. This phase includes
type checking, performing all object-oriented operations such as inheritance, modifications etc., and fixing
package inclusion and lookup as well as import statements. The flat model includes a set of equations
declarations and functions, with all object-oriented structure removed apart from dot notation within names.
This process is a partial instantiation of the model, called code instantiation or elaboration in subsequent
sections.

The next two phases, the equation analyzer and equation optimizer, are necessary for compiling models
containing equations. Finally, C code is generated which is fed through a C compiler to produce executable
code.

Modelica
Source Code

{}4‘“"‘“‘“‘“ Modelica model

Translator

“&——— [|at Model

-

Analyzer

-

===~ Sorted equations

Optimizer
{} < Optim_ized sorted
equations
Code
Generator

afp=esmmn======= C Code

-

C Compiler

@4-—-—--- Executable

Simulation

Figure 1-2. Translation stages from Modelica code to executing simulation.

1.3 Simplified Overall Structure of the Compiler

The OpenModelica compiler is separated into a number of modules, to separate different stages of the
translation, and to make it more manageable. The top level function is called main, and appears as follows
in simplified form that emits flat Modelica (leaving out the code generation and symbolic equation
manipulation):

function main
input String £; // file name

algorithm
ast := Parser.parse(f);
scodel := SCode.elaborate (ast);
scode?2 := Inst.elaborate(scodel);

DAE.dump (scode?2) ;
end main;

13

The simplified overall structure of the OpenModelica compiler is depicted in Figure 1-3, showing the most
important modules, some of which can be recognized from the above main function. The total system
contains approximately 40 modules.

Main AT Lookup
w -
TR ‘ — Lo |
: ‘y \\ 4 (Env, name) SCode.Class DAE Dump FlatM odelica
Absyn SCode DAE
Parse SCode » Inst DAELow
/explode 1
(Exp.Exp, i
SCode.Exp| Types.Type) SimCode
y |
Exp.Exp Static C code g
(Env, mme)
l Values Value
*>I Ceval

Figure 1-3. Some module connections and data flows in the OpenModelica compiler. The parser generates
abstract syntax (Absyn) which is converted to the simplified (SCode) intermediate form. The code
instantiation module (Inst) calls Lookup to find a name in an environment. It also generates the DAE
equation representation which is simplified by DAELow. The Ceval module performs compile-time or
interactive expression evaluation and returns values. The Static module performs static semantics and type
checking. The DAELow module performs BLT sorting and index reduction.

1.4 Parsing and Abstract Syntax

The function Parser.parse is actually written in C, and calls the parser generated from a grammar by the
ANTLR parser generator tool (ANTLR 1998). This parser builds an abstract syntax tree (AST) from the
source file, using the AST data types in a MetaModelica module called Absyn. The parsing stage is not
really part of the semantic description, but is of course necessary to build a real translator.

1.5 Rewriting the AST into SCode

The AST closely corresponds to the parse tree and keeps the structure of the source file. This has several
disadvantages when it comes to translating the program, and especially if the translation rules should be
easy to read for a human. For this reason a preparatory translation pass is introduced which translates the
AST into an intermediate form, called SCode. Besides some minor simplifications the SCode structure dif-
fers from the AST in the following respects:

e All variables are described separately. In the source and in the AST several variables in a class
definition can be declared at once, as in Real x, y[17];. In the SCode this is represented as two
unrelated declarations, as if it had been written Real x; Real y[17];.

e Class declaration sections. In a Modelica class declaration the public, protected, equation and
algorithm sections may be included in any number and in any order, with an implicit public section
first. In the sCode these sections are collected so that all public and protected sections are
combined into one section, while keeping the order of the elements. The information about which
elements were in a protected section is stored with the element itself.

One might have thought that more work could be done at this stage, like analyzing expression types and
resolving names. But due to the nature of the Modelica language, the only way to know anything about
how the names will be resolved during elaboration is to do a more or less full elaboration. It is possible to

14

analyze a class declaration and find out what the parts of the declaration would mean if the class was to be
elaborated as-is, but since it is possible to modify much of the class while elaborating it that analysis would
not be of much use.

1.6 Model Flattening and Instantiation

To be executed, classes in a model need to be instantiated, i.e., data objects are created according to the
class declaration. There are two phases of instantiation:

e The symbolic, or compile time, phase of instantiation is usually called flattening/elaboration or
code instantiation. No data objects are created during this phase. Instead the symbolic internal
representation of the model to be executed/simulated is transformed, by performing inheritance
operations, modification operations, aggregation operations, etc.

e The creation of the data object, usually called instantiation in ordinary object-oriented terminology.
This can be done either at compile time or at run-time depending on the circumstances and choice
of implementation.

The central part of the translation is the code instantiation or flattening/elaboration of the model. The
convention is that the top-level model in the instance hierarchy in the source file is elaborated, which
means that the equations in that model declaration, and all its subcomponents, are computed and collected.
The elaboration of a class is done by looking at the class definition, elaborating all subcomponents and
collecting all equations, functions, and algorithms. To accomplish this, the translator needs to keep track of
the class context. The context includes the lexical scope of the class definition. This constitutes the
environment which includes the variables and classes declared previously in the same scope as the current
class, and its parent scope, and all enclosing scopes. The other part of the context is the current set of
modifiers which modify things like parameter values or redeclare subcomponents.
model M
constant Real ¢ = 5;
model Foo
parameter Real p = 3;
Real x;
equation
X = p * sin(time) + c;
end Foo;

Foo f(p = 17);
end M;

In the example above, elaborating the model M means elaborating its subcomponent f, which is of type Foo.
While elaborating £ the current environment is the parent environment, which includes the constant c. The
current set of modifications is (p = 17), which means that the parameter p in the component £ will be 17
rather than 3.

There are many semantic rules that takes care of this, but only a few are shown here. They are also
somewhat simplified to focus on the central aspects.

1.7 The instClass and instElement Functions

The function instClass elaborates a class. It takes five arguments, the environment env, the set of mod-
ifications mod, the prefix inPrefix which is used to build a globally unique name of the component in a
hierarchical fashion, a collection of connection sets csets, and the class definition inScodeclass. It
opens a new scope in the environment where all the names in this class will be stored, and then uses a
function called instClassIn to do most of the work. Finally it generates equations from the connection
sets collected while elaborating this class. The “result” of the function is the elaborated equations and some
information about what was in the class. In the case of a function, regarded as a restricted class, the result is
an algorithm section.

15

One of the most important functions is instElement, that elaborates an element of a class. An element
can typically be a class definition, a variable or constant declaration, or an extends-clause. Below is shown
only the rule in instElement for elaborating variable declarations.

The following are simplified versions of the instClass and instElement functions.

function instClass "Symbolic instantiation of a class"

input Env inEnv;
input Mod inMod;
input Prefix inPrefix;

input Connect.Sets inConnectsets;
input Scode.Class 1inScodeclass;
output list<DAE.Element> outDAEelements;
output Connect.Sets outConnectSets;
output Types.Type outType;
algorithm
(outDAEelements, outConnectSets, outType) :=
matchcontinue (inEnv,inMod, inPrefix, inConnectsets, inScodeclass)
local
Env env,envl; Mod mod; Prefix prefix;
Connect.Sets connectSets, connectSetsl;
n,r; list<DAE.Element> dael,dae2;
case (env,mod,pre,connectSets, scodeClass as SCode.CLASS(n, ,r,))
equation
envl = Env.openScope (env) ;
(dael, ,connectSetsl,ciStatel,tys) = instClassIn(envl,mod,prefix,
connectSets, scodeClass);

dae?2 Connect.equations (connectSetsl) ;
dae listAppend (dael, dae2);
ty = mktype (ciStatel, tys);
then (dae, {(}, ty):
end matchcontinue;
end instClass;

function instElement "Symbolic instantiation of an element of a class"
input Env inEnv;
input Mod inMod;
input Prefix inPrefix;
input Connect.Sets inConnectSets;
input Scode.Element inScodeElement;
output list<DAE.Element> outDAEelement;
output Env outEnv;
output Connect.Sets outConnectSets;
output list<Types.Var> outTypesVar;
algorithm

(outDAE, outEnv,outdConnectSets, outdTypesVar) :=
matchcontinue (inEnv, inMod, inPrefix,inConnectSets, inScodeElement)
local
Env env,envl; Mod mods; Prefix pre;
Connect.Sets csets,csetsl;
n, final, prot, attr, t, m;

case (env,mods,pre,csets, SCode.COMPONENT (n,final,prot,attr,t,m))
equation
vn = Prefix.prefixCref (pre,Exp.CREF IDENT (n,{}));
(cl,classmod) = Lookup.lookupClass (env,t) // Find the class definition
mm = Mod.lookupModification (mods,n);

mod = Mod.merge (classmod, mm) ; // Merge the modifications
modl = Mod.merge (mod,m) ;
prel = Prefix.prefixAdd(n, [],pre); // Extend the preﬁx
(dael,csetsl, ty,st) =

instClass (env,modl, prel,csets,cl) // Elaborate the variable

eq = Mod.modEquation (modl); // Ifthe variable is declared with a default equation,

16

binding = makeBinding (env,attr,eq,cl); // add itto the environment
// with the variable.

envl = Env.extendFrameFrame v (env, // Addthevaﬁabblﬁndhgtothe
Env.FRAMEVAR (n, attr, ty,binding)); // environment

dae2 = instModEquation (env,pre,n,modl); // Fetch the equation, if supplied

dae = listAppendAppend (dael, dae2); // Concatenate the equation lists

then (dae, envl,csetsl, { (n,attr,ty) })

end matchcontinue;
end instElement;

1.8 Output

The equations, functions, and variables found during elaboration (symbolic instantiation) are collected in a
list of objects of type DAEcomp :
uniontype DAEcomp
record VAR Exp.ComponentRef componentRef; VarKind varKind; end VAR;

record EQUATION Exp expl; Exp exp2; end EQUATION;
end DAEcomp;

As the final stage of translation, functions, equations, and algorithm sections in this list are converted to C
code.

Chapter 2

Invoking omc — the OpenModelica
Compiler/Interpreter Subsystem

The OpenModelica Compiler/Interpreter subsystem (omc) can be invoked in two ways:

e Asawhole program, called at the operating-system level, e.g. as a command.
e Asaserver, called via a Corba client-server interface from client applications.

In the following we will describe these options in more detail.

2.1 Command-Line Invokation of the Compiler/Interpreter

The OpenModelica compilation subsystem is called omc (OpenModelica Compiler). The compiler can be
given file arguments as specified below, and flags that are described in the subsequent sections.

omc file.mo Return flat Modelica by code instantiating the last class in the file file.mo
omc file.mof Put the flat Modelica produced by code instantiation of the last class within
file.mo in the file named file.mof.
omc file.mos Run the Modelica script file called file.mos.
omc Calling omc with no parameters will display the help:
$./omc

OpenModelica Compiler version: 1.5.0

http://www.OpenModelica.org

Please check the System Guide for full information about flags.

Usage: omc [-runtimeOptions +omcOptions] (Model.mo | Model.mof | Script.mos) [Libraries |
.mo (f)-files]

* Libraries: Fully qualified names of libraries to load before processing Model or Script.
* The libraries should be separated by spaces: Libl Lib2 ... LibN.
* runtimeOptions: call omc -help for seeing runtime options
* omcOptions:
++v|+version will print the version and exit
+s Model.mo will generate code for Model:
Model.cpp the model C++ code
Model functions.cpp the model functions C++ code
Model.makefile the makefile to compile the model.
Model init.txt the initial values for parameters
+d=interactive will start omc as a server listening on the socket
interface
+d=interactiveCorba will start omc as a server listening on the Corba interface
+c=corbaName works togheter with +d=interactiveCorba;
will start omc with a different Corba session name;
this way multiple omc compilers can be started
+s generate simulation code
+annotationVersion=1.x what annotation version should we use
accept 1l.x or 2.x (default) or 3.x
+noSimplify do not simplify expressions (default is to simplify)
+q run in quiet mode, output nothing
+g=MetaModelica accept MetaModelica grammar and semantics
+showErrorMessages show error messages while they happen; default to no.
+d=flags set debug flags:
+d=bltdump dump the blt form
+d=failtrace prints a lot of error messages; use if your model fails;

see also below.

18

+d=parsedump
+d=parseonly
+d=dynload
+d=nogen
+d=usedep

+d=noevalfunc

+i=classpath

* Examples:

211

omc Model.mo

omc Model.mof

omc Script.mos

omc Model.mo Modelica

dump the parsing tree

will only parse the given file and exit

display debug information about dynamic loading of compiled
functions

do not use the dynamic loading.

use dependency analysis to speed up the compilation.
[experimental].

default is to not use the dependency analysis.

do not use the function interpreter, uses dynamic loading
instead.

default is to use the function interpreter.

instantiate the class given by the fully qualified path.

will produce flattened Model on standard output

will produce flattened Model on standard output

will run the commands from Script.mos

will first load the Modelica library and then produce
flattened Model on standard output

omc Modell.mo Model2.mo will load both Modell.mo and Model2.mo, and produce

*.mo (Modelica files)

flattened Modell on standard output

*.mof (Flat Modelica files)
*.mos (Modelica Script files)

General Compiler Flags

The following are general flags for uses not specifically related to debugging or tracing:

omc

omc

omc

omc

omc

omc

omc

2111

+s file.mo/.mof

+q
+d=blt

+d=interactive

+d=interactiveCorba

+i=classpath

++v

Generate simulation code for the model last in file.mo or file.mof.
The following files are generated: modelname.cpp, modelname.h,
modelname init.txt, modelname.makefile

Quietly run the compiler, no output to stdout.

Perform BLT transformation of the equations.

Run the compiler in interactive mode with Socket communication. This
functionality is depreciated and is replaced by the newer Corba
communication module, but still useful in some cases for debugging
communication. This flag only works under Linux and Cygwin.

Run the compiler in interactive mode with Corba communication. This is
the standard communication that is used for the interactive mode.
Instantiates the class given by the fully qualified path
classpath, instead of the last class in the file as default.

Returns the version number of the OMC compiler.

Example of Generating Stand-alone Simulation Code

To run omc from the command line and generate simulation code use the following flag:

omc +s model.mo

Currently the classloader does not load packages from MODELICAPATH automatically, so the .mo file
must contain all used classes, i.c., a “total model” must be created.

Once you have generated the C code (and makefile, etc.) you can compile the model using

make

21.2

—-f modelname.makefile

Compiler Debug Trace Flags

Run omc with a comma separated list of flags without spaces,

19

"omc +d=flgl,flg2,..."

Here £1g1,£1g2,... are one of the flag names in the leftmost column of the flag description below. The
special flag named a1l turns on all flags.

A debug trace printing is turned on by giving a flag name to the print function, like:
Debug. fprint ("1i", "Lookup information:...")

If omc is run with the following:

omc +d=foo,1li,bar,

this line will appear on stdout, otherwise not. For backwards compatibility for debug prints not yet sorted
out, the old debug print call:

Debug.print

has been changed to a call like the following:

Debug. fprint ("olddebug", ...)

Thus, if omc is run with the debug flag olddebug (or all), these messages will appear. The calls to
Debug.print should eventually be changed to appropriately flagged calls.

Moreover, putting a "-" in front of a flag turns off that flag, i.e.:
omc td=all,-dump
This will turn on all flags except dump.

Using Graphviz for visualization of abstract syntax trees, can be done by giving one of the graphviz flags,
and redirect the output to a file. Then run "dot -Tps filename -o filename.ps" or "dotty

filename".

The following is a short description of all available debug trace flags. There is less of a need for some of
these flags now when the recently developed interactive debugger with a data structure viewer is available.

e All debug tracing
all Turn on all debug tracing.
none This flag has default value true if no flags are given.

e General

info General information.

olddebug Print messages sent to the old Debug.print
e Dump

parsedump Dump the parse tree.

dump Dump the absyn tree.

dumpgraphviz Dump the absyn tree in graphviz format.
daedump Dump the DAE in printed form.
daedumpgraphv Dump the DAE in graphviz format.
daedumpdebug Dump the DAE in expression form.
dumptr Dump trace.

beforefixmodout Dump the PDAE in expression form before moving the modification
equations into the VAR declarations.

e Types
tf Types and functions.

20

tytr Type trace.
e Lookup
1i Lookup information.
lotr Lookup trace.
locom Lookup compare.
e Static
sei Information
setr Trace
e SCode
ecd Trace of elab classdef.

e Instantiation

insttr Trace of code instantiation.

e Env
envprint Dump the environment at each class instantiation.
envgraph Same as envprint, but using graphviz.

expenvprint Dump environment at equation elaboration.

expenvgraph dump environment at equation elaboration.

2.2 The OpenModelica Client-Server Architecture

The OpenModelica client-server architecture is schematically depicted in Figure 2-1, showing two typical
clients: a graphic model editor and an interactive session handler for command interpretation.

Parse . .
Client: Graphic
J L —{ Model Editor
Server: Main Program [
Including Compiler, Corba —
Interpreter, etc. | || Client: OMShell
Interactive
Session Handler
A
SCode [Interactive g Client: Eclipse
l ‘l \ Untyped API Plugin
Inst
l 1 system Typed Checked Command API
|—> plot
Ceval etc

Figure 2-1. Client-Server interconnection structure of the compiler/interpreter main program and interactive
tool interfaces. Messages from the Corba interface are of two kinds. The first group consists of expressions or
user commands which are evaluated by the Ceval module. The second group are declarations of classes,
variables, etc., assignments, and client-server API calls that are handled via the Interactive module, which
also stores information about interactively declared/assigned items at the top-level in an environment
structure.

The SCode module simplifies the Absyn representation, public components are collected together,
protected ones together, etc. The Interactive modul serves the untyped API, updates, searches, and keeps
the abstract syntax representation. An environment structure is not kept/cached, but is built by Inst at each

21

call. Call Inst for more exact instantion lookup in certain cases. The whole Absyn AST is converted into
Scode when something is compiled, e.g. converting the whole standard library if something.

Commands or Modelica expressions are sent as text from the clients via the Corba interface, parsed, and
divided into two groups by the main program:

o All kinds of declarations of classes, types, functions, constants, etc., as well as equations and
assignment statements. Moreover, function calls to the untyped API also belong to this group — a
function name is checked if it belongs to the API names. The Interactive module handles this group
of declarations and untyped API commands.

e Expressions and type checked API commands, which are handled by the Ceval module.

The reason the untyped API calls are not passed via SCode and Inst to Ceval is that Ceval can only handle
typed calls — the type is always computed and checked, whereas the untyped API prioritizes performance
and typing flexibility. The Main module checks the name of a called function name to determine if it
belongs to the untyped API, and should be routed to Interactive.

Moreover, the Interactive module maintains an environment of all interactively given declarations and
assignments at the top-level, which is the reason such items need to be handled by the Interactive module.

22

2.3

Client-Server Type-Checked Command API for Scripting

The following are short summaries of typed-checked scripting commands/ interactive user commands for

the OpenModelica environment.

The emphasis is on safety and type-checking of user commands rather than high performance run-time
command interpretation as in the untyped command interface described in Section 2.4.
These commands are useful for loading and saving classes, reading and storing data, plotting of results,

and various other tasks.

The arguments passed to a scripting function should follow syntactic and typing rules for Modelica and
for the scripting function in question. In the following tables we briefly indicate the types or character of
the formal parameters to the functions by the following notation:

e String typed argument, e.g. "hello", "myfile.mo".

TypeName — class, package or function name, e.g. MyClass, Modelica.Math.
VariableName — variable name, e.g. v1, v2, vars1[2] .x, etc.

Integer or Real typed argument, e.g. 35, 3.14, xintvariable.

options — optional parameters with named formal parameter passing.

The following are brief descriptions of the most common scripting commands available in
OpenModelica environment. Se also some example calls in the file

the

animate (className, options) |Display a 3D visaulization of the latest simulation. Inputs:
(NotYetlmplemented) TypeName className; OUtpUtS: Boolean res;
cd(dir) Change directory. Inputs: String dir;

Outputs: Boolean res;
cd () Return current working directory. Outputs: string res;
checkModel (className) Instantiate model, optimize equations, and report errors.
(NotYetImplemented) Inputs: TypeName className; OUutputs: Boolean res;
clear () Clears everything: symboltable and variables.

Outputs: Boolean res;
clearClasses () Clear all class definitions from symboltable.
(NotYetImplemented)

Outputs: Boolean res;

clearLog () (NotYetlmplemented)

Clear the log. Outputs: Boolean res;

clearVariables ()

Clear all user defined variables. Outputs: Boolean res;

closePlots () (NotYetlmplemented)

Close all plot windows. Outputs: Boolean res;

getLog () (NotYetImplemented)

Return log as a string. Outputs: String log;

instantiateModel (className)

Instantiate model, resulting in a .mof£ file of flattened Modelica.

Inputs: TypeName className; OUtputs: Boolean res;

list(className)

Print class definition. Inputs: TypeName className;
Outputs: string classDef;

list()

Print all loaded class definitions. Output: String classdefs;

listVariables ()

Print user defined variables. Outputs: variableName res;

loadFile (fileName)

Load models from file.
Inputs: string fileName OUtpUtS: Boolean res;

loadModel (className)

Load the file corresponding to the class, using the Modelica class
name-to-file-name mapping to locate the file.
Inputs: TypeName className OUtpUtS: Boolean res;

plot (variables, options)

Plots vars, which is a vector of variable names.

23

Inputs: variableName variables; String title;

Boolean legend; Boolean gridLines;
ie.
Real yrangel[2] i.e.
Outputs: Boolean res;

Real xrange[2] {xmin, xmax};

{ymin, ymax} ;

plot (var, options)

Plots variable with name var.
Inputs: variableName var; String title; Boolean

legend; Boolean gridLines;
Real xrange[2] l.e. {xmin,xmax};
Real yrange[2] l.e. {ymin,ymax};

Outputs: Boolean res;

plotParametric (varsl,
vars2, options)

Plot each pair of corresponding variables from the vectors of
variables varsl, vars2 as a parametric plot.

Inputs: variableName varsl[:]; VariableName
vars2[size(variablesl,1l)]; String title; Boolean
legend; Boolean gridLines;

Outputs: Boolean res;

Real rangel[2,2];

plotParametric (varl,
var2, options)

Plot the variable var2 against var1 as a parametric plot.

Inputs: variableName varl; VariableName var2;
String title; Boolean legend; Boolean gridLines;
Real range[2,2]; Outputs: Boolean res;

plotVectors (vl, v2, options)
(??NotYetlmplemented)

Plot vectors v1 and v2 as an x-y plot. Inputs: variableName
vl; VariableName v2; Outputs: Boolean res;

readMatrix (fileName,
matrixName)
(??NotYetlmplemented)

Read a matrix from a file given filename and matrixname.
Inputs: String fileName; String matrixName;
Outputs: Boolean matrix[:,:];

readMatrix (fileName,
matrixName, nRows, nColumns)
(??NotYetlmplemented)

Read a matrix from a file, given file name, matrix name, #rows
and #columns. Inputs: String fileName;

String matrixName; int nRows; int nColumns;
Outputs: Real res[nRows,nColumns];

readMatrixSize (fileName,
matrixName)
(??NotYetlmplemented)

Read the matrix dimension from a file given a matrix name.
Inputs: String fileName; String matrixName;
Outputs: Integer sizes[2];

readSimulationResult (

fileName, variables, size)

Reads the simulation result for a list of variables and returns a
matrix of values (each column as a vector or values for a variable.)
Size of result is also given as input. Inputs: String fileName;
VariableName variables[:]; Integer size;

Outputs: Real res[size(variables,1),size)];

readSimulationResultSize (
fileName)
(??NotYetlmplemented)

Read the size of the trajectory vector from a file. Inputs: String
fileName; OUtputs: Integer size;

runScript (fileName)

Executes the script file given as argument.
Inputs: string fileName; OUtpUtS: Boolean res;

savelLog (fileName)
(??NotYetlmplemented)

Save the log to a file.
Inputs: String fileName; OUtpUtS: Boolean res;

saveModel (fileName,
className) (NotYetlmplemented)

Save class definition in a file. Inputs: String fileName;
TypeName className OULpUtsS: Boolean res;

save (className)

Save the model (A1) into the file it was loaded from.

24

Inputs: TypeName className

saveTotalModel (fileName,
className)
(??NotYetlmplemented)

Save total class definition into file of a class. Inputs: String
fileName; TypeName className OULpUtS: Boolean res;

simulate (className, options)

Simulate model, optionally setting simulation values.
Inputs: TypeName className; Real startTime;
Real stopTime; Integer numberOfIntervals;
Real outputInterval; String method;

Real tolerance; Real fixedStepSize;
String outputFormat;

Outputs: SimulationResult simRes;

system (fileName)

Execute system command. Inputs: String fileName; Outputs:
Integer res;

translateModel (className)
(??NotYetlmplemented)

Instantiate model, optimize equations, and generate code. Inputs:
TypeName className; Outputs: SimulationObject res;

writeMatrix (fileName,
matrixName, matrix)
(??NotYetlmplemented)

Write matrix to file given a matrix name and a matrix.
Inputs: String fileName; String matrixName; Real
matrix[:,:]; Outputs: Boolean res;

2.3.1 Examples

The following session in OpenModelica illustrates the use of a few of the above-mentioned functions.

>> model test Real x; end test;

Ok
>> s:=list (test);
>> s
"model test

Real x;
equation

der (x)=x;
end test;
n
>> instantiateModel (test)
"fclass test
Real x;
equation

der (x) = x;
end test;
"
>> simulate (test)
record

resultFile = "C:\OpenModelical.2.l\test res.plt"

end record

>> a:=1:10
{1,2,3,4,5,6,7,8,9,10}
>> a*2

(2,4,6,8,10,12,14,16,18,20}

>> clearVariables ()
true
>> list (test)
"model test
Real x;
equation
der (x)=x;

25

end test;

>> clear ()
true
>> list ()

{}

The common combination of a simulation followed by a plot:

> simulate (mycircuit, stopTime=10.0);
> plot ({R1.v});

There are several output format possibilities. “plt” is default, and plt is currently the only format capable of
using val() or plot() functions. csv (comma separated values) is roughly twice as fast on data-heavy
simulations, and doesn't require all output data allocated in RAM during simulation. Empty does no output
at all and should be by far the fastest.

simulate(... , outputFormat="csv")
simulate (... , outputFormat="plt")
simulate(... , outputFormat="empty")

2.4 Client-Server Untyped High Performance API for Model Query

The following API is primarily designed for clients calling the OpenModelica compiler/interpreter via the
Corba (or socket) interface to obtain information about and manipulate the model structure, but the
functions can also be invoked directly as user commands and/or scripting commands. The API has the
following general properties:

e Untyped, no type checking is performed. The reason is high performance, low overhead per call.

e All commands are sent as strings in Modelica syntax; all results are returned as strings.

e Polymorphic typed commands. Commands are internally parsed into Modelica Abstract syntax, but
in a way that does not enforce uniform typing (analogous to what is allowed for annotations). For
example, vectors such as {true, 3.14, "hello"} can be passed even though the elements have mixed
element types, here (Boolean, Real, String), which is currently not allowed in the Modelica type
system.

The API for interactive/incremental development consist of a set of Modelica functions in the Interactive
module. Calls to these functions can be sent from clients to the interactive environment as plain text and
parsed using an expression parser for Modelica. Calls to this API are parsed and routed from the Main
module to the Interactive module if the called function name is in the set of names in this API. All API
functions return strings, e.g. if the value true is returned, the text "true" will be sent back to the caller, but
without the string quotes.

e When a function fails to perform its action the string "-1" is returned.
e All results from these functions are returned as strings (without string quotes).

The API can be used by human users when interactively building models, directly, or indirectly by using
scripts, but also by for instance a model editor who wants to interact with the symbol table for
adding/changing/removing models and components, etc.

(??Future extension: Also describe corresponding internal calls from within OpenModelica)

26

241 Definitions

An Argument no. n, e.g. Al is the first argument, A2 is the second, etc.
<ident> Identifier, e.g. A or Modelica.

<string> Modelica string, e.g. "Nisse" or "foo".

<expr> Arbitrary Modelica expression..

<cref> Class reference, i.e. the name of a class, e.g. Resistor.

24.2 Examples of Calls

Calls fulfill the normal Modelica function call syntax. For example:

saveModel ("MyResistorFile.mo",MyResistor)

will save the model MyResistor into the file "MyResistorFile.mo".
For creating new models it is most practical to send a model declaration to the API, since the API also
accepts Modelica declarations and Modelica expressions. For example, sending:

model Foo end Foo;

will create an empty model named Foo, whereas sending:

connector Port end Port;
will create a new empty connector class named Port.

Many more API example calls can be found in the OMNotebook file ModelQueryAPIexamples.onb in the
OpenModelica testmodels directory.

2.4.3 Untyped API Functions for Model Query and Manipulation

The following are brief descriptions of the untyped API functions available in the OpenModelica
environment for obtaining information about models and/or manipulate models. API calls are decoded by
evaluateGraphicalApi and evaluateGraphicalApi?2 in the Interactive package. Results from a call
are returned as as a text string (without the string delimiters ""). The functions in the typed API (Section
2.3) are handled by the Ceval package.

Executable example calls to these functions are available in the file ModelQueryAPTIexample.onb in
the OpenModelica testmodels directory.

Additional, more extensive documentation with examples, including some functions not mentioned
below, is available in the separate file OMC_API-HowTo.pdf.

—-—— Source Files ---

getSourceFile (Al<string>) Gets the source file of the class given as argument (Al).
setSourceFile (Al<string>, Associates the class given as first argument (A1) to a source
A2<string>)

file given as second argument (A2)

--—- Environment Variables ---

getEnvironmentvar (Al<string>) Retrieves an evironment variable with the specified name.
setEnvironmentvar (Al<string>, Sets the environment variable with the specified name (A1) to
A2<string>)

a given value (A2).

-—— Classes and Models —---

loadFile (Al<string>) Loads all models in the file. Also in typed API. Returns list of

27

names of top level classes in the loaded files.

loadFilelnteractiveQualified
(Al<string>)

Loads all models in the file. Also in typed API. Returns list of
qualified names of top level classes in the loaded files.

loadFilelnteractive (Al<string>)

Loads the file given as argument into the compiler symbol
table. ??What is the difference to loadFile??

loadModel (Al<cref>)

Loads the model (A1) by looking up the correct file to load in
SOPENMODELICALIBRARY. Loads all models in that file into
the symbol table.

saveModel (Al<string>, A2<cref>)

Saves the model (A2) in a file given by a string (A1). This call
is also in typed APL.
NOTE: ?? Not yet completely implemented.

save (Al<cref>)

Saves the model (A1) into the file it was previously loaded
from. This call is also in typed API.

deleteClass (Al<cref>)

Deletes the class from the symbol table.

renameClass (Al<cref>, A2<cref>)

Renames an already existing class with from_name Al to
to_name (A2). The rename is performed recursively in all
already loaded models which reference the class Al.
NOTE: ??The implementation is currently buggy/very slow.

--—- Class Attributes ---

getElementsInfo (Al<cref>)

Retrieves the Info attribute of all elements within the given
class (A1). This contains information of the element type,
filename, isReadOnly, line information, name etc., in the form
of a vector containing element descriptors on record
constructor form rec(...), €.g.: "{rec(attrl=valuel,
attr2=value2 ...)
attr2=value? e)

., rec(attrl=valuel,

}u

setClassComment (Al<cref>, A2<stri
ng>)

Sets the class (Al) string comment (A2).

addClassAnnotation (Al<cref>,
annotate=<expr>)

Adds annotation given by A2(in the form annotate=
classmod(...)) tothe model definition referenced by Al.
Should be used to add Icon Diagram and Documentation
annotations.

getlconAnnotation (Al<cref>)

Returns the Icon Annotation of the class named by Al.

getDiagramAnnotation (Al<cref>)

Returns the Diagram annotation of the class named by Al.
NOTET1: Since the Diagram annotations can be found in base
classes a partial code instantiation is performed that flattens the
inheritance hierarchy in order to find all annotations.

NOTE?2: Because of the partial flattening, the format returned
is not according the Modelica standard for Diagram
annotations.

getPackages (Al<cref>)

Returns the names of all Packages in a class/package named by
Al asalist, e.g.: {Electrical,Blocks,Mechanics,
Constants,Math, STunits}

getPackages ()

Returns the names of all package definitions in the global
scope.

getClassNames (Al<cref>)

Returns the names of all class defintions in a class/package.

getClassNames ()

Returns the names of all class definitions in the global scope.

28

getClassNamesForSimulation ()

Returns a list of all “open models™ in client that are candidates
for simulation.

setClassNamesForSimulation (Al<st
ring>)

Set the list of all “open models™ in client that are candidates for
simulation. ~ The string must be on format:
“{modell,model2,model3}”

getClassAttributes (Al<cref>)

Returns all the possible class information in the following
form: rec (attrl=valuel, attr2=value2 ...)

getClassRestriction (Al<cref>)

Returns the kind of restricted class of <cref>, e.g. "model™,
"connector", "function", "package", etc.

getClassiInformation (Al<cref>)

Returns a list of the following information about the class Al:
{"restriction","comment","filename.mo", {bool,bool,bool},{"re

adonly|writable",int,int,int,int} }

-—-— Restricted Class Predicates

isPrimitive (Al<cref>)

Returns "true" if class is of primitive type, otherwise
"false".

isConnector (Al<cref>)

Returns "true" if class is a connector, otherwise "false".
isModel (Al<cref>) Returns "true" if class is a model, otherwise "false".
isRecord (Al<cref>) Returns "true" if class is a record, otherwise "false".
isBlock (Al<cref>) Returns "true" if class is a block, otherwise "false".
isType (Al<cref>) Returns "true" if class is a type, otherwise "false™.
isFunction (Al<cref>) Returns "true" if class is a function, otherwise "false".
isPackage (Al<cref>) Returns "true" if class is a package, otherwise "false".
isClass (aAl<cref>) Returns "true" if Al is a class, otherwise "false".
isParameter (Al<cref>) Returns "true" if Al is a parameter, otherwise "false".

NOTE: ??Not yet implemented.

isConstant (Al<cref>)

Returns "true" if Al is a constant, otherwise "false".
NOTE: ??Not yet implemented.

isProtected (Al<cref>)

Returns "true" if Al is protected, otherwise "false".
NOTE: ??Not yet implemented.

existClass (Al<cref)

Returns "true" if class exists in symbolTable, otherwise
"false".

—-—-- Components ---

getComponents (Al<cref>)

Returns a list of the component declarations within class Al:
"{{Atype,varidA, "commentA"}, {Btype, varidB, "com
mentB"}, {...}}"

setComponentProperties (Al<cref>,
A2<cref>,
A3<Boolean>,
A4<Boolean>,
A5<Boolean>,
A6<Boolean>,
A7<String>,
A8<{Boolean,
A9<String>

)

Boolean}>,

Sets the following properties of a component (A2) in a class
(A1).

- A3 final (true/false)

- A4 flow (true/false)

- A5 protected(true) or public(false)
- A6 replaceable (true/false)

- A7 variablity: "constant” or "discrete" or
"parameter" or ""

29

- A8 dynamic_ref: {inner, outer} - two boolean values.

- A9 causality: "input" or "output" or ""

getComponentAnnotations (Al<cref>
)

Returns a list { . . .} of all annotations of all components in
Al, in the same order as the components, one annotation per
component.

getCrefInfo (Al<cref>)

Gets the component reference file and position information.
Returns a list: {file, readonly|writable, start
line, start column, end line, end column}

>> getCrefInfo (BouncingBall)
{C:/OpenModelical.4.1/testmodels/BouncingBall.

mo,writable,1,1,20,17}

addComponent (Al<ident>,A2<cref>,
A3<cref>, annotate=<expr>)

Adds a component with name (A1), type (A2), and class (A3)
as arguments. Optional annotations are given with the named
argument annotate.

deleteComponent (Al<ident>,
A2<cref>)

Deletes a component (A1) within a class (A2).

updateComponent (Al<ident>,
A2<cref>,
A3<cref>,annotate=<expr>)

Updates an already existing component with name (A1), type
(A2), and class (A3) as arguments. Optional annotations are
given with the named argument annotate.

renameComponent (Al<cref>,
A2<ident>,
A3<ident>)

Renames an already existing component with name A2 defined
in a class with name (A1), to the new name (A3). The rename
is performed recursively in all already loaded models which
reference the component declared in class A2. NOTE: ??The
implementation is currently buggy/very slow.

getNthComponentAnnotation (
Al<cref>,A2<int>)

Returns the flattened annotation record of the nth component
(A2) (the first is has no 1) within class/component A1. Consists
of a comma separated string of 15 values, see Annotations in
Section 2.4.4 below, e.g "false, 10,30, ..."

getNthComponentModification (
Al<cref>,A2<int>)

Returns the modification of the nth component (A2) where the
first has no 1) of class/component Al.

getComponentModifierValue (Al<cre
£f>, A2<cref)

Returns the value of a component (e.g. variable, parameter,
constant, etc.) (A2) in a class (Al).

setComponentModifierValue (Al<cre
£>, A2<cref>,A3<exp>)

Sets the modfier value of a component (e.g. variable,
parameter, constant, etc.) (A2) in a class (A1) to an expression
(unevaluated) in A3.

getComponentModifierNames (Al<cre
£>, A2<cref>)

Retrieves the names of ?? all components in the class.

—-—— Inheritance ---

getlnheritanceCount (Al<cref>)

Returns the number (as a string) of inherited classes of a class.

getNthlnheritedClass (Al<cref>,
A2<int>)

Returns the type name of the nth inherited class of a class. The
first class has number 1.

getExtendsModifierNames (Al<cref>
)

Return the modifier names of a modification on an extends
clause. For instance:

"model test extends end

test;"

A(pl=3,p2(z=3));

getExtendsModifierNames (test,A) => {pl,p2}

30

getExtendsModifierValue (Al<cref>
)

Return the submodifier value of an extends clause for
instance, "model test extends A (pl=3,p2(z=3));end
test;" getExtendsModifierValue (test,A,pl) =>=3

—-—— Connections —---

getConnectionCount (Al<cref>)

Returns the number (as a string) of connections in the model.

getNthConnection (Al<cref>,
A2<int>)

Returns the nth connection, as a comma separated pair of
connectors, €.g. "R1.n,R2.p". The first has number 1.

getNthConnectionAnnotation (
Al<cref>,A2<int>)

Returns the nth connection annotation as comma separated list
of values of a flattened record, see Annotations in Section 2.4.4
below.

addConnection (Al<cref>,A2<cref>,
A3<cref>, annotate=<expr>)

Adds connection connect (Al,A2) to model A3, with
annotation given by the named argument annotate.

updateConnection (Al<cref>,
A2<cref>,A3<cref>,
annotate=<expr>)

Updates an already existing connection.

deleteConnection (Al<cref>,
A2<cref>,A3<cref>)

Deletes the connection connect (A1, A2) in class given by A3.

--—- Equations ---

addEquation (Al<cref>, A2<expr>,
A3<expr>) (??NotYetImplemented)

Adds the equation A2=A3 to the model named by Al.

getEquationCount (Al<cref>)
(??NotYetImplemented)

Returns the number of equations (as a string) in the model
named A1. (This includes connections)

getNthEquation (Al<cref>, A2<int>)
(??NotYetlmplemented)

Returns the nth (A2) equation of the model named by Al. e.g.
"der (x)=-1" or "connect (A.b,C.a)". The first has
number 1.

deleteNthEquation (Al<cref>,
A2<int>) (??NotYetImplemented)

Deletes the nth (22) equation in the model named by A1. The
first has number 1.

--- Misc ---

checkSettings () Improved version of getSettings(). Used for debugging a user's
settings. It checks that a compiler is installed and working, that
environment variables are set, which OS is used, and more.

getversion () returns the OMC version, e.g. "1.4.2"

getAstAsCorbaString ([filename=<S
tring>])

This command unparses the internal AST of all the loaded files
as text using the Java CORBA format for uniontypes. If a
filename is given, the text is dumped to that file instead of sent
over CORBA. This is useful because you can save the internal
AST on file for future use. If you have problems sending the
large text over CORBA, you can also use the file as
intermediate output to overcome bugs and limitations in
CORBA or RML implementations on 32-bit platforms.

dumpXMLDAE (modelname [, asInSimula
tionCode=<Boolean>]
[,filePrefix=<String>]

[, storeInTemp=<Boolean>]

[, addMathMLCode =<Boolean>])

This command dumps the mathematical representation of a
model using an XML representation, with optional parameters
Inputs: TypeName className;

Boolean asInSimulationCode; String filePrefix;
Boolean storeInTemp;

Boolean addMathMLCode;

Outputs: String xmlFile

31

In particular, asTnSimulationCode defines where to stop in
the translation process (before dumping the model), the other
options are relative to the file storage: filePrefix for
specifying a different name and storeInTemp to use the
temporary directory. The optional parameter addMathMLCode
gives the possibility to don't print the MathML code within the
xml file, to make it more readable.Usage is trivial, just:
addMathMLCode=true/false (default value is false).
For an example, See Section 2.5.5.

exportDAEtoMatlab (nodelname) o))
Dumps the incidence matrix of model in a Matlab format. See

Section 2.5.6.

setDebugFlags (A1 = <String>)) . . .
Enables a debug flag in an interactive session. Useful to enable

failtrace even if omc was not started with the flag set (most
interactive clients start omc without any flag set).

243.1 ERROR Handling

When an error occurs in any of the above functions, the string "-1" is returned.

2.4.4 Annotations

Annotations can occur for several kinds of Modelica constructs.

24.4.1 Variable Annotations

Variable annotations (i.e., component annotations) are modifications of the following (flattened) Modelica
record:

record Placement
Boolean visible = true;
Real transformation.x=0;
Real transformation.y=0;
Real transformation.scale=1;
Real transformation.aspectRatio=1;
Boolean transformation.flipHorizontal=false;
Boolean transformation.flipVertical=false;
Real transformation.rotation=0;
Real iconTransformation.x=0;
Real iconTransformation.y=0;
Real iconTransformation.scale=1;
Real iconTransformation.aspectRatio=1;
Boolean iconTransformation.flipHorizontal=false;
Boolean iconTransformation.flipVertical=false;
Real iconTransformation.rotation=0;
end Placement;

2.4.4.2 Connection Annotations

Connection annotations are modifications of the following (flattened) Modelica record:

record Line
Real points[2][:];
Integer color[3]={0,0,0};
enumeration (None, Solid, Dash,Dot,DashDot, DashDotDot) pattern = Solid;
Real thickness=0.25;

32

enumeration (None,Open,Filled,Half) arrow[2] = {None, None};
Real arrowSize=3.0;
Boolean smooth=false;

end Line;

This is the Flat record Icon, used for Icon layer annotations

record Icon
Real coordinateSystem.extent[2,2] = {{-10, -10}, {10, 10}});
GraphicItem[:] graphics;

end Icon;

The textual representation of this flat record is somewhat more complicated, since the graphics vector can
conceptually contain different subclasses, like Line, Text, Rectangle, etc. To solve this, we will use
record constructor functions as the expressions of these. For instance, the following annotation:

annotation (

Icon(coordinateSystem={{-10,-10}, {10,10}},
graphics={Rectangle (extent={{-10,-10}, {10,10}}),
Text ({{-10,-10}, {10,10}}, textString="Icon")}));

will produce the following string representation of the flat record Icon:

{{{-10,10},{10,10}}, {Rectangle(true, {0,0,0},{0,0,0},
LinePattern.Solid,FillPattern.None, 0.25,BorderPattern.None,
{{-10,-10},{10,10}},0),Text ({{-10,-10}, {10,10}}, textString="Icon") }}

The following is the flat record for the Diagram annotation:

record Diagram
Real coordinateSystem.extent[2,2] = {{-10, -10}, {10, 10}});
GraphicItem[:] graphics;

end Diagram;

The flat records string representation is identical to the flat record of the Tcon annotation.

2443 Flat records for Graphic Primitives

record Line
Boolean visible = true;
Real points([2,:];
Integer color[3] = {0,0,0};
LinePattern pattern = LinePattern.Solid;
Real thickness = 0.25;

Arrow arrow[2] = {Arrow.None, Arrow.None};
Real arrowSize = 3.0;
Boolean smooth = false;

end Line;

record Polygon
Boolean visible = true;
Integer lineColor[3]={0,0,0};
Integer fillColor[3]={0,0,0};
LinePattern pattern = LinePattern.Solid;
FillPattern fillPattern = FillPattern.None;
Real lineThickness = 0.25;
Real points([2,:];
Boolean smooth = false;
end Polygon;

record Rectangle
Boolean visible=true;
Integer lineColor[3]={0,0,0};
Integer fillColor[3]={0,0,0};
LinePattern pattern = LinePattern.Solid;

33

FillPattern fillPattern = FillPattern.None;
Real lineThickness = 0.25;
BorderPattern borderPattern = BorderPattern.None;
Real extent[2,2];
Real radius;
end Rectangle;

record Ellipse
Boolean visible = true;
Integer lineColor[3]={0,0,0};
Integer fillColor[3]={0,0,0};
LinePattern pattern = LinePattern.Solid;
FillPattern fillPattern = FillPattern.None;
Real lineThickness = 0.25;
Real extent[2,2];
end Ellipse;

record Text
Boolean visible = true;
Integer lineColor[3]={0,0,0};
Integer fillColor[3]={0,0,0};
LinePattern pattern = LinePattern.Solid;
FillPattern fillPattern = FillPattern.None;
Real lineThickness = 0.25;
Real extent[2,2];
String textString;
Real fontSize;
String fontName;
TextStyle textStylel[:];
end Text;

record BitMap
Boolean visible = true;
Real extent[2,2];
String fileName;
String imageSource;

end BitMap;

2.5 Discussion on Modelica Standardization of the Typed Command
API

An interactive function interface could be part of the Modelica specification or Rationale. In order to add
this, the different implementations (OpenModelica, Dymola, and others) need to agree on a common API.
This section presents some naming conventions and other API design issues that need to be taken into
consideration when deciding on the standard API.

25.1 Naming conventions

Proposal: function names should begin with a Non-capital letters and have a Capital character for each new
word in the name, e.g.

loadModel
openModelFile

34

25.2 Return type

There is a difference between the currently implementations. The OpenModelica untyped API returns
strings, "OK", "-1", "false", "true", etc., whereas the typed OpenModelica command API and Dymola
returns Boolean values, e.g true or false.

Proposal: All functions, not returning information, like for instance getModelName, should return a
Boolean value. (??Note: This is not the final solution since we also need to handle failure indications for
functions returning information, which can be done better when exception handling becomes available).

253 Argument types

There is also a difference between implementations regarding the type of the arguments of certain
functions. For instance, Dymola uses strings to denote model and variable references, while OpenModelica
uses model/variable references directly.
For example, 1oadModel ("Resistor") in Dymola, but 1oadModel (Resistor) in OpenModelica.
One could also support both alternatives, since Modelica will probably have function overloading in the
near future.

254 Set of API Functions

The major issue is of course which subset of functions to include, and what they should do.

Below is a table of Dymola and OpenModelica functions merged together. The table also contains a
proposal for a possible standard.

<s> == string
<cr> == component reference
[] == list constructor, e.g. [<s>] == vector of strings
Dymola OpenModelica Description Proposal
list () listVariables () List all user-defined listVariables ()
variables.
listfunctions () - List builtin function listFunctions ()
names and descriptions.
- list() List all loaded class list()
definitions.
- list (<cref>) List model definition of |1ist (<cref>) or
<cref>. list (<string>)
classDirectory () cd () Return current currentDirectory ()
directory.
eraseClasses () clearClasses () Removes models. clearClasses ()
clear () clear () Removes all, including clearAll ()
models and variables.
- clearVariables () Removes all user clearVariables ()
defined variables.
- clearClasses|() Removes all class clearClasses ()
definitions.
openModel (<string>) |loadFile (<string>) Load all definitions loadFile (<string>)
from file.

35

openModelFile (
<string>)

loadModel (<cref>)

Load file that contains
model.

loadModel (<cref>),
loadModel (<string>
)

saveTotalModel (
<string>,<string>)

Save total model
definition of a model in
a file.

saveTotalModel (<st
ring>,<cref>) or
saveTotalModel (<st
ring>,<string>)

saveModel (<cref>,
<string>)

Save model in a file.

saveModel (<string>
,<cref>) or
saveModel (<string>
,<string>)

createModel (<cref>)

Create new empty
model.

createModel (<cref>
) or

createModel (<strin
g>)

eraseClasses (
{<string>})

deleteModel (<cref>)

Remove model(s) from
symbol table.

deleteModel (<cref>
) or

deleteModel (<strin
g>)

instantiateModel (instantiateClass (Perform code instantiateClass (<

<string> <cref>) instantiation of class. |cFef>) or
instantiateClass (<
string>)

255 Example of Exporting XML from a Model

The following is an example of using the function dumpXMLDAE to export an XML representation of a
model.

model Circuitl
parameter Real C(min=5e-07,
parameter Real R1=50;
parameter Real R2=50;
parameter Real R3 (min=500,
input Real 1i0;
Real 1i1l;
Real 13;
Real vi1;
Real v2;
output Real v3;

max=2e-060)=1e-06;

max=2000)=1000;

equation
C*der (v1)=1i0 - 1i1;
vl - v2=11*R1;
v2 - v3=il*R2;
C*der (v3)=1i1 - 1i3;
v3=R3*i3;

end Circuitl;

loadFile ('../path to mo file/Circuitl.mo');
dumpXMLDAE (Circuitl) ;

will produce the following result:

{"<?xml version="1.0" encoding="UTF-8"?>
<dae xmlns:p1="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.0rg/1999/xlink"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:noNamespaceSchemaLocation="http://home.dei.polimi.it/donida/Projects/AutoEdit/Images/DAE.xsd">
<variables dimension="11">
<orderedVariables dimension="6">

36

—_n —_n

<variablesList>
<variable id="1" name="v3" variability="continuousState" direction="output"
type="Real" index="-1" origName="v3" fixed="true" flow="NonConnector">
<classesNames> <element>Circuit] </element> </classesNames>
</variable>
<variable id="2" name="v2" variability="continuous" direction="none"
type="Real" index="-1" origName="v2" fixed="false" flow="NonConnector">
<classesNames> <element>Circuit] </element> </classesNames>
</variable>
<variable id="3" name="v1" variability="continuousState" direction="none"
type="Real" index="-1" origName="v1" fixed="true" flow="NonConnector">
<classesNames> <element>Circuit] </element> </classesNames>
</variable>
<variable id="4" name="13" variability="continuous" direction="none"
type="Real" index="-1" origName="i3" fixed="false" flow="NonConnector">
<classesNames> <element>Circuit] </element> </classesNames>
</variable>
<variable id="5" name="i1" variability="continuous" direction="none"
type="Real" index="-1" origName="i1" fixed="false" flow="NonConnector">
<classesNames> <element>Circuit] </element> </classesNames>
</variable>
<variable id="6" name="$dummy" variability="continuousState" direction="none"
type="Real" index="-1" origName="$dummy" fixed="true" flow="NonConnector">
<attributesValues>
<fixed string="true">
<MathML> <math xmIns="http://www.w3.org/1998/Math/MathML"> <apply> <true/> </apply> </math> </MathML>
</fixed>
</attributesValues>
</variable>
</variablesList>
</orderedVariables>
<knownVariables dimension="5">
<variablesList>
<variable id="1" name="10" variability="continuous" direction="input"
type="Real" index="-1" origName="10" fixed="false" flow="NonConnector">
<classesNames> <element>Circuit] </element> </classesNames>
</variable>
<variable id="2" name="R3" variability="parameter" direction="none"
type="Real" index="-1" origName="R3" fixed="true" flow="NonConnector">
<bindValueExpression>
<bindExpression string="1000">
<MathML> <math xmlns="http://www.w3.org/1998/Math/MathML"> <cn type="integer">1000 </cn> </math> </MathML>
</bindExpression>
</bindValueExpression>
<classesNames> <element>Circuit] </element> </classesNames>
<attributesValues>
<minValue string="500.0">
<MathML> <math xmIns="http://www.w3.org/1998/Math/MathML"> <cn type="real">500.0 </cn> </math> </MathML>
</minValue>
<maxValue string="2000.0">
<MathML> <math xmlns="http://www.w3.org/1998/Math/MathML"> <cn type="real">2000.0 </cn> </math> </MathML>
</maxValue>
</attributesValues>
</variable>
<variable id="3" name="R2" variability="parameter" direction="none"
type="Real" index="-1" origName="R2" fixed="true" flow="NonConnector">
<bindValueExpression>
<bindExpression string="50">
<MathML> <math xmlns="http://www.w3.org/1998/Math/MathML"> <cn type="integer">50 </cn> </math> </MathML>
</bindExpression>
</bindValueExpression>
<classesNames> <element>Circuit] </element> </classesNames>
</variable>
<variable id="4" name="R1" variability="parameter" direction="none"
type="Real" index="-1" origName="R1" fixed="true" flow="NonConnector">
<bindValueExpression>
<bindExpression string="50">
<MathML> <math xmlns="http://www.w3.org/1998/Math/MathML"> <cn type="integer">50 </cn> </math> </MathML>
</bindExpression>
</bindValueExpression>
<classesNames> <element>Circuit] </element> </classesNames>
</variable>
<variable id="5" name="C" variability="parameter" direction="none"

37

type="Real" index="-1" origName="C" fixed="true" flow="NonConnector">
<bindValueExpression>
<bindExpression string="1e-06">
<MathML> <math xmlIns="http://www.w3.org/1998/Math/MathML"> <cn type="real">1e-06 </cn> </math> </MathML>
</bindExpression>
</bindValueExpression>
<classesNames> <element>Circuit] </element> </classesNames>
<attributesValues>
<minValue string="5e-07">
<MathML> <math xmIns="http://www.w3.org/1998/Math/MathML"> <cn type="real">5e-07 </cn> </math> </MathML>
</minValue>
<maxValue string="2¢-06">
<MathML> <math xmlIns="http://www.w3.org/1998/Math/MathML"> <cn type="real">2e-06 </cn> </math> </MathML>
</maxValue>
</attributesValues>
</variable>
</variablesList>
</knownVariables>
</variables>
<equations dimension="6">
<equation id="1">
C*der(vl)=i0-il ~ <MathML>
<math xmIns="http://www.w3.org/1998/Math/MathML">
<apply> <equivalent/>
<apply>
<times/> <ci>C </ci> <apply> <diff/> <ci>v1 </ci> </apply> </apply> <apply> <minus/> <ci>i0 </ci> <ci>il </ci>
</apply>
</apply>
</math>
</MathML>
</equation>
<equation id="2">
vl -v2=il *RI <MathML>
<math xmlns="http://www.w3.org/1998/Math/MathML">
<apply> <equivalent/>
<apply> <minus/> <ci>v1 </ci> <ci>v2 </ci> </apply>
<apply> <times/> <ci>il </ci> <ci>R1 </ci> </apply>
</apply>
</math>
</MathML>
</equation>
<equation id="3">
v2-v3=il *R2 <MathML>
<math xmIns="http://www.w3.org/1998/Math/MathML">
<apply> <equivalent/>
<apply> <minus/> <ci>v2 </ci> <ci>v3 </ci> </apply>
<apply> <times/> <ci>il </ci> <ci>R2 </ci> </apply>
</apply>
</math>
</MathML>
</equation>
<equation id="4">
C *der(v3) =il -i3 <MathML> <math xmlns="http://www.w3.org/1998/Math/MathML">
<apply> <equivalent/>
<apply> <times/> <ci>C </ci> <apply> <diff/> <ci>v3 </ci> </apply> </apply>
<apply> <minus/> <ci>il </ci> <ci>i3 </ci> </apply>
</apply>
</math>
</MathML>
</equation>
<equation id="5">
v3=R3 *i3 <MathML> <math xmlns="http://www.w3.org/1998/Math/MathML">
<apply> <equivalent/> <ci>v3 </ci> <apply> <times/> <ci>R3 </ci> <ci>13 </ci> </apply> </apply>
</math>
</MathML>
</equation>
<equation id="6">
der($dummy) = sin(time * 628.318530717) <MathML> <math xmlIns="http://www.w3.org/1998/Math/MathML">
<apply> <equivalent/> <apply> <diff/> <ci>$dummy </ci> </apply>
<apply> <sin/> <apply> <times/> <ci>time </ci> <cn type="real">628.318530717 </cn> </apply> </apply> </apply>
</math>
</MathML>
</equation>

38

</equations>
</dae>","The model has been dumped to xml file: Circuitl.xml"}

2.5.6 Example of Exporting Matlab from a Model

The command export dumps an XML representation of a model, according to several optional parameters.

exportDAEtoMatlab (modelname) ;

This command dumps the mathematical representation of a model using a Matlab representation. Example:

$ cat daequery.mos

loadFile ("BouncingBall.mo") ;
exportDAEtoMatlab (BouncingBall) ;
readFile ("BouncingBall imatrix.m");

$ omc daequery.mos
true
"The equation system was dumped to Matlab file:BouncingBall imatrix.m"

% Incidence Matrix

9
°

o\

number of rows: 6

IM={[3,-6],[1,{"if"', 'true',6'==" {3},{},}1,1[2,{'if', 'edge(impact)'
{3}y, {5}, }1,14,21,[5,{"1f", 'true','==' {4},{},}1,16,-51};

VL = {'foo','v_new', 'impact', 'flying','v','h'};

EgStr = {'impact = h <= 0.0;"',"'"foo = if impact then 1 else 2;', 'when {h <= 0.0 AND

v <= 0.0,impact} then v _new = if edge(impact) then (-e) * pre(v) else 0.0; end
when; ', 'when {h <= 0.0 AND v <= 0.0, impact} then flying = v _new > 0.0; end
when; ', 'der(v) = if flying then -g else 0.0;','der(h) = v;"'};

OldEgStr={'fclass BouncingBall', 'parameter Real e = 0.7 "coefficient of
restitution”; ', 'parameter Real g = 9.81 "gravity acceleration”;', 'Real h(start =
1.0) "height of ball";','Real v "velocity of ball";',6 'Boolean flying(start = true)
"true, if ball is flying";',6 'Boolean impact;', 'Real v new;', 'Integer

foo; "', 'equation',' dimpact = h <= 0.0;',' foo = if impact then 1 else 2;','
der(v) = if flying then -g else 0.0;',' der(h) = v;',' when {h <= 0.0 AND v <=
0.0,impact} then',' v new = if edge(impact) then (-e) * pre(v) else 0.0;',"
flying = v.new > 0.0;',"' reinit(v,v_new);',' end when;',6 'end
BouncingBall; "', "'"};"

Chapter 3

Detailed Overview of OpenModelica Packages

This chapter gives overviews of all packages in the OpenModelica compiler/interpreter and server
functionality, as well as the detailed interconnection structure between the modules.

3.1

Detailed Interconnection Structure of Compiler Packages

A fairly detailed view of the interconnection structure, i.e., the main data flows and and dependencies
between the modules in the OpenModelica compiler, is depicted in ??Figure 3-1 below.

- CIntle;acFive, Mod Connect DAE > Dump|——»>
Main v. evalScript, ete L Flat Modelica
v . Types.Mod | SCode.Mod Exp.Componentref
L DAEEXT
PR Prefix Lookup
A 1
Prefix.Prefix Exp.Ident T SCode.Class Derive VarTransform
ClassLoader (Env, name)
Exp.Exp Exp.Exp
ﬁ DAE DAE,
v v ‘ DAE: Equations v v substlist
.mo Absyn SCod Algorithms
Parse »| SCode — Inst » DAELow —
> Inline
T A A DAE: Functions
Data Type ClassInf.Event| ClassInf.State (Exp.Exp, Bk DAELow.DAELow
. SCode.Exp Types.Type) xp.Exp -
Modules: v | SimCode
ClassInf T
Absyn SCode Static Values.Value : C oot
Exp.Exp l \—> SimCodeC
| EE—
Values DAE (Envoname) y Patternm
Ceval yy Utility
y Modules:
Builtin
Data Type o Inst help modules DFA Dump Debug
Utility Modules: InstExtends
InstanceHierarchy
DAEULil Exp PartFn MetaUtil util ModUtil 10Stream
InnerOuter
. . ExpandableConnec
ValuesUtil || Algorithm Types tors Print System RTOpts Error

Figure 3-1. Module connections and data flows in the OpenModelica compiler.

One can see that there are three main kinds of modules:

40

Function modules that perform a specified function, e.g. Lookup, code instantiation, etc.

Data type modules that contain declarations of certain data types, e.g. Absyn that declares the
abstract syntax.

Utility modules that contain certain utility functions that can be called from any module, e.g. the
Util module with list processing funtions.

Note that this functionality classification is not 100% clearcut, since certain modules performs several
functions. For example, the SCode module primarily defines the lower-level SCode tree structure, but also
transforms Absyn into SCode. The DAE module defines the DAE equation representation, but also has a
few routines to emit equations via the Dump module.

We have the following approximate description:

3.2

The Main program calls a number of modules, including the parser (Parse), SCode, etc.

The parser generates abstract syntax (Absyn) which is converted to the simplified (SCode)
intermediate form.

The code instantiation module (Inst) is the most complex module, and calls many other modules. It
calls Lookup to find a name in an environment, calls Prefix for analyzing prefixes in qualified
variable designators (components), calls Mod for modifier analysis and Connect for connect
equation analysis. It also generates the DAE equation representation which is simplified by
DAELow and fed to the SimCode module for code generation.

The Ceval module performs compile-time or interactive expression evaluation and returns values.
The Static module performs static semantics and type checking.

The DAELow module performs BLT sorting and index reduction. The DAE module internally uses
Exp.Exp, Types.Type and Algorithm.Algorithm; the SCode module internally uses Absyn

The Vartransform module called from DAELow performs variable substitution during the symbolic
transformation phase (BLT and index reduction).

The Patternm module performs compilation of pattern match expressions in the MetaModelica
language extension, calling the DFA and MetaUtil modules.

OpenModelica Source Code Directory Structure

The following is a short summary of the directory structure of the OpenModelica compiler and interactive
subsystem.

3.2.1

OpenModelica/Compiler/

Contains all MetaModelica files of the compiler, listed in Section 3.3

3.2.2

OpenModelica/Compiler/runtime

This directory contains runtime modules, both for the compiler and for interactive system and
communication needs. Mostly written in C.

rtops.c Accessing compiler options.

printimpl.c Print routines, e.g. for debug tracing.

socketimpl.c Phased out. Should not be used. Socket communication between clients and the
OpenModelica main program.

corbaimpl.cpp Corba communication between clients and the OpenModelica main program.

ptolemyio.cpp 10 routines from the Ptolemy system to store simulation data for plotting, etc.

systemimpl.c Operating system calls.

Open Source Modelica System Documentation 41

daeext.cpp C++ routines for external DAE bit vector operations, etc.

3.2.3 OpenModelicaltestsuite

This directory contains the Modelica testsuite consisting several subdirectories, e.g. mofiles and mosfiles.
There are more than 1000 test cases spread in different subdirectory. The mofiles directory contains more
than 200 test models. The mosfiles directory contains a few Modelica script files consisting of
commands according to the general command API. The sundirectory libraries contain testcases for
comparison between simulation result from OpenModelica to other tools.

3.24 OpenModelica/lOMShell

Files for the OpenModelica interactive shell, called oMShel1l for OpenModelica Shell.

3.2.5 OpenModelica/c_runtime — OpenModelica Run-time Libraries

This directory contains files for the Modelica runtime environment. The runtime contains a number of C
files, for which object code versions are are packaged in of two libraries, libc runtime.a and
libsim.a. We group the C files under the respective library, even though the files occur directly under the
c_runtime directory.

3.25.1 libc_runtime.a

The libc runtime is used for executing Modelica functions that has been generated C code for. It
contains the following files.

boolean array.* How arrays of booleans are represented in C.
integer array.* How arrays of integers are represented in C.
real array.* How arrays of reals are represented in C.
string array.* How arrays of strings are represented in C.
index_spec.c Keep track of dimensionsizes of arrays.
memory pool.c Memory allocation for local variables.

read write.* Reading and writing of data to file.
utility.c Utility functions

3.25.2 libsim.a

The library 1ibsim. a is the runtime library for simulations, it contains solvers and a main function for the
simulation. The following files are included:

simulation runtime.* Includes the main function, solver wrappers,etc.

daux.f Auxiliary Fortran functions.

ddasrt.f DDASRT solver.

ddassl.f DASSL solver.

dlamch. f Determine machine parameters for solvers.
dlinpk.f Gaussian elimination routines, used by solvers.
lsame. f LAPACK axuiliary routine LSAME.

Non-linear solver:

hybrdl.f Non-linear solver with approximate jacobian.

42

hybrj.f
fdjacl.f
enorm. f
dpmpar. £
dogleg.f

3.3

Non-linear solver with analythical jacobian.- alternative for non-linear solver.
Helper routines
Helper routines.
Helper routines

Helper routines

Short Overview of Compiler Modules

The following is a list of the OpenModelica compiler modules with a very short description of their
functionality. Chapter 3 describes these modules in more detail.

?7?Note: Some new modules in version 1.5.0 are not yet listed and described here neither in Chapter 3.

Absyn
AbsynDep

Algorithm
BackendVarTransform

Builtin
Ceval
CevalScript
ClassInf
ClassLoader

Connect
ConnectionGraph
Constants

Corba

DAE
DAEDump

DAEEXT
DAELow

DAEQuery
DAEUtil

Debug
Dependency

Derive
DFA

Dump
DumpGraphviz
DynLoad

Env

Error

ErrorExt

Exp
ExpandableConnectors
Graphviz
Inline
InnerOuter

Abstract Syntax
Data structure and functions for Absyn dependency information.

Data Types and Functions for Algorithm Sections
Functions for variable replacements in DAELow equations.

Builtin Types and Variables

Evaluation/interpretation of Expressions.

Modelica script handling.

Inference and check of class restrictions for restricted classes.
Loading of Classes from SOPENMODELICALIBRARY

Connection Set Management
Connection breaking algorithm and data types.
Constants used by Interactive.

Modelica Compiler Corba Communication Module

DAE data types.
Functions for DAE printing.

External Utility Functions for DAE Management
Lower Level DAE Using Sparse Matrises for BLT

Dump the incidence matrix of a model in Matlab format
Helper functions to the DAE.

Trace Printing Used for Debugging
Dependency analysis of models.

Differentiation of Equations from DAELow

A deterministic finite automata (DFA) used by the pattern match algorithm in
patternm.

Printing functions for the AST.

Dump Info for Graph visualization of AST.

Functions for executing dynamically loaded functions.
Environment Management

Error handling.

External error handling functions.

Typed Expressions after Static Analysis /*updated)
Expandable connector handling.

Graph Visualization from Textual Representation
Data types and functions for inline functions.
Handling of inner/outer definitions.

Open Source Modelica System Documentation 43

Inst
InstanceHierarchy
InstExtends

Interactive

IOStream
Lookup
Main
MetaUtil
Mod

ModUtil
OptManager
PartFn

Parse

Patternm

Prefix
PrefixUtil

Print
Refactor

RTOpts

SCode

SCodeUtil
Settings
SimCodeC
SimCode
SimulationResults

Socket
Static
System
TaskGraph

TaskGraphExt
Tpl

TplAbsyn
TplCodegen

TplMain
TplParser
Types

Util

Values
ValuesUTtil
VarTransform
XMLDump
DAEQuery

Code Instantiation/Elaboration of Modelica Models
Data types and functions for instance hierarchy.
Instantiation of extends and class extends

Model management and expression evaluation — the function Interactive.evaluate.

Keeps interactive symbol tables. Contains Graphic Model Editor API.
Implementation of various streams for 10.

Lookup of Classes, Variables, etc.

The Main Program. Calls Interactive, the Parser, the Compiler, etc.
MetaModelica Related Utility Functions

Modification Handling

Modelica Related Utility Functions
Command line options management.
Data types and functions for partially evaluated functions.

Parse Modelica or Commands into Abstract Syntax
The MetaModelica pattern match compilation algorithm.

Handling Prefixes in Variable Names
Functions for handling Prefix data types.

Buffered Printing to Files and Error Message Printing
Refactoring of Modelica/MetaModelica code.

Run-time Command Line Options

Simple Lower Level Intermediate Code Representation.

Functions to translate from Absyn to SCode representation.
Functions to set/get system settings.

Code generator for C (automatically generated from Susan template).
Code generation using Susan templates.

Functions to read simulation results.

(Partly Depreciated) OpenModelica Socket Communication Module
Static Semantic Analysis of Expressions

System Calls and Utility Functions

Building Task Graphs from Expressions and Systems of Equations. Optional
module.

External Representation of Task Graphs. Optional module.

Data types and utility functions for Susan templates.

Abstract Syntax for Susan templates.

Code generation for Susan templates (automatically generated from Susan
template).

Main functions and basic tests for Susan templates.

Parser for Susan templates.

Representation of Types and Type System Info

General Utility Functions

Representation of Evaluated Expression Values

Utility functions for Values.

Binary Tree Representation of Variable Transformations

Dump the DAE representation of a model in XML format

Dump the incidence matrix of a model in Matlab format

44

3.4 Descriptions of OpenModelica Compiler Modules

The following are more detailed descriptions of the OpenModelica modules.

3.4.1 Absyn — Abstract Syntax

This module defines the abstract syntax representation for Modelica in MetaModelica. It primarily contains
datatypes for constructing the abstract syntax tree (AST), functions for building and altering AST nodes
and a few functions for printing the AST:

e Abstract Syntax Tree (Close to Modelica)
— Complete Modelica 2.2
— Including annotations and comments
e Primary AST for e.g. the Interactive module
— Model editor related representations (must use annotations)
e Functions
— A few small functions, only working on Absyn types, e.g.:
* pathToCref (Path) => ComponentRef
. joinPaths (Path, Path) => (Path)
. etc.

The constructors defined by the Absyn module are primarily wused by the walker
(Compiler/absyn builder/walker.qg) which takes an ANTLR internal syntax tree and converts it into
an MetaModelica abstract syntax tree. When the AST has been built, it is normally used by the SCode
module in order to build the SCode representation. It is also possible to send the AST to the unparser
(Dump) in order to print it.

For details regarding the abstract syntax tree, check out the grammar in the Modelica language
specification.

The following are the types and datatypes that are used to build the AST:

An identifier, for example a variable name:

type Ident = String;

Info attribute type.

The Info attribute type is not needed to represent Modelica language constructs or for the semantics.
Instead, Info contains various pieces of information needed by tools for debugging and browsing support.

uniontype Info
"Modextension: Various pieces of information needed for debugging and browsing"
record INFO
String fileName "fileName where the class is defined in" ;
Boolean isReadOnly "isReadOnly : (true|false). Should be true for libraries" ;
Integer lineNumberStart;
Integer columnNumberStart;
Integer lineNumberEnd;
Integer columnNumberEnd;
end INFO;
end Info;

Programs, the top level construct:

A program is simply a list of class definitions declared at top level in the source file, combined with a
within clause. that indicates the hierarchical position of the program.

Open Source Modelica System Documentation 45

Nodes such as BEGIN DEFINITION and END DEFINITION can be used for representing packages and
classes that are entered piecewise, e.g., first entering the package head (as BEGIN DEFINITION), then the
contained definitions, then an end package repesented as END DEFINITION.

uniontype Program
record PROGRAM
list<Class> classes "List of classes"
Within within "Within clause" ;
end PROGRAM;

record BEGIN DEFINITION

Path path "path for split definitions"
Restriction restriction "Class restriction"
Boolean partial "true if partial"
Boolean encapsulated "true if encapsulated" ;

end BEGIN DEFINITION;

record END DEFINITION
Ident name "name for split definitions" ;
end END DEFINITION;

record COMP DEFINITION
ElementSpec element "element for split definitions"
Option<Path> insertInto "insert into, Default: NONE"
end COMP_ DEFINITION;

record IMPORT DEFINITION
ElementSpec importElementFor "For split definitions" ;
Option<Path> insertInto "Insert into, Default: NONE"
end IMPORT DEFINITION;

end Program;

Within Clauses:

uniontype Within
record WITHIN
Path path;
end WITHIN;

record TOP end TOP;

end Within;

Classes:

A class definition consists of a name, a flag to indicate if this class is declared as partial, the declared
class restriction, and the body of the declaration.
uniontype Class

record CLASS
Ident name;

Boolean partial "true if partial"

Boolean final "true if final" ;

Boolean encapsulated "true if encapsulated" ;

Restriction restricion "Restriction"

ClassDef body;

Info info "Information: FileName the class is defined in +

isReadOnly bool + start line no + start column no +
end line no + end column no";
end CLASS;

end Class;

46

ClassDef:

The classDef type contains the definition part of a class declaration. The definition is either explicit, with
a list of parts (public, protected, equation, and algorithm), or it is a definition derived from
another class or an enumeration type.

For a derived type, the type contains the name of the derived class and an optional array dimension
and a list of modifications.

uniontype ClassDef
record PARTS
list<ClassPart> classParts;
Option<String> comment;
end PARTS;

record DERIVED
TypeSpec typeSpec "typeSpec specification includes array dimensions";
ElementAttributes attributes ;
list<ElementArg> arguments;
Option<Comment> comment;
end DERIVED;

record ENUMERATION
EnumDef enumLiterals;
Option<Comment> comment;

end ENUMERATION;

record OVERLOAD
list<Path> functionNames;
Option<Comment> comment;

end OVERLOAD;

record CLASS EXTENDS

Ident name "class to extend"
list<ElementArg> arguments;
Option<String> comment;

list<ClassPart> parts;
end CLASS EXTENDS;

record PDER

Path functionName;
list<Ident> wvars "derived variables" ;
end PDER;

end ClassDef;

EnumDef:

The definition of an enumeration is either a list of literals or a colon, :, which defines a supertype of all
enumerations.

uniontype EnumDef
record ENUMLITERALS
list<EnumLiteral> enumLiterals "enumLiterals"
end ENUMLITERALS;
record ENUM COLON end ENUM COLON;

end EnumDef;

EnumLiteral:

Open Source Modelica System Documentation 47

An enumeration type contains a list of EnumLiteral, which is a name in an enumeration and an optional

comment.
uniontype EnumLiteral

record ENUMLITERAL
Ident literal
Option<Comment> comment
end ENUMLITERAL;

end EnumlLiteral;
ClassPart:

A class definition contains several parts.

There are public and protected component declarations, type

definitions and extends-clauses, collectively called elements. There are also equation sections and
algorithm sections. The EXTERNAL part is used only by functions which can be declared as external C or

FORTRAN functions.
uniontype ClassPart

record PUBLIC
list<ElementItem> contents;
end PUBLIC;

record PROTECTED
list<ElementItem> contents;
end PROTECTED;

record EQUATIONS
list<EquationItem> contents;
end EQUATIONS;

record INITIALEQUATIONS
list<EquationItem> contents;
end INITIALEQUATIONS;

record ALGORITHMS
list<AlgorithmItem> contents;
end ALGORITHMS;

record INITIALALGORITHMS
list<AlgorithmItem> contents;

end INITIALALGORITHMS;

record EXTERNAL

ExternalDecl externalDecl;
Option<Annotation> annotation ;

end EXTERNAL;

end ClassPart;

Elementltem:

An element item is either an element or an annotation

uniontype ElementItem

record ELEMENTITEM
Element element;
end ELEMENTITEM;

record ANNOTATIONITEM
Annotation annotation ;
end ANNOTATIONITEM;

48

end ElementItem;

Element:

The basic element type in Modelica.
uniontype Element

record ELEMENT
Boolean final ;
Option<RedeclareKeywords> redeclareKeywords "i.e., replaceable or redeclare"
InnerOuter innerOuter " inner / outer" ;
Ident name;
ElementSpec specification " Actual element specification"
Info info "The File name the class is defined in + line no + column no" ;
Option<ConstrainClass> constrainClass "only valid for classdef and component";
end ELEMENT;

’

record TEXT
Option<Ident> optName " optional name of text, e.g. model with syntax error.
We need the name to be able to browse it..." ;
String string;
Info info;
end TEXT;

end Element;

Constraining type:

Constraining type (i.e., not inheritance), specified using the extends keyword.
uniontype ConstrainClass

record CONSTRAINCLASS
ElementSpec elementSpec "must be extends" ;
Option<Comment> comment;

end CONSTRAINCLASS;

end ConstrainClass;

ElementSpec:

An element is something that occurs in a public or protected section in a class definition. There is one
constructor in the ElementSpec type for each possible element type. There are class definitions
(CLASSDEF), extends clauses (EXTENDS) and component declarations (COMPONENTS).

As an example, if the element extends TwoPin; appears in the source, it is represented in the AST as
EXTENDS (IDENT ("TwoPin"), {}).

uniontype ElementSpec

record CLASSDEF
Boolean replaceable "true if replaceable";
Class class ;

end CLASSDEF;

record EXTENDS
Path path;
list<ElementArg> elementArg;
end EXTENDS;

record IMPORT
Import import ;
Option<Comment> comment;

Open Source Modelica System Documentation 49

end IMPORT;

record COMPONENTS
ElementAttributes attributes;
Path typeName;
list<ComponentItem> components;

end COMPONENTS;

end ElementSpec;

InnerOuter:

One of the keywords inner or outer or the combination inner outer can be given to reference an inner,
outer or inner outer component. Thus there are four disjoint possibilities.

uniontype InnerOuter

record INNER end INNER;

record OUTER end OUTER;

record INNEROUTER end INNEROUTER;
record UNSPECIFIED end UNSPECIFIED;

end InnerOuter;

Import:

Import statements of different kinds.
uniontype Import

record NAMED IMPORT
Ident name "name" ;
Path path "path" ;
end NAMED IMPORT;

record QUAL IMPORT
Path path "path"
end QUAL IMPORT;

record UNQUAL IMPORT
Path path "path" ;
end UNQUAL IMPORT;

end Import;

Componentltem:
Collection of component and an optional comment.
uniontype ComponentItem

record COMPONENTITEM

Component component;
Option<ComponentCondition> condition;
Option<Comment> comment;

end COMPONENTITEM;

end ComponentItem;

50

ComponentCondition:

A Componentltem can have a condition that must be fulfilled if the component should be instantiated.

type ComponentCondition = Exp;

Component:

A component represents some kind of Modelica entity (object or variable). Note that several component
declarations can be grouped together in one ElementSpec by writing them in the same declaration in the
source. However, this type contains the information specific to one component.

uniontype Component

record COMPONENT
Ident name "component name" ;
ArrayDim arrayDim "Array dimensions, if any" ;
Option<Modification> modification "Optional modification" ;
end COMPONENT;

end Component;

Equationltem:
uniontype EquationItem

record EQUATIONITEM
Equation equation_;
Option<Comment> comment;
end EQUATIONITEM;

record EQUATIONITEMANN
Annotation annotation ;
end EQUATIONITEMANN;

end EquationItem;

Algorithmltem:

Info specific for an algorithm item.
uniontype AlgorithmItem

record ALGORITHMITEM
Algorithm algorithm ;
Option<Comment> comment;
end ALGORITHMITEM;

record ALGORITHMITEMANN
Annotation annotation ;
end ALGORITHMITEMANN;

end AlgorithmItem;

Equation:

Information on one (kind) of equation, different constructors for different kinds of equations
uniontype Equation

record EQ IF
Exp ifExp "Conditional expression"

Open Source Modelica System Documentation 51

list<EquationItem> equationTrueltems "true branch" ;

list<tuple<Exp, list<EquationItem>>> elselfBranches;

list<EquationItem> equationElseItems "Standard 2-side eqn" ;
end EQ IF;

record EQ EQUALS

Exp leftSide;

Exp rightSide "rightSide Connect eqgn" ;
end EQ EQUALS;

record EQ CONNECT
ComponentRef connectorl;
ComponentRef connector?2;
end EQ CONNECT;

record EQ FOR

Ident forVariable;

Exp forExp;

list<EquationItem> forEquations;
end EQ FOR;

record EQ WHEN E

Exp whenExp;

list<EquationItem> whenEquations;

list<tuple<Exp, list<EquationItem>>> elseWhenEquations;
end EQ WHEN E;

record EQ NORETCALL

Ident functionName;

FunctionArgs functionArgs "fcalls without return value"
end EQ NORETCALL;

end Equation;

Algorithm:

The Algorithm type describes one algorithm statement in an algorithm section. It does not describe a
whole algorithm. The reason this type is named like this is that the name of the grammar rule for algorithm
statements is algorithm.

uniontype Algorithm

record ALG ASSIGN
ComponentRef assignComponent;
Exp value;

end ALG ASSIGN;

record ALG TUPLE_ASSIGN
Exp tuple ;
Exp value;

end ALG TUPLE ASSIGN;

record ALG IF
Exp 1fExp;
list<AlgorithmItem> trueBranch;
list<tuple<Exp, list<AlgorithmItem>>> elseIfAlgorithmBranch;
list<AlgorithmItem> elseBranch;
end ALG IF;

record ALG_FOR
Ident forVariable;
Exp forStmt;
list<AlgorithmItem> forBody;
end ALG FOR;

52

record ALG WHILE
Exp whileStmt;
list<AlgorithmItem> whileBody;
end ALG WHILE;

record ALG WHEN A

Exp whenStmt;

list<AlgorithmItem> whenBody;

list<tuple<Exp, list<AlgorithmItem>>> elseWhenAlgorithmBranch;
end ALG WHEN A;

record ALG NORETCALL

ComponentRef functionCall;

FunctionArgs functionArgs " general fcalls without return value"
end ALG NORETCALL;

end Algorithm;

Modifications:

Modifications are described by the Modification type. There are two forms of modifications:
redeclarations and component modifications.

uniontype Modification

record CLASSMOD
list<ElementArg> elementArglLst;
Option<Exp> expOption;

end CLASSMOD;

end Modification;

ElementArg:

Wrapper for things that modify elements, modifications and redeclarations.
uniontype ElementArg

record MODIFICATION
Boolean finalltem;
Each each ;
ComponentRef componentReg;
Option<Modification> modification;
Option<String> comment;

end MODIFICATION;

record REDECLARATION

Boolean finalTltem;
RedeclareKeywords redeclareKeywords "keywords redeclare, or replaceable"
Each each ;

ElementSpec elementSpec;
Option<ConstrainClass> constrainClass "class definition or declaration" ;
end REDECLARATION;

end ElementArg;

RedeclareKeywords:

The keywords redeclare and replaceable can be given in three different combinations, each one by
themselves or both combined.

Open Source Modelica System Documentation 53

uniontype RedeclareKeywords

record REDECLARE end REDECLARE;

record REPLACEABLE end REPLACEABLE;

record REDECLARE REPLACEABLE end REDECLARE REPLACEABLE;
end RedeclareKeywords;

Each:

The Each attribute represented by the each keyword can be present in both MODIFICATION's and
REDECLARATION'S.
uniontype Each

record EACH end EACH;

record NON EACH end NON_ EACH;
end Each;

ElementAttributes:

This represents component attributes which are properties of components which are applied by type
prefixes. As an example, declaring a component as input Real x; will give the attributes ATTR (
{},false, VAR, INPUT).

uniontype ElementAttributes

record ATTR
Boolean flow "flow"
Variability variability "variability ; parameter, constant etc." ;
Direction direction "direction"
ArrayDim arrayDim "arrayDim" ;
end ATTR;

end ElementAttributes;

Variability:
Component/variable attribute variability:

uniontype Variability
record VAR end VAR;
record DISCRETE end DISCRETE;
record PARAM end PARAM;
record CONST end CONST;

end variability;

Direction:

Component/variable attribute Direction.

uniontype Direction
record INPUT end INPUT;
record OUTPUT end OUTPUT;
record BIDIR end BIDIR;
end Direction;

ArrayDim:

Array dimensions are specified by the type ArrayDim. Components in Modelica can be scalar or arrays
with one or more dimensions. This datatype is used to indicate the dimensionality of a component or a type
definition.

type ArrayDim = list<Subscript>;

54

Exp:

The Exp datatype is the container for representing a Modelica expression.

uniontype Exp

record INTEGER
Integer value;
end INTEGER;

record REAL
Real value;
end REAL;

record CREF
ComponentRef componentReg;
end CREF;

record STRING
String value;
end STRING;

record BOOL
Boolean value ;
end BOOL;

record BINARY "Binary operations, e.g. a*b, a+b,

Exp expl;
Operator op;
Exp exp2;

end BINARY;

record UNARY "Unary operations, e.g. —-(x)"
Operator op;
Exp exp;

end UNARY;

record LBINARY "Logical binary operations: and,

Exp expl;
Operator op;
Exp exp2;

end LBINARY;

record LUNARY "Logical unary operations: not"
Operator op;
Exp exp;

end LUNARY;

record RELATION "Relations, e.g. a >= 0"

Exp expl;
Operator op;
Exp exp2 ;

end RELATION;

record IFEXP "If expressions"

Exp ifExp;

Exp trueBranch;

Exp elseBranch;

list<tuple<Exp, Exp>> elselfBranch ;
end IFEXP;

record CALL "Function calls"
ComponentRef function ;
FunctionArgs functionArgs ;

etc."

or"

Open Source Modelica System Documentation 55

end CALL;

record ARRAY "Array construction using { } or array()"
list<Exp> arrayExp ;
end ARRAY;

record MATRIX "Matrix construction using [1"
list<list<Exp>> matrix;
end MATRIX;

record RANGE "matrix Range expressions, e.g. 1:10 or 1:0.5:10"

Exp start;
Option<Exp> step;
Exp stop;
end RANGE;
record TUPLE "Tuples used in function calls returning several
list<Exp> expressions;
end TUPLE;

values"

record END "Array access operator for last element, e.g. alend]:=1;"

end END;

record CODE "Modelica AST Code constructors"
CodeNode code;
end CODE;

end Exp;

Code:

The CodeNode datatype is a proposed meta-programming extension of Modelica
Code quoting mechanism, see paper in the Modelica’2003 conference.

uniontype CodeNode

record C_TYPENAME
Path path;
end C TYPENAME;

record C_VARIABLENAME
ComponentRef componentRef;
end C VARIABLENAME;

record C_EQUATIONSECTION
Boolean boolean;
list<EquationItem> equationItemLst;
end C EQUATIONSECTION;

record C ALGORITHMSECTION
Boolean boolean;
list<AlgorithmItem> algorithmItemLst;
end C ALGORITHMSECTION;

record C_ELEMENT
Element element;
end C_ELEMENT;

record C_EXPRESSION
Exp exp;
end C_EXPRESSION;

record C_MODIFICATION
Modification modification;

. It originates from the

56

end C_MODIFICATION;

end CodeNode;

FunctionArgs:
The FunctionArgs datatype consists of a list of positional arguments followed by a list of named
arguments.

uniontype FunctionArgs

record FUNCTIONARGS
list<Exp> args;
list<NamedArg> argNames;
end FUNCTIONARGS;

record FOR_ITER FARG

Exp from;
Ident vwvar;
Exp to;

end FOR _ITER_FARG;

end FunctionArgs;

NamedArg:

The NamedArg datatype consist of an Identifier for the argument and an expression giving the value of the
argument.

uniontype NamedArg

record NAMEDARG
Ident argName "argName"
Exp argValue "argValue" ;
end NAMEDARG;

end NamedArg;

Operator:

The Operator type can represent all the expression operators, binary or unary.

uniontype Operator "Expression operators"
record ADD end ADD;
record SUB end SUB;
record MUL end MUL;
record DIV end DIV;
record POW end POW;
record UPLUS end UPLUS;
record UMINUS end UMINUS;
record AND end AND;
record OR end OR;
record NOT end NOT;
record LESS end LESS;
record LESSEQ end LESSEQ;
record GREATER end GREATER;
record GREATEREQ end GREATEREQ;
record EQUAL end EQUAL;
record NEQUAL end NEQUAL;

end Operator;

Subscript:

Open Source Modelica System Documentation 57

The Subscript data type is used both in array declarations and component references. This might seem
strange, but it is inherited from the grammar. The NOSUB constructor means that the dimension size is
undefined when used in a declaration, and when it is used in a component reference it means a slice of the
whole dimension.

uniontype Subscript

record NOSUB end NOSUB;

record SUBSCRIPT
Exp subScript "subScript" ;
end SUBSCRIPT;

end Subscript;

ComponentRef:
A component reference is the fully or partially qualified name of a component. It is represented as a list of
identifier-subscript pairs.

uniontype ComponentRef

record CREF_ QUAL

Ident name;
list<Subscript> subScripts;
ComponentRef componentRef;

end CREF QUAL;

record CREF_IDENT
Ident name;
list<Subscript> subscripts;
end CREF IDENT;

end ComponentRef;

Path:

The type Path is used to store references to class names, or names inside class definitions.
uniontype Path

record QUALIFIED
Ident name;
Path path;

end QUALIFIED;

record IDENT
Ident name;
end IDENT;

end Path;

Restrictions:

These constructors each correspond to a different kind of class declaration in Modelica, except the last four,
which are used for the predefined types. The parser assigns each class declaration one of the restrictions,
and the actual class definition is checked for conformance during translation. The predefined types are
created in the Builtin module and are assigned special restrictions.

uniontype Restriction
record R_CLASS end R_CLASS;

58

record R_MODEL end R MODEL;

record R_RECORD end R_RECORD;

record R BLOCK end R BLOCK;

record R _CONNECTOR end R_CONNECTOR;

record R _EXP CONNECTOR end R _EXP CONNECTOR;

record R_TYPE end R _TYPE;

record R _PACKAGE end R PACKAGE;

record R _FUNCTION end R FUNCTION;

record R_ENUMERATION end R ENUMERATION;

record R _PREDEFINED INT end R PREDEFINED INT;

record R _PREDEFINED REAL end R PREDEFINED REAL;

record R _PREDEFINED STRING end R PREDEFINED STRING;

record R _PREDEFINED BOOL end R PREDEFINED BOOL;

record R _PREDEFINED ENUM end R PREDEFINED ENUM;
end Restriction;

Annotation:

An Annotation is a class_modification.
uniontype Annotation

record ANNOTATION
list<ElementArg> elementArgs;
end ANNOTATION;

end Annotation;

Comment:
uniontype Comment

record COMMENT
Option<Annotation> annotation ;
Option<String> comment;

end COMMENT;

end Comment;

ExternalDecl:

The type ExternalDecl is used to represent declaration of an external function wrapper.
uniontype ExternalDecl

record EXTERNALDECL

Option<Ident> funcName "The name of the external function"
Option<String> lang "Language of the external function"
Option<ComponentRef> output "output parameter as return value"
1ist<Exp> args "only positional arguments, i.e. expression list"

Option<Annotation> annotation ;
end EXTERNALDECL;

end ExternalDecl;

Dependencies:

Module dependencies of the Absyn module: Debug, Dump, Util, Print.

Open Source Modelica System Documentation 59

3.4.2 Algorithm — Data Types and Functions for Algorithm Sections

This module contains data types and functions for managing algorithm sections. The algorithms in the AST
are analyzed by the Inst module which uses this module to represent the algorithm sections. No processing
of any kind, except for building the data structure is done in this module. It is used primarily by the Inst
module which both provides its input data and uses its "output” data.

Module dependencies: Exp, Types, SCode, Util, Print, Dump, Debug.

3.4.3 Builtin — Builtin Types and Variables

This module defines the builtin types, variables and functions in Modelica. The only exported functions
are initial env and simple initial env. There are several builtin attributes defined in the builtin
types, such as unit, start, etc.

Module dependencies: Absyn, SCode, Env, Types, ClassInf, Debug, Print.

3.44 Ceval — Constant Evaluation of Expressions and Command
Interpretation

This module handles constant propagation and expression evaluation, as well as interpretation and
execution of user commands, e.g. plot(...). When elaborating expressions, in the Static module, expressions
are checked to find out their type. This module also checks whether expressions are constant. In such as
case the function ceval in this module will then evaluate the expression to a constant value, defined in the
Values module.

Input:
Env: Environment with bindings.
Exp: Expression to check for constant evaluation.
Bool flag determines whether the current instantiation is implicit.
InteractiveSymbolTable is optional, and used in interactive mode, e.g. from mosh.

Output:
Value: The evaluated value
InteractiveSymbolTable: Modified symbol table.
Subscript list : Evaluates subscripts and generates constant expressions.

Module dependencies: Absyn, Env, Exp, Interactive, Values, Static, Print, Types, ModUtil, System, SCode,
Inst, Lookup, Dump, DAE, Debug, Util, Modsim, ClassInf, RTOpts, Parse, Prefix, SimCode, ClassLoader.

3.45 ClassInf — Inference and Check of Class Restrictions

This module deals with class inference, i.e., determining if a class definition adheres to one of the class
restrictions, and, if specifically declared in a restricted form, if it breaks that restriction.

The inference is implemented as a finite state machine. The function start initializes a new machine,
and the function trans signals transitions in the machine. Finally, the state can be checked against a
restriction with the valid function.

Module dependencies: Absyn, SCode, Print.

60

3.4.6 ClassLoader — Loading of Classes from $OPENMODELICALIBRARY

This module loads classes from $OPENMODELICALIBRARY. It exports only one function: the
loadClassClass function. It is used by module Ceval when using the loadClass function in the
interactive environment.

Module dependencies: Absyn, System, Lookup, Interactive, Util, Parse, Print, Env, Dump.

3.4.7 Connect — Connection Set Management

Connections generate connection sets (represented using the datatype Set defined in this module) which
are constructed during code instantiation. When a connection set is generated, it is used to create a number
of equations. The kind of equations created depends on the type of the set.

The Connect module is called from the Inst module and is responsible for creation of all connect-
equations later passed to the DAE module.

Module dependencies: Exp, Env, Static, DAE.

3.4.8 Corba — Modelica Compiler Corba Communication Module

The Corba actual implementation differs between Windows and Unix versions. The Windows
implementation is located in . /winruntime and the Unix version lies in . /runtime.

OpenModelica does not in itself include a complete CORBA implementation. You need to download
one, for example MICO from http://www.mico.org. There also exists some options that can be sent to
configure concerning the usage of CORBA:

e —--with-CORBA=/location/of/corba/library
. --without-CORBA

No module dependencies.

3.4.9 DAE — DAE Equation Management and Output

This module defines data structures for DAE equations and declarations of variables and functions. It also
exports some help functions for other modules. The DAE data structure is the result of flattening,
containing only flat Modelica, i.e., equations, algorithms, variables and functions.

uniontype DAElist "A DAElist is a list of Elements. Variables, equations,
functions, algorithms, etc. are all found in this list."
record DAE
list<Element> elementLst;
end DAE;

end DAElist;

type Ident = String;
type InstDims = list<Exp.Subscript>;
type StartValue = Option<Exp.Exp>;

uniontype VarKind
record VARIABLE end VARIABLE;
record DISCRETE end DISCRETE;
record PARAM end PARAM;
record CONST end CONST;

end varKind;

Open Source Modelica System Documentation 61

uniontype Type
record REAL end REAL;
record INT end INT;
record BOOL end BOOL;
record STRING end STRING;
record ENUM end ENUM;

record ENUMERATION
list<String> stringLst;
end ENUMERATION;

end Type;

uniontype Flow "The Flow of a variable indicates if it is a Flow variable or not,
or if
it is not a connector variable at all."
record FLOW end FLOW;
record NON_FLOW end NON_ FLOW;
record NON CONNECTOR end NON CONNECTOR;
end Flow;

uniontype VarDirection
record INPUT end INPUT;
record OUTPUT end OUTPUT;
record BIDIR end BIDIR;
end varDirection;

uniontype Element
record VAR
Exp.ComponentRef componentRef;

VarKind varible "variable name"

VarDirection variable "variable, constant, parameter, etc." ;
Type input "input, output or bidir" ;
Option<Exp.Exp> one "one of the builtin types"

InstDims binding "Binding expression e.g. for parameters"
StartValue dimension "dimension of original component" ;
Flow value "value of start attribute"

list<Absyn.Path> flow "Flow of connector variable. Needed for
unconnected flow variables" ;
Option<VariableAttributes> variableAttributesOption;
Option<Absyn.Comment> absynCommentOption;
end VAR;

record DEFINE
Exp.ComponentRef componentRef;
Exp.Exp exp;

end DEFINE;

record INITIALDEFINE
Exp.ComponentRef componentRef;
Exp.Exp exp;

end INITIALDEFINE;

record EQUATION

Exp.Exp exp;

Exp.Exp scalar "Scalar equation" ;
end EQUATION;

record ARRAY EQUATION
list<Integer> dimension "dimension sizes"
Exp.Exp exp;
Exp.Exp array "array equation" ;

end ARRAY EQUATION;

record WHEN EQUATION

62

Exp.Exp condition "Condition"
list<Element> equations "Equations"

Option<Element> elsewhen "Elsewhen should be of type"

record IF EQUATION
Exp.Exp conditionl "Condition" ;

list<Element> equations2 "Equations of true branch"
list<Element> equations3 "Equations of false branch" ;

end IF EQUATION;

record INITIAL IF EQUATION
Exp.Exp conditionl "Condition" ;

list<Element> equations2 "Equations of true branch"
list<Element> equations3 "Equations of false branch" ;

end INITIAL IF EQUATION;

record INITIALEQUATION
Exp.Exp expl;
Exp.Exp exp2;

end INITIALEQUATION;

record ALGORITHM
Algorithm.Algorithm algorithm ;
end ALGORITHM;

record INITIALALGORITHM
Algorithm.Algorithm algorithm ;
end INITIALALGORITHM;

record COMP
Ident ident;
DAElist dAElist "a component with subelements,
only used at top level." ;
end COMP;

record FUNCTION
Absyn.Path path;
DAElist dAElist;
Types.Type type ;

end FUNCTION; -

record EXTFUNCTION
Absyn.Path path;
DAElist dAElist;
Types.Type type ;
ExternalDecl externalDecl;
end EXTFUNCTION;

record ASSERT
Exp.Exp exp;
end ASSERT;

record REINIT
Exp.ComponentRef componentRef;
Exp.Exp exp;

end REINIT;

end Element;

uniontype VariableAttributes

record VAR ATTR REAL
Option<String> quantity "quantity"
Option<String> unit "unit"
Option<String> displayUnit "displayUnit" ;

normally

tuple<Option<Real>, Option<Real>> min "min , max" ;

end WHEN EQUATION;

Open Source Modelica System Documentation 63

Option<Real> initial "Initial value" ;
Option<Boolean> fixed "fixed - true: default for parameter/constant,
default for other variables"
Option<Real> nominal "nominal"
Option<StateSelect> stateSelectOption;
end VAR ATTR REAL;

record VAR ATTR_INT
Option<String> quantity "quantity"
tuple<Option<Integer>, Option<Integer>> min "min , max"
Option<Integer> initial "Initial value"
Option<Boolean> fixed "fixed - true: default for parameter/constant,
default for other variables" ;
end VAR ATTR_INT;

’

record VAR ATTR BOOL
Option<String> quantity "quantity"
Option<Boolean> initial "Initial value"
Option<Boolean> fixed "fixed - true: default for parameter/constant,
default for other variables" ;
end VAR ATTR BOOL;

record VAR ATTR STRING
Option<String> quantity "quantity"
Option<String> initial "Initial value"
end VAR ATTR_STRING;

record VAR ATTR ENUMERATION
Option<String> quantity "quantity"
tuple<Option<Exp.Exp>, Option<Exp.Exp>> min "min , max"
Option<Exp.Exp> start "start"
Option<Boolean> fixed "fixed - true: default for parameter/constant,
default for other variables" ;
end VAR ATTR ENUMERATION;

’

end VariableAttributes;

uniontype StateSelect
record NEVER end NEVER;
record AVOID end AVOID;
record DEFAULT end DEFAULT;
record PREFER end PREFER;
record ALWAYS end ALWAYS;
end StateSelect;

uniontype ExtArg
record EXTARG
Exp.ComponentRef componentRef;
Types.Attributes attributes;
Types.Type type ;
end EXTARG;

record EXTARGEXP
Exp.Exp exp;
Types.Type type ;

end EXTARGEXP;

record EXTARGSIZE
Exp.ComponentRef componentRef;
Types.Attributes attributes;
Types.Type type ;
Exp.Exp exp;

end EXTARGSIZE;

record NOEXTARG end NOEXTARG;

false

false

false

false

64

end ExtArg;

uniontype ExternalDecl
record EXTERNALDECL
Ident ident;

list<ExtArg> external "external function name" ;
ExtArg parameters "parameters" ;
String return "return type" ;

Option<Absyn.Annotation> language "language e.g. Library" ;
end EXTERNALDECL;

end ExternalDecl;

Som of the more important functions for unparsing (dumping) flat Modelica in DAE form:

The function dump unparses (converts into string or prints) a DAE1list into the standard output format by
calling dumpFunctionFunction and dumpCompElement. We also have (?? explain more):
dumpStrStr: DAElist => string

dumpGraphvizGraphviz: DAElist => ()
dumpDebugDebug

dumpCompElement (classes) calls dumpElementsElements, which calls:

dumpVarsVars

dumpListList equations
dumpListList algorithm
dumpListList compElement (classes)

Module dependencies: Absyn, Exp, Algorithm, Types, Values.

3.4.10 DAEEXT — External Utility Functions for DAE Management

The DAEEXT module is an externally implemented module (in file runtime/daeext.cpp) used for the
BLT and index reduction algorithms in DAELow. The implementation mainly consists of bit vector
datatypes and operations implemented using std::vector<bool> since such functionality is not
available in MetaModelica.

No module dependencies.

3.4.11 DAELow — Lower Level DAE Using Sparse Matrises for BLT

This module handles a lowered form of a DAE including equations, simple equations with equal operator
only, and algorithms, in three separate lists: equations, simple equations, algorithms. The variables are
divided into two groups: 1) known variables, parameters, and constants; 2) unknown variables including
state variables and algebraic variables.

The module includes the BLT sorting algorithm which sorts the equations into blocks, and the index
reduction algorithm using dummy derivatives for solving higher index problems. It also includes an
implementation of the Tarjan algorithm to detect strongly connected components during the BLT sorting.

Module dependencies: DAE, Exp, Values, Absyn, Algorithm.

Open Source Modelica System Documentation 65

3.4.12 Debug - Trace Printing Used for Debugging

Printing routines for debug output of strings. Also flag controlled printing. When flag controlled printing
functions are called, printing is done only if the given flag is among the flags given in the runtime
arguments to the compiler.

If the +d-flag, i.e., if +d=inst, lookup is given in the command line, only calls containing these flags
will actually print something, e.g.: fprint("inst", "Starting instantiation..."). See
runtime/rtopts.c for implementation of flag checking.

Module dependencies: Rtopts, Dump, Print.

3.4.13 Derive — Differentiation of Equations from DAELow

This module is responsible for symbolic differentiation of equations and expressions. It is currently (2004-
09-28) only used by the solve function in the Exp module for solving equations.
The symbolic differentiation is used by the Newton-Raphson method and by the index reduction.

Module dependencies: DAELow, Exp, Absyn, Util, Print.

3.4.14 DFA - MetaModelica Pattern Matching

This module is part of the MetaModelica language extension. This module contains a deterministic finite
automata (DFA) and a matrix data structure. These are used by the pattern match algorithm found in
Patternm. There are also several functions for handling DFAs (for instance a function for adding a new arc
to a DFA) and matrices (functions for adding a row to matrix, singling out the first row of a matrix,
removing the first row of a matrix, etc.). The union type RenamedPat can also be found in this module.

A renamed pattern is a pattern (an Absyn expression) tagged with a variable name (an Absyn identifier).

This module also contains the functions that transforms a DFA into a value block expression with
nested if-elseif-else nodes. The function fromDFAtoIfNodes is the entry point for this transformation;
generatelfElseifAndElse, fromStatetoAbsynCode, etc. are then invoked.

See the OMC MetaModelica extension chapter (chapter 4) for more information.

Module dependencies: Absyn, Util, Env, Lookup, Types, SCode, ClassInf

3.4.15 Dump - Abstract Syntax Unparsing/Printing

Printing routines for unparsing and debugging of the AST. These functions do nothing but print the data
structures to the standard output.

The main entry point for this module is the function dump which takes an entire program as an
argument, and prints it all in Modelica source form. The other interface functions can be used to print
smaller portions of a program.

Module dependencies: Absyn, Interactive, ClassInf, Rtopts, Print, Util, Debug..

3.4.16 DumpGraphviz — Dump Info for Graph visualization of AST

Print the abstract syntax into a text form that can be read by the GraphViz tool (www.graphviz.org) for
drawing abstract syntax trees.

Module dependencies: Absyn, Debug, Graphviz, ClassInf, Dump.

66

3.4.17 Env — Environment Management

This module contains functions and data structures for environment management.
“Code instantiation is made in a context which consists of an environment an an ordered set of parents”,
according to the Modelica Specification

An environment is a stack of frames, where ecach frame contains a number of class and variable
bindings. Each frame consist of the following:

e A frame name (corresponding to the class partially instantiated in that frame).

e A binary tree/hash table?? containing a list of classes.

e A binary tree/hash table?? containing a list of functions (functions are overloaded so that several
identical function names corresponding to different functions can exist).

e A list of unnamed items consisting of import statements.

type Env = list<Frame>;

uniontype Frame
record FRAME
Option<Ident> class 1 "Class name"
BinTree list 2 "List of uniquely named classes and variables" ;
BinTree list 3 "List of types, which DOES NOT be uniquely named, eg. size have
several types" ;
list<Item> list 4 "list of unnamed items (imports)"
list<Frame> list 5 "list of frames for inherited elements"”
list<Exp.ComponentRef> current6 "current connection set crefs"
Boolean encapsulated 7 "encapsulated bool=true means that FRAME is created due
to encapsulated class" ;
end FRAME;

end Frame;

uniontype Item
record VAR

Types.Var instantiated "instantiated component"

Option<tuple<SCode.Element, Types.Mod>> declaration "declaration if not fully
instantiated."

Boolean if "if it typed/fully instantiated or not" ;

Env env "The environment of the instantiated component

Contains e.g. all sub components

end VAR;

record CLASS
SCode.Class class ;
Env env;

end CLASS;

record TYPE

list<Types.Type> list "list since several types with the same name can exist
in the same scope (overloading)" ;
end TYPE;

record IMPORT
Absyn.Import import ;
end IMPORT;

end Item;

The binary tree data structure BinTree used for the environment is generic and can be used in any
application. It is defined as follows:

Open Source Modelica System Documentation 67

uniontype BinTree "The binary tree data structure
The binary tree data structure used for the environment is generic and can
be used in any application."
record TREENODE
Option<TreeValue> value "Value" ;
Option<BinTree> left "left subtree"
Option<BinTree> right "right subtree" ;
end TREENODE;

end BinTree;

Each node in the binary tree can have a value associated with it.

uniontype TreeValue
record TREEVALUE
Key key;
Value value;
end TREEVALUE;

end TreevValue;
type Key = Ident "Key"
type vValue = Item;

constant Env emptyEnv;

As an example lets consider the following Modelica code:

package A
package B
import Modelica.SIunits.*;
constant Voltage V=3.3;

function foo
end foo;

model M1
Real x,vy;
end M1;

model M2
end M2;

end B;
end A;

When instantiating M1 we will first create the environment for its surrounding scope by a recursive
instantiation on A. B giving the environment:

{
FRAME ("A", {Class:B},{},{},false) ,
FRAME ("B", {Class:M1, Class:M2, Variable:V}, {Type:foo},
{import Modelica.SIunits.*},false)

}

Then, the class M1 is instantiated in a new scope/Frame giving the environment:

{
FRAME ("A", {Class:B},{},{},false) ,
FRAME ("B", {Class:M1l, Class:M2, Variable:V}, {Type:foo},
{Import Modelica.SIunits.*}, false),
FRAME ("M1, {Variable:x, Variable:y},{},{},false)

68

Note: The instance hierarchy (components and variables) and the class hierarchy (packages and classes) are
combined into the same data structure, enabling a uniform lookup mechanism.

The most important functions in Env:

function newFrame : (Boolean) => Frame
function openScope : (Env,Boolean, Option<Ident>) => Env
function extendFrameC : (Env, SCode.Class) => Env
function extendFrameClasses : (Env, SCode.Program) => Env
function extendFrameV : (Env, Types.Var,
Option<tuple<SCode.Element, Types.Mod>>, Boolean) => Env
function updateFrameV : (Env, Types.Var,bool) => Env
function extendFrameT : (Env,Ident,Types.Type) => Env
function extendFramel : (Env, Absyn.Import) => Env
function topFrame : Env => Frame

function getEnvPath: (Env) => Absyn.Path option

Module dependencies: Absyn, Values, SCode, Types, ClassInf, Exp, Dump, Graphviz, DAE, Print, Util,
System.

3.4.18 Exp — Expression Handling after Static Analysis

This file contains the module Exp, which contains data types for describing expressions, after they have
been examined by the static analyzer in the module Static. There are of course great similarities with the
expression types in the Absyn module, but there are also several important differences.

No overloading of operators occur, and subscripts have been checked to see if they are slices.
Deoverloading of overloaded operators such as aDD (+) is performed, e.g. to operations ADD ARR,
ADD (REAL), ADD (INT) . Slice operations are also identified, e.g.:

model A Real b; end A;

model B

A afl[l0];
equation

a.b=fi11(1.0,10); // a.-b is a slice
end B;

All expressions are also type consistent, and all implicit type conversions in the AST are made explicit
here, e.g. Real (1) +1.5 converted from 1+1.5.

Functions:

Some expression simplification and solving is also done here. This is used for symbolic transformations
before simulation, in order to rearrange equations into a form needed by simulation tools. The functions
simplify, solve, expContainsContains, expEqual, extendCref, etc. perform this functionality,

e.g.:

extendCrefCref (ComponentRef, Ident, list<Subscript>) => ComponentRef
simplify (Exp) => Exp

The simplify function simplifies expressions that have been generated in a complex way, i.e., not a
complete expression simplification mechanism.

This module also contains functions for printing expressions, for 10, and for conversion to strings.
Moreover, graphviz output is supported.

Identifiers :
type Ident = String;

Define Tdent as an alias for String and use it for all identifiers in Modelica.

Basic types:

Open Source Modelica System Documentation 69

uniontype Type
record INT end INT;
record REAL end REAL;
record BOOL end BOOL;
record STRING end STRING;
record ENUM end ENUM;
record OTHER "e.g. complex types, etc." end OTHER;

record T ARRAY

Type type ;

list<Integer> arrayDimensions;
end T ARRAY;

end Type;

These basic types are not used as expression types (see the Types module for expression types). They are
used to parameterize operators which may work on several simple types.

Expressions:

The Exp union type closely corresponds to the Absyn.Exp union type, but is used for statically analyzed
expressions. It includes explicit type promotions and typed (non-overloaded) operators. It also contains
expression indexing with the ASUB constructor. Indexing arbitrary array expressions is currently not
supported in Modelica, but it is needed here.

uniontype Exp "Expressions
record ICONST
Integer integer "Integer constants"
end ICONST;

record RCONST
Real real "Real constants" ;
end RCONST;

record SCONST
String string "String constants" ;
end SCONST;

record BCONST
Boolean bool "Bool constants" ;
end BCONST;

record CREF

ComponentRef componentRef;

Type component "component references, e.g. a.b[2].c[1]" ;
end CREF;

record BINARY

Exp exp;

Operator operator;

Exp binary "Binary operations, e.g. a+4"
end BINARY;

record UNARY

Operator operator;

Exp unary "Unary operations, - (4x)" ;
end UNARY;

record LBINARY

Exp exp;

Operator operator;

Exp logical "Logical binary operations: and, or"
end LBINARY;

record LUNARY

Operator operator;

Exp logical "Logical unary operations: not" ;
end LUNARY;

record RELATION

Exp exp;

Operator operator;

Exprelation "Relation, e.g. a <= 0" ;
end RELATION;

record IFEXP

Exp expl;

Expexp2;

Exp 1f 3 "If expressions"
end IFEXP;

record CALL

Absyn.Path path;

1list<Exp> expLst;

Boolean tuple "tuple" ;

Boolean builtin "builtin Function call"
end CALL;

record ARRAY

Type type_ ;

Boolean scalar "scalar for codegen"

list<Exp> array "Array constructor, e.g. {1,3,4}"
end ARRAY;

record MATRIX

Type type ;

Integer integer;

list<list<tuple<Exp, Boolean>>> scalar "Matrix constructor. e.g. [1,0;0,1]" ;
end MATRIX;

record RANGE
Type type ;
exp;
Option<Exp> expOption;
Exp range "Range constructor, e.g. 1:0.5:10"
end RANGE;

record TUPLE
list<Exp> PR "PR. Tuples, used in func calls returning several
arguments"
end TUPLE;

record CAST

Type type ;

Exp cast "Cast operator"
end CAST;

record ASUB

Exp exp;

Integer array "Array subscripts" ;
end ASUB;

record SIZE

Exp exp;

Option<Exp> the "The ssize operator" ;
end SIZE;

record CODE

Open Source Modelica System Documentation 71

Absyn.Code code;
Type modelica "Modelica AST constructor" ;
end CODE;

record REDUCTION

Absyn.Path path;

Exp expr "expr" ;

Ident ident;

Exp range "range Reduction expression"
end REDUCTION;

record END "array index to last element, e.g. alend]:=1;" end END;

end Exp;

Operators:

Operators which are overloaded in the abstract syntax are here made type-specific. The Integer addition
operator ADD (INT) and the Real addition operator ADD (REAL) are two distinct operators.

uniontype Operator

record ADD

Type type ;
end ADD;

record SUB

Type type_;
end SUB;

record MUL

Type type_;
end MUL;

record DIV

Type type_;
end DIV;

record POW

Type type_;
end POW;

record UMINUS

Type type_;
end UMINUS;

record UPLUS

Type type ;
end UPLUS;

record UMINUS ARR

Type type ;
end UMINUS ARR;

record UPLUS ARR

Type type ;
end UPLUS ARR;

record ADD ARR

Type type_;
end ADD ARR;

record SUB_ARR

Type type_;
end SUB_ARR;

72

record MUL_ SCALAR ARRAY
Type a "a { b, c "
end MUL_ SCALAR ARRAY;

record MUL ARRAY SCALAR
Type type_ "{a, b} c" ;
end MUL ARRAY SCALAR;

record MUL SCALAR PRODUCT
Type type "{a, b} {c, d}" ;
end MUL SCALAR PRODUCT;

record MUL MATRIX PRODUCT

Type type_ "{{..},..} {{..},{..}}"
end MUL MATRIX PRODUCT;

record DIV ARRAY SCALAR
Type type "{a, b} / c"
end DIV _ARRAY SCALAR;

record POW_ARR

Type type_;
end POW_ARR;

record AND end AND;
record OR end OR;
record NOT end NOT;

record LESS

Type type_;
end LESS;

record LESSEQ

Type type_;
end LESSEQ;

record GREATER

Type type ;
end GREATER;

record GREATEREQ

Type type ;
end GREATEREQ;

record EQUAL

Type type ;
end EQUAL;

record NEQUAL
Type type_;
end NEQUAL;
record USERDEFINED
Absyn.Path the "The fully qualified name of the overloaded operator function";
end USERDEFINED;

end Operator;

Component references:

uniontype ComponentRef "- Component references
CREF QUAL(...) is used for qualified component names, e.g. a.b.c

Open Source Modelica System Documentation 73

CREF _IDENT(..) is used for non-qualifed component names, e.g. x "
record CREF_ QUAL

Ident ident;

list<Subscript> subscriptLst;

ComponentRef componentRef;
end CRE F QUAL;

record CREF_IDENT

Ident ident;

list<Subscript> subscriptLst;
end CREF IDENT;

end ComponentRef;

The subscript and ComponentRef datatypes are simple translations of the corresponding types in the
Absyn module.

uniontype Subscript

record WHOLEDIM "al[:,1]" end WHOLEDIM;

record SLICE
Exp a "al[l:3,1], a[l:2:10,2]1" ;
end SLICE;

record INDEX
Exp a "al[i+l]l" ;
end INDEX;

end Subscript;

Module dependencies: Absyn, Graphviz, Rtopts, Util, Print, ModUtil, Derive, System, Dump.

3.4.19 Graphviz — Graph Visualization from Textual Representation

Graphviz is a tool for drawing graphs from a textual representation. This module generates the textual input
to Graphviz from a tree defined using the data structures defined here, e.g. Node for tree nodes. See
http://www.research.att.com/sw/tools/graphviz/ .

Input: The tree constructed from data structures in Graphviz
Output: Textual input to graphviz, written to stdout.

3.4.20 Inst - Code Instantiation/Elaboration of Modelica Models

This module is responsible for code instantiation of Modelica models. Code instantiation is the process of
elaborating and expanding the model component representation, flattening inheritance, and generating
equations from connect equations.

The code instantiation process takes Modelica AST as defined in SCode and produces variables and
equations and algorithms, etc. as defined in the DAE module

This module uses module Lookup to lookup classes and variables from the environment defined in Env.
It uses the Connect module for generating equations from connect equations. The type system defined in
Types is used for code instantiation of variables and types. The Mod module is used for modifiers and
merging of modifiers.

3.4.20.1 Overview:

The Inst module performs most of the work of the flattening of models:

74

1.
2.
3.

Build empty initial environment.
Code instantiate certain classes implicitly, e.g. functions.
Code instantiate (last class or a specific class) in a program explicitly.

The process of code instantiation consists of the following:

1.

nohk v

Open a new scope => a new environment

Start the class state machine to recognize a possible restricted class.
Instantiate class in environment.

Generate equations.

Read class state & generate Type information.

3.4.20.2 Code Instantiation of a Class in an Environment

(?? Add more explanations)

Function: instClassdef
PARTS: instElementListList
DERIVED (i.e class A=B(mod) ;):

1.

2.
3.
4,

lookup class

elabModMod

Merge modifications
instClassIn (...,mod, ...)

3.4.20.3 InstElementListList & Removing Declare Before Use

The procedure is as follows:

1.

2.
3.

First implicitly declare all local classes and add component names (calling
extendComponentsToEnvComponentsToEnv), Also merge modifications (This is done by
saving modifications in the environment and postponing to step 3, since type information is not yet
available).

Expand all extends nodes.

Perform instantiation, which results in DAE elements.

Note: This is probably the most complicated parts of the compiler!

Design issue: How can we simplify this? The complexity is caused by the removal of Declare-before-use in
combination with sequential translation structure (Absyn->Scode->(Exp,Mod,Env)).

3.4.20.4 The InstElement Function

This is a huge function to handle element instantiation in detail, including the following items:

Handling extends clauses.

Handling component nodes (the function update components in_ env is called if used before it
is declared).

Elaborated dimensions (?? explain).

InstVar called (?? explain).

ClassDefs (?? explain).

3.4.20.5 The InstVar Function

The instvar function performs code instantiation of all subcomponents of a component. It also
instantiates each array element as a scalar, i.e., expands arrays to scalars, e.g.:

Real x[2] => Real x[1]; Real x[2]; in flat Modelica.

Open Source Modelica System Documentation 75

3.4.20.6 Dependencies
Module dependencies: Absyn, ClassInf, Connect, DAE, Env, Exp, SCode, Mod, Prefix, Types.

3.4.21 Interactive — Model Management and Expression Evaluation

This module contain functionality for model management, expression evaluation, etc. in the interactive
environment. The module defines a symbol table used in the interactive environment containing the
following:

Modelica models (described using Absyn abstract syntax).

Variable bindings.

Compiled functions (so they do not need to be recompiled).

Instantiated classes (that can be reused, not implemented. yet).

e Modelica models in SCode form (to speed up instantiation. not implemented. yet).

The most important data types:

uniontype InteractiveSymbolTable "The Interactive Symbol Table"
record SYMBOLTABLE

Absyn.Program ast "The ast"

SCode.Program explodedAst "The exploded ast" ;
list<InstantiatedClass> instClsLst "List of instantiated classes"
list<InteractiveVariable> lstVarVal "List of variables with values"
list<tuple<Absyn.Path, Types.Type>> compiledFunctions "List of compiled

functions, fully qualified name + type"

’

end SYMBOLTABLE;
end InteractiveSymbolTable;

uniontype InteractiveStmt "The Interactive Statement:
An Statement given in the interactive environment

can either be an Algorithm statement or an expression"
record IALG

Absyn.AlgorithmItem algIltem;
end IALG;

record IEXP
Absyn.Exp exp;
end IEXP;
end InteractiveStmt;

uniontype InteractiveStmts "The Interactive Statements:
Several interactive statements are used in the
Modelica scripts"
record ISTMTS
list<InteractiveStmt> interactiveStmtLst "interactiveStmtLst"
Boolean semicolon "when true, the result will not be shown in
the interactive environment" ;
end ISTMTS;
end InteractiveStmts;

uniontype InstantiatedClass "The Instantiated Class"
record INSTCLASS
Absyn.Path qualName " The fully qualified name of the inst:ed class";
list<DAE.Element> daeElementLst " The list of DAE elements";
Env.Env env "The env of the inst:ed class";
end INSTCLASS;
end InstantiatedClass;

uniontype InteractiveVariable "- Interactive Variable"
record IVAR

Absyn.Ident varIdent "The variable identifier";

76

Values.Value value "The expression containing the value";
Types.Type type " The type of the expression";
end IVAR;
end InteractiveVariable;

Two of the more important functions and their input/output:

function evaluate
input InteractiveStmts inInteractiveStmts;
input InteractiveSymbolTable inInteractiveSymbolTable;
input Boolean inBoolean;
output String outString;
output InteractiveSymbolTable outlInteractiveSymbolTable;
algorithm

end evaluate;

function updateProgram
input Absyn.Program inPrograml;
input Absyn.Program inProgram?2;
output Absyn.Program outProgram;
algorithm

end updateProgram;

Module dependencies: Absyn, SCode, DAE, Types, Values, Env, Dump, Debug, Rtops, Util, Parse, Prefix,
Mod, Lookup, ClassInf, Exp, Inst, Static, ModUil, Print, System, ClassLoader, Ceval.

3.4.22 Lookup — Lookup of Classes, Variables, etc.

This module is responsible for the lookup mechanism in Modelica. It is responsible for looking up classes,
types, variables, etc. in the environment of type Env by following the lookup rules.
The important functions are the following:

e lookupClassClass —to find a class
e lookupTypeType — to find types (e.g. functions, types, etc.).
e lookupVarVar —to find a variable in the instance hierarchy.

Concerning builtin types and operators:

e Built-in types are added in initialEnvEnv => same lookup for all types.
e Built-in operators, like size(...), are added as functions to initialEnvEnv.

Note the difference between Type and Class: the type of a class is defined by ClassInfo state + variables
defined in the Types module.

Module dependencies: Absyn, ClassInf, Types, Exp, Env, SCode.

3.4.23 Main - The Main Program

This is the main program in the OpenModelica system. It either translates a file given as a command line
argument (see Chapter 2) or starts a server loop communicating through CORBA or sockets. (The Win32
implementation only implements CORBA). It performs the following functions:

e Calls the parser

o Invokes the Interactive module for command interpretation which in turn calls to Ceval for
expression evaluation when needed.

e Outputs flattened DAE:s if desired.

e Calls code generation modules for C code generation.

Open Source Modelica System Documentation 77

Module dependencies: Absyn, Modutil, Parse, Dump, Dumpgraphviz, SCode, DAE, DAElow, Inst,
Interactive, Rtopts, Debug, Socket, Print, Corba, System, Util, SimCode.

Optional dependencies for parallel code generation: ??

3.4.24 MetaUtil — MetaModelica Handling

This module is part of the MetaModelica language extension. This module contains several functions that
handles different MetaModelica extensions such as the list construct and the union type construct. These
functions have been moved to this module in order to more clearly separate the MetaModelica extension
code from the rest of the code in the compiler.

See the OMC MetaModelica extension chapter (chapter 4) for more information.

Module dependencies: Types, Exp, Util, Lookup, Debug, Env, Absyn, SCode, DAE

3.4.25 Mod - Modification Handling

Modifications are simply the same kind of modifications used in the Absyn module.

This type is very similar to SCode .Mod. The main difference is that it uses Exp . Exp in the Exp module
for the expressions. Expressions stored here are prefixed and type checked.

The datatype itself (Types.Mod) has been moved to the Types module to prevent circular
dependencies.

A few important functions:

e clabModMod (Env.Env, Prefix.Prefix, Scode.Mod) => Mod Elaborate modifications.
® merge (Mod, Mod) => Mod Merge of Modifications according to merging rules in Modelica.

Module dependencies: Absyn, Env, Exp, Prefix, SCode, Types, Dump, Debug, Print, Inst, Static, Values,
util.

3.4.26 ModUtil — Modelica Related Utility Functions

This module contains various utility functions. For example converting a path to a string and comparing
two paths. It is used pretty much everywhere. The difference between this module and the Util module is
that ModUtil contains Modelica related utilities. The Util module only contains “low-level” “generic”
utilities, for example finding elements in lists.

Module dependencies: Absyn, DAE, Exp, Rtopts, Util, Print.

3.4.27 Parse — Parse Modelica or Commands into Abstract Syntax

Interface to external code for parsing Modelica text or interactive commands. The parser module is used for
both parsing of files and statements in interactive mode. Some functions never fails, even if parsing fails.
Instead, they return an error message other than "Ok".

Input: String to parse

Output: Absyn.Program or InteractiveStmts

Module dependencies: Absyn, Interactive.

78

3.4.28 Patternm — MetaModelica Pattern Matching

This module is part of the MetaModelica extension. This module contains a big part of the pattern
match algorithm. This module contains the functions that transforms a matchcontinue/match expression (an
Absyn expression) into a deterministic finite automata (DFA). The DFA is transformed into a value block
expression by functions in the DFA module. The "main" function of this module is matchMain, which
calls a number of functions.

See the OMC MetaModelica extension chapter (chapter 4) for more information.

Input: Absyn.Exp
Output: Absyn.Exp
Module dependencies: Absyn, DFA, Util, Env, SCode, Lookup

3.4.29 Prefix — Handling Prefixes in Variable Names

When performing code instantiation of an expression, there is an instance hierarchy prefix (not package
prefix) that for names inside nested instances has to be added to each variable name to be able to use it in
the flattened equation set.

An instance hierarchy prefix for a variable x could be for example a.b.c so that the fully qualified
name is a.b.c.x, if x is declared inside the instance c, which is inside the instance b, which is inside the
instance a.

Module dependencies: Absyn, Exp, Env, Lookup, Util, Print..

3.4.30 Print — Buffered Printing to Files and Error Message Printing

This module contains a buffered print function to be used instead of the builtin print function, when the
output should be redirected to some other place. It also contains print functions for error messages, to be
used in interactive mode.

No module dependencies.

3.4.31 RTOpts — Run-time Command Line Options

This module takes care of command line options. It is possible to ask it what flags are set, what arguments
were given etc. This module is used pretty much everywhere where debug calls are made.

No module dependencies.

3.4.32 SCode - Lower Level Intermediate Representation

This module contains data structures to describe a Modelica model in a more convenient way than the
Absyn module does. The most important function in this module is elaborate which turns an abstract
syntax tree into an SCode representation. The SCode representation is used as input to the Inst module.
e Defines a lower-level elaborated AST.
e Changed types:
e Modifications
e Expressions (uses Exp module)
e ClassDef (PARTS divided into equations, elements and algorithms)
e Algorithms uses Algorithm module
e Element Attributes enhanced.

Open Source Modelica System Documentation 79

e Three important public Functions
e eclaborate (Absyn.Program) => Program
e elabClassClass: Absyn.Class => Class
e DbuildModMod (Absyn.Modification option, bool) => Mod

Module dependencies: Absyn, Dump, Debug, Print.

3.4.33 SimCode - Code generation using Susan templates

The SimCode module takes a DAE in lowered form and generates a SimCode data structure that contains
all information needed for code generation, which is then passed on to a Susan template that does the code
generation. Among the things that the SimCode data structure contains is a list of functions that are used in
the model, all equations partitioned into several lists and information about variables. The generation of the
SimCode data structure is done to separate the preparation of the DAE for code generation and the code
generation itself, so that no further manipulation of the model is needed in the code generation phase.

Module dependencies: ???

3.4.34 SimCodeC - Code generation for C

SimCodeC generates C code from the information in a SimCode data structure. This includes generating
simulation code from the equations of the model that is compiled and linked with a numerical solver, and
generating code for Modelica functions and algorithms. SimCodeC is automatically generated from the
SimCodeC.tpl Susan template.

Module dependencies: ???

3.4.35 Socket — (Depreciated) OpenModelica Socket Communication Module

This module is partly depreciated and replaced by the Corba implementation. It is the socket connection
module of the OpenModelica compiler, still somewhat useful for debugging, and available for Linux and
CygWin. Socket is used in interactive mode if the compiler is started with +d=interactive. External
implementation in C is in ./runtime/soecketimpl.c.

This socket communication is not implemented in the Win32 version of OpenModelica. Instead, for
Win32 build using +d=interactiveCorba.

No module dependencies.

3.4.36 Static — Static Semantic Analysis of Expressions

This module performs static semantic analysis of expressions. The analyzed expressions are built using the
constructors in the Exp module from expressions defined in Absyn. Also, a set of properties of the
expressions is calculated during analysis. Properties of expressions include type information and a boolean
indicating if the expression is constant or not. If the expression is constant, the Ceval module is used to
evaluate the expression value. A value of an expression is described using the Values module.

The main function in this module is eval exp which takes an Absyn.Exp abstract syntax tree and
transforms it into an Exp . Exp tree, while performing type checking and automatic type conversions, etc.

To determine types of builtin functions and operators, the module also contain an elaboration handler
for functions and operators. This function is called elabBuiltinHandler. Note: These functions should

80

only determine the type and properties of the builtin functions and operators and not evaluate them.
Constant evaluation is performed by the Ceval module.

The module also contain a function for deoverloading of operators, in the deoverload function. It
transforms operators like '+' to its specific form, ADD, ADD ARR, etc.

Interactive function calls are also given their types by elabExpExp, which calls
elabCallInteractiveCallInteractive.

Elaboration for functions involve checking the types of the arguments by filling slots of the argument
list with first positional and then named arguments to find a matching function. The details of this
mechanism can be found in the Modelica specification. The elaboration also contain function
deoverloading which will be added to Modelica in the future when lookup of overloaded user-defined
functions is supported.

We summarize a few of the functions:

Expression analysis:

e clabExpExp: Absyn.Exp => (Exp.Exp, Types.Properties) — Static analysis, finding
out properties.

e clabGraphicsExp — for graphics annotations.

e eclabCrefCref —check component type, constant binding.

e clabSubscripts: Absyn.Subscript => Exp.Subscript — Determine whether subscripts are
constant

Constant propagation
® ceval
The elabExpExp function handles the following:

e constants: integer, real, string, bool

e Dbinary and unary operations, relations
e conditional: ifexp

e function calls

e arrays: array, range, matrix

The ceval function:

e Compute value of a constant expressions
e Results as Values.Value type

The canonCrefCref function:

e Convert Exp.ComponentRef to canonical form
e Convert subscripts to constant values

The elabBuiltinHandlerBuiltinHandler function:
e Handle builtin function calls such as size, zeros, ones, fill, etc.

Module dependencies: Absyn, Exp, SCode, Types, Env, Values, Interactive, Classinf, Dump, Print,
System, Lookup, Debug, Inst, Modutil, DAE, Util, RTOpts, Parse, ClassLoader, Mod, Prefix, CEval

3.4.37 System — System Calls and Utility Functions

This module contain a set of system calls and utility functions, e.g. for compiling and executing stuff,
reading and writing files, operations on strings and vectors, etc., which are implemented in C.
Implementation in runtimesystemimpl.c In comparison, the Util module has utilities implemented in
MetaModelica.

Open Source Modelica System Documentation 81

Module dependencies: Values.

3.4.38 TaskGraph — Building Task Graphs from Expressions and Systems of
Equations

This module is used in the optional modpar part of OpenModelica for bulding task graphs for automatic
parallelization of the result of the BLT decomposition.

The exported function build taskgraph takes the lowered form of the DAE defined in the
DAELow module and two assignments vectors (which variable is solved in which equation) and the list of
blocks given by the BLT decomposition.

The module uses the TaskGraphExt module for the task graph datastructure itself, which is
implemented using the Boost Graph Library in C++.

Module dependencies: Exp, DAELow, TaskGraphExt, Util, Absyn, DAE, CEval, Values, Print.

3.4.39 TaskGraphExt — The External Representation of Task Graphs

This module is the interface to the externally implemented task graph using the Boost Graph Library in
C++.

Module dependencies: Exp, DAELow.

3.4.40 TplAbsyn - Abstract Syntax for Susan Templates

TplAbsyn contains the data structures and functions that are used by TplParser to build an abstract syntax
tree for a Susan template.

Module dependencies: ???

3.4.41 TplCodegen - Code Generation for Susan Templates

TplCodegen generates MetaModelica code from the abstract syntax of a Susan template. TplCodegen is
automatically generated from a Susan template.

Module dependencies: ???

3.4.42 TplMain - Main Functions and Basic Tests for Susan Templates

TplMain contains the main function, which is called from Main when omc is called with a Susan template
as argument. The main function parses the template and generates code for it by using TplParser and
TplCodegen. TplMain also contains some tests for basic parts of the Susan template language.

Module dependencies: 7??

3.4.43 TplParser - Parser for Susan Templates

TplParser parses a Susan template and generates an abstract syntax tree for it with the help of TplAbsyn.

Module dependencies: ???

82

3.4.44 Types — Representation of Types and Type System Info

This module specifies the Modelica Language type system according to the Modelica Language
specification. It contains an MetaModelica type called Type which defines types. It also contains functions
for determining subtyping etc.

There are a few known problems with this module. It currently depends on SCode.Attributes,
which in turn depends on Absyn.ArrayDim. However, the only things used from those modules are
constants that could be moved to their own modules.

Identifiers:

type Ident = string

Variables:

uniontype Var "- Variables"
record VAR
Ident name "name"
Attributes attributes "attributes" ;
Boolean protected '"protected" ;
Type type_ "type" ;
Binding binding " equation modification"

end VAR;
end Var;
uniontype Attributes "- Attributes"
record ATTR
Boolean flow "flow"

SCode.Accessibility accessibility "accessibility"
SCode.Variability parameter '"parameter"
Absyn.Direction direction "direction"
end ATTR;
end Attributes;

uniontype Binding "- Binding"
record UNBOUND end UNBOUND;

record EQBOUND
Exp.Exp exp "exp"
Option<Values.Value> evaluatedExp "evaluatedExp; evaluated exp" ;
Const constant "constant”

end EQBOUND;

record VALBOUND
Values.Value valBound "valBound"
end VALBOUND;
end Binding;

Types:

type Type = tuple<TType, Option<Absyn.Path>> "A Type is a tuple of a TType
(containing the actual type)
and a optional classname
for the class where the
type originates from.";

uniontype TType "-TType contains the actual type"
record T INTEGER
list<var> varLstInt "varLstInt" ;
end T INTEGER;

record T REAL
list<Var> varLstReal "varLstReal"
end T REAL;

Open Source Modelica System Documentation 83

record T STRING
list<vVar> varLstString "varLstString" ;
end T STRING;

record T BOOL
list<var> varLstBool "varLstBool"
end T BOOL;

record T ENUM end T ENUM;

record T ENUMERATION
list<sString> names "names"
list<var> varLst "varLst"
end T ENUMERATION;

record T ARRAY
ArrayDim arrayDim "arrayDim"
Type arrayType "arrayType" ;
end T ARRAY;

record T COMPLEX
ClassInf.State complexClassType " The type of. a class"
list<vVar> complexVarLst " The variables of a complex type"
Option<Type> complexTypeOption " A complex type can be a subtype of another
primitive) type (through extends).
In that case the varlist is empty" ;
end T COMPLEX;

record T FUNCTION

list<FuncArg> funcArg "funcArg"

Type funcResultType "Only single-result"
end T FUNCTION;

record T TUPLE
list<Type> tupleType " For functions returning multiple values.
Used when type is not yet known" ;
end T TUPLE;

record T NOTYPE end T NOTYPE;

record T ANYTYPE
Option<ClassInf.State> anyClassType "Used for generic types. When class state
present the type is assumed to be a
complex type which has that restriction";
end T ANYTYPE;

end TType;
uniontype ArrayDim "- Array Dimensions"
record DIM
Option<Integer> integerOption;
end DIM;
end ArrayDim;
type FuncArg = tuple<Ident, Type> "- Function Argument"

Expression properties:

A tuple has been added to the Types representation. This is used by functions returning multiple
arguments.

Used by splitPropsProps:

84

uniontype Const " Variable properties: The degree of constantness of an expression
is determined by the Const datatype.
Variables declared as 'constant' will get C CONST constantness.
Variables declared as \'parameter\' will get C_PARAM constantness and
all other variables are not constant and will get C VAR constantness."
record C_CONST end C_CONST; -

record C_PARAM "\'constant\'s, should always be evaluated" end C_PARAM;

record C VAR "\ 'parameter\'s, evaluated if structural not constants,
never evaluated"
end C_VAR;
end Const;

uniontype TupleConst "A tuple is added to the Types.
This is used by functions whom returns multiple arguments.
Used by split props"
record CONST
Const const;
end CONST;

record TUPLE_ CONST
list<TupleConst> tupleConstLst "tupleConstLst"
end TUPLE CONST;
end TupleConst;

uniontype Properties "Expression properties:
For multiple return arguments from functions,
one constant flag for each return argument.
The datatype “Properties\' contain information about an
expression. The properties are created by analyzing the
expressions."
record PROP
Type type_ "type"
Const constFlag "if the type is a tuple, each element have a const flag.";
end PROP;

record PROP TUPLE

Type type ;
TupleConst tupleConst " The elements might be tuple themselfs.";
end PROP TUPLE;

end Properties;

The datatype Properties contains information about an expression. The properties are created by
analyzing the expressions.

To generate the correct set of equations, the translator has to differentiate between the primitive types
Real, Integer, String, Boolean and types directly derived from then from other, complex types. For
arrays and matrices the type T ARRAY is used, with the first argument being the number of dimensions,
and the second being the type of the objects in the array. The Type type is used to store information
about whether a class is derived from a primitive type, and whether a variable is of one of these types.

Modification datatype:

uniontype EgMod "To generate the correct set of equations, the translator has to
differentiate between the primitive types ‘Reall\', “Integer\',
‘String\', ‘Boolean\' and types directly derived from then from
other, complex types. For arrays and matrices the type
T ARRAY\' is used, with the first argument being the number of
dimensions, and the second being the type of the objects in the
array. The "Type\' type is used to store information about
whether a class is derived from a primitive type, and whether a

Open Source Modelica System Documentation 85

variable is of one of these types.
record TYPED
Exp.Exp modifierAsExp "modifierAsExp ; modifier as expression"
Option<Values.Value> modifierAsValue " modifier as Value option" ;
Properties properties "properties"
end TYPED;

record UNTYPED
Absyn.Exp exp;
end UNTYPED;
end EgMod;

uniontype SubMod "-Sub Modification"
record NAMEMOD
Ident ident;
Mod mod;
end NAMEMOD;

record IDXMOD
list<Integer> integerlLst;
Mod mod;
end IDXMOD;
end SubMod;

uniontype Mod "Modification"
record MOD
Boolean final "final" ;
Absyn.Each each ;
list<SubMod> subModLst;
Option<EgMod> egModOption;
end MOD;

record REDECL

Boolean final "final" ;

list<tuple<SCode.Element, Mod>> tplSCodeElementModLst;
end REDECL;

record NOMOD end NOMOD;
end Mod;

Module dependencies: Absyn, Exp, ClassInf, Values, SCode, Dump, Debug, Print, Util.

3.4.45 Util — General Utility Functions

This module contains various utility functions, mostly list operations. It is used pretty much everywhere.
The difference between this module and the ModUtil module is that ModUltil contains Modelica related
utilities. The Util module only contains “low-level” general utilities, for example finding elements in lists.

This modules contains many functions that use type variables. A type variable is exactly what it sounds
like, a type bound to a variable. It is used for higher order functions, i.e., in MetaModelica the possibility to
pass a "handle" to a function into another function. But it can also be used for generic data types, like in
C++ templates.

A type variable in MetaModelica is written as ??7? ' a.

For instance, in the function 1ist fill ('a,int) => 'a list the type variable 'a is here used as
a generic type for the function 1ist £ill, which returns a list of n elements of a certain type.

No module dependencies.

86

3.4.46 Values — Representation of Evaluated Expression Values

The module Values contains data structures for representing evaluated constant Modelica values.

include integer, real, string and boolean values, and also arrays of any dimensionality and type.
Multidimensional arrays are represented as arrays of arrays.

uniontype Value

record
record
record
record
record
record
record

record

INTEGER Integer integer; end INTEGER;
REAL Real real; end REAL;

STRING String string; end STRING;
BOOL Boolean boolean; end BOOL;

ENUM String string; end ENUM;

ARRAY list<Value> valuelLst; end ARRAY;
TUPLE list<value> valueLst; end TUPLE;

RECORD

Absyn.Path record "record name" ;

list<value> orderd "orderd set of values" ;

list<Exp.Ident> comp "comp names for each value" ;
end RECORD;

record

CODE

Absyn.Code A "A record consist of value Ident pairs" ;
end CODE;
end value;

Module dependencies: Absyn, Exp.

3.4.47

VarTransform — Binary Tree Representation of Variable
Transformations

These

VarTransform contains Binary Tree representation of variables and variable replacements, and performs
simple variable subsitutions and transformations in an efficient way. Input is a DAE and a variable
transform list, output is the transformed DAE.

Module dependencies: Exp, DAELow, System, Util, Algorithm.

3.4.48

XMLDump — Dumping of DAE as XML

XMLDump contains functionality to dump the DAE representation as XML.

3.4.49

DAEQuery — Dumping of DAE as Matlab

DAEQuery contains functionality for dumping the DAE Incidence Matrix in a Matlab format.

Open Source Modelica System Documentation 87

Chapter 4

MetaModelica Pattern Matching Compilation

This chapter gives a more detailed description of the methods used for compilation of pattern matching as
implemented in the modules Patternm and DFA.

In addition to the pattern matching, several other language constructs have been added to the
OpenModelica Compiler (OMC). A majority of these constructs are MetaModelica constructs. This chapter
describes the implementation of these constructs in order to ease the continuous implementation.

The most important construct that has been added to the OMC is the matchcontinue expression. It has
been implemented using an algorithm for pattern matching developed by Mikael Pettersson (former
PELAB member). This algorithm first transforms the matchcontinue expression into a Deterministic Finite
Automata (DFA). This DFA is then transformed into if-elseif-else nodes.

Other constructs that have been added (or are currently being added) include the MetaModelica list
type, MetaModelica union type and the MetaModelica tuple type.

A value block expression has been added to the OMC. The value block expression is simply an
expression consisting of a local variable declaration section, an equation or algorithm section and a return
statement. Similar block constructs may be found in languages such as Java and C. This construct is only
available internally and not for the end-user. The matchcontinue expression makes use of the value block
expression.

A number of modules have been altered. The implementation of the value block expression resulted in
the altering of many modules since it created circular dependencies in the compiler and a number of data
structures and functions had to be replicated. This replication, however, should only be seen as a temporary
solution. A later version of the OMC will hopefully be able to handle circular dependencies better.

4.1 MetaModelica Matchcontinue Expression

The matchcontinue expression is transformed from an Absyn.Exp into a new Absyn.Exp, namely a value
block (see section 4.2). The matchcontinue expression is first encountered in the function instStatement
in the Inst module. From here the expression is dispatched to the function matchMain in Patternm.
Patternm contains the code that transforms the Absyn . Exp into a DFA.

The DFA data structure can be found in the module DFA. The DFA module also contains functions that
convert the DFA into a value block with if-elseif-else nodes. The pattern matching code is clearly separated
from the rest of the code since there is only one point of entry, in Inst, and the rest of the algorithm is
located in DFA and Patternm.

411 Modules Involved

41.1.1 Absyn

The abstract syntax for the matchcontinue expression was added to Absyn by Adrian Pop.

88

41.1.2 Inst

Two new cases have been added to the function instStatement, one for the case (varl,...,varN)

:= matchcontinue () ... (tuple assignment) and one for the case var := matchcontinue ()

. . . (single variable assignment). The pattern match algorithm is invoked (this algorithm has its entry point
in the function matchMain in the module Patternm) and a value block expression is given in return. The
reason why we single out the matchcontinue expression in this function and this module (instead of in
Static.elabExp) is that we need to know the return type(s) of the value block that we create (and the
names of the assigned variables). The return type(s) is given by the types of the variables on the left side of
the assignments. As of now, the left-hand side variables are used as the return variables of the value
block/matchcontinue expression so that no new variables have to be created.

4.1.1.3 Patternm

This module contains most of the pattern match algorithm. This module contains the functions that takes a
matchcontinue expression and transforms it into a DFA. The DFA is transformed into a value block
expression by functions in DFA.

The "main" function of this module is matchMain, this function calls several functions. First it calls
ASTtoMatrixForm which transforms the matchcontinue expression into a matrix and a vector/list. The
matrix contains renamed patterns (patterns containing “path” variables). The vector contains right-hand
side records (records containing equations and variables belonging to a right-hand side of the initial
matchcontinue expression).

After ASTtoMatrixForm the function matchFuncHelper is called. This function takes care of all the
pattern matching and transforms the renamed pattern matrix and right-hand side list into a DFA. The last
thing matchMain does is to call DFA. fromDFAtoIfNodes which transforms the DFA into a value block
expression.

The function ASTtoMatrixForm goes through each and every case-clause in the matchcontinue
expression, adds path variables to the patterns, singles out the right-hand sides and takes care of all the as-
bindings (a pattern such as e as Absyn.INTEGER (1) will result in a new variable assignment in the
corresponding right-hand side, involving the path variable and the variable e).

The function extractFromMatchAST simply creates one list of patterns and one vector of right-hand
sides out of the matchcontinue expression. A matrix which contains renamed patterns is then created.

This matrix is then filled with renamed patterns by the function fillMatrix. This function takes one
tuple at a time from the list of patterns, rename all the patterns (add path variables) and then add a new row
to the matrix.

The function addRow adds a new row to the matrix after it has invoked the function renameMain on
each pattern in the row.

The function renameMain recursively adds path variables to a pattern. The function renamePatList
calls renameMain on each pattern in a list of patterns.

The function matchFuncHelper is the workhorse of the pattern match algorithm. This function
dispatches to a number of cases. Which case that should be executed is determined by the upper row of the
matrix. If the matrix, and thus the upper row, is empty, a final state is created. This can be seen as the stop
condition of the algorithm. A final state is a state that contains the variables and equations from a right-
hand side record. There are three other main cases as given below. The matchFuncHelper function will
assign a unique number, a stamp, to each state.

e Case 1, all of the top-most patterns consist of wildcards. The leftmost wildcard is used to create
an arc to a new state. The function matchFuncHelper is invoked on this new state with what is
left of the upper row (actually, since this row only contains wildcards we can discard all these
wildcards and go directly to a final state). An else arc to a new state is created; matchFuncHelper
is invoked on this new state with the rest of the matrix with the upper-row removed.

Open Source Modelica System Documentation 89

e Case 2, the top-most column consists of wildcards and constants but no constructors (record
calls or cons expressions). Select the left-most column with a constant at the uppermost position. If
this is the only column in the matrix do the following: Create a new arc with the constant and a new
(final) state. Create an else branch and a new state and invoke matchFuncHelper on this new state
with what is left of the column. Otherwise if there is more than one column left in the matrix:
Create one new arc and state for each constant and one new arc and state for all the wildcards. This
is done by calling the functions addNewArcForEachC and addNewArcForiildcards.

e Case 3, there is a column whose top-most pattern is a constructor. Select this column. The
function matchFuncHelper calls the function matchCase3. We create a new arc for each
constructor ¢. For each constructor c: Select the rows that match ¢ (wildcards included). Extract the
sub patterns, create a new arc and state and invoke matchFuncHelper on what is left on the
matrix appended with the extracted sub patterns. This is mainly done in the function
addNewArcForEachCHelper. If this is the only column in the matrix do the following: Create an
else arc and a new "union" state for all the wildcards and constants. This is done by the function
createUnionState. Otherwise if there is more than one column left in the matrix: create an arc
and state for each constant, in the same way as for the constructors. Create one new arc and state for
all the wildcards.

An array containing states already created is passed along in the pattern match algorithm. Whenever a new
state is about to be created, we search in this array to see whether an equal state already has been created. If
this is the case we simply create a goto-state containing the name of the old state. We use the
stamps/numbers assigned to each state to jump between equal states and to access the array.

4114 DFA
This module contains the DFA data structure. The DFA data structure has the following components.

e A DFA record which contains the start state, the number of states the DFA contains, an optional
else case, and a list of variables that will be added to the local variable section in the resulting value
block.

e A state record which contains a state stamp (identifier), a list of outdoing arcs, and an optional
right-hand side (if the state is a final state). There is also a goto-state record; it simply contains the
name of the state to jump to.

e An arc record which contains the state the arc is leading to, a list of numbers representing all the
right-hand sides that this arc leads to down the path, the name of the arc, and an optional renamed
pattern (the arc may be an else arc which means it does not have a renamed pattern).

This module also contains the functions that transform a DFA into a value block expression with nested if-
elseif-else nodes. The entry point is the function fromDFAtoIfNodes. This function will start by creating
some variables that are mostly needed for the failure handling (a case-clause in a matchcontinue expression
may fail which leads to the matching of the next case).

After this the function generateAlgorithmBlock is invoked. @ The function
fromStatetoAbsynCode will be called with the start state of the DFA. Depending on whether an else-
case exists or not we might need to generate some extra code in generateAlgorithmBlock.

The function fromStatetoAbsynCode will take a state as input, extract the outgoing arcs from this
state, create an if-elseif-else statement for all the arcs and recursively invoke itself on each state that each
arc leads to.

The recursive call is made by the function generateIfElseifAndElse which is the function that
creates the if-elseif-else statements. The function generateIfElseifAndElse is a function that takes a

90

list of arcs as input and accumulates if-elseif cases in a list until the list of arcs is empty and the actual if-
elseif-else statement is created.

The function fromStatetoAbsynCode must keep track of the type of the incoming arc to the current
state. If the incoming arc was a constructor then new path variables must be declared and initialized to the
field values of the record. This is done by the function generatePathVarDeclerations. This function
looks up the type and name of each field in the record so that a new variable may be declared.

The module DFA also contains the renamed patterns union type. A renamed pattern is similar to an
Absyn.Exp except that we have added a path variable to each pattern. This module also contains functions
for handling matrices: adding a row to a matrix, picking out the first row of a matrix, removing the first row
of a matrix, singling out a column from a matrix, etc..

In order to handle matchcontinue failures (a case-clause may fail which should lead to the matching of
the next case-clause) the following scheme is used.

e As mentioned earlier, the numbers of the right-hand sides that each arc eventually leads to are saved
in a list in the arc record.

e An array of Boolean values is added to the final value block. The array contains one entry for each
right-hand side.

e Whenever a right-hand side section fails, we catch this failure and set the corresponding entry in the
Boolean array to false.

e In every if-clse-elseif statement, in the generated code, we access the Boolean array to see whether
all the right-hand sides that this arc leads to already have been visited.

An example follows.

y := matchcontinue (x)
case (1) equation .. <codel> fail(); <code2> .. then 1;
case (2) equation .. <code3> .. then 2;

end matchcontinue;

The code above would result in the following C-code (note that the code is somewhat simplified).

{

Bool BOOLVAR[2] = {true, true};
Int LASTFINALSTATE = 0;

Bool NOTDONE = true;

while (1)
{
try {
if (x == 1 && BOOLVAR[1]) {

LASTFINALSTATE = 1;
<codel>
throw 1; //fail
<code2>

NOTDONE = false;
}

else 1If (x == 2 && BOOLVAR[2]) {
LASTFINALSTATE = 2;
<code3>

NOTDONE = false;

Open Source Modelica System Documentation 91

}
catch (..) {

BOOLVAR [LASTFINALSTATE] = false;
}
if (!NOTDONE) break;

4.2 Value block Expression

The value block expression makes it possible to have equations and algorithm statements nested within
another equation or algorithm statement. This fact makes the implementation of this construct rather
complicated. Circular dependencies arise in the compiler. The compiler design also becomes unclean in the
sense that the original patterns of design are altered: we may find pieces of code in places we did not
expect.

42.1 Modules Involved

421.1 Absyn

A value block record has been added to Absyn .Exp. This record consists of a list of elementItems (local
variable declarations), a ValueblockBody union type (this union type consists of two records, one
representing a list of equations and the other one representing a list of algorithm statements) and a result
expression.

42.1.2 Exp

A value block record has been added to this module. Since a value block may contain variable declarations
and algorithm statements (if any equations exist at the outset these are converted into algorithm assignment
statements by a function in the Static module) and since we do not want circular dependencies we had to
duplicate many data structure into Exp. We had to move (duplicate) type data structures from Types, DAE
and Algorithm. In Static when the value block is first encountered these data structures are converted from
being union types of Types, DAE and Algorithm into being union types of Exp. In Codegen they are then
converted back. This converting is done by the module Convert, see the next paragraph.

4.2.1.3 Convert

This module contains functions that convert union types from Types, DAE and Algorithm into
corresponding union types in Exp, and then back again.

4214 Static

The value block expression is first encountered in this module in the function elabExp. First a new scope
is added to the environment. After this the local variable list is elaborated and the variables are added to the
environment. After this the algorithm section is instantiated and the return expression is elaborated.
However, in order to avoid circular dependencies we had to add some extra data structures to Exp as
mentioned above. Therefore we must call functions in the module Convert that converts these data
structures. If we have a value block with an equation section instead of an algorithm section we simply use
the function fromEquationsToAlgAssignments to transform each equation into an algorithm
assignment statement.

92

4.2.1.5 Prefix
In the function prefixExp we must now handle a value block expression. New functions that can add
prefixes to elements and algorithm section have been added: prefixDecls, prefixAlgorithm and
prefixStatements.

4.2.1.6 Codegen

The value block expression (an Exp.Exp record) is encountered in the function generateExpression.
First the list of elements and algorithm statements are converted from Exp union types into DAE, Types
and Algorithm union types. After this the C code is generated in a rather straightforward fashion.

4.3 MetaModelica list

The MetaModelica language contains a list construct, similar to the one found in languages like Lisp.

list<Integer> listInt;

listInt = {1,2,3,4};
listInt = cons(1,{1,2,3});

listInt

(1 :: {1,2,3}); // :: is the cons operator

This list type has now been added to the OMC. The C code that is generated consists of void pointers
and function calls to the C runtime functions mk_nil and mk_cons.

431 Modules Involved

43.1.1 Absyn

The :: operator is represented by the CONS record in the Exp union type in Absyn. A LIST record has also
been added to the Exp union type. This one is used internally in the compiler to represent an Absyn . ARRAY
(the parser cannot decide whether curly brackets, { ... }, denotes a list or an array constructor). In some
places in the code (where type information is available), an Absyn.ARRAY expression is replaced by an
Absyn.LIST expression.

4.3.1.2 Codegen

C code is generated for the Exp.LIST and Exp.CONS expressions in the function generateExpression.
DAE.Type and Types.T LIST are handled in several places in this module and C void pointers are
generated.

4.3.1.3 DAE
A list type has been added to the union type DAE. Type.

43.1.4 DFA

The handling of lists has been added to this module. A renamed cons pattern should result in an appropriate
if-statement. Given a list variable, we must create two new variables that should be assigned the car and cdr
parts of the list variable. An example follows.

matchcontinue (x)

Open Source Modelica System Documentation 93

case (1 :: {})
The above example should result in the following (somewhat simplified) code.
it () |
Type x1 = car(x);
list<Type> x2 = cdr (x);
if (x1 == 1) {

if (x2 == {}) {...}

}

An extra environment variable must be passed along. This environment contains the types of the variables
generated from a cons pattern (such as x1 and x2 above). This is needed because when we encounter a path
variable such as x1 and x2 (that have been generated from a cons pattern) we need to know the type of this
variable.

43.15 Inst

Extra clauses have been added to the functions instElement and instStatement. In the function
instElement, a list element must be dealt with separately. The basic underlying type of the list is handled
as usual and at the end the Types.T LIST is added to the resulting DAE element. Nested lists, for instance
list<list<Integer>>, are also supported.

4.3.1.6 Metautil

This module contains a number of functions that deals with the list construct. These functions are invoked
from Inst, Static and Codegen. This module was added so that the code dealing with MetaModelica
constructs would be more strictly separated from the rest of the code.

43.1.7 Patternm

The cons and empty-list patterns are handled in renameMain and in a few other functions.

4.3.1.8 Static

Several extra clauses have been added to the function elabExp. When the MetaModelica flag is set, we
must go through all the arguments to a function call to see if there are any Absyn.ARRAY expressions. If
this is the case and the underlying type is a list, we must replace this Absyn.ARRAY expression with an
Absyn.LIST expression. In the function elabExp we also handle the Absyn.LIST and Absyn.CONS
records. The elaboration of these records results in an Exp.LIST or Exp . CONS record.

4.3.1.9 Types

A T 11ST record has been added to the TType union type. This record is handled by for instance the
function subtype.

4.3.1.10 Values

A list value has been added to this module. However, it is not used as of now (and may never have to be
used in the future).

94

4.4 MetaModelica Union Type
NA.

Open Source Modelica System Documentation 95

Chapter 5

Run-Time System??

7?ill in about the OpenModelica Run-time system

96

Chapter 6

Interactive Simulation Facilities

This subsystem provides an interactive simulation using OM. An interactive simulation runtime will be
generated by the OMC. This executable file contains the full Modelica model as C/C++ code with all
required equations, conditions and a solver to simulate a whole system or a single system component.

?77The current version is a preliminary beta version.

6.1 Interactive Simulation Runtime

In order to offer a user-interactive and time synchronous simulation, OM has an additional subsystem to
fulfill general requirements on such simulations.

This module is part of the simulation runtime core and will be called “OpenModelica Interactive” (OMI).
OMI will result in an executable simulation application, such as the non interactive simulation. The
executable file will be generated by the OMC, which contains the full Modelica model as C/C++ code with
all required equations, conditions and different solvers to simulate a whole system or a single system
component. This executable file offers a non-interactive and an interactive simulation runtime.

The following are some general functionalities of an interactive simulation runtime:

e The user will be able to stimulate the system during a running system simulation and to observe
its’ reaction immediately.

e Simulation runtime behavior will be controllable and adaptable to offer an interaction with a user.

e A user will receive simulation results during a simulation synchronous to the real-time. Since
network process time and some other factors like scheduling of processes from the operation
system this is not given at any time.

e In order to offer a stable simulation, a runtime will inform a user interface of errors and
consequential simulation aborts.

e Simulation results will not under-run or exceed a tolerance compared to a thoroughly reliable
value, for a correct simulation.

e Communication between a simulation runtime and a user interface will use a well defined interface
and be base on a common technology, in this case network communication.

Parameter as changeable Unit

An important modification/addition to the semantic of the Modelica language is the fact that parameters are
changeable units while simulating interactively using OMI. All properties using the prefix “parameter”
could be changed during an interactive simulation. The full qualified name is used as a unique identifier, so
a parameter value can be found and changed regardless of its hierarchical position in the model.

As mentioned above, the OM simulation runtime has no real-time simulation capabilities and does not
provide any user interaction while the simulation is running.

Open Source Modelica System Documentation 97

The following are some identified modifications and expansions of the existing source code which are
needed to fulfil the general requirements:

e Real-time and network communication capabilities expansion: In order to offer a user-interactive
and real-time simulation we need, for example, threading, network protocols and synchronization
units.

e Management of resources: De-allocation of used memory after a simulation step, release and
deletion of all synchronisation units and deletion of all sockets.

e Modification of data storage and in/out operations: Removal of unnecessary in/out operations and
other overhead.

6.2 OpenModelica Interactive

The new simulation runtime is called “OpenModelica Interactive” (OMI).

OMI is an executable simulation application. The executable file will be generated by the OMC, which
contains the full Modelica (SysML) model as C/C++ code with all required equations, conditions and a
solver to simulate a whole system or a single system component. However, the best way to expand the
existing code with the required capabilities is to separate the OMI system into different subsystems, which
will also support the modularisation and information hiding principles. The separation into subsystems is
attached to the service-oriented architecture, which has the advantage of replacing, modifying and
expanding the single subsystems without changes to the other subsystem components.

The OMI is separated into two subsystems:

e The old modified OM Subsystem
e The new OMI Subsystem

OpenModelica Interactive 1 Interactive GUI
(As Server/Service) I (As Client)
|
Simulation Units ! Communication Units:
77777777777777777777777777 - === ————a
OM Subsystem (old) ! OMI Subsystem (new) 1 : 1
i : |
Global ' I | 1
Data : : \ V1
! I |
1 1 : . .
| ; + Calculation |- } Control <—gJ—> Simulation
) : | | Control
OM Service ' 1 !
Interface ! : 1
] i | ¥
1 1 :
v i : b
Orig. OM i ! i 1
components i i o
1 1 !
: vy | v !
i Result ! Transfer - p | Simulation
i Manager I T > DataFlow
: 1 : I
i : H

Figure 6-1 OpenModelica Interactive System Architecture Overview

98

6.2.1 The OpenModelica Subsystem

The OpenModelica subsystem consists of the partially modified “Orig. OM components” and a global data
structure, as shown in ??. Modifications:

Following a calculation stage, the results will be printed into a file in preparation for plotting. OMI
does not need this result file. In order to improve the performance this function has to be removed
from the “Solver DASRT”.

The “Orig. OM components” use many variables which are stored in the global scope. These global
scope variables must be reinitialized before running a new solving step, otherwise the solver will
not calculate the results correctly.

Allocated memory must be released after a solving step and also a whole simulation run also. The
OM system has to De-allocate this memory after every solving step.

Expansion:

The new OMI subsystem components need to be called when a simulation begins. This will be done
from the main function in “simulation_runtime.cpp”, which starts the “OMI_Control”, which takes
over the whole simulation control.

The access to the simulation data “global data” needs to be synchronized, therefore a Mutex is
implemented, which controls the access between the OM components, such as the solver, and the
OMI subsystem components.

OM Service Interface: A unit which controls all access to the OM subsystem components from
other subsystems. All parallel activities on the OM will be synchronized.

6.2.1.1 OpenModelica Subsystem Service Interface

The OM subsystem offers three main services: A Simulation Data-, a Simulation Data- Name and a
Solving- Service.

Simulation Data Service: Model and simulation specific data for example variable names, values
and numbers, are stored in a global data structure. Most of this data needs to be changed during the
simulation single steps, but some data are static, for example the step time. Also a simulation
environment configuration can be done with this service. This service provides data query and
manipulation.

Simulation Data Name Service: Returns the model data names as string for example variable or
parameter names, this will be used to generate the filter mask as mentioned in chapter 6.2.2.4.
Solving Service: This service simulates a Modelica model for a specific time interval by using a
solver, depends on the “method” string it will call the DASSL, Euler or Runge Kutter 4 solver and
the standard OM components. It sends the result for a each interval to the caller and stores it to the
global data structure.

Some parameters are needed to use the solving service from the OM Subsystem:

Start time (T, =0,T, =0,T,,,_T, + StepSize)

Stop time (T, = 2.220446049250313¢e-13,T,,,_T, + StepSize)
Solving Method (dassl, euler, rungekutta)

Step Size (Value in seconds. Note: For euler use StepSize<0.01)

A tolerance for results

6.2.2 The OpenModelica Interactive Subsystem

The OpenModelica Interactive subsystem uses the above mentioned services to simulate a Modelica model
without any knowledge of used solvers, equations and conditions. The subsystem is also separated into
different modules.

Open Source Modelica System Documentation 99

6.2.2.1 OMI::Control

The “Control” module is the interface between OMI and a GUI. It is implemented as a single thread to
support parallel tasks and independent reactivity. As the main controlling and communication instance at
simulation initialisation phase and while simulation is running it manages simulation properties and also
behaviour. A client can permanently send operations as messages to the “Control” unit, it can react at any
time to feedback from the “Calculation” or “Transfer” threads and it also sends messages to a client, for
example error or status messages.

The following are its main tasks:
e Waiting for a request or an error and abort message from a GUI.
e Waiting for a GUI to connect with, based on the network communication protocols TCP/IP.
e Handling of a GUI request and replying with the correct execution with a done message.
e Managing all “Calculation” and “Transfer” threads from the OMI subsystem.
e Watching for feedback from a global error handler which handles all occurred errors from
“Transfer”, “Calculation” and “Control” threads in the form of an error message.
e Informing a GUI if a fatal error occurs.

6.2.2.2 OMI::ResultManager

While a simulation is running the “Calculation” thread produces simulation results for every time step, and
the “Transfer” thread sends the single results to a client. There is a need for synchronization and
organisation of simulation results. However, the application cannot store all results because this would
cause the system to run out of memory.

This scenario is the typical “producer and consumer problem with restricted buffer”, which is well
known in IT science.

The “ResultManager” assumes responsibility for organizing simulation result data and synchronizing
access to these data.

Simulation Step Data (SSD)

The main unit of the “ResultManagers” is a collection of simulation step data elements
(SimulationStepData) which contain all important result values for each simulation step. The “OM Solver”
needs the following data for every single simulation step to solve the equations and to confirm the
conditions:

e A time stamp which marks for what time step these data represent.
e All state values and their derivatives.

e All algebraic values.

e All parameter values.

This container is restricted by “200” slots, to prevent the system running out of memory.
Simulation Result Data for Forwarding (SRDF)
Main organisation and management tasks while sending data to a GUI:

e Organise which data should be send to a GUI.

e Organise which data are obsolete.

Manage how to synchronize the access from the different producers and consumers.
Manage how the producers and consumers should inform about free slot.

Manage how the producers and consumers should inform about new results.

The “simulation result data for forwarding” (SRDF) is a container which contains references to slots of the
SSD array. This container is implemented as an array.

100

The buffer is restricted to “20” elements. This is important because a “Calculation” thread could be
much faster than the “Transfer” thread, which would cause the system to run out of memory. Also “SRDF”
is organized as a queue so it based on the principle of First in First out (FIFO). This is the above mentioned
typical “producer and consumer problem with a restricted buffer”.

The following is a brief description of the organisation of the data array “SRDF” based on a short example:
L, : Simulation result for the time n (C++ structure).

arr_srdf[n]: Array buffer with the maximum size “n”, starts at address “1000”.

ptf @: Pointer to the first element i.e. least L, appendage the FIFO principles.

If “ptf” points to a slot with a null, “pop” does not work.

ptd A: Pointer to the next free slot, where an element L, could be inserted.

If “ptd” points to a busy slot, push does not work.

push: Insert a L into “arr_srdf”.

pop: Take and remove a t from the “arr_srdf”.

laa = Last array address.

Initialization Phase and example push, pop operations as pseudo code:
e - arr_srdf[n] initialized with null

e -ptf=arr srdf;
e -ptd=arr_srdf;
e -laa= &arr srdff[n-1] //Last Array Address in this case 1028

1000 | 1004 | 1008 | 1012 | 1016 | 1020 | 1024 | 1028

null | null | null | null | null | null | null | null

oA

Open Source Modelica System Documentation 101

push (result t)
{
If (*ptd == null)
{
*ptd = tn;
If (ptd != laa)
ptd++;
else: ptd = arr_srdf;
}
else: Can'’t push tnbecause there is no free slot
}
?op()
if (i*ptf != null)
do (*ptf) ;
*ptf = null;
If (ptf != laa)
ptf++;
else: ptf = arr srdf;
}
else: Can’'t pop an element because the buffer is empty
}

Figure 6-2 Pseudo code of push and pull in SRDF

The computer science has a design pattern to solve the “producer and consumer problem with restricted
buffer”. It will use Semaphores and Mutexes. Involved members are “Calculation” as producer and
“Transfer” as consumer.

6.2.2.3 OMI::Calculation

The “Calculation” thread is synonymous to a producer which uses the “OM Solving Service” to get results
for a specific time step and to inform the “ResultManager” about the new simulation results. It uses the
parameters described in 6.2.1.1. to calculate the interval between single calculation steps (T, = T,,,) ina
loop, until the simulation is interrupted by the “Control” or because of an occurred error.

If a single solving step is very complex and takes a long time to be solved, it is possible to create more
than one producer to start the next simulation step during the data storing time.

6.2.2.4 OMI::Transfer

Similar to a consumer, the “Transfer” thread tries to get simulation results from the “ResultManager” and
send them to the GUI immediately after starting a simulation. If the communication takes longer than a
calculation step, it is also possible to create more than one consumer.

The “Transfer” uses a property filter mask containing all property names whose result values are
important for the GUI. The GUI must set this mask using the “setfilter” operation from chapter 6.2.3,
otherwise the transfer sends only the actual simulation time. This is very useful for increasing the
communication speed while sending results to the GUIL.

102

6.2.3 Communication Interface (Architecture)

As depicted in Figure 6-1 the behaviour between the OMI and a GUI is like a server and client behaviour
respectively.

6.2.3.1 Communication

There are some possible technologies to realise the communication between the OMI and a GUI. The
following are some of these technologies:

e CORBA: The “Common Object Requesting Broker Architecture” is a standard defined by the
OMG which enables software components written in multiple computer languages to work
together. This specification offers a name service, object management service and some other very
useful concepts.

e Message Parsing using a common network communication technology: The principle of message
parsing is used when an application does not have shared memory. It is used in combination with a
network communication technology when the information exchange can be constructed on a basic
structure, for example strings.

For the OMI realisation CORBA is too overloaded. The name service will not be used because there is only
one single simulation runtime and only one GUI. There are no objects on the “C++” simulation runtime
side. However, message parsing using a common network technology seems to be the most suitable way.
The network communication technology “TCP/IPv4” (IPv6 TBD) will be used to send and receive
messages; it has many advantages compared with “UDP/IP” [7]. Each system has its own server and client
implementations to receive and send messages respectively.
The OMI components which are designated for a communication over TCP/IP

Name Description URL
Control Server Waits for requests from the GUI By Default, waits for connection on:
127.0.0.1:10501
Control Client Replies to the GUI and sends other By Default, tries to connect on:
synchronization messages to it 127.0.0.1:10500
Transfer Client Sends simulation results to a GUI By Default, tries to connect on:

127.0.0.1:10502

Table 6-1 OMI server and client components: Communication behaviour and configuration by default

Name Description URL
Control Client Requests to the OMI Control Server By Default, tries to connect on:
127.0.0.1:10501
Control Server Waits for information from the OMI By Default, waits for connection on:
Control Client 127.0.0.1:10500
Transfer Server Waits for simulation results from the By Default, waits for connection on:
OMI Transfer Client 127.0.0.1:10502

Table 6-2 GUI server and client components: Suggested configuration by default
e Operation Messages

To use messages parsing there is a need to specify a communications protocol.

A string message begins with a specified prefix and ends with a specified suffix.

The prefix describes the request type, for example an operation. Depending on the request type, some
additional information and parameters can append on it. The suffix is to check if the message has been
received correctly and if the sender has created it correctly. All parts should be separated with “#”.

A sequence number is helpful to manage operation request and reply, a Ul has to send a sequence
number combined with an operation.

The following are all available message strings between a GUI and the OMI system:

Open Source Modelica System Documentation

103

Request from GUI to OMI::Control

GUI Request Description OMLI::Control Reply
start#seq#tend Starts or continues the simulation donetfseg#fend
pause#seq#end Pauses the running simulation donettseg#fend
stop#seq#end Stops the running simulation and donettseqg#end
resets all values to the beginning
shutdown#seqg#end Shuts the simulation down donettseqg#end
setfilter#seq# Sets the filter for variables and donet#seq#end
varl :var2# parameters which should send
parl:par2# from OMI to the client GUI
end
useindex#seqttend Uses indexes as attribute names. donettseqg#end
The index will be used at
transmitting results to a client. This
will cause much less data to
transmit.
setcontrolclienturl#seq# Changes the IP and port of the done#seqtftend
ip#port# Control Server. Otherwise the
end default configuration will be used.
settransferclienturl#seq# Changes the IP and port of the donettseqg#end
ip#port# Control Server. Otherwise the
end default configuration will be used.
changetime#seq#Tn#end Changes the simulation time and done#seqftend
goes back to a specific time step
changevalue#seq# Tn# Changes the value of the appended donet#seq#end
parl=2.3:par2=33.3# parameters and stets the simulation
end time back to the point where the
user clicked in the GUI
error#TYPE#end Error handling not implemented Error: *
yet
Table 6-3 Available messages from a GUI to OMI (Request-Reply)
The simulation runtime reply a Control request with a done.
Messages from OMI::Control to GUI
OMLI::Control Description GUI
Error: MESSAGE If an error occurs the OMI::Control | Up to the GUI developers
generates an error messages and
sends the messages with the prefix
“Error:” to the GUI (not
implemented yet)
Table 6-4 Available messages from OMI::Control to GUI
Messages from OMI::Transfer to GUI
OMI:: Transfer Description GUI
result#ID#Tn# Sends the simulation result for a None
varl=Val:var2=Val# time step Tn to the client GUI,
parl=Val:par2=Val# using the property names as
end identifier. Maybe a result ID is
important to identify the results
which are obsolete (not
implemented yet).
result#ID#Tn# Sends the simulation result for a None

1=Val:2=Val#

104

1=Val:2=Val#
end

time step T, to the client GUI,

using an index as identifier. This
requires a convention about the
used index mask. Transfer
optimization.

NOTE: Operation from GUI
needed, Mask creation using the
standard array index is
recommended.

Maybe a result ID is important to
identify the results which are
obsolete (not implemented yet).

Table 6-5 Available messages from OMI::Transfer to GUI

Open Source Modelica System Documentation 105

6.2.4 OpenModelica Interactive Structure and Behaviour

The OMI structure and behaviour will be represented as UML diagrams. Use cases will be illustrated in

UML Sequence diagrams.

OM::GlobalDataManager
OM::Solver
«uses» - «uses»
I B OM:OMService | setvalues()
+solveEquations() +getvalues()

+simulationDataService()
+solvingService()
+simulationDataNameService()

T Calculationlrjterface

T OMServicelnterface

J) OMServicelnterface

CalculationInterface
T TransferInterface

OMI:Calculation

OMI::Control

-simStepData_from_Calculation : SimulationStepData
-p_SimStepData_from_Calculation : SimulationStepData

-NUMBER_PRODUCER : int
-NUMBER_CONSUMER : int

«uses»

+simulationDataService()
+solvingService()
+simulationDataNameService()
+threadCalculation()

|
|
I calculationinterface !

T
|
|
|
|
; ResultManagerinterface
|
|
|
|
|
|
|
|

«uses»

ResultManagerinterface O—

«uses»

+reportError(ein errorMessage)
+threadTransfer()
+simulationDataService()
+solvingService()

+startSimulation()
+stopSimulation()
+pauseSimulation()
+changeSimulationTime()
+changeParameterValues()
+parseMessageFromClient()
+shutDown()
+createErrorMessage()
+setVariableFilterForTransfer()
+initialize()
+setFilterForTransfer()
+createServerSocket()
+connectToGUI()
+setGlobalData()
+parseState()
+parseAlgebraic()

OMI::ResultManager

-ssdArray : SimulationStepData = MAX_SSD
-MAX_SRDF : int = 20
-MAX_SSD : int = 200

+initializeSSD_AND_SRDF()

-pointNextFreeSSDSIot()
-pointNextFreeSRDFSlot()
-pointNextUsedSRDFSlot()

ReportErrorinterface

«sasn»

|
«uses»
)

T
|
|
|
|
|
|
|
| i
i OMServicelnterface
|
| |
| |
| |

OMI::Transfer

+getResultData() «uses»
+setResultData() -simStepData_from_Transfer : SimulationStepData
-addDataToSSD) N7 TTTTTTTTTTTTTTTTTTT -p_SimResDataForw_from_Transfer : SimulationStepData

+threadTransfer()
+initializeSSD_AND_SRDF()
+getResultData()

-pushSRDF() ——O ResultManagerinterface [+setResultData()

-POPSRDF() -sendMessageToClient() : int
-printSSD() +connectToTransferServer() : int
-printSRDF() +printSSDTransfer() : int
+getSSDForTime() +setVariableFilter()

J) ResultManagerinterface

Transferlnterface

Figure 6-3 UML-Structure OM and OMI with some attributes and methods

Il . . .

+initializeSSD_AND_SRDF() :tsrl]rrr:ggtcl?gﬁ;’::geSerVIceO 400
"

éiﬁﬁiﬁﬂ.’:@i{ig i +initializeSSD_AND_SRDF() s

-createSSDENtry() +getResultData() 3

-calculate() +setResultData() g

-threadClientControl() Ey

+sendMessageToClient() e

+relnitAll() o

Controlinterface O——— ®

106

OMI::Control OMI::ResultManager

2 2

TCP/IP Handshake

Network specific
handshake phase

initialize()

Now the client can ﬁ initializeSSD_AND_SRDF

send all initialize
values for the
variables and parameters

sendMessageToClient(done)

setcontrolclienturl()

sendMessageToClient(done) > threadClientControl()

settransferclienturl()
sendMessageToClient(done) > threadTransfer()
é ____________________

setVariableFilterForTransfer()

sendMessageToClient(done) > setVariableFilter
é ____________________

h

Figure 6-4 UML-Seq Handshake, model initialization and set Transfer filter mask

The UML-Sequence diagram in Figure 6-4 illustrates the network specific handshake phase, the model
initialization phase, which includes creation and initialisation of all producers and consumers, and the
definition of the filter mask for the consumers (Transfer threads) the filter message is the “setfilter”
operation from Table 6-3.

Open Source Modelica System Documentation 107

OML::Control OMI::Transfer OML::Calculation

ClientGUI l | |
| | | |
Il Il Il Il

ref

Sequenz-Handshake&lnitializeModelPhase

startSimulation()

|
|
|
threadTransfer() |
1

|

|

|

|

|

i

threadéaléulation() |
||
1 2

sendMessageToClient(done) Tol Tel
L — Sequenz-Calculate Sequenz-Transfer

Figure 6-5 UML-Seq Simulation start

After the initialization phase the client can start the simulation with the message “start” from Table 6-3.
This will cause the “OMI::Control” to start all producers and consumers so they will calculate and send
results respectively.

OMI::Calculation OM::OMService OM::Solver OM::GlobalDataManager OMI::ResultManager

ref

Sequenz-SimulationStart

|
loOp |solvingservice

| |
| |
solveEquations : :

|

I

I

I

I I

done simulateT(n)FT(n+1) |

S — I I

getValues | |

1 | |

returnResults returnValues |

T EREE oo oo |—|,
1 setResultData 1
I I I
: setDone :
R e T R

I I I
I I I
S I I I
I I I
I I I

Figure 6-6 UML-Seq Calculation phase

After simulating T(n) to T(n+1) the result must set to the “SimulateStepData” collection. The
“setResultData()” method is synchronized and the caller must wait if a mutex or the semaphore is in use.

108

OMI::Transfer OMI::ResultManager

| | Clieﬁ‘ tGUI
| | |
ref

Sequenz-SimulationStart

loop

getResultData

getDone
e PR

sendMessage ToClient()
1

Figure 6-7 UML-Seq Transfer to client phase

The “Transfer” thread calls the “getResultData” method in a loop and waits for new results referenced in
the “SimulateStepData” collection to send them to a GUI.

OMI::Control OMI::Calculation OMI::Transfer OMI::ResultManager OM::OMService OM::GlobalDataManager
CliertGUI ! ! ! ! ! i
: : : : : : :
ref

Sequenz-SimulationPhase [Calculation&Transfer]

changeParameterValues i i i
| | | |
interrupt ; ; }
T | | |
interrupt ; ; ;
| | |
| getSSDForTime(),| i i i
| | L | |
I SSDForTime(x) | 'u ! !
e ,,,,,,,,, A L |
} simulationDataService() } ﬂ setValues() }
| | | »l
! ! ! setDone M
| | L
resume | | i }
; | | | |
resume i i ‘ i
U u | | |
| | |
| | |
= = | | |
| | |
| | |

Figure 6-8 UML-Seq Change Value of a parameters

A more complex sequence is changing parameter values. The client sends a “changevalue” message with a
time T(n) and the new values. “Control” interrupts all producers and consumers so it can access on the

Open Source Modelica System Documentation 109

“SSD” and “SRDF” of the “ResultManager”. “Control” uses the “OM::Service” to put the new values into
the global data structure. After this, it resets the data in to “SSD” by using data from the time step T(n) and
resumes all components.

6.2.5 Testing of the OpenModelica Interactive simulation runtime

Since rounding errors occur while storing and recalling result values by the “OMI::ResultManager”, the
“OM::Solver” will get changed values compared to the non Real-time calculation of OM.

. Back to Back Tests

Two or more versions of the same application are compared concerning their outputs using the same inputs.
In this case one version is the original OM system and the other is the new OMI system. The demonstration
model will be used with standard variable and parameter values. Only the outgoing flow level of the source
will be changed during the simulation time.

Name Start value Value after 200s Value after 400s Value after 600s

source.flowLevel 0.02 0.04 0.08 0.16

Table 6-6 source.flowLevel values for a Back to Back Test

As depicted in Table 6-6 the outgoing liquid from the source starts at “0.02” and doubles every 200
seconds. The following plot shows the level of liquid in the first tank (“tank1.h”) and the gain of the
outgoing liquid from the source (“source.qOut.lflow”)

0.7

0.6

0s

0.4

@tarkl.h
0.3

0.z

@ source.qout.Flow

01

100 200 300 400 S00 600 Foo
time: (s)

Figure 6-9 Plot of Simulation Results Tank1.h and Source.qOut.Iflow

110

Time (s) Iflow OM - tank1.h OMI - tankl.h Deviation (absolute) Deviation (percent)

0.0 0.02 0.000000 0.000000 0.000000 0.00%
1.0 0.02 0.020000 0.020000 0.000000 0.00%
2.0 0.02 0.040000 0.040000 0.000000 0.00%
3.0 0.02 0.060000 0.060000 0.000000 0.00%
4.0 0.02 0.070000 0.070000 0.000000 0.00%
18.0 0.02 0.360000 0.360000 0.000000 0.00%
19.0 0.02 0.376354 0.375674 0.000680 -0.18%
20.0 0.02 0.376526 0.375149 0.001377 -0.37%
92.0 0.02 0.250041 0.250041 0.000000 0.00%
131.0 0.02 0.250001 0.250001 0.000000 0.00%
132.0 0.02 0.250000 0.250000 0.000000 0.00%
198.0 0.02 0.249999 0.250000 0.000001 0.00%
199.0 0.02 0.250081 0.250000 0.000081 -0.03%
200.0 0.04 0.262371 0.262512 0.000141 +0.05%
201.0 0.04 0.266349 0.266330 0.000019 -0.01%
202.0 0.04 0.266702 0.266689 0.000013 0.00%
203.0 0.04 0.265699 0.265612 0.000087 -0.03%
389.0 0.04 0.249999 0.250000 0.000001 0.00%
399.0 0.04 0.250064 0.250000 0.000064 -0.03%
400.0 0.08 0.275022 0.275007 0.000015 -0.01%
401.0 0.08 0.282507 0.28258 0.000073 +0.03%
402.0 0.08 0.283273 0.283346 0.000073 +0.03%
403.0 0.08 0.281430 0.281512 0.000082 +0.03%
589.0 0.08 0.250000 0.250000 0.000000 0.00%
599.0 0.08 0.250430 0.250000 0.000430 -0.17%
600.0 0.16 0.30002 0.299893 0.000127 -0.04%
601.0 0.16 0.315029 0.315043 0.000014 0.00%
602.0 0.16 0.316480 0.316591 0.000111 +0.04%
603.0 0.16 0.312852 0.312944 0.000092 +0.03%

Table 6-7 Results of the Back to Back Test

The time values from 0.0s — 132.0s are selected at random. The time when “Source.qOut.lflow” is changed
and its limits are important for this Back to Back test. “OM - tank1.h” represents the results of the original
OM simulation runtime. “OMI - tankl.h” represents the results of the new modified OMI simulation
runtime. As depicted in Table 6-7 the deviations between “OM - tank1.h” and ““OMI - tank1.h” are in the
range of £0.01% and +0.05%. This is acceptable in view of the fact that the deviation will not be larger. It
will be further reduced according to the number of results provided.

Open Source Modelica System Documentation 111

6.2.6
(1]

(2]

(3]

(4]

(3]

(6]

(7]

(8]

(9]

[10]

[11]

[12]

[13]

[14]

References

Fritzson Peter, 2004, Principles of Object-Oriented Modeling and Simulation with Modelica 2.1,
Wiley-IEEE Press.

Andrew S. Tanenbaum and Maarten Van Steen, 2006,Distributed Systems: Principles and

Paradigms, Prentice Hall

Alfred V. Aho, Monica S. Lam, Ravi Sethi and Jeffrey D. Ullman, 2006, Compilers: Principles,
Techniques, and Tools, Addison Wesley.

André Willms, 2008, Einstieg in Visual C++ 2008, Galileo Computing.

Jirgen Wolf, 2006, C++ von A bis Z, Galileo Computing.

Ralf Reussner und Wilhelm Hasselbring, 2006, Handbuch der Software-Architektur, dpunkt
Verlag.

Andrew S. Tanenbaum, 2003, Computer Networks (4th Edition), Prentice Hall.

Frieder Grupp und Florian Grupp, 2007, Simulink: Grundlagen und Beispiele, Oldenbourg.

K.E. Brenan, S.L. Campbell, and L.R. Petzold, 1996, Numerical Solution of Initial Value
Problems in Differential/Algebraic Equations. SIAM, second edition.

Friedenthal, Sanford, Greigo, Regina, and Mark Sampson, INCOSE MBSE Roadmap, in
“INCOSE Model Based Systems Engineering (MBSE) Workshop Outbrief” (Presentation Slides),
presented at INCOSE International Workshop 2008, Albuquerque, NM, pg. 6, Jan. 26, 2008

Modelica Association, 2005, "Modelica Language Specification Version 3.0",

http://www.modelica.org/documents/ModelicaSpec30.pdf, September 5, 2007.

PELAB, Peter Fritzson, “OpenModelica System Documentation, Version, 2008-01-27 for
OpenModelical 4.5,

http://www.ida.liu.se/labs/pelab/modelica/OpenModelica/releases/1.4.5/doc/OpenModelicaSyste

m.pdf, January 2009.

PELAB, Peter Fritzson, “OpenModelica Users Guide, Version 2009-01-27 for OpenModelica
1.4.57,
http://www.ida.liu.se/labs/pelab/modelica/OpenModelica/releases/1.4.5/doc/OpenModelicaUsers

Guide.pdf, January 20009.

Computing and Mathematics Research Division Lawrence Livermore National Laboratory,

Petzold, Linda R., http://www.netlib.org/ode/ddassl.f, December 12 2006.

112

[15]

[16]

[17]

(18]

[19]

[20]

(21]

[22]

(23]

[24]

[25]

[26]

The International Council on Systems Engineering (INCOSE), Last Accessed: 2009

http://www.incose.org/

Modelica and the Modelica Association, Last Accessed: 2009

http://www.modelica.org/

Modelica and the Modelica Association, Modelica Libraries, Last Accessed: 2009

http://www.modelica.org/libraries

Dynasim AB, Dymola, Last Accessed: 2009

http://www.dynasim.se/

The OpenModelica Project, Last Accessed: 2009

http://www.ida.liu.se/~pelab/modelica/OpenModelica.html

MathCore Engineering AB, MathModelica, Last Accessed: 2009

http://www.mathcore.com/products/mathmodelica/

Open Source Modelica Consortium, Last Accessed: 2009

http://www.ida.liu.se/labs/pelab/modelica/OpenSourceModelicaConsortium.html

Linkoping University, Last Accessed: 2009
http://www.liu.se

OpenModelica source code version 1.4.5 from Subversion repository,

http://www.ida.liu.se/labs/pelab/modelica/OpenModelica.html#Download

Object Refinery Limited, JFreeChart, Last Access: 2009 http://www.]jfree.org/jfreechart/

IBM Rational Rhapsody, Systems-Engineering Tool Rhapsody 7.2,

http://www.telelogic.com/products/rhapsody/index.cfm

Sun Microsystems, Java, http://java.sun.com/

Open Source Modelica System Documentation 113

Chapter 7
OMNotebook and OMShell

This chapter covers the OpenModelica electronic notebook subsystem, called OMNotebook. Both
OMNotebook and OMShell uses the development framework Qt.

This chapter covers the OpenModelica electronic notebook subsystem, called OMNotebook. Both
OMNotebook and OMShell uses the development framework Qt.

71 Ot

Qt is an object-oriented, platform independent, C++ development framework created and maintained by
Trolltech. Qt includes a comprehensive class library, with more then 400 classes, and several tools for
development. The Qt API has a rich set of classes and functionality for several types of development and
programming. In OMNotebook Qt have been used for GUI programming, file handling and XML, but Qt
can be used for database programming, networking, internationalization, OpenGL integration and much
more.

Qt is consistent across all supported platforms, which enable developers to create truly platform
independent applications. Using Qt, developers can create native applications for Windows, Mac and X11
platforms. Qt requires no virtual machines, emulation layers or bulky runtime environments. Instead Qt
writes directly to low-level graphics function like native applications, which allows Qt applications to run
natively. Trolltech have designed Qt to be easy and intuitive to use.

7.2 HTML documentation

Using Doxygen a HTML documentation have been generated from the source files. This documentation
contatins information about the different classes, functions and files belonging to OMNotebook. The
documentation is found on the SVN under OMNotebook/Doxygen doc.

7.3 Mathematica Notebook Parser

OMNotebook have a parser implemented that can read Mathematica notebooks. This parser is generated by
ANTLR using grammar descriptions. This is an EBNF grammar for the Mathematica notebook fullform
format, taken from the grammar definition for the Mathematica notebook parser.

document 1= <expr>

(FrontEnd”) * <exprheader>
| <value>
| <attribute>

expr

114

exprheader HEES

Notebook [<expr> (, <rule>)*]

List [(<listbody>)* (, <listbody>)*]
list [(<listbody>)* (, <listbody>)* 1]
Cell [<expr> (, <expr>)? (, <rule>)*]
CellGroupData [<expr> (, Open|Closed)) 1]
TextData [<expr> (, <expr>)* (, <rule>)*]
StyleBox [<expr> (, <expr>)* (, <rule>)*]
StyleData [<expr> (, <expr>)* (, <rule>)*]
SuperscriptBox [<expr>, <expr>]

SubscriptBox [<expr>, <expr>]

SubsuperscriptBox [<expr> (, <expr>)* (, <rule>)*]
UnderscriptBox [<expr> (, <expr>)* (, <rule>)*]
OverscriptBox [<expr> (, <expr>)* (, <rule>)*]
UnderoverscriptBox [<expr> (, <expr>)* (, <rule>)*]
FractionBox [<expr> (, <expr>)* (, <rule>)*]
SgrtBox [<expr> (, <expr>)* (, <rule>)*]
RadicalBox [<expr> (, <expr>)* (, <rule>)*]

RowBox [<expr> (, <expr>)* (, <rule>)*]

GridBox [<expr> (, <expr>)* (, <rule>)*]

FormBox [<expr> (, <expr>)* (, <rule>)*]

TagBox [<expr> (, <expr>)* (, <rule>)*]

CounterBox [<expr> (, <expr>)* (, <rule>)*]
AdjustmentBox [<expr> (, <expr>)* (, <rule>)*]
ButtonBox [<expr> (, <expr>)* (, <rule>)*]
InterpretationBox [<expr>, <expr>]

Annotation [<expr> (, <expr>)* (, <rule>)*]
Equal [<expr> (, <expr>)* (, <rule>)*]
Diagram [<expr> (, <expr>)* (, <rule>)*]
Icon [<expr> (, <expr>)* (, <rule>)*]
Polygon [<expr> (, <expr>)* (, <rule>)*]
Ellipse [<expr> (, <expr>)* (, <rule>)*]
Line [<expr> (, <expr>)* (, <rule>)*]

GreyLevel [<expr> (, <expr>)* (, <rule>)*]
OLEData [<expr> (, <expr>)* (, <rule>)*]
RGBColor [Number, Number, Number]

Filename [<expr> (, <expr>)* (, <rule>)*]
BoxData [<expr> (, <expr>)* (, <rule>)*]
GraphicsData [String, String (, <rule>)*]
DirectedInfinity [Number]

StartModelEditor []
ParentDirectory []
listbody o= (<expr>|<rule>)
rule ::= Rule [<expr> (, <expr>)]
| rule [<expr> (, <expr>)]
| RuleDelayed [<expr> (, <expr>)]
value ::= String

| Number
| True

Open Source Modelica System Documentation

115

attribute

False

Right

Left

Center

Smaller
Inherited
PaperWidth
WindowWidth
TraditionalForm
StandardForm
InputForm
OutputForm
DefaultInputFormatType
Automatic

None

Null

All

FontSlant

FontSize

FontColor
FontWeight
FontFamily
FontVariation
TextAlignment
TextJustification
InitializationCell
FormatType
PageWidth
PageHeaders
PageHeaderLines
PageFooters
PageFooterLines
PageBreakBelow
PageBreakWithin
BoxMargins
BoxBaselineShift
LineSpacing
Hyphenation

Active

Visible
Evaluatable
ButtonFuncion
ButtonData
ButtonEvaluator
ButtonStyle
CharacterEncoding
ShowStringCharacters
ScreenRectangle
AutoGeneratedPackage
AutoItalicWords
InputAutoReplacements
ScriptMinSize

116

StyleMenulListing
CounterIncrements
CounterAssignments
PrivateEvaluationOptions
GroupPageBreakWithin
DefaultFormatType
NumberMarks
LinebreakAdjustments
VisioLineFormat
VisioFillFormat
Extent

NamePosition
CellTags

CellFrame
CellFrameColor
CellFramelabels
CellFrameMargins
CellFramelabelMargins
CelllabelMargins
CelllabelPositioning
CellMargins
CellDingbat
CellHorizontalScrolling
CellOpen
GeneratedCell
ShowCellBracket
ShowCellLabel
CellBracketOptions
Editable

Background
CellGroupingRules
WindowSize
WindowMargins
WindowFrame
WindowElements
WindowTitle
WindowToolbars
WindowMoveable
WindowFloating
WindowClickSelect
StyleDefinitions
FrontEndVersion
ScreenStyleEnvironment
PrintingStyleEnvironment
PrintingOptions
PrintingCopies
PrintingPageRange
PrivateFontOptions
Magnification
GenerateCell
CellAutoOverwrite
ImageSize
ImageMargins

Open Source Modelica System Documentation

117

7.4 File list

ImageRegion
ImageRangeCache
ImageCache
ModelEditor

This file list lists all source files belonging to OMNotebook in alphabetical order with a short description.
In addition to these files a set of files are also generated by Qt and ANTLR, but those files are not listed
below. The lines of code (LOC) specified for each file is with comments and blank rows (counted May

2000).

File Description LOC

application.h Describe interface for the core application. 88

cell.cpp Implementation of the Cell class. 923

cell.h Definition of the Cell class, superclass for all cells. 234

cellapplication.cpp Implementation of the CellApplication class. 706

cellapplication.h Definition of the CellApplication class, 106
the main application class.

cellcommandcenter.cpp Implementation of the CellCommandCenter class. 134

cellcommandcenter.h Definition of the CellCommandCenter class, 77
responsible for storing and executing commands.

cellcommands.cpp Implementation of all commands on cell level. 766

cellcommands.h Definition of all commands on cell level. 201

cellcursor.cpp Implementation of the CellCursor class. 580

cellcursor.h Definition of the CellCursor class, 131
a subclass of Cell used as a cursor within a document.

celldocument.cpp Implementation of the CellDocument class. 1359

celldocument.h Definition of the CellDocument class, 218
represent a document, contains all cells.

celldocumentview.h Describe interface for a notebook window. 93
[deprecated]

cellfactory,cpp Implementation of the CellFactory class. 208

cellfactory.h Definition of the CellFactory class, 85
responsible for creating all cells.

cellgrammar.cpp Small text application, to test grammar description. 109
[deprecated]

cellgroup.cpp Implementation of the CellGroup class. 500

cellgroup.h Definition of the CellGroup, 129
a subclass of Cell used to group together cells.

cellparserfactory.cpp Implementation of the CellParserFactory class. 96

cellstyle.h Definition and Implementation of the CellStyle class, 131
holds different style options for cells.

chaptercountervisitor.cpp Implementation of the ChapterCounterVisitor class. 187

chaptercountercisitor.h Definition of the ChapterCounterVisitor class, 92
responsible for updating chapter counters.

command.h Describe interface for a commands. 134

commandcenter.h Describe interface for a command center. 74

commandcompletion.cpp Implementation of the CommandCompletion class. 408

commandcompletion.h Definition of the CommandCompletion class, 103
responsible for command completion.

commands.xml XML file containing all commands and keywords for 114
CommandCompletion class.

commandunit.h Definition and Implementation of the CellStyle class, 116

118

holds a command/keyword for command completion.

Open Source Modelica System Documentation 119

copytest.cpp Small text application, to test copy function for cells. 78
[deprecated]

cursorcommands.h Definition and implementation of all commands on cursor level. 227

cursorposvisitor.h Definition and implementation of the CursorPosVisitor class, 135
responsible for calculate cell cursor position.

document.h Describe interface for a document. 180

documentview.h Describe interface for a notebook window. 87

factory.h Describe interface for a cell factory. 84

highlighterthread.cpp Implementation of the HighlighterThread class. 283

highlighterthread.h Definition of the HighlighterThread class, 95
responsible for running the syntax highlighter.

imagesizedlg.h Definition and implementation of the ImageSizeDlg class, a dialog 126
for selecting size of an image.

ImageSizeDlg.iu Define user interface for ImageSizeDlg class. 114

inputcell.cpp Implementation of the InputCell class. 1592

inputcell.h Definition of the InputCell class, 210
a subclass of Cell used to enter code in.

inputcelldelegate.h Describe the interface for an input cell delegate. 81

lexer.g Grammar file for ANTLR, describe tokens. 330

modelicacolors.xml Specifies color and font settings for the highlighter. 47

nbparser.h Describe interface for a parser. 66

notebook.cpp Implementation of the NotebookWindow class. 3348

notebook.h Definition of the NotebookWindow class, 350
main window used to display a document.

notebookcommands.h Definition and implementation of all commands on 500
document/notebook level.

notebookparser.cpp Implementation of the NotebookParser class. 171

notebookparser.h Definition of the NotebookParser class, responsible for loading 76
Mathematica notebooks saved in fullform.

notebooksocket.cpp Implementation of the NotebookSocket class. 299

notebooksocket.h Definition of the NotebookSocket class, for communi-cation 63
between different OMNotebook processes.

omc_communicator.cpp Implementation of the OmcCommunicator class. 1420

omc_communicator.hpp Definition of the OmcCommunicator class, 201
responsible for low level communication with OMC.

omcinteractiveenvironment.cpp Implementation of the OmclInteractiveEnvironment class. 297

omcinteractiveenvironment.h Definition of the OmclInteractiveEnvironment class, 79
a interactive environment for evaluation with OMC.

OMNotebookHelp.onb Help documentation about OMNotebook. -

openmodelicahighlighter.cpp Implementation of the OpenModelicaHighlighter class. 543

openmodelicahighlighter.h Definition of the OpenModelicaHighlighter class, 124
a syntax highlighter for modelica code.

otherdlg.h Definition and implementation of the OtherDlg class, 116
a dialog for selecting an integer value.

OtherDlg.ui Define user interface for OtherDlg class. 114

parser.g Grammar file for ANTLR, describe grammar rules. 226

parserfactory.h Describe interface for a parser factory. 83
Definition of the CellParserFactory,
responsible for creating correct parser for a given file.

printervisitor.cpp Implementation of the PrinterVisitor class. 302

printervisitor.h Definition of the PrinterVisitor class, 101

creates the document that is sent to a printer.

120

puretextvisitor.cpp
puretextvisitor.h

qtapp.cpp
removehighlightervisitor.h

rule.h

serializingvisitor.cpp
serializingvisitor.h

stripstring.h

stylesheet.cpp
stylesheet.h

stylesheet.xml
syntaxhighlighter.h
textcell.cpp
textcell.h

textcursorcommands.cpp
textcursorcommands.h
treeview.cpp

treeview.h

updategroupcellvisitor.cpp
updategroupcellvisitor.h

updatelinkvisitor.cpp
updatelinkvisitor.h

visitor.h
walker.g

xmlnodename.h
xmlparser.cpp
xmlparser.h

Implementation of the PureTextVisitor class.
Definition of the PureTextVisitor class,
extracts document contents and save it as pure text.

Contains the main() function.

Definition and implementation of the RemoveHighlighterVisitor
class, remove documents cells from the highlighter thread.
Implementation and definition of the Rule class,

holds format rules for cells and styles.

Implementation of the SerializingVisitor class.

Definition of the SerializingVisitor class,

responsible for saving a document in .onb format.

Static functions for text manipulation, used in walker.g.

Implementation of the Stylesheet class.

Definition of the Stylesheet class,

holds and manages the different cell styles.

XML file containing specification of ass cell styles.
Define interface for a syntax highlighter.
Implementation of the TextCell class.

Definition of the TextCell class,

a subclass of Cell used to write normal text in.

Implementation of all commands on text cursor level.
Definition of all commands on text cursor level.
Implementation of the TreeView class.

Definition of the TreeView class,

represents an item in the tree view of documents.
Implementation of the UpdateGroupcell Visitor class.
Definition of the UpdateGroupcell Visitor class,
responsible for updating groupcell state when loading.

Implementation of the UpdateLinkVisitor class.
Definition of the UpdateLinkVisitor class,
responsible for updating links when needed.
Describe interface for a visitor.

Grammar file for ANTLR, describe how to walk to created tree and

create a cell structure.

Define all xml name used in the .onb file format.
Implementation of the XMLParser class.
Definition of the XMLParser class,

responsible for loading files saved in .onb format.

Sum:

179
95

87
97

101

331
111

353

521
108

146

85
871
167

604
271
220
115

123
86

176
95

96
953

85

600
111

27037

Open Source Modelica System Documentation

121

7.5

Class overview

The following diagram contains the complete static structure of OMNotebook.

[QApplication

QObject |

SyntaxHighlighter
JAN

1

QThread
JAN

[OpenModelicaHighlighter]

«vitual class»
CommandCenter

<< create instance >>

«singleton»

CellApplication |
7

CellCommandCenter

«vitual class»

—__ Application
'

p———
Command

QMainWindow
JAN

«vitual class»
DocumentView
N

1

HighlighterThread

«singleton»
CommandCompletion
«singleton»
Stylesheet

QWidget

$ T
| Cell _Je——]InputTreeView]

<ccrefie i ~
InputTreeView

«vitual class»
Document

1

NotebookWindow

1

CellDocument

PR
Well Factory

b
CellStyle

I—

«vitual class»
Visitor

TextCell

1

CellCursor

1

CellGroup

1

InputCell

«vitual class»

R Factory

«vitual class»

CellParserFactory

«vitual class»
NBParser

ParserFactory

<< create >>

ASTFactory

JAN

QTextBrowser
JAN

MyTextBrowser
MyTextEdit

CursorPosVisitor ‘

PrinterVisitor ‘

[AntlrNotebookLexer

[AntirNotebookParser

[AntirNotebookTreeParser

PureTextVisitor |

L—d

SerializingVisitor ‘

] UpdateGroupcellVisitor

TextCursorChangeFontFamily

+—{ CursorMoveUpCommand]

TextCursorChangeFontFace

—{ CursorMoveAfterCommand ‘

TextCursorChangeFontSize

] CursorMoveDownCommand |

o

UpdateLinkVisitor

4{ RemoveHighlighterVisitor

o

ChapterCounterVisitor

TextCursorChangeFontStretch

SaveDocumentCommand \

AddCellCommand

T T T LT

TextCursorChangeFontColor

OpenFileCommand |

CreateNewCellCommand

+—{ TextCursorChangeTextAlignment |

OpenOldFileCommand |

DeleteCurrentCellCommand

t—{ TextCursorChangeVerticalAlignment |

PrintDocumentCommand \

DeleteSelectedCellsCommand \

TextCursorChangeMargin \

CloseFileCommand |

CopySelectedCellsCommand \

TextCursorChangePadding \

NewFileCommand |

PasteCellsCommand |

TextCursorChangeBorder \

ExportToPureText |

ChangeStyleOnCurrentCellCommand

INNRNEE

TextCursorinsertimage |

EvalSelectedCells |

TextCursorinsertLink |

UpdateChapterCounters |

MakeGroupCellCommand |

4{
4{

TextCursorCutText |

[TTTTT11T 11

TextCursorCopyText |

T T T T T T T 11T

TextCursorPasteText |

o

1
ChangeStyleOnSelectedCellsCommand kH
1

122

7.6 References

Anders Fernstrom. Extending OMNotebook — An Interactive Notebook for Structured Modelica
Documents.Final thesis to be presented spring 2006, Dept. Computer and Information Science, Link&ping
University, Sweden.

Trolltech, Qt Product Overview, http:// www.trolltech.com/products/qt/index.html.

van Heesch, Dimitri, www.doxygen.org (2006), Doxygen, http:/www.doxygen.org.

ANTLR, About The Parser Generator ANTLR, http://www.antlr.org/about.html.

Open Source Modelica System Documentation 123

Chapter 8

OpenModelica Eclipse Plugin — MDT

To be updated, until then, consult the Modelica Development Tooling (MDT) website:
http://www.ida.liu.se/labs/pelab/modelica/OpenModelica/MDT

124

Chapter 9

How to Write Test Cases for OpenModelica
Development

This chapter is a "how-to" guide to aid in developing testcases for the omc testsuite. At the end of the file
there are examples to illustrate the guide.

9.1 Getting Started

In case you plan to develop several testcases it might be beneficial to have a separate working directory in
the testsuite directory.To set this up you need to copy some files to that directory. Copy rtest,
translation template.mo, translation failed template.mo, simulation template.mos,
and simulation failed template.mos.

Depending on where in the directory hierarchy you put your subdirectory <DIRECTORY> including the rtest
script, you may need to modify the path ". . /.. /build/bin/omc" in the following line in the rtest file:

system "MODELICAUSERCFLAGS=$info{cflags} ../../build/bin/omc $f >$log2>&l";

In order to test your testcase you want to be able to run just a single case at the time. To do this, edit
Makefile.omdev.mingw under the OpenModelica directory. Add the following two lines (perhaps also
including dependencies?):

mytest:
(cd testsuite/<DIRECTORY>; rtest -v XXX.mos)

Here <DIRECTORY> is the specific directory where your testcase is saved.

Then in order to run your testcase, simply type the command mytest when you build the project using the
Eclipse MDT plugin (Ctrl + B).

9.2 Developing a Test Case

A complete testcase consists of 2 separate files. The .mo file containing the model you are running your
tests on and a .mos file containing the test script.

9.2.1 Creating the .mo File

Open translation template.mo Or translation failed template.mo, depending on if the
translation should fail or not.

e Save the file with a name of your choice. (Don't just copy the content to the new file since it might
result in errors.)

Open Source Modelica System Documentation 125

e Change the xxX to appropriate names.
e Write the code for the test model. In case your model is supposed to translate add the flat code at
the bottomof the file (as seen in the template file).

In order to obtain the flat file, enter the following command:

>omc.exe XXX.mo

at the command prompt. Copy the result to the bottom of your .mo file. It is important that you maintain all
information from the flattened file, including white spaces.

When commenting the flattened code as seen in the template ensure that there is a white space after
each '//' (as in the template).

9.2.2 Creating the .mos File

Open one of the templates simulation template.mos, simulation failed template.mos depending on
whether your testcase should be simulated successfully or not. Save it with preferably the same name as the
.mo file.

9.2.2.1 Simulation not Failing
The simulation template.mos file is used when the simulation should not fail.

e Change <XXX> in loadfile to the .mo file name.

e Change <XXX> in the rest of the file to the class or model name that should be simulated (the last
model/class in the mo file)

e Add appropriate startTime, stopTime, and numberOfIntervals in simulate.

e Change the variables in readSimulationResult to the variables you want to test/check.

To get all the values from a variable in the simulation you use res[1] for the first variable you added in
readSimulationResult and res[2] for the second one and so on.

The res([xX] is an array of all simulated values from that variable with the size of
readSimulationResultSize ("<XXX> res.plt"); The size of the simulation result depends on the
interval set in simulate. To get a specific value in the set/array you use res [X, Y].

To get a value at a specific time in the simulation you must manually look it up in the <xXx> res.plt
file.

To do that you have to out comment the line system ("rm") in the .mos file and run the test.
Then the result files will not be removed.

This is not very practical. There is a script function called val that can get the value for a specific time.
It’s used like val (variableName, time). However, the function currently works only on scalar
variables, not array elements.

Get the values you are going to test as described above. In the template file there is an example of how
you can round the values to 3 digits/decimals.

x:=res[1l]; // get the values
x:=1000*x%; // multiply the values with 1000
x:=floor(x); // remove the decimals

echo (true); // turns on output
x/1000.0; // divide it with 1000 -> 3 digits/decimals and prints it.

Remove:

// {1.0,1.654,2.169,2.62,3.032,3.418}
// {2.0,2.0,2.0,2.0,2.0,2.0}
// {3.0,2.545,2.23,1.979,1.767,1.581}

and add the expected result for your test variables. One way to obtain the expected values is to simulate the
model in another simulator or compute the results manually.

126

9.2.2.2 Simulation Fail
The simulation failed template.mos is used when the simulation should fail

e Change <XXX> in loadfile to the .mo file name.
e Change <XXX> in simulate to the class or model name that should be simulate (the last class/model
in the .mo file)

Then remove

//"#Error, too few equations. Underdetermined system
// The model has 3 variables and 2 equations

and replace it with the error message expected for your model.
Note::

The expected values and the errormessage will be matched towards the printout from the simulation. Thus
the expected values and error messages have to be exactly the same as the printout or the test will fail.

Hints:

change the template mos file.

size:=readSimulationResultSize ("<XXX> res.plt");
res:=readSimulationResult ("<XXX> res.plt", {x,y,z},size);

9.3 Status of Simulated Test Cases

9.3.1 Status for .mo Files

There are three different cases of mo.files.
1. The .mo file is correct and translates. Then status shall be correct.
2. The .mo file is inaccurate and thus it won't translate. Status shall then be incorrect.

3. The .mo file is correct according to the modelica language specification but it has features not yet
implemented in the omc compiler. Status shall be set to correct. These tests however will be added
differently to the testsuite.

9.3.2 Status for .mos Files

Status on .mos files should always be set to correct.

9.4 Adding Test Cases to the Suite

Move the files to the dir where they should be and add the new mo and. mos files to the makefile. Normal
correct testcases should be added at the TESTCASE label (like example 1 below). Testcases that are using
features yet not implemented in OMC should be added to the failing test label.

For testcases that have 'planted' errors in the mo-file and a 'simulation failed' .mos file (like example 2
below), the mo-file should be added as a failing test and the .mos file as a normal test file.

Open Source Modelica System Documentation

127

9.5 Examples

9.5.1 Correct Test
MO-FILE
// name: Examplel
// keywords:
// status: correct
//
// Simple example
//
model Ex1
Integer x;
equation
X = 2+3;
end Ex1;

// fclass Ex1
// Integer x;
// equation
// x = 5;
// end Ex1;

MOS-file
// name: Examplel
// keywords:
// status: correct
//

// Simple example
loadFile ("Examplel.mo") ;
simulate (Ex1l, startTime=0.0,

stopTime=1.0, numberOfIntervals=2);

3 values
echo (false); // turns of output
size := readSimulationResultSize ("Exl res.plt");

res:=readSimulationResult ("Exl res.plt", {x},size);
x1l:=res[1,1];
x2:=res[1l,size];
echo (true); // turns on output

//prints x1,
//prints x2,

x1;
x2;

expecting 5.0
expecting 5.0

readFile ("output.log"); // Check that output log is emtpy

// 2 interval

//Gets the simulated value of the model variable x at the time 0
//Gets the value of the model variable x at stoptime.

system("rm -rf Exl * Exl.exe Exl.cpp Exl.makefile Exl.libs Exl.log output.log");

// Result:

// true

// record

// resultFile =
// end record
// true

// 5.0

// 5.0

// mn

// 0

// endResult

"Ex]l res.plt"

128

9.5.2 Failing Test
MO-FILE

// name: Example?2
// keywords:

// status: incorrect
//

// Simple example

//

model Ex2
Integer x = 5.5; //Type mismatch
equation
x = 5;
end Ex2;

MOS-FILE

// name: Example?2
// keywords:

// status: correct
//

// Simple example

loadFile ("Example2.mo") ;

simulate (Ex2, startTime=0.0, stopTime=1.0, numberOfIntervals=2);
// 2 intervals == 3 values

getErrorString(); // simulation failed, check error string.

// Result:

// true

// record

// resultFile = "Simulation failed.

// Type mismatch in modifier, expected Integer, got modifier =5.5 of type Real
// Error occured while flattening model Ex2

// "

// end record

// mww

// endResult

Open Source Modelica System Documentation

129

Appendix A

Exercises

The following are some exercises mostly related to the OpenModelica Compiler (omc), but also about

writing a test script and using the Corba client-server interface.

Incomplete??, version 070204.

A.1 Exercise SimpleTestCase — Write a Simple Test Case

Write your own testcase MyHelloWorld.mo as a MyHelloWorld.mos file and add it to the test suite. For
example, modify the existing HelloWorld.mo, e.g. by changing the equation, run it within OMNotebook or
OMShell, check the values at a few points using the val-function — val(x,time). Use these to design your

own .mos file.

Also read Chapter 9 in this document which gives more detailed instructions.

Below is the .mos file that runs and compares with the values in the comments at the end of the file. In the

.mo file there is also a flattened version of the file for checking the flattening.

HelloWorld.mos:

// name: HelloWorld
// keywords: equation
// status: correct

//

// Equation handling

//

loadFile ("HelloWorld.mo") ;
simulate (HelloWorld, startTime=0.0, stopTime=1.0, numberOfIntervals=2);
echo (false) ;

size := readSimulationResultSize ("HelloWorld res.plt");
res:=readSimulationResult ("HelloWorld res.plt", {x},size);

x := res[l];

x := 1000*x;

x := floor(x); ??? Should perhaps be re-written using the val-function?
echo (true);

x/1000.0;

readFile ("output.log");

system("rm -rf HelloWorld * HelloWorld.exe HelloWorld.cpp HelloWorld.makefile
HelloWorld.libs HelloWorld.log output.log");
// Result:

// true

// record

// resultFile = "HelloWorld res.plt"

// end record

// true

// {1.0,0.999,0.999,0.606,0.367}

/)

// 0

// endResult

HelloWorld.mo:

// name: HelloWorld

130

// keywords: equation

// status: correct
//
// Equation handling
//

model HelloWorld
Real x(start = 1);
parameter Real a = 1;

equation
der(x) = - a * x;

end HelloWorld;

// fclass HelloWorld
// Real x(start = 1.0);

// parameter Real a = 1;
// equation
// der (x) = -(a * x);

// end HelloWorld;

A.2 Exercise UseAPIFunctions — Call Some OMC API Functions

Take a look at the API table in Section 2.4.3 and in the notebook QueryAPIExamples in the testcases
directory under the OpenModelica installation.

** Call a few API function.

A.3 Exercise OMCCorbaJava — Commands via Corba from a Java
Client

In this exercise you will send commands to the OMC compiler via the Corba interface. Please switch to the

Java perspective for this exercise. In this exercise you just play around with the Java Corba interface to
omc.

A.3.1 How Corba Communication Works

When OMC is started with: omc[.exe] +d=interactiveCorba, it writes a file in the temporary
directory with its Corba Object reference. The file is called differently depending on the OS. In Windows:
openmodelica.objid and in Linux: openmodelica.USERNAME.objid where USERNAME is the
name of the current user. The Corba clients check if this file exists, read it and use it to initialize the Corba
code that connects to OMC. The code in general looks like this:

ORB orb;
OmcCommunication omcc;

orb = ORB.init (args, null);

/* Convert string to object. */
org.omg.CORBA.Object obj = orb.string to object(stringifiedObjectReference);

/* Convert object to OmcCommunication object. */
omcc = OmcCommunicationHelper.narrow (obj) ;

In the code above the variable stringifiedObjectReference represents the contents read from the
openmodelica. [USERNAME.] objid file.
All the OmcCommunication*.java files are generated using an Corba IDL compiler from a very
simple omc_coomunication.idl file with the following contents:
// As simple as can be omc communication, sending and recieving of strings.

interface OmcCommunication {
string sendExpression(in string expr);

Open Source Modelica System Documentation 131

string sendClass(in string model);

b

Please reffer to Corba documentation (for example http://www.mico.org) for more information about the
IDL Compiler and ORB.

A.3.2 OMCProxy.java
Provides implementation for:

e starting the OpenModelica compiler: omc[.exe] depending on the platform (Windows/Linux).
See method: startServer ().

e sending expressions to OMC and receiving results.
See method: String sendExpression (String e).

e initialization of Corba communication.
See method: setupOmec (String objReference) .

A.4 Corba Clients for C++ and Python

If you are interested in calling OpenModelica compiler OMC from other languages we have available
OMC clients for C++ and Python here: http://www.ida.liu.se/~adrpo/omc/corba/

A.5 Exercise newAPIFunction — Write a new Simple OMC API Function

Write your own simple function myOwnAPIFunction() with no arguments that returns the string
“myString”

Look in the file Interactive.mo.

Locate function evaluateGraphicalApi?2

Look at the cases for some existing API functions, e.g. the one below.
Add your own case for a simple function myOwnAPIFunction ().

Below you find a case rule for one of the existing functions getEnvironmentvar (...):

algorithm
(outString, outInteractiveSymbolTable) :=
matchcontinue (inInteractiveStmts, inInteractiveSymbolTable)

case (ISTMTS (interactiveStmtLst = {IEXP(exp = Absyn.CALL (

function = Absyn.CREF IDENT (name = "getEnvironmentVar"),

functionArgs = Absyn.FUNCTIONARGS (args = {Absyn.STRING(value = name)},
argNames = {})))}),

(st as SYMBOLTABLE (ast = p,explodedAst = s,instClsLst = ic,

lstVarvVal = iv,compiledFunctions = cf))
)
equation
resstr = System.readEnv (name) ;
then

(resstr,st);

A.6 Exercise ASTExpTransform — Write A Small Exp AST
Transformation

Write a small AST transformation, e.g. in the Exp package, for example to simplify an expression. For
example, you can transform small powers of 3, e.g. X3, to corresponding multiplications, e.g. X*x*x.

A.7 Exercise CodeGen — Generate Code for a new Builtin Function

132

Make a small change in the code generator. (e.g. add a compiler-known builtin function twice(x) that
generates the code x+x, or mySin2(x) for computing sin(x)+2, or change an existing function (floor), or
something of your choice, etc.)

Depending on your ambitions, you need to change two or more of the following files. Changes to at least
Builtin.mo and Codegen.mo are necessary.

e Builtin.mo — This package creates a top-level environment with all predefined classes and types.
e Static.mo — This package performs type checking and certain cases of symbolic simplification.
e Ceval.mo — This package performs evaluation of constant expressions.

e Codegen.mo — This package performs code generation.

A simple method is to search for the string "£i11" for the builtin function £i11 in the above .mo-files.
Then you easily find the places where to insert code for your own builtin function.

A.8 Exercise getClassNamesRecursive — Recursive Printout of Class
Names in a Model Hierarchy

Write an API function: getClassNamesRecursive (cref) where cref=Component Reference.
This function should display all the loaded classes/packages hierarchically to the last depth

e each level should be indented
e An example of output is given below

Example call:

loadModel (Modelica)
getClassNamesRecursive (Modelica)

Output:

Modelica [package]
Blocks [package]
Continous [package]
Der [block]
Derivative [block]

Discrete

[package]
Constants [package]
Electrical [package]
Icons [package]
Math [package]
Mechanics [package]
SIunits [package]
UsersGuide [package]

Hints:
e Start from “getClassNames” and think about how you can write some functions to get the output
above. See also getClassRestriction(cref) .

Open Source Modelica System Documentation

133

Appendix B

Solutions to Exercises

The following are solutions to some exercises in Appendix A. (??Incomplete)

B.1 Solution SimpleTestCase — Write a Simple Test Case

One possible solution (?? need to update this)

MyHelloWorld.mos:
// name: HelloWorld
// keywords: equation
// status: correct
//
// Equation handling
//

loadFile ("HelloWorld.mo") ;
simulate (HelloWorld, startTime=0.0, stopTime=1.0, numberOfIntervals=2);
echo (false) ;

size := readSimulationResultSize ("HelloWorld res.plt");
res:=readSimulationResult ("HelloWorld res.plt", {x},size);

x := res[1l];

x := 1000*x;

x = floor(x); ??2? Should perhaps be re-written using the val-function?

echo (true) ;

x/1000.0;

readFile ("output.log");

system("rm -rf HelloWorld * HelloWorld.exe HelloWorld.cpp HelloWorld.makefile
HelloWorld.libs HelloWorld.log output.log");
// Result:

// true

// record

1/ resultFile = "HelloWorld res.plt"

// end record

// true

// {1.0,0.999,0.999,0.606,0.367}

/o

// 0

// endResult

HelloWorld.mo:

// name: HelloWorld
// keywords: equation
// status: correct

//

// Equation handling

//

model HelloWorld
Real x(start = 1);
parameter Real a = 1;
equation
der(x) = - a * x;
end HelloWorld;

134

// fclass HelloWorld
// Real x(start = 1.0);
// parameter Real a = 1;

// equation
// der(x) = -(a * x);

// end HelloWorld;

B.2 Solution UseAPIFunctions — Call Some OMC API Functions
2?2 fill in

** Call a few API functions.

B.3 Solution OMCCorbaJdava — Commands via Corba from a Java
Client

No solution. Just play around with the existing Java Corba communication.

B.4 Solution Corba Clients for C++ and Python

No solution. Just play around with the existing C++ or Python Corba communication implementation.

B.5 Solution newAPIFunction — Write a new Simple OMC API Function

case (ISTMTS (interactiveStmtLst = {

IEXP (exp = Absyn.CALL (function = Absyn.CREF IDENT (name = "myOwnAPIFunc")))}),
(st as SYMBOLTABLE (ast = p,explodedAst = s,instClsLst = ic,
lstVarval = iv,compiledFunctions = cf)))
equation
resstr = "returned from myOwnAPIFunc";
then

(resstr, st);

B.6 Solution ASTExpTransform — Write A Small Exp AST
Transformation

?? fill in.

B.7 Solution CodeGen — Generate Code for a new Builtin Function

7? fill in.

B.8 Solution getClassNamesRecursive — Recursive Printout of Class
Names in a Model Hierarchy

Note: This solution does not display the restriction after the class name. We leave that implementation part
for the reader.

Inserted into the function evaluateGraphicalAPI in Interactive.mo:

case (ISTMTS (interactiveStmtLst = {IEXP(exp = Absyn.CALL(function =

Absyn.CREF IDENT (name = "getClassNamesRecursive"),
functionArgs = Absyn.FUNCTIONARGS (args = {Absyn.CREF (componentReg = cr)})))}),
(st as SYMBOLTABLE (ast = p,explodedAst = s,instClsLst = ic,
lstVarval = iv,compiledFunctions = cf)))
local Absyn.Path path;
equation

path = Absyn.crefToPath(cr);

Open Source Modelica System Documentation 135

resstr = getClassNamesRecursive (path, p, "");

then
(resstr,st);

protected function getClassnamesInClassList
input Absyn.Path inPath;
input Absyn.Program inProgram;
input Absyn.Class inClass;
output list<String> outString;
algorithm
outString:=
matchcontinue (inPath,inProgram,inClass)
local
list<String> strlist;
list<String> res;
list<Absyn.ClassPart> parts;
Absyn.Class cdef;
Absyn.Path newpath, inmodel, path;
Absyn.Program p;

case (, ,Absyn.CLASS(body = Absyn.PARTS(classParts = parts)))
equation
strlist = getClassnamesInParts (parts);
then
strlist;
case (inmodel,p,Absyn.CLASS (body = Absyn.DERIVED (path = path)))
equation
(cdef,newpath) = lookupClassdef (path, inmodel, p);
res = getClassnamesInClassList (newpath, p, cdef);
then
res;

end matchcontinue;
end getClassnamesInClassList;

protected function joinPaths
input String child;
input Absyn.Path parent;
output Absyn.Path outPath;

algorithm
outPaths:=
matchcontinue (child, parent)
local
Absyn.Path r, res;
String c;
case (c, r)
equation
res = Absyn.joinPaths(r, Absyn.IDENT (c));
then res;

end matchcontinue;
end joinPaths;

protected function getClassNamesRecursive "function: getClassNamesRecursive
Returns a string with all the classes for a given path.
input Absyn.Path inPath;
input Absyn.Program inProgram;
input String indent;
output String outString;
algorithm
outString:=
matchcontinue (indent, inPath, inProgram)
local

136

Absyn.Class cdef;

String sl,res, parent string, result;

list<String> strlst;

Absyn.Path pp, modelpath;

Absyn.Program p;

String indent;

list<Absyn.Path> result path 1lst;

case (pp,p,indent) B B

equation
cdef = getPathedClassInProgram(pp, p):
strlst = getClassnamesInClassList (pp, p, cdef);
parent string = Absyn.pathString(pp);
result path lst = Util.listMapl (strlst, joinPaths, pp);
indent = indent +& " ";
result = Util.stringAppendList (Util.listMap2 (result path 1st,

getClassNamesRecursive, p, indent));

res = Util.stringAppendList ({parent string,"\n",indent, result});

then
res;

case (_, ,) then "Error";
end matchcontinue;
end getClassNamesRecursive;

Open Source Modelica System Documentation 137

Appendix C

Contributors to OpenModelica

This Appendix lists the individuals who have made significant contributions to OpenModelica, in the form
of software development, design, documentation, project leadership, tutorial material, etc. The individuals
are listed for each year, from 1998 to the current year: the project leader and main author/editor of this
document followed by main contributors followed by contributors in alphabetical order.

C.1 OpenModelica Contributors 2010

Peter Fritzson, PELAB, Linkdping University, Link&ping, Sweden.

Adrian Pop, PELAB, Linkdping University, Linkoping, Sweden.
Martin Sj6lund, PELAB, Linkdping University, Linkoping, Sweden.
Per Ostlund, PELAB, Link&ping University, Linkdping, Sweden.

Peter Aronsson, MathCore Engineering AB, Link&ping, Sweden.

Syed Adeel Asghar, PELAB, Link6ping University, Linkoping, Sweden.
David Akhvlediani, PELAB, Linkdping University, Linkoping, Sweden.
Bernhard Bachmann, Fachhochschule Bielefeld, Bielefeld, Germany.
Vasile Baluta, PELAB, Linkoping University, Linkoping, Sweden.
Simon Bjorklén, PELAB, Linkdping University, Linkdping, Sweden.
Mikael Blom, PELAB, Link&ping University, Linkdping, Sweden.
Robert Braun, IEI, Linkoping University, Linkoping, Sweden.

Willi Braun, Fachhochschule Bielefeld, Bielefeld, Germany.

David Broman, PELAB, Linkdping University, Linkdping, Sweden.
Stefan Brus, PELAB, Linkdping University, Linkdping, Sweden.
Francesco Casella, Politecnico di Milano, Milan, Italy.

Filippo Donida, Politecnico di Milano, Milan, Italy.

Henrik Eriksson, PELAB, Link6ping University, Link6ping, Sweden.
Anders Fernstrom, PELAB, Linkoping University, Linkoping, Sweden.
Jens Frenkel, TU Dresden, Dresden, Germany.

Pavel Grozman, Equa AB, Stockholm, Sweden.

Michael Hanke, NADA, KTH, Stockholm.

Daniel Hedberg, MathCore Engineering AB, Linkdping, Sweden.

Alf Isaksson, ABB Corporate Research, Visteras, Sweden.

Kim Jansson, PELAB, Linkdping University, Linkdping, Sweden.
Daniel Kanth, Bosch-Rexroth, Lohr am Main, Germany.

Tommi Karhela, VTT, Espoo, Finland.

Joel Klinghed, PELAB, Link&ping University, Link&ping, Sweden.
Juha Kortelainen, VTT, Espoo, Finland.

Petter Krus, IEI, Link&ping University, Linkdping, Sweden.

Alexey Lebedev, Equa Simulation AB, Stockholm, Sweden.

Magnus Leksell, Link&ping, Sweden.

Oliver Lenord, Bosch-Rexroth, Lohr am Main, Germany.

Ariel Liebman, Energy Users Association of Australia, Victoria, Australia.

138

Rickard Lindberg, PELAB, Linkoping University, Linképing, Sweden
Hékan Lundvall, PELAB, Link6ping University, Linkoping, Sweden.
Henrik Magnusson, Linkdping, Sweden.

Eric Meyers, Pratt & Whitney Rocketdyne, Palm City, Florida, USA.
Hannu Niemistd, VTT, Espoo, Finland.

Peter Nordin, IEI, Link6ping University, Linkoping, Sweden.
Kristoffer Norling, PELAB, Link&ping University, Linkdping, Sweden.
Lennart Ochel, Fachhochschule Bielefeld, Bielefeld, Germany.

Atanas Pavlov, Munich, Germany.

Karl Pettersson, IEI, Linkdping University, Linkoping, Sweden.

Pavol Privitzer, Institute of Pathological Physiology, Praha, Czech Republic.
Reino Ruusu, VTT, Espoo, Finland.

Per Sahlin, Equa Simulation AB, Stockholm, Sweden.

Wiladimir Schamai, EADS, Hamburg, Germany.

Gerhard Schmitz, University of Hamburg, Hamburg, Germany.

Klas Sjoholm, PELAB, Linkdping University, Linkdping, Sweden.
Anton Sodja, University of Ljubljana, Ljubljana, Slovenia

Ingo Staack, IEI, Link&ping University, Link&ping, Sweden.

Kristian Stavaker, PELAB, Linkoping University, Linkdping, Sweden.
Sonia Tariq, PELAB, Link6ping University, Linképing, Sweden.
Mohsen Torabzadeh-Tari, PELAB, Linkoping University, Link6ping, Sweden.
Niklas Worschech, Bosch-Rexroth, Lohr am Main, Germany.

Robert Wotzlaw, Goettingen, Germany.

C.2 OpenModelica Contributors 2009

Peter Fritzson, PELAB, Linkoping University, Linkdping, Sweden.

Adrian Pop, PELAB, Link&ping University, Link&ping, Sweden.
Peter Aronsson, MathCore Engineering AB, Link&ping, Sweden.

David Akhvlediani, PELAB, Linkdping University, Linkoping, Sweden.
Bernhard Bachmann, Fachhochschule Bielefeld, Bielefeld, Germany.
Vasile Baluta, PELAB, Linkoping University, Linkoping, Sweden.
Constantin Belyaev, Bashpromavtomatika Ltd., Ufa, Russia

Simon Bjorklén, PELAB, Linkdping University, Linkdping, Sweden.
Mikael Blom, PELAB, Link&ping University, Linkdping, Sweden.
Willi Braun, Fachhochschule Bielefeld, Bielefeld, Germany.

David Broman, PELAB, Linkoping University, Linkoping, Sweden.
Stefan Brus, PELAB, Linkdping University, Linkdping, Sweden.
Francesco Casella, Politecnico di Milano, Milan, Italy

Filippo Donida, Politecnico di Milano, Milan, Italy

Henrik Eriksson, PELAB, Link6ping University, Link6ping, Sweden.
Anders Fernstrom, PELAB, Linkoping University, Linkoping, Sweden.
Jens Frenkel, TU Dresden, Dresden, Germany.

Pavel Grozman, Equa AB, Stockholm, Sweden.

Michael Hanke, NADA, KTH, Stockholm

Daniel Hedberg, MathCore Engineering AB, Linkdping, Sweden.
Alf Isaksson, ABB Corporate Research, Visteras, Sweden

Kim Jansson, PELAB, Linkdping University, Linkdping, Sweden.
Daniel Kanth, Bosch-Rexroth, Lohr am Main, Germany

Tommi Karhela, VTT, Espoo, Finland.

Open Source Modelica System Documentation

139

Joel Klinghed, PELAB, Link&ping University, Linkdping, Sweden.
Juha Kortelainen, VTT, Espoo, Finland

Alexey Lebedev, Equa Simulation AB, Stockholm, Sweden

Magnus Leksell, Linkdping, Sweden

Oliver Lenord, Bosch-Rexroth, Lohr am Main, Germany

Hakan Lundvall, PELAB, Linkoping University, Linkoping, Sweden.
Henrik Magnusson, Linkoping, Sweden

Eric Meyers, Pratt & Whitney Rocketdyne, Palm City, Florida, USA.
Hannu Niemisto, VTT, Espoo, Finland

Kristoffer Norling, PELAB, Linkdping University, Linkdping, Sweden.
Atanas Pavlov, Munich, Germany.

Pavol Privitzer, Institute of Pathological Physiology, Praha, Czech Republic
Per Sahlin, Equa Simulation AB, Stockholm, Sweden

Gerhard Schmitz, University of Hamburg, Hamburg, Germany

Klas Sjoholm, PELAB, Linkdping University, Linkdping, Sweden.
Martin Sj6lund, PELAB, Linkdping University, Linkoping, Sweden.
Kristian Stavaker, PELAB, Link6ping University, Linkdping, Sweden.
Mohsen Torabzadeh-Tari, PELAB, Linkdping University, Linkdping, Sweden.
Niklas Worschech, Bosch-Rexroth, Lohr am Main, Germany

Robert Wotzlaw, Goettingen, Germany

Bjorn Zachrisson, MathCore Engineering AB, Linkdping, Sweden

C.3 OpenModelica Contributors 2008
Peter Fritzson, PELAB, Linkoping University, Linkdping, Sweden.

Adrian Pop, PELAB, Link&ping University, Linkdping, Sweden.
Peter Aronsson, MathCore Engineering AB, Linkoping, Sweden.

David Akhvlediani, PELAB, Linkdping University, Linkoping, Sweden.
Bernhard Bachmann, Fachhochschule Bielefeld, Bielefeld, Germany.
Hakan Lundvall, PELAB, Linkoping University, Linkoping, Sweden.
Vasile Baluta, PELAB, Linkdping University, Linkdping, Sweden.
Mikael Blom, PELAB, Link&ping University, Linkdping, Sweden.
Kristoffer Norling, PELAB, Link&ping University, Linkdping, Sweden.
Klas Sjoholm, PELAB, Linkdping University, Linkdping, Sweden.
David Broman, PELAB, Linkdping University, Linkdping, Sweden.
Henrik Eriksson, PELAB, Link&ping University, Linkdping, Sweden.
Anders Fernstrom, PELAB, Link6ping University, Link6ping, Sweden.
Daniel Hedberg, MathCore Engineering AB, Linkdping, Sweden.

Kim Jansson, PELAB, Linkdping University, Linkdping, Sweden.

Joel Klinghed, PELAB, Link&ping University, Link&ping, Sweden.
Simon Bjorklén, PELAB, Linkdping University, Linkdping, Sweden
Kristian Stavaker, PELAB, Link&ping University, Link&ping, Sweden.
Anders Sandholm, PELAB, Link6ping University, Linkoping, Sweden.
Eric Meyers, Pratt & Whitney Rocketdyne, Palm City, Florida, USA.
Pavel Grozman, Equa AB, Stockholm, Sweden.

Constantin Belyaev, Bashpromavtomatika Ltd., Ufa, Russia

C.4 OpenModelica Contributors 2007
Peter Fritzson, PELAB, Linkoping University, Linkdping, Sweden.

140

Adrian Pop, PELAB, Link&ping University, Linkdping, Sweden.
Peter Aronsson, MathCore Engineering AB, Link&ping, Sweden.

David Akhvlediani, Linkdping University, Linkoping, Sweden.
Bernhard Bachmann, Fachhochschule Bielefeld, Bielefeld, Germany.
David Broman, PELAB, Linkdping University, Linkdping, Sweden.
Anders Fernstrom, PELAB, Link6ping University, Link6ping, Sweden.
Daniel Hedberg, MathCore Engineering AB, Linkdping, Sweden.
Hékan Lundvall, PELAB, Link6ping University, Linkoping, Sweden.
Kristoffer Norling, Link&ping University, Linkdping, Sweden.

Anders Sandholm, PELAB, Linkdping University, Linkoping, Sweden.
Klas Sjoholm, Linkdping University, Linkdping, Sweden.

Simon Bjorklén, PELAB, Linkdping University, Linkdping, Sweden
Kristian Stavaker, PELAB, Linkoping University, Linkdping, Sweden.
William Spinelli, Politecnico di Milano, Milano, Italy

Stefan Vorkoetter, MapleSoft, Waterloo, Canada.

Constantin Belyaev, Bashpromavtomatika Ltd., Ufa, Russia

C.5 OpenModelica Contributors 2006

Peter Fritzson, PELAB, Linkdping University, Linkdping, Sweden.

Peter Aronsson, MathCore Engineering AB, Link&ping, Sweden.
Adrian Pop, PELAB, Linkdping University, Linkdping, Sweden.

David Akhvlediani, Linkdping University, Linkoping, Sweden.
Bernhard Bachmann, Fachhochschule Bielefeld, Bielefeld, Germany.
David Broman, PELAB, Link6ping University, Linkoping, Sweden.
Anders Fernstrom, PELAB, Link6ping University, Link6ping, Sweden.
Daniel Hedberg, MathCore Engineering AB, Linkoping, Sweden.
Elmir Jagudin, PELAB, Linkdping University, Linkdping, Sweden.
Hékan Lundvall, PELAB, Link6ping University, Linkoping, Sweden.
Kaj Nystrom, PELAB, Linkdping University, Linkdping, Sweden.
Lucian Popescu, MathCore Engineering AB, Linkdping, Sweden.
Andreas Remar, PELAB, Link6ping University, Linkoping, Sweden.
Anders Sandholm, PELAB, Link6ping University, Linkoping, Sweden.

C.6 OpenModelica Contributors 2005

Peter Fritzson, PELAB, Linkdping University, Link&ping, Sweden.

Peter Aronsson, PELAB, Linkdping University and MathCore Engineering AB, Linkdping, Sweden.
Adrian Pop, PELAB, Linkoping University, Link&ping, Sweden.
Hékan Lundvall, PELAB, Link6ping University, Linkoping, Sweden.

Ingemar Axelsson, PELAB, Link6ping University, Linkoping, Sweden.
David Broman, PELAB, Linkoping University, Linkoping, Sweden.
Daniel Hedberg, MathCore Engineering AB, Linkdping, Sweden.
Héakan Lundvall, PELAB, Linkdping University, Linkdping, Sweden.
Kaj Nystrom, PELAB, Linkoping University, Linkoping, Sweden.
Lucian Popescu, MathCore Engineering AB, Linkdping, Sweden.
Levon Saldamli, PELAB, Linkoping University, Linkoping, Sweden.

C.7 OpenModelica Contributors 2004

Open Source Modelica System Documentation

141

Peter Fritzson, PELAB, Linkdping University, Linkdping, Sweden.
Peter Aronsson, Linkdping University, Linkdping, Sweden.

Bernhard Bachmann, Fachhochschule Bielefeld, Bielefeld, Germany.

Peter Bunus, PELAB, Linkoping University, Linkdping, Sweden.

Daniel Hedberg, MathCore Engineering AB, Linkdping, Sweden.

Hakan Lundvall, PELAB, Linkoping University, Linkoping, Sweden.

Emma Larsdotter Nilsson, PELAB, Link6ping University, Link6ping, Sweden.
Kaj Nystrom, PELAB, Link6ping University, Linkoping, Sweden.

Adrian Pop, PELAB, Linkdping University, Linkdping, Sweden.

Lucian Popescu, MathCore Engineering AB, Linkdping, Sweden.

Levon Saldamli, PELAB, Linkdping University, Linkdping, Sweden.

C.8 OpenModelica Contributors 2003

Peter Fritzson, PELAB, Linkdping University, Linkdping, Sweden.

Peter Aronsson, Link&ping University, Link&ping, Sweden.
Levon Saldamli, PELAB, Linkoping University, Linkoping, Sweden.

Peter Bunus, PELAB, Linkoping University, Linkdping, Sweden.

Vadim Engelson, PELAB, Linkdping University, Linkdping, Sweden.

Daniel Hedberg, Linkdping University, Linkdping, Sweden.

Eva-Lena Lengquist-Sandelin, PELAB, Linkdping University, Linkdping, Sweden.
Susanna Monemar, PELAB, Linkdping University, Linkoping, Sweden.

Adrian Pop, PELAB, Linkodping University, Linkdping, Sweden.

Erik Svensson, MathCore Engineering AB, Linkdping, Sweden.

C.9 OpenModelica Contributors 2002

Peter Fritzson, PELAB, Link&ping University, Linkdping, Sweden.

Levon Saldamli, PELAB, Linkoping University, Linkoping, Sweden.
Peter Aronsson, Linkdping University, Linkoping, Sweden.

Daniel Hedberg, Linkdping University, Linkdping, Sweden.
Henrik Johansson, PELAB, Link&ping University, Linkdping, Sweden
Andreas Karstrom, PELAB, Linkoping University, Linképing, Sweden

C.10 OpenModelica Contributors 2001

Peter Fritzson, PELAB, Linkdping University, Link&ping, Sweden.
Levon Saldamli, PELAB, Linkoping University, Linkoping, Sweden.

Peter Aronsson, Linkdping University, Linkdping, Sweden.

C.11 OpenModelica Contributors 2000
Peter Fritzson, PELAB, Linkdping University, Linkdping, Sweden.

C.12 OpenModelica Contributors 1999
Peter Fritzson, PELAB, Link&ping University, Link&ping, Sweden

Peter Ronnquist, PELAB, Linkdping University, Linkdping, Sweden.

142

C.13 OpenModelica Contributors 1998
Peter Fritzson, PELAB, Linkdping University, Link&ping, Sweden.
David Kagedal, PELAB, Linkdping University, Linkdping, Sweden.
Vadim Engelson, PELAB, Linkoping University, Linkdping, Sweden.

Index

No index entries found.

