OpenModelica Users Guide

Version 2011-04-20
for OpenModelica 1.7

April 2011

Peter Fritzson
Adrian Pop, Martin Sjdlund, Per Ostlund, Peter Aronsson,

Adeel Asghar, Mikael Axin, Bernhard Bachmann, Vasile Baluta, Robert Braun,
Willi Braun, David Broman, Stefan Brus, Francesco Casella, Filippo Donida,
Jens Frenkel, Pavel Grozman, Daniel Hedberg, Michael Hanke, Alf Isaksson,

Kim Jansson, Daniel Kanth, Tommi Karhela, Juha Kortelainen, Petter Krus,

Alexey Lebedev, Oliver Lenord, Ariel Liebman, Rickard Lindberg, Hékan

Lundvall, Abhi Raj Metkar, Eric Meyers, Maroun Nemer, Hannu Niemisto,
Peter Nordin, Kristoffer Norling, Lennart Ochel, Karl Pettersson, Pavol

Privitzer, Reino Ruusu, Per Sahlin,Wladimir Schamai, Gerhard Schmitz, Anton
Sodja, Ingo Staack, Kristian Stavaker, Sonia Tariq, Mohsen Torabzadeh-Tari,

Parham Vasaiely, Niklas Worschech, Robert Wotzlaw, Bjorn Zackrisson,
Azam Zia

Copyright by:

Open Source Modelica Consortium

Copyright © 1998-CurrentYear, Open Source Modelica Consortium (OSMC), c¢/o Linkdpings universitet,
Department of Computer and Information Science, SE-58183 Linkoping, Sweden

All rights reserved.

THIS PROGRAM IS PROVIDED UNDER THE TERMS OF GPL VERSION 3 LICENSE OR THIS
OSMC PUBLIC LICENSE (OSMC-PL). ANY USE, REPRODUCTION OR DISTRIBUTION OF THIS
PROGRAM CONSTITUTES RECIPIENT'S ACCEPTANCE OF THE OSMC PUBLIC LICENSE OR
THE GPL VERSION 3, ACCORDING TO RECIPIENTS CHOICE.

The OpenModelica software and the OSMC (Open Source Modelica Consortium) Public License (OSMC-
PL) are obtained from OSMC, either from the above address, from the URLs:
http://www.openmodelica.org or http://www.ida.liu.se/projects/OpenModelica, and in the
OpenModelica distribution. GNU version 3 is obtained from: http://www.gnu.org/copyleft/gpl.html.

This program is distributed WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE, EXCEPT AS EXPRESSLY SET
FORTH IN THE BY RECIPIENT SELECTED SUBSIDIARY LICENSE CONDITIONS OF OSMC-PL.

See the full OSMC Public License conditions for more details.

This document is part of OpenModelica: http://www.openmodelica.org
Contact: OpenModelica@ida.liu.se

Modelica® is a registered trademark of the Modelica Association, http:/www.Modelica.org
MathModelica® is a registered trademark of MathCore Engineering AB, www.mathcore.com

Mathematica® is a registered trademark of Wolfram Research Inc, www.wolfram.com

Table of Contents

PrEIACE oottt ettt bt et st e bt ea b e et e ete et e enteent e beenteenteteenseennan 7
(@ aT=T o] =] g A 1 oY oo [1 o1 o] o OSSR 9
1.1 SYSLEM OVETVIEW ..ecvvievieiieiieitieetesiiesieetestesseesseestesseesseessesssesseessesssesssesseassesssessenssesssesseensenses 10
1.2 Interactive Session With EXamPIES.........ccvevviiieriieiiieiiniieie ettt sseenne s 11
1.2.1 Starting the INteractive SESSIONccvirieriierieiieriieteeteseesieeteseesteeresraesseesesseesseessensnens 11
1.2.2 Using Compiler Debug Trace Flags in Interactive Mode............ccovveieeienienienieiieieenene 12
1.2.3 Trying the Bubblesort FUNCtION............cccooiiiiiiiiiii it 15
1.2.4 Trying the system and cd Commands............ccocuerierieniiiieniee et 15
1.2.5 Modelica Library and DCMotor Modelcccocuiiiiriiiiiiiiiiee et 16
1.2.6 The val() fUNCHONccviiiiiciiecieee ettt ettt e e be e s be e seveeraeenreeenneenns 19
1.2.7 BouncingBall and Switch Modelsc.cociiiiiiiiiiieee e 19
1.2.8 Clear Al MOAEIScc.eeiuiiiiiiiiieit ettt et sttt et e saeene 21
1.2.9 VanDerPol Model and Parametric PIOtcccoooiiiiiiiiiiieee e 21
1.2.10 Using Japanese or Chinese CharacCterscceccveerereriieiriienieereeeseesreesneesneesseessseesseens 22
1.2.11 Scripting with For-Loops, While-Loops, and If-Statementsccccceeevvevieinieencieennnenns 23
1.2.12 Variables, Functions, and Types of Variablesccccceeeriiniieniiecienieieciesieieeve e 24
1.2.13 Getting Information about Error CauSe...........cccceevevieeiiiiriieiie e eete et eveeseeeeee e e 25
1.2.14 Alternative Simulation Output FOrmats.........c..cccevvieeiiiierieniieiieiese e 25
1.2.15 Using External FUNCHONSc.cociiiiieiieieiieie ettt ettt et eaaeseeens 25
1.2.16 Calling the Model Query and Manipulation APIccoooiiiiiieiieieieeeeee e 25
1.2.17 Quit OPENIMOAEIICAouviiiiieiieeiietieieeteee ettt ettt e te st ettt e enee s e e seensessaeseeens 27
1.2.18 Dump XML RePIeSENTALIONeecveeuieiieiieiieriieiieieetiesteetestesseesseeaesseesseensesseesseesessnesseens 27
1.2.19 Dump Matlab Representation.............ccereeierierieiieeie ettt sbe e eeens 27
1.3 Summary of Commands for the Interactive Session Handler.............cocoiieiiiencniinennn 28
1.4 RETEIEICES ...ttt ettt et s be e bt ettt sbeesbe e be bt ebees 29
Chapter 2 OMEdit — The OpenModelica Connection EAitor.............ccccocvvvieiiiiiiienesieseeeeiennn 30
2.1 Starting OMEIt......c.coiiieiiiiieinieiec ettt 30
2,11 MICTOSOft WINAOWS ...ttt ettt ettt eteeabe st e st enbeeseesseenseensesnaanseens 30

S O 1111 QPRSP UTRSRPSRUTE 31
2.1.3 0 MAC OS Xttt ettt ettt ettt et ettt ettt e b et e b e beeae st ese st esaesaensensensensensn 31
2.2 Introductory Modeling in OMEQItc.oocieiieiiiiieiiet et 32
2.2.1 Creating @ NeW FIle......cooiiiiiiiiiieee ettt st 32
2.2.2 Adding Component MOAEILSccciiriiiriiieiie ittt see e e ieesree s aeessaeeneeens 33
2.2.3 Making CONMNECLIONS.cc..iiuiiitietiatietteeteesieeiesete et este et e s seebeeateeaeesbeeseensesseasseentesneesaeeneeans 33
224 Simulating the MOdelcoociiiiiiiiieciece e s e re e e ae e 34
2.2.5 Plotting Variables from Simulated ModelSccccveviiiriiiiiieiiiecie e 35
2.3 How to Create User Defined Shapes — ICONScccvvvviriieriieieeienieie et 37
2.4 OMEGIt VIBWS ...ttt ettt ettt ettt ettt st st sbe st eteebeeteeseeneeneensensensessensennans 39
2.4.1 MOAEING VIBW ...oiiiiiiiiciieiieie ettt ettt e e testaessessaessaesseesbesssessaassesssesssensenssessaesseans 39
242 PLOHNG VIBW..euiiiieiieiieiieieeiesitete et et e steesbessbestbesseessesssassesseessesssessaasseassesssesssessenssenseans 39

2.4.3 Interactive SIMUIATION VIEWoooiiiiiiiiiieiiieeeeeeee et e e e s ee e s eeaaaeeas 39

2.5 OMEdit WINAOWS/TADSeveevieiiiiieiieiieieieietese ettt ettt ettt e e e 40
2.5.1 LIDTAry WINAOWoceiiiiiiiiiieiieiteie ettt ettt e eetessaesteeseensesseenseensesnnesseenseans 40
2.5.2 DeSIZNET WINAOWooiiiiiiiiiiiieeiieiieie ettt ettt ete et e steeseeneesseasseensesnaesseenseans 41
2.5.3 Plot Variables WINAOW.........cc.coiiiiiiiiiieieee ettt sttt et et sae e ens 41
2.54 MeSSAZES WINAOWccciiiiiieiie ettt eeie ettt saeeteeste e s beesaaeeseessbeessseessneessaesnseensseenns 42
2.5.5 Documentation WINAOW.........c.ceiieiiiiiiiriieieeieriieie ettt ettt eee st e et e ee st e saeeneeeaeens 42

2.6 LD 1 10 <P 42
2.6.1 NeW MOdel DIAlOZccueeeiiiiiieiiieeeeie ettt et e e st e e e e e e esbe e srbeetaeenaeenneenns 43
2.6.2 SIMUIAtiON DIALOZ.....eeueiuiiieieiirieeiieteeie sttt sttt ettt nenen 43
2.6.3 Model Properties Dialog........cc.coouiiiiriiiiiiiiniieiieieseeeee ettt e 43
2.6.4 Model Atributes DIaloZ.......ccooiriririeieiieiieieeeee e 44

2.7 Interactive Simulation in OMEGIt.........cooeriiriiiiiiiiire e 45
2.7.1 Invoking Interactive STMUIAtIONcccieiuieiiieiiiieriieie ettt seeens 45
2.7.2 Interactive SIMUIAtION VIEWcceeieuieieiieiieieieiesieteete ettt ettt 45

Chapter 3 2D Plotting and 3D ANIMALIONcciieiiiiieneere e 47

3.1 Enhanced Qt-based 2D Plot FUNCtioNalityc.cecviecuieiiiieniieiie e cie e esee e sveesveeiee s 47

3.2 SIMPLE 2D PIOt....eiiiiiieiiieiie ettt ettt e et e e ete e e sbeeesbeessaaessbeesseeessaessseessseenseens 48
3.2.1 Plot Functions and Their OPtionS............cceeeuerieriierieeciesiesieeresreseesseeseesessessessesssesseens 51
32,2 ZIOOIMING ...oveeviiieniienteeireteesteeeaeseteseesseessesseessesssesssesseessesssansaasseassesssessenssesssesseensenssensenssenns 53
3.2.3 Plotting all variables 0f @ MOdE]coocveriieriiiiiiieieeceee e 54
3.2.4 Plotting During STmMUIation..........cccueiuieiiiiieiieieeieee ettt s 54
3.2.5 Programmable Drawing of 2D GraphiCscccccuerieriirierieniieiesiee et 55
3.2.6 Plotting of Table Dataccceeiiiieieiieceeeeeee ettt 56

33 Java-based PtP10t 2D PIOLHNGc.eeiuieiieeieciieiieeee ettt s 57

34 3D ANITIATION . 1.ttt ettt ettt ettt et e bt e atesat et e et e et e sseen b e es e eaeesbe et e eneeebe e beenbeseeeneenteen 57
3.4.1 Object Based VISUAIZATIONeeuiiiiiiieiiieieiteie ettt ettt st saeens 58
342 BouncingBall.........oooiiii ettt et 58
3.4.3 Pendulum 3D EXAMPIe.....coeiiuiiiiiiiiiiiiee et 60

3.5 RETEIEICES ...ttt ettt be ettt et sbeesbe e be bt ebees 62

Chapter 4 OMNotebook with DrModelica and DrControl...........cccccveiveiiineinenee e 64

4.1 Interactive Notebooks with Literate Programming............ccoccoeveeiinienieienieieeeeeeeee, 64
4.1.1 Mathematica NOtEDOOKSeecuiiiiiieiieieeie ettt ettt et et see e enees 64
4.1.2 OMNOLEDOOKeeiieeieiieti ettt ettt e e e ae st e st e bt eseesse e beenbeensesseenseenseeneennean 64

4.2 DrModelica Tutoring System — an Application of OMNotebook..........cccceveeiievieninncnennee. 65

4.3 DrControl Tutorial for Teaching Control Theorycccceecveiiieriienieeieceeee e 71
4.3.1 FeedbDacK LOOP ...eoiieuieieieiieiiee ettt ettt ettt be et eat e eb et e te et enean 71
4.3.2 Mathematical Modeling with Characteristic EQUations............ccccceevieecieencieenieeniee e, 74

4.4 OpenModelica Notebook CommMmANdScecveervieiiieniieriieieeseeesee e eree e sneeseeesaeeeenes 80
AT CRlIS ettt bbb bt bt a e n ettt nee e 80
4.2 CULSOTS. cnttenteiteteete ettt ettt ettt s bt e bt ea bt eh e e e bt e sae et e sht e bt eab e eateehee s bt enbeeatesbe e bt eabeeheeebeenbesueenbean 80
4.4.3 Selection Of TeXt O CeIISeiviruiriiririiriieieiieieie ettt e 80
444 FIIE MOIU ..ottt b bbbt e b ettt e e 81
I 74 1Y, 15131 PRSPPI 81
4.0 CIIMEONU...iiiiiiiiiiieeeee ettt ettt b e b e bt bbbt ettt et e et nee 82
4477 FOIMAt MBI ...cooitiiiiie ittt ettt e st e bttt e e te e et e e suteesbeeeebeeenteesateasneeeneeean 83
N 1 i 1Y (<) 113 OSSPSR 83
449 WINAOW MEIUouiiiiiiiieieeiiet ettt ettt h ettt e et e b et e e st e ebeesbeebeeabeebeesbeeneeeneeaneas 83
N L = (<] 10 1Y, 1<) 11 OO OO OSSPSR 83

4411 AdAItONAl FEATUIESevviiiiiiiieiie ettt ettt e e e e e e e e e e s eennaaeees 84

4.5 RETETENCESvviee ettt e ettt e et e e e et e e e ete e e eentaeeeetteeeeataeeeenteeeennees 85

Chapter 5 Interactive SIMUIATION ..o 87
5.1 Interactively Changeable Parametersccvevviiriieiieiiiesieerie e sieesae e seveesve e e 87
5.2 OpenModelica Interactive Components deSCriptionccveeververieerieeieriesreecrenereseessenenes 88
53 Communication INEITACE.c.ecviiiriiiiiriieeeeee e 88
5.4 Network configuration SETNESccevvievieeiierierieeieeieri et seesreebesaesreeseessesseesseessesesenens 89

541 OPEration MESSAZES......icuviivierieieriieiieteetestteseestesseessesesesseesseassesssesseassesssessesssesseessesssenses 89
5.5 Interactive Simulation general Procedureccoocveririiiienieeeieeeeeee e 90
5.5.1 Initialize an Interactive SIMulation SESSIONcceeverieriieiiieierieieeieie e 91
5.6 Interactive Simulation EXample.........occoiieiiiiiiiieieeeee e 91
5.6.1 How to get an example Modelica Model...........cccoeoiiiiiieiiiiieieee e 91
5.6.2 Create the SIMUIAtioN TUNTIMIE.cc.eeitiiiiieiertieie ettt ettt et et sae e 92
5.6.3 Start an interactive SImulation SESSIONcceerieiiiiieiieie it 92

Chapter 6 OMOptim — Optimization with OpenModeliCa..........cccvveiereriiieieiiccee e 95
6.1 INEEOAUCTION ...ttt ettt sttt st ebe bt esee st e e eeeneen 95
6.2 Preparing the MOdE........ccvoiieiiiiei ettt et e et e sbeesaessaeneas 95

T B o3 2 14 (<1 1<) ¢ OSSPSR 95
0.2.2 CONSITAINEStetienteeiestietteteettestteteettesetesteeseeseesseesseensesaseseenseensesseanseensesnsesseensesnsesseansesens 95
I T © 1) [T A TSP 96
6.3 Set problem in OMOPLIToc.eiiuiiiieieieeie ettt ettt sttt e bt et eaee st eeeeaeesbeeeeenee 96
6.3.1 Launch OMOPUITI ...ocueiiuiiiieieitieie ettt sttt et et e e e bt et eaeesbe e teeneesaeeneeenee 96
6.3.2 Create @ NEW PIOJECT ...uviecrieerierieerteeeteesteessteesteesseeesseessseessaeesseeesseensseessseesesssseessseenssennses 96
6.3.3 L0Ad MOMEIS ..ottt ettt st eaes 96
6.3.4 Create a new optimization ProbleM...........cccuieicvieriierieeiie e eee e e sreesee e e saeesese e 97
6.3.5 Select Optimized Variablesccueecuiiriiiiiieiiiiieeeieeste et reesbeessaeesseennes 98
6.3.6 SCIECE ODJECLIVES ..viiviiiiiiieeii ettt e ete ettt e e e esbestaeseesseesbe st esseessessaessaessesssesseansensns 99
6.3.7 Select and configure algorithm.............cccuviiiiiiiiiiiiicieeceee e 99
0.3.8 LaAUNCH .ottt e bbb 100
6.3.9 StOPPING OPUMIZALION.evieiiereriierieeteetesteeteetesteeseesesseesseessesssesseessesssesssessesssesseensens 100
6.4 RESUILS ..ottt ettt ettt e et e st e e e e st e sae e bt enbeenteete e teensenneenns 100
6.4.1 Obtaining all Variable Valuescccoeoieiiiiieiiiiee ettt 100
6.5 Window Regions in OMOPHM GUIociiiiiiiiiiiiieeceee e 101

Chapter 7 MDT — The OpenModelica Development Tooling Eclipse Plugin.............ccccocceeuenee. 103
7.1 INEEOAUCTION ...ttt ettt ettt be st be e 103
7.2 INSEATTATION. ...ttt ettt be b bbb b b 103
7.3 GELHNG STATEEAvevvieeii ettt ettt ettt b e et esta e beesbeessesseessaesseessenseensesseenns 104

7.3.1 Configuring the OpenModelica COMPIIET.........cccverieriiecierieieeierieie et eie e eaeeenens 104
7.3.2 Using the Modelica PErSPECHIVEceevuieiiieieriieiieiesieeie et 104
7.3.3 Selecting a Workspace FOIerccoiiiriiiiiiiiiee e 104
7.3.4 Creating one or more Modelica Projectsccoceereeierienieniieiesiee e 104
7.3.5 Building and RUnNNing @ Project........cccceeeiieiiniiiieie ettt 104
7.3.6 Switching to ANOther PErSPECTIVEeeiuiiuiiiiieiieiieeiieie ettt 105
7.3.7 Creating @ PaCKagecoouiiuiiiieiee e 106
7.3.8 CreatiNg @ CIASSeeiiiuiiiieie ettt ettt ettt et ettt ettt e s bt et e tesaeesaeenbeentenbeeneas 106
7.3.9 Syntax CRECKING.....cciiiuiiiiiie ittt ettt ettt sbe et et beeee s 107
7.3.10 Automatic Indentation SUPPOTLc.eeeeveerieeirieiiierieertee e eteeseeereesreeseeeesreeeseessreenenas 108
T7.3. 11 Code COMPIETION......cccciieiiieiieirieeieeeteeeteeste et e eteesbe e teesteeesseessseessseesseeesseesssaessseensnns 108

7.3.12 Code Assistance on Identifiers when HOVEring.............cccoeveviieienieniiecienieniecie e 109

7.3.13 GO t0 Definition SUPPOTL....cc.evvirrireirieiiriieiieiieteteest sttt ettt sbe b 109
7.3.14 Code Assistance on Writing ReCOTAScceeeiiiieriiiiiiieiieeeeseee e 109
7.3.15 Using the MDT Console for PIOtHNEccceevieiiiiieiieiieieeeeee e 110
Chapter 8 Modelica Performance ANAIYZErccccoiieiiiiiiiiiiieie e 113
8.1 Example Report Generated for the A Modelccoocvivieiiieciinieiicieiee e 114
811 INFOIMATIONueeiieitiiit ittt ettt b e b b 114
812 SELUIINES veeuveiieieeie ettt et et et e e et e st esbeesbeste e beesbessbessaesseessesssenseesseesaensaensaesseesaeseasaans 114

813 SUMIMATY ..ottt ettt ettt et e st e et e bt e e bt e emteesnse e baeenaeeenseesneeans 114
814 GlODAL SLEPS .ooueeeneeeiieeiiee ettt ettt ettt et et e seeneennan 115

8.1.5 Measured FUNCON CallS........c.ccieiiiiiiieiieiieiieie ettt ettt sse e seeens 115

8.1.6 Measured BIOCKSoouiiiiiieiieieee ettt ettt enaen 115

8.1.7 Genenerated XML for the EXampleccooieiiiiiiiiiiiiieee e 116
Chapter 9 Modelica Algorithmic Subset DeDUGQEr.........coiviiiiinii e 119
9.1 The Eclipse-based Debugging Environment.............cccvevevierieerieeciienieenieeiieevee e eiee e 119
9.2 Starting the Modelica Debugging PersSpectivec..ccvvieriieeiirienieieeieeiesie e seesveereeenens 120
9.2.1 Setting the debug cONfIUIAtION........ccuiivieiiieieiieiieie ettt e e eenes 120

9.2.2 Setting/Deleting BreakPOints...........cccveruieririierieniieiesiesieeieeee st see st eeeeeseeee e 122

9.2.3 Starting the debugging session and enabling the debug perspective..........ccccceeverurennnee. 122

9.3 The Debugg@ing PErSPECLIVEcccuiiiiieieiiitieie ettt ettt te et esaeenee e neeenns 123
Chapter 10 Interoperability — C, Java, and PYthon ... 125
10.1 Calling External C fUnCIONSccevereriirieririinieetieteeeeecet ettt st saesre 125
10.2 Calling External Java FUNCHONS.cccoviriririiiiiiiieeceieteeeee e 126
10.3 Python INteroperabilifyccecveieiiierieiiriesiertesesseeee et 127
Chapter 11 Frequently Asked QUESEIONS (FAQ)......cuiiiieiiiieiieieseeseese e se e se e see e see e 129
11.1 OpenModelica GENETALcoouiiiiiieiieie ettt sttt ettt ee e e 129
L11.2 OMNOLEDOOK ..coutiiuiiiieitieie ettt ettt ettt et ebt e s bt et et sbeesbe e bt et e s bt e nbeeaesaeesbeenee 129
11.3 OMDev - OpenModelica Development Environmentccoceeveeienieneenenieneeseeeeeeene 130

55T 1>, SRR PRSI 148

Preface

This users guide provides documentation and examples on how to use the OpenModelica system, both for the
Modelica beginners and advanced users.

Chapter 1

Introduction

The OpenModelica system described in this document has both short-term and long-term goals:

The short-term goal is to develop an efficient interactive computational environment for the Modelica
language, as well as a rather complete implementation of the language. It turns out that with support of
appropriate tools and libraries, Modelica is very well suited as a computational language for
development and execution of both low level and high level numerical algorithms, e.g. for control
system design, solving nonlinear equation systems, or to develop optimization algorithms that are
applied to complex applications.

The longer-term goal is to have a complete reference implementation of the Modelica language,
including simulation of equation based models and additional facilities in the programming
environment, as well as convenient facilities for research and experimentation in language design or
other research activities. However, our goal is not to reach the level of performance and quality
provided by current commercial Modelica environments that can handle large models requiring
advanced analysis and optimization by the Modelica compiler.

The long-term research related goals and issues of the OpenModelica open source implementation of a
Modelica environment include but are not limited to the following:

Development of a complete formal specification of Modelica, including both static and dynamic
semantics. Such a specification can be used to assist current and future Modelica implementers by
providing a semantic reference, as a kind of reference implementation.

Language design, e.g. to further extend the scope of the language, e.g. for use in diagnosis, structural
analysis, system identification, etc., as well as modeling problems that require extensions such as partial
differential equations, enlarged scope for discrete modeling and simulation, etc.

Language design to improve abstract properties such as expressiveness, orthogonality, declarativity,
reuse, configurability, architectural properties, etc.

Improved implementation techniques, e.g. to enhance the performance of compiled Modelica code by
generating code for parallel hardware.

Improved debugging support for equation based languages such as Modelica, to make them even easier
to use.

Easy-to-use specialized high-level (graphical) user interfaces for certain application domains.
Visualization and animation techniques for interpretation and presentation of results.

Application usage and model library development by researchers in various application areas.

10

The OpenModelica environment provides a test bench for language design ideas that, if successful, can be
submitted to the Modelica Association for consideration regarding possible inclusion in the official Modelica
standard.

The current version of the OpenModelica environment allows most of the expression, algorithm, and
function parts of Modelica to be executed interactively, as well as equation models and Modelica functions to
be compiled into efficient C code. The generated C code is combined with a library of utility functions, a run-
time library, and a numerical DAE solver.

1.1 System Overview

The OpenModelica environment consists of several interconnected subsystems, as depicted in Figure 1-1-1
below.

MDT Eclipse Plugin Graphical Model
Editor/Browser \ Editor/Browser
OMODi Interactive t
pim session handler
Optimization — Mo-giflgg:tor
Subsystem \
OMNotebo ok .
DrModelica Execution Model!ca
Model Editor Compiler
Modelica
. Debugger

Figure 1-1-1. The architecture of the OpenModelica environment. Arrows denote data and control flow. The
interactive session handler receives commands and shows results from evaluating commands and expressions that
are translated and executed. Several subsystems provide different forms of browsing and textual editing of
Modelica code. The debugger currently provides debugging of an extended algorithmic subset of Modelica

The following subsystems are currently integrated in the OpenModelica environment:

e An interactive session handler, that parses and interprets commands and Modelica expressions for
evaluation, simulation, plotting, etc. The session handler also contains simple history facilities, and
completion of file names and certain identifiers in commands.

e A Modelica compiler subsystem, translating Modelica to C code, with a symbol table containing
definitions of classes, functions, and variables. Such definitions can be predefined, user-defined, or
obtained from libraries. The compiler also includes a Modelica interpreter for interactive usage and
constant expression evaluation. The subsystem also includes facilities for building simulation
executables linked with selected numerical ODE or DAE solvers.

e An execution and run-time module. This module currently executes compiled binary code from
translated expressions and functions, as well as simulation code from equation based models, linked
with numerical solvers. In the near future event handling facilities will be included for the discrete and
hybrid parts of the Modelica language.

11

o Eclipse plugin editor/browser. The Eclipse plugin called MDT (Modelica Development Tooling)
provides file and class hierarchy browsing and text editing capabilities, rather analogous to previously
described Emacs editor/browser. Some syntax highlighting facilities are also included. The Eclipse
framework has the advantage of making it easier to add future extensions such as refactoring and cross
referencing support.

e OMNotebook DrModelica model editor. This subsystem provides a lightweight notebook editor,
compared to the more advanced Mathematica notebooks available in MathModelica. This basic
functionality still allows essentially the whole DrModelica tutorial to be handled. Hierarchical text
documents with chapters and sections can be represented and edited, including basic formatting. Cells
can contain ordinary text or Modelica models and expressions, which can be evaluated and simulated.
However, no mathematical typesetting facilities are yet available in the cells of this notebook editor.

e Graphical model editor/browser OMEdit.. This is a graphical connection editor, for component based
model design by connecting instances of Modelica classes, and browsing Modelica model libraries for
reading and picking component models. The graphical model editor also includes a textual editor for
editing model class definitions, and a window for interactive Modelica command evaluation.

e Optimization subsystem OMEdit.. This is an optimization subsystem for OpenModelica, currently for
design optimization choosing an optimal set of design parameters for a model. The current version has
a graphical user interface, provides genetic optimization algorithms and Pareto front optimizaiton,
works integrated with the simulators and automatically accesses variables and design parameters from
the Modelica model.

e Modelica debugger. The current implementation of debugger provides debugging for an extended
algorithmic subset of Modelica, excluding equation-based models and some other features, but
including some meta-programming and model transformation extensions to Modelica. This is
conventional full-feature debugger, using Eclipse for displaying the source code during stepping,
setting breakpoints, etc. Various back-trace and inspection commands are available. The debugger also
includes a data-view browser for browsing hierarchical data such as tree- or list structures in extended
Modelica.

1.2 Interactive Session with Examples

The following is an interactive session using the interactive session handler in the OpenModelica environment,
called OMShell — the OpenModelica Shell). Most of these examples are also available in the OpenModelica
notebook UsersGuideExamples.onb in the testmodels (C:/OpenModelical.7.0/share/doc/omc/
testmodels/) directory, see also Chapter 4.

1.2.1 Starting the Interactive Session

The Windows version which at installation is made available in the start menu as OpenModelica-
>0OpenModel ica Shel l which responds with an interaction window:

12

i OMShell - OpenModelica Shell =0l x|
File Edit View Help
f R B|s| e 0]

OpenModelica 1.4.5 =

Copyright (<) OSMC 2002-2008

To get help on using OMShell and OpenModelica, type "help ()" and press snter.

-

.

Ready A

We enter an assignment of a vector expression, created by the range construction expression 1:12, to be stored
in the variable x. The value of the expression is returned.

>> x = 1:12
{1, 2, 3, 4,5, 6, 7,8, 9, 10, 11, 12}

1.2.2 Using Compiler Debug Trace Flags in Interactive Mode

When running OMC in interactive mode (for instance using OMShell) one can make use of some of the
compiler debug trace flags defined in section 2.1.2 in the System Documentation. Here we give a few example
sessions.

Example Session 1

OpenModelica 1.7.0
Copyright (c) OSMC 2002-2011
To get help on using OMShell and OpenModelica, type "help()" and press enter.

>> setDebugFlags(‘'failtrace')
true

>> model A Integer t = 1.5; end A; //The type is Integer but 1.5 is of Real Type
{A}

>> instantiateModel (A)
"/*- CevalScript.cevalGenerateFunctionDAEs failed(instantiateModel)*/

13

/*- CevalScript.cevalGenerateFunction failed(instantiateModel)*/

- Inst.makeBinding failed

- Inst.instElement failed: COMPONENT(t in/out: mod: = 1.5 tp: Integer var :VAR,
baseClass: <nothing>)

Scope: A

- Inst.instClassdef failed

class :A

- Inst.instClass: A failed

Inst._instClassInProgram failed

Error: Type mismatch in modifier, expected type Integer, got modifier =1.5 of type Real
Error: Error occured while flattening model A

Error: Type mismatch in modifier, expected type Integer, got modifier =1.5 of type Real
Error: Error occured while flattening model A

Example Session 2

OpenModelica 1.7.0
Copyright (c) OSMC 2002-2011
To get help on using OMShell and OpenModelica, type "help()" and press enter.

>> setDebugFlags(*'dump™)

true

---DEBUG(dump)---

IEXP(Absyn.CALL(Absyn.CREF_IDENT("'setDebugFlags", [1).,

FUNCT IONARGS (Absyn _ STRING('dump™),)))

---/DEBUG(dump)---

---DEBUG(dump)---

IEXP(Absyn.CALL(Absyn.CREF_IDENT("'getErrorString", []1), FUNCTIONARGS(,)))
---/DEBUG(dump)—

>> model B Integer k = 10; end B;

{B}

---DEBUG(dump)---

Absyn.PROGRAM([

Absyn.CLASS('B", false, false, false, Absyn.R_MODEL,
Absyn.PARTS([Absyn.PUBLIC([Absyn.ELEMENTITEM(Absyn.ELEMENT (false, _, Absyn.UNSPECIFIED
, '‘component’, Absyn.COMPONENTS(Absyn.ATTR(false, false, Absyn.VAR, Absyn.BIDIR,

[1). Integer, [Absyn.COMPONENT ITEM(Absyn.COMPONENT (k™ , [1, SOME(Absyn.CLASSMOD([],
SOME(Absyn. INTEGER(10))))), NONE())]1), Absyn.INFO('', false, 1, 9, 1, 23)), NONE))D].
NONEQ)), Absyn.INFO(C'™, false, 1, 1, 1, 30))

].,Absyn.TOP)

---/DEBUG(dump)---

---DEBUG(dump)---

IEXP(Absyn.CALL(Absyn.CREF_IDENT("'getErrorString™, [])., FUNCTIONARGS(,)))
--—/DEBUG(dump)—

>> instantiateModel (B)

"fclass B

Integer k = 10;
end B;
---DEBUG(dump)---

IEXP(Absyn.CALL(Absyn.CREF_IDENT(*"'instantiateModel™, [1),
FUNCT IONARGS (Absyn .CREF(Absyn .CREF_IDENT('B*, [1)).)))
---/DEBUG(dump)---

14

---DEBUG(dump)---
IEXP(Absyn.CALL(Absyn.CREF_IDENT("'getErrorString", []1), FUNCTIONARGS(,)))
---/DEBUG(dump)—

>> simulate(B, startTime=0, stopTime=1l, numberOflntervals=500, tolerance=1le-4)
record SimulationResult

resultFile = "B_res.plt”

end SimulationResult;

---DEBUG(dump)---

#ifdef _ _cplusplus

extern "C" {

#endif

#ifdef _ _cplusplus

}

#endif

IEXP(Absyn .CALL(Absyn.CREF_IDENT("simulate”, [1).

FUNCT IONARGS (Absyn .CREF(Absyn .CREF_IDENT(*'B"", [1))., startTime = Absyn.INTEGER(O),
stopTime = Absyn.INTEGER(1), numberOfintervals = Absyn.INTEGER(500), tolerance =
Absyn_REAL(0.0001))))

---/DEBUG(dump)---

---DEBUG(dump)---

IEXP(Absyn.CALL(Absyn.CREF_IDENT("'getErrorString", []1). FUNCTIONARGS(,)))
---/DEBUG(dump)--

Example Session 3

OpenModelica 1.7.0
Copyright (c) OSMC 2002-2011
To get help on using OMShell and OpenModelica, type "help()" and press enter.

>> setDebugFlags(‘'failtrace")
true

>> model C Integer a; Real b; equation der(a) = b; der(b) = 12.0; end C;
{C}

>> instantiateModel (C)

"/*- CevalScript.cevalGenerateFunctionDAEs failed(instantiateModel)*/

/*- CevalScript.cevalGenerateFunction failed(instantiateModel)*/

- Static.elabCall failed

function: der posargs: a

- Static.elabExp failed: der(a)

Scope: C

- instEquationCommon failed for eqn: der(a) = b; in scope:C

- instEquation failed egn:der(a) = b;

- Inst.instClassdef failed

class :C

- Inst.instClass: C failed

Inst.instClassInProgram failed

Error: l1llegal derivative. der(a) where a is of type Integer, which is not a subtype of
Real

Error: Wrong type or wrong number of arguments to der(a)".

Error: Error occured while flattening model C

Error: l1llegal derivative. der(a) where a is of type Integer, which is not a subtype of
Real

Error: Wrong type or wrong number of arguments to der(a)-”.

15

Error: Error occured while flattening model C

1.2.3 Trying the Bubblesort Function

Load the function bubblesort, either by using the pull-down menu File->Load Model, or by explicitly
giving the command:

>> loadFile(*'C:/0OpenModelical.7.0/share/doc/omc/testmodels/bubblesort.mo™)

true

The function bubblesort is called below to sort the vector x in descending order. The sorted result is returned
together with its type. Note that the result vector is of type Real [:], instantiated as Real [12], since this is
the declared type of the function result. The input Integer vector was automatically converted to a Real
vector according to the Modelica type coercion rules. The function is automatically compiled when called if
this has not been done before.

>> bubblesort(x)
{12.0,11.0,10.0,9.0,8.0,7.0,6.0,5.0,4.0,3.0,2.0,1.0}

Another call:

>> pubblesort({4,6,2,5,8})
{8.0,6.0,5.0,4.0,2.0}

It is also possible to give operating system commands via the system utility function. A command is provided
as a string argument. The example below shows the system utility applied to the UNIX command cat, which
here outputs the contents of the file bubblesort.mo to the output stream. However, the cat command does not
boldface Modelica keywords — this improvement has been done by hand for readability.

>> cd("'C:/0OpenModelical.7.0/share/doc/omc/testmodels/™)
>> gystem(*'cat bubblesort.mo™)

function bubblesort

input Real[:] x;

output Real[size(x,1)] vy;
protected

Real t;
algorithm

y = X;

for 1 in 1l:size(x,1) loop

for j in 1l:size(x,1) loop
if y[i] > y[J1 then

:_ y[i]’_
y[il == y[il;
vyl = t;
end if;
end for;
end for;

end bubblesort;

1.2.4 Trying the system and cd Commands

Note: Under Windows the output emitted into stdout by system commands is put into the winmosh console
windows, not into the winmosh interaction windows. Thus the text emitted by the above cat command would
not be returned. Only a success code (0 = success, 1 = failure) is returned to the winmosh window. For
example:

16

>> system('dir')
0

>> system(**Non-existing command')
1

Another built-in command is cd, the change current directory command. The resulting current directory is
returned as a string.

>> cd()
' C:/OpenModelical.7.0/share/doc/omc/testmodels/""

>> cd(..)
' C:/OpenModelical.7.0/share/doc/omc/""

>> cd(*'C:/0OpenModelical.7.0/share/doc/omc/testmodels/™)
' C:/OpenModelical.7.0/share/doc/omc/testmodels/""

1.2.5 Modelica Library and DCMotor Model

We load a model, here the whole Modelica standard library, which also can be done through the File->Load
Modelica Library menu item:

>> loadModel (Modelica)
true

We also load a file containing the demotor model:

>> loadFile(*'C:/0OpenModelical.7.0/share/doc/omc/testmodels/dcmotor.mo™)
true

It is simulated:
>> simulate(dcmotor,startTime=0.0,stopTime=10.0)

record
resultFile = "dcmotor_res.plt"
end record

We list the source code of the model:
>> list(dcmotor)

""model dcmotor
Modelica.Electrical .Analog.Basic.Resistor r1(R=10);
Modelica.Electrical .Analog.Basic.Inductor il;
Modelica.Electrical .Analog.Basic.EMF emf1;
Modelica.Mechanics.Rotational . Inertia load;
Modelica.Electrical .Analog.Basic.Ground g;
Modelica.Electrical _.Analog.Sources.ConstantVoltage v;

equation
connect(v.p,rl.p);
connect(v.n,g.p);
connect(rl.n,il.p);
connect(il.n,emfl.p);
connect(emfl.n,g.p);
connect(emfl.flange_b,load.flange_a);
end dcmotor;

We test code instantiation of the model to flat code:

17

>> instantiateModel (dcmotor)

"fclass dcmotor
Real rl.v "Voltage drop between the two pins (= p.v - n.v)";

Real rl.i "Current flowing from pin p to pin n";
Real rl.p.v "Potential at the pin";

Real rl.p.i "Current flowing into the pin®;

Real rl.n.v "Potential at the pin";

Real rl.n.i "Current flowing into the pin";

parameter Real rl1.R = 10 "Resistance";

Real il.v "Voltage drop between the two pins (= p.v - n.v)";
Real il1.i "Current flowing from pin p to pin n";

Real il.p.v "Potential at the pin®;

Real il.p.i "Current flowing into the pin";

Real il.n.v "Potential at the pin";

Real il.n.i1 "Current flowing into the pin';

parameter Real il.L = 1 "Inductance";

parameter Real emfl.k = 1 "Transformation coefficient";

Real emfl.v "Voltage drop between the two pins';

Real emfl.i1 "Current flowing from positive to negative pin";
Real emfl.w "Angular velocity of flange_b";

Real emfl.p.v "Potential at the pin";

Real emfl.p.i "Current flowing into the pin";

Real emfl.n.v "Potential at the pin";

Real emfl.n.i "Current flowing into the pin";

Real emfl.flange_b.phi "Absolute rotation angle of flange';
Real emfl.flange_b.tau "Cut torque in the flange";

Real load.phi "Absolute rotation angle of component (= flange_a.phi = flange b.phi)";
Real load.flange_a.phi "Absolute rotation angle of flange';
Real load.flange_a.tau "Cut torque in the flange";

Real load.flange b.phi "Absolute rotation angle of flange";
Real load.flange_b.tau "Cut torque in the flange";

parameter Real load.J = 1 "Moment of inertia";

Real load.w "Absolute angular velocity of component';

Real load.a "Absolute angular acceleration of component™;

Real g.p.v "Potential at the pin";

Real g.p.i "Current flowing into the pin";

Real v.v "Voltage drop between the two pins (= p.v - n.v)";
Real v.i "Current flowing from pin p to pin n";

Real v.p.v "Potential at the pin";

Real v.p.i "Current flowing into the pin';

Real v.n.v "Potential at the pin';

Real v.n.i "Current flowing into the pin";

parameter Real v.V = 1 "Value of constant voltage';
equation

rl.R * rl.i = rl.v;

ri.v = rl.p.v - rl.n.v;

0.0 = rl.p.i + rl.n.i;

rl.i = rl.p.i;

il.L * der(il.i) = il.v;
il.v = il.p.v - il.n.v;
0.0 = il.p.i + Il.n.i;
il. il.p.i;

1 =
emfl.v = emfl.p.v - emfl.n.v;
0.0 = emfl.p.i + emfl.n.i;
emfl.1 = emfl.p.i;
emfl.w = der(emfl.flange_b.phi);
emfl.k * emfl.w = emfFl.v;
emfl.flange_b.tau = -(emfl.k * emfl.i);
load.w = der(load.phi);

load.a = der(load.w);

18

load.J * load.a =

load.flange_a.phi

load.flange_b.phi

g-p-v = 0.0;

V.V = Vv.V;

V.V = V.p.V - Vv.n.
0.0 = v.p.i + v.n
V.i = v.p.i;

emfl.flange_b.tau
emfl.flange_b.phi

oad.flange_a.tau + load.flange_b.tau;

1
= load.phi;
= load.phi;

+ load.flange_a.tau = 0.0;
= load.flange_a.phi;

emfl.n.i + v.n_.i + g.p.i = 0.0;

emfl.n.v = v.n.v;
V.Nn.v = g.p-Vv;

il.n.i + emfl.p.i
il.n.v = emfl.p.v;
rl.n.i + il.p.i =
rl.n.v = il.p.v;

v.p.i + rl.p.i = 0.0;

V.p.V = rl.p.v;
load.flange_b.tau
end dcmotor;

= 0.0;

We plot part of the simulated result:
>> plot({load.w, load.phi})

true

File Edit Insert Tools

Help

=10l x|

JJ Open Save | Print | 5E|Ett| Zoom Pan | Griu:l| Hold | Preferences | Active | Image

Plot by Openlodelica

@ load.w

@ load.phi

Connection closed

19

1.2.6 The val() function

The val(variableName,time) scription function can be used to retrieve the interpolated value of a simulation
result variable at a certain point in the simulation time, see usage in the BouncingBall simulation below.

1.2.7 BouncingBall and Switch Models

We load and simulate the BouncingBall example containing when-equations and if-expressions (the Modelica
key-words have been bold-faced by hand for better readability):

>> loadFile(''C:/0OpenModelical.7.0/share/doc/omc/testmodels/BouncingBall._mo™)
true

>> list(BouncingBall)
""model BouncingBall
parameter Real e=0.7 "coefficient of restitution';
parameter Real g=9.81 "‘gravity acceleration";
Real h(start=1) "height of ball";
Real v "velocity of ball";
Boolean flying(start=true) "true, if ball is flying";
Boolean impact;
Real v_new;
equation
impact=h <= 0.0;
der(v)=if flying then -g else 0;
der(h)=v;
when {h <= 0.0 and v <= 0.0, impact} then
v_new=iTf edge(impact) then -e*pre(v) else 0;
flying=v_new > 0;
reinit(v, v_nhew);
end when;
end BouncingBall;

Instead of just giving a simulate and plot command, we perform a runScript command on a .mos
(Modelica script) file sim_BouncingBal I .mos that contains these commands:

loadFile("'BouncingBall.mo");
simulate(BouncingBall, stopTime=3.0);
plot({h,flying});

The runScript command

>> runScript(''sim_BouncingBall.mos"™)
""true
record

resultFile = "BouncingBall_res.plt"”
end record
true
true”

20

4 _tmpPlot.plt =10 x|

File Edit Special

Plot by OpenModelica

flying ®

04r 7

02y 7

0.0

0.0 05 1.0 15 20 25 30

We enter a switch model, to test if-equations (e.g. copy and paste from another file and push enter):

>> model Switch
Real v;
Real 1;
Real 111;
Real itot;
Boolean open;
equation
itot = i + 11;

iT open then

v = 0;
else
i = 0;
end if;
1 - i1l = 0;

1-v-1=0;

open = time >= 0.5;
end Switch;
Ok

>> simulate(Switch, startTime=0, stopTime=1);
Retrieve the value of itot at time=0 using the val(variableName,time) function:

>> val(itot,0)
1

Plot itot and open:

>> plot({itot,open})
true

< tmpPlot.plt
File Edit Special

Plot by OpenModelica
20 | T T T T T] Dpen .
itot ®

0.0

oo 01 02 02 04 05 06 0OF 08 08 1.0

We note that the variable open switches from false (0) to true (1), causing i tot to increase from 1.0 to 2.0.

1.2.8 Clear All Models

Now, first clear all loaded libraries and models:

>> clear()
true

List the loaded models — nothing left:
>> list()

1.2.9 VanDerPol Model and Parametric Plot

We load another model, the VanDerPol model (or via the menu File->Load Model):

>> loadFile(*'C:/0OpenModelical.7.0/share/doc/omc/testmodels/VanDerPol .mo™))
true

It is simulated:

>> simulate(VanDerPol)
record

resultFile = "VanDerPol_res.plt"”
end record

It is plotted:
plotParametric(x,y);

22

. tmpPlot.plt _IEIIﬂ
File Edit Special
Plot by OpenModelica

27 vy
1F

ot

Aar

-2

-2.0 -1.5 -1.0 -0.5 0.0 0.4 1.0 1.5

2.0

Perform code instantiation to flat forrm of the VanDerPol model:

>> instantiateModel (VanDerPol)

"fclass VanDerPol
Real x(start=1.0);
Real y(start=1.0);
parameter Real lambda = 0.3;

equation
der(x) =vy;
der(y) = -x + lambda * (1.0 - x * x) * y;

end VanDerPol ;

1.2.10 Using Japanese or Chinese Characters

Japenese, Chinese, and other kinds of UniCode characters can be used within quoted (single quote) identifiers,

see for example the variable name to the right in the plot below:

File Edit Special

Plot by OpenModelica
lll:l [T T T T T T]

0.8y]

0.0

0.0 0.5 1.0 1.5 2.0 2.5

23

1.2.11 Scripting with For-Loops, While-Loops, and If-Statements

A simple summing integer loop (using multi-line input without evaluation at each line into OMShell requires
copy-paste as one operation from another document):

>> Kk 1= 0;
for 1 in 1:1000 loop
k :=k + 1
end for;

>> k
500500

A nested loop summing reals and integers::

>> g = 0.0;
h :=5;
for i in {23.0,77.12,88.23} loop
for j in 1:0.5:(i+1) loop
g :=9+1;
g :=g+h/ 2;
end for;
h = h + g;
end for;

By putting two (or more) variables or assignment statements separated by semicolon(s), ending with a variable,
one can observe more than one variable value:

>> h;g
1997.45
1479.09

A for-loop with vector traversal and concatenation of string elements:

>> §I="";
Ist := {""Here ", are ","'some ","strings."};
s = "";
for 1 in Ist loop
S 1= s + 1;
end for;
>> s

""Here are some strings."

Normal while-loop with concatenation of 10 "abc " strings:

>> sI=";
i:=1;
while i<=10 loop
s:="abc "+s;
i:=1+1;
end while;
>> s
""abc abc abc abc abc abc abc abc abc abc ™

A simple if-statement. By putting the variable last, after the semicolon, its value is returned after evaluation:

>> jf 52 then a := 77; end if; a
77

An if-then-else statement with elseif:

>> if false then

24

a :=
else if
b-="

else

a-=34;
end if;

Take a look at the variables a and b:
>> a:b

100
"test"

1.2.12 Variables, Functions, and Types of Variables

Assign a vector to a variable:
>> a:=1:5
{1.2,3,4,5}

Type in a function:

>> function MySqr input Real Xx; output Real y; algorithm y:=x*x; end MySqr;
Ok

Call the function:

>> b:=MySqr(2)
4.0

Look at the value of variable a:

>> a
{1,2,3,4,5}

Look at the type of a:

>> typeOf(a)
"Integer[]"”

Retrieve the type of b:

>> typeOf(b)
“"Real™

What is the type of MySqr? Cannot currently be handled.

>> typeOf(MySqr)
Error evaluating expr.

List the available variables:

>> listVariables()
{currentSimulationResult, a, b}

Clear again:

>> clear()
true

25

1.2.13 Getting Information about Error Cause
Call the function getErrorString in order to get more information about the error cause after a simulation
failure:

>> getErrorString(Q)

1.2.14 Alternative Simulation Output Formats

There are several output format possibilities, with mat being the default. plt and mat are the only formats that
allow you to use the val () or plot() functions after a simulation. Compared to the speed of plt, mat is
roughly 5 times for small files, and scales better for larger files due to being a binary format. The csv format is
roughly twice as fast as plt on data-heavy simulations. The plt format allocates all output data in RAM
during simulation, which means that simulations may fail due applications only being able to address 4GB of
memory on 32-bit platforms. Empty does no output at all and should be by far the fastest. The csv and plt
formats are suitable when using an external scripts or tools like gnuplot to generate plots or process data. The
mat format can be post-processed in MATLAB! or Octave?.

simulate(... , outputFormat="mat")
simulate(... , outputFormat="csv')
simulate(... , outputFormat="plt")
simulate(... , outputFormat="empty')
It is also possible to specify which variables should be present in the result-file. This is done by using POSIX

Extended Regular Expressions®. The given expression must match the full variable name (~ and $ symbols are
automatically added to the given regular expression).

// Default, match everything

simulate(... , variableFilter="_*")

// match indices of variable myVar that only contain the numbers using combinations
// of the letters 1 through 3

simulate(... , variableFilter="myVar\\[[1-3]*\\]"")

// match x or y z

simulate(... , variableFilter="x|y|z")

1.2.15 Using External Functions

See Chapter 10 for more information about calling functions in other programming languages.

1.2.16 Calling the Model Query and Manipulation API

In the OpenModelica System Documentation, an external API (application programming interface) is described
which returns information about models and/or allows manipulation of models. Calls to these functions can be

! http://www.mathworks.com/products/matlab/
2 http://www.gnu.org/software/octave/
3 http://en.wikipedia.org/wiki/Regular_expression

26

done interactively as below, but more typically by program clients to the OpenModelica Compiler (OMC)
server. Current examples or such clients are the OpenModelica MDT Eclipse plugin, OMNotebook, the
OMEdit graphic model editor, etc. This API is untyped for performance reasons, i.e., no type checking and
minimal error checking is done on the calls. The results of a call is returned as a text string in Modelica syntax
form, which the client has to parse. An example parser in C++ is available in the OMNotebook source code,
whereas another example parser in Java is available in the MDT Eclipse plugin.

Below we show a few calls on the previously simulated BouncingBall model. The full documentation on
this API is available in the system documentation. First we load and list the model again to show its structure:

>>loadFile(*"C:/0OpenModelical.7.0/share/doc/omc/testmodels/BouncingBall_mo™)
true

>>list(BouncingBall)

""model BouncingBall
parameter Real e=0.7 "coefficient of restitution";
parameter Real g=9.81 "‘gravity acceleration;
Real h(start=1) "height of ball";
Real v "velocity of ball";
Boolean flying(start=true) "true, if ball is flying";
Boolean impact;
Real v_new;
equation
impact=h <= 0.0;
der(v)=if flying then -g else 0;
der(h)=v;
when {h <= 0.0 and v <= 0.0, impact} then
v_new=iT edge(impact) then -e*pre(v) else 0O;
flying=v_new > 0;
reinit(v, v_nhew);
end when;
end BouncingBall;

Different kinds of calls with returned results:

>>getClassRestriction(BouncingBall)
“model™

>>getClassInformation(BouncingBall)
{"model™ ", {false, false, false},{"writable",1,1,18,17}}

>>isFunction(BouncingBall)
false

>>existClass(BouncingBall)
true

>>getComponents(BouncingBall)

{{Real,e,"coefficient of restitution”, "public", false, false, false,
"parameter', 'none", "unspecified"},

{Real,g,"'gravity acceleration",

“public™, false, false, false, "parameter'™, 'none', "unspecified"},
{Real ,h,"height of ball', "public", false, false, false,
"unspecified"”, "none", "unspecified"},

{Real,v,"velocity of ball",

"public", false, false, false, "unspecified", "none", "unspecified"},
{Boolean,flying,"true, if ball is flying", "public", false, false,
false, "unspecified”, "none'", "unspecified"},

{Boolean, impact,""",

"public", false, false, false, "unspecified", "none', "unspecified"},
{Real,v_new,"", "public"”, false, false, false, "unspecified"”, 'none",

27

"unspecified"}}

>>getConnectionCount(BouncingBall)
0

>>getlnheritanceCount(BouncingBall)
0]

>>getComponentModifierValue(BouncingBall,e)
0.7

>>getComponentModifierNames(BouncingBall,e)

>>getClassRestriction(BouncingBall)
“model™

>>getVersion() // Version of the currently running OMC
16"

1.2.17 Quit OpenModelica

Leave and quit OpenModelica:
>> quitQ)

1.2.18 Dump XML Representation

The command dumpXMLDAE dumps an XML representation of a model, according to several optional
parameters.

dumpXMLDAE(modeIname[,asInSimulationCode=<Boolean>] [,filePrefix=<String>]
[,storelnTemp=<Boolean>] [,addMathMLCode =<Boolean>])

This command dumps the mathematical representation of a model using an XML representation, with optional
parameters. In particular, asInSimulationCode defines where to stop in the translation process (before
dumping the model), the other options are relative to the file storage: filePrefix for specifying a different
name and storelnTemp to use the temporary directory. The optional parameter addMathMLCode gives the
possibility to don't print the MathML code within the xml file, to make it more readable.Usage is trivial, just:
addMathMLCode=true/false (default value is false).

1.2.19 Dump Matlab Representation

The command export dumps an XML representation of a model, according to several optional parameters.

exportDAEtoMatlab(modelname) ;

This command dumps the mathematical representation of a model using a Matlab representation. Example:

$ cat daequery.mos
loadFile('BouncingBall._mo™);
exportDAEtoMatlab(BouncingBall);
readFile('BouncingBall_imatrix.m");

$ omc daequery.mos
true
"The equation system was dumped to Matlab Ffile:BouncingBall_imatrix.m"

28

% Incidence Matrix
%
% number of rows: 6

IM={[3,-6],[1,{"if", "true”,"==" {3}.{}.}1.[2,.{"if", "edge(impact)”
{3}.{5}.31.[4.2],[5,{"if", "true","==" {4},{}.}]1.[6,-51};

VL = {"foo","v_new","impact”, " flying~”,"v", "h"};

EqStr = {"impact = h <= 0.0;","foo = if impact then 1 else 2;","when {h <= 0.0 AND v
<= 0.0, impact} then v_new = if edge(impact) then (-e) * pre(v) else 0.0; end
when; ", "when {h <= 0.0 AND v <= 0.0, impact} then flying = v_new > 0.0; end
when; ", "der(v) = if flying then -g else 0.0;%,"der(h) = v;"};

OldEqStr={"fclass BouncingBall", "parameter Real e = 0.7 "coefficient of
restitution™; ", "parameter Real g = 9.81 *gravity acceleration”;","Real h(start = 1.0)
"height of ball";","Real v "velocity of ball";","Boolean flying(start = true) '"true,
it ball is flying";","Boolean impact;","Real v_new;", "Integer foo;","equation”,”
impact = h <= 0.0;"," Tfoo = if impact then 1 else 2;"," der(v) = if flying then -g
else 0.0;"," der(h) = v;"," when {h <= 0.0 AND v <= 0.0, impact} then"," v_new = i
edge(impact) then (-e) * pre(v) else 0.0;"," Fflying = v_new > 0.0;","
reinit(v,v_new);"," end when;","end BouncingBall;",""};"

f

1.3 Summary of Commands for the Interactive Session Handler

The following is the complete list of commands currently available in the interactive session hander.
simulate(modelname) Translate a model named modelname and simulate it.

simulate(modelname[, startTime=<Real>][,stopTime=<Real>][,numberOfintervals
=<Integer>][,outputinterval=<Real>][,method=<String>]
[, tolerance=<Real>][, fixedStepSize=<Real>]
[,outputFormat=<String>]) Translate and simulate a model, with
optional start time, stop time, and optional number of simulation intervals or
steps for which the simulation results will be computed. Many intervales will
give higher time resolution, but occupy more space and take longer to
compute. The default number of intervals is 500. It is possible to choose
solving method, default is “dassl”, “euler” and ‘“rungekutta” are also
available. Output format “plt” is default and the only one that works with th
val() command, “csv”’ (comma separated values) and “empty” (no output) are
also available.

plot(vars) Plot the variables given as a vector or a scalar, e.g. plot({x1,x2}) or
plot(xl).

plotParametric(varl, var2) Plot var2 relative to varl from the most recently simulated model, e.g.
plotParametric(x,y).

cdQ Return the current directory.

cd(dir) Change directory to the directory given as string.

clear() Clear all loaded definitions.

clearVvariablesQ Clear all defined variables.

dumpXMLDAE(modelname, ...) Dumps an XML representation of a model, according to several optional
parameters.

29

exportDAEtoMatlab(hname) Dumps an Matlab representation of a model.

instantiateModel (modelname)Performs code instantiation of a model/class and return a string containing

listQ)
list(modelname)
listvariables()
loadModel (classhame)

loadFile(str)
readFile(str)
runScript(str)
system(str)

timing(expr)

typeOf(variable)
saveModel (str, modelname)

val (variable,timePoint)

helpQOQ
quitQ

1.4 References

the flat class definition.

Return a string containing all loaded class definitions.

Return a string containing the class definition of the named class.
Return a vector of the names of the currently defined variables.

Load model or package of name classname from the path indicated by the
environment variable OPENMODEL I CAL IBRARY.

Load Modelica file (-mo) with name given as string argument Str.
Load file given as string Str and return a string containing the file content.
Execute script file with file name given as string argument Str.

Execute str as a system(shell) command in the operating system; return
integer success value. Output into stdout from a shell command is put into
the console window.

Evaluate expression expr and return the number of seconds (elapsed time)
the evaluation took.

Return the type of the variable as a string.

Save the model/class with name modelname in the file given by the string
argument Str.

Return the value of the variable at time timePoint.
Print this helptext (returned as a string).

Leave and quit the OpenModelica environment

Peter Fritzson, Peter Aronsson, Hakan Lundvall, Kaj Nystrom, Adrian Pop, Levon Saldamli, and David
Broman. The OpenModelica Modeling, Simulation, and Software Development Environment.
In Simulation News Europe, 44/45, December 2005. See also: http://www.openmodelica.org.

Peter Fritzson. Principles of Object-Oriented Modeling and Simulation with Modelica 2.1, 940 pp., ISBN
0-471-471631, Wiley-IEEE Press, 2004.

The Modelica Association.

The Modelica Language Specification Version 3.0, Sept 2007.

http://www.modelica.org.

30

Chapter 2

OMEdit — The OpenModelica Connection Editor

OMEdit — the OpenModelica Connection Editor is the new Graphical User Interface for graphical model
editing in OpenModelica. It is implemented in C++ using the Qt 4.7 graphical user interface library and
supports the Modelica Standard Library version 3.1 that is included in the latest OpenModelica installation.
This chapter gives a brief introduction to OMEdit and also demonstrates how to create a DCmotor model using
the editor.

OMEdit provides several user friendly features for creating, browsing, editing, and simulating models:

e Modeling — Easy model creation for Modelica models.

o Pre-defined models — Browsing the Modelica Standard library to access the provided models.

e User defined models — Users can create their own models for immediate usage and later reuse.

e Component interfaces — Smart connection editing for drawing and editing connections between model
interfaces.

e Simulation — Subsystem for running simulations and specifying simulation parameters start and stop
time, etc.

e Plotting — Interface to plot variables from simulated models.

2.1 Starting OMEdit

2.1.1 Microsoft Windows

OMEdit can be launched using the executable placed in
OpenModelicalnstallationDirectory/bin/OMEdit/OMEdit.exe. Alternately, choose
OpenModelica > OpenModelica Connection Editor from the start menu in Windows. A splash screen
similar to the one shown in Figure 2-1 will appear indicating that it is starting OMEdit. After the splash screen
the main OMEdit window will appear; see Figure 2-2.

31

Loading Modelica Standard Library

OMEdit {X

Version: 1.7.0

OpenModelica Connection Editor

Figure 2-1: OMEdit Splash Screen.

2.1.2 Linux

?? fill in

2.1.3 Mac OS X

?7? fill in

32

2.2 Introductory Modeling in OMEdit

In this section we will demonstrate how one can create Modelica models in OMEdit, e.g. a DCmotor.

B4 OMEdit - OpenModelica Con [l e
Fle Edit View Simulstion Tools Help

& ~ U B # PR L 2 DO HO m‘ PN &S W o B poting 5 tnteractve simulaton
Components. 8 x
Modelica Standard Library
= [Modelica

(@) Blocks

[E] Constants
1# [Electrical
Teons

&) Magnetic
[T Math
Mechanics
pltpkg

[simpleVisual
[Slunits

¥ [StateGraph
[Thermal

@ [l UsersGuide
[T Utilities

[P] ModelicaServices

General | info_ | Waming_|_Emor |

OMEdit, Version: 1.7.0
OpenModelica, Version: *1.7.0"

oo

Messages

Modsica Lirary | Modelica Fies |

Figure 2-2: OMEdit Main Window.

2.2.1 Creating a New File

Creating a new file/model in OMEdit is rather straightforward. In OMEdit the new file can be of type model,
class, connector, record, block, function and package. User can create any of the file types
mentioned above by selecting File > New from the menu. Alternatively, you can also click on the drop down
button beside new icon shown in toolbar right below the File menu. See Figure 2-4.

For this introductory example we will create a new model named DCmotor. By default the newly created
model will open up in the tabbed view of OMEdit, also called Section 2.5.2), and become visible. The models
are created in the OMC global scope unless you specify the parent package for it.

33

oA OMEdit - OpenModelica Connechion Edie
File Edit View Simulaton Tools Help

a1 U B # 0 00 \\ o oo ?ah'a' & ;& ."] @ oﬂiMndElmg P\omng ;}Zlnneracuveswmulauon

Components ax

e]

Modelica Standard Library =
= [Modelica |
(g Blocks

[[Z] Constants

= &) Electrical

= [Analog

ool Modelica Standard L@
Lom ccc
FIE ccv |

- <= Conductor ‘
w0 EMF I
F* Ground

& Gyrator T

-2 HeatingResistor

{=*—= Inductor

= 121 M_Transformer
- OpAmp
b shee OpAmpDetailed

[~ Resistor

- »== Saturatinglnductor

I 232 Transformer m--’—lﬁe—i.._ﬁigi.-w‘
= TranslationalEMF -

-+ VariableCapacitor Opentodelica, Version: *1,7.0"

<> UsrisbleConductor
L= Variablelnductor

Modelica Library | Modelica Files |

X

Messages

Figure 2-3: Modelica Standard Library.

2.2.2 Adding Component Models

The Modelica standard library is loaded automatically and is available in the left dock window. The library is
retrieved through the loadModel (Modelica) API call and is loaded in the OMC symbol table and workspace
after the command execution is completed. Component models available in the Modelica standard library are
added to the models by doing a drag and drop from the Library Window (see Figure 2-3 and Section 2.5.1).
Navigate to the component model in the library tree, click on it, drag it to the model you are building while
pressing the mouse left button, and drop the component where you want to place it in the model.

For this example we will addSfour components as instances of the models Ground, Resistor, Inductor
and EMF from the Modelica.Electrical.Analog.Basic package, an instance of the model
SignalVoltage from the Modelica.Electrical .Analog.Sources package, one instance of the model
Inertia from the Modelica.Mechanics.Rotational .Components package and one last instance of the
model Step from the Modelica.Blocks.Sources package.

2.2.3 Making Connections

In order to connect one component model to another the user simply clicks on any of the ports. Then it will
start displaying a connection line. Then move the mouse to the target component where you want to finish the
connection and click on the component port where the connection should end. You do not need to hold the
mouse left button down for drawing connections.

In order to have a functioning DCmotor model, connect the Resistor to the Inductor and the
SignalVoltage, EMF to Inductor and Inertia, Ground to SignalVoltage and EMF, and finally Step to
SignalVoltage. Check Figure 2-5 to see how the DCmotor model looks like after connections.

34

of elica Conne
[Fie] Edit View Simulation Tools Help
= = : |
i Mo aen |\ OBHOEN NS WP
| Open 0 Class -
B save Ctrl+5 Connector
i Sevess Ctrl+Shift+S Record
© Close cul-Q e
Function
Package Curl+P

‘v:—' OMEdit - C
4

Model Name:
|pcmotor]

Insertin Package (optional):

X | General

OMEdit, Ver
OpenModsli

Messages

Modelica Library | Modelica Files

Info | Warning | Error

sion: 1.7.0
ca, Versior: "1.7.0

Create New Model

Figure 2-4: Creating a new model.

224 Simulating the Model

The OMEdit Simulation dialog (see Figure 2-6, Section 2.6.2) can be launched either from Simulation >
Simulate or by clicking the simulate icon from the toolbar. Once the user clicks on Simulate! button,
OMEdit starts the simulation process, at the end of the simulation process the Plot Variables Window (Figure
2-7, Section 2.5.3) useful for plotting will appear at the right side. Figure 2-6 shows the simulation dialog.

File Edit View Simulation Tools Help

A- 1 HRRLEO

“WOHOEN +X#F W

G&Mpﬁm- B Plotting ;B‘é Interactive Simulation

| Components. 8 X | pcMotor= (]

= [Modelica

Modelica Standard Library Al N E n ‘w,‘m |m§s ‘ﬁaymﬁm ‘C:Ah:shhaﬂl,bﬁdn)ﬁx‘mohm

[&] Blocks

[Z] Constants

= (5] Hectrical

E [Analog

& [Basic

- += Capacitor
I ccc

- cov
F-= Conducter
b e EMF

& Ground
=L Gyrator

|- <2 HeatingResistor

- +— Inductor
F 121 M Transformer
[i~ OpAmp
- 7= OpAmpDetailed
> Resistor

- »== Saturatinglnducter

resistorl inductorl

sigralvaltagel

aroundl

Info Warning | Eror

|5 Transformer e
b g TranslationalEMF s
|- 4= VariableCapacitor
<L VariableConductor
b -Te Variablelnductor Lo §
Modelica Lik:ra:y ‘Modelica Files __ie

OMEdit, Version: 1.7.0
OpenModelica, Version: "1.7.07

35

Figure 2-5: DCmotor model after connections.

2.2.5 Plotting Variables from Simulated Models

The instance variables that are candidate for plotting are shown in the right dock window. This window is
automatically launched once the user simulates the model; the user can also launch this window manually
either from Simulation > Plot Variables or by clicking on the plot icon from toolbar. It contains the
list of variables that are possible to use in an OpenModelica plot. The plot variables window contains a tree

structure of variables; there is a checkbox beside each variable. The user can launch the plotted graph window

by clicking the checkbox.

{ OMEdit- Ope
File Edit View

ECT YY)

2o \WOHOEN X4 W

| Components 8 X | pcMotor=
Medelica Standard Library B 7 g
o E B witesbe |Model | Diagram view € Usersfadeas31 Desktop/Domotormo.
2 [Modelica =

g Bocks oA OMEdit - Simulation =]

[=) Constants ~

£l (&) Electrical . .

i ns Simulation
= [Analog
El [Basic L Simulation Interval
== Capacitor Start Time: [0.0]
- ccc Stop Time: | 1.0 |
HIE cov
|- Conductor Ukt ek
- o= EMF Number of Intervals: 500 |
L% Ground 1 e
- 2EE Gyrator i =)
b2 HeatingResistor
- Tolerance: [oooooor]
b= Inducter
k- 1=1 M _Transformer OutputFormat: [mat]
[= OpAmp File Name (Optional); |]
- = OpAmpDetailed Compiler Flags: []
[~ > Resistor
:

- r== Saturatinglnductor

- 232 Transformer

F g TranslationalEMF

|- +4= VariableCapacitor

- <L VariableConductor

b -Te Variablelnductor Lo

Modelica Library

moX

Messages

General | Info | Waming | Emor |

OMEdit, Version: 1.2.0
OpenModelica, Version: *1.7.0%

Figure 2-6: Simulation Dialog.

Figure 2-7 shows the complete DCmotor model along with the list of plot variables and an example plot

window.

36

e Edit View Simulstion Tools Help

A4- 1 W # PO E0 CeHOEN X[F w21

di Madeling ;‘SZ Interactive Simulation

| Companents 8 x Plot: 1 | _ﬁnt\'tadabtes & x
Modelica Standard Library = Pan FitinView = Save Print [Cltogx [Log¥ =
2 [Meodelica s

#l (@) Blocks e s e
= (3] Constants] SR Mietaly B inettial
= (5] Hlectiical i =5 B emf.ixed. flange tau He
£ [Analog b ~Borrnes [7] der(phi) 7
& £ Basic o= o O e e [derw)
| == Capacitor] S # flange.a
FIE ccc o \\-«% # flange b
I cov e S|
b= Conductor 7 oL |
f.i- EMF H.4 = E resistorl
¥ Ground g T [LossPower L
L Gyrator W -0,6 = [T R_actual
<2 HeatingResistor] = [7] T_heatPart
- === Inductor £ =i
L =1 M_Transformer it ot En
| 48- Opamp] g g i Ep
L 15~ OpAmpDetailed i = o—r— om—— . —— —
[~ Resistor 0 0,2 0,4 0.6 0,8 1 i signalvoltagel

- »== Saturatinglnductor

stepl

5322 Transformer =

General Info Warning Error

= TranslationalEMF
| VariableCapacitor
<> UsrisbleConductor
F+T+ Variabldnductor -

Modelica Library

——Info 1; 15:32:45 -
Simulated ‘DCMotor' suc

Messages

cessfully!

Figure 2-7: Plotted variables.

37

2.3

How to Create User Defined Shapes — Icons

Users can create shapes of their own by using the shape creation tools available in OMEdit.

Line Tool — Draws a line. A line is created with a minimum of two points. In order to create a line, the
user first selects the line tool from the toolbar and then click on the Designer Window; this will start
creating a line. If a user clicks again on the Designer Window a new line point is created. In order to
finish the line creation, user has to double click on the Designer Window.

Polygon Tool — Draws a polygon. A polygon is created in a similar fashion as a line is created. The only
difference between a line and a polygon is that, if a polygon contains two points it will look like a line
and if a polygon contains more than two points it will become a closed polygon shape.

Rectangle Tool — Draws a rectangle. The rectangle only contains two points where first point indicates
the starting point and the second point indicates the ending the point. In order to create rectangle, the
user has to select the rectangle tool from the toolbar and then click on the Designer Window, this
click will become the first point of rectangle. In order to finish the rectangle creation, the user has to
click again on the Designer Window where he/she wants to finish the rectangle. The second click will
become the second point of rectangle.

Ellipse Tool — Draws an ellipse. The ellipse is created in a similar way as a rectangle is created.

Text Tool — Draws a text label.

Bitmap Tool — Draws a bitmap container.

The shape tools are located at the top in the toolbar. See Figure 2-8.

(Rectangle Tool (¢ Text Tool >

\

(Line Tool) —“WOHROEN —» C Bitmap Tool D

/N

CPolygon Tool) C Ellipse Tool)

Figure 2-8: User defined shapes.

The user can select any of the shape tools and start drawing on the Designer Window. The shapes created on
the Diagram View of Designer Window are part of the diagram and the shapes created on the lcon View
will become the icon representative of the model.

For example, if a user creates a model with name testModel and add a rectangle using the rectangle tool
and a polygon using the polygon tool, in the Icon View of the model. The model’s Modelica Text will
appear as follows:

model testModel

38

annotation(lcon(graphics = {Rectangle(rotation = 0, lineColor = {0,0,255}, fillColor =
{0,0,255}, pattern = LinePattern.Solid, fillPattern = FillPattern.None, lineThickness
= 0.25, extent = {{ -64.5,88},{63, -22.5}}),Polygon(points = {{ -47.5, -29.5},{52.5, -
29.5},{4.5, -86},{ -47.5, -29.5}}, rotation = 0, lineColor = {0,0,255}, fillColor =

{0,0,255}, pattern = LinePattern.Solid, fillPattern = FillPattern.None, lineThickness

= 0.25)}1));
end testModel;

In the above code snippet of testModel, the rectangle and a polygon are added to the icon annotation of the
model. Similarly, any user defined shape drawn on a Diagram View of the model will be added to the
diagram annotation of the model.

39

2.4 OMEdit Views

OMEd(it has three kinds of views.

2.4.1 Modeling View

This is the default view. This view shows the Designer Window and allows users to create their models.

24.2 Plotting View

This view is used for showing plot graphs. The user can launch this view anytime by using the views button in
the tool bar. This view also becomes active automatically when user simulates the model successfully.

2.4.3 Interactive Simulation View

This view is quite similar to Plotting View. One of the primary differences is that Plotting View is used
to show graphs of pre-built models that cannot be changed. However, in the Interactive Simulation
View the user can change the values of variables and parameters of the model at runtime.

40

2.5 OMEdit Windows/Tabs

The OMEdit GUI contains several windows that shows different views to users:

e Library Window for the Modelica Standard Library.

e Drawing interface in the form of Designer Window.

e Plot Window contains the list of instance variables.

o Messages Window displays the informational, warning and error messages.

e Documentation Window displays the Modelica annotations based documentation in a QWebView.

2.5.1 Library Window

The Modelica Standard Library is automatically loaded in OMEdit and is located on the left dock window.
Once a Modelica model has been created then the user can just drag and drop components into the model from
the MSL, the Library Window. The available libraries in the MSL are:

e Blocks

e Constant
e Electric

e Icons

e Magnetic
e Math

e Mechanics

e Slunits

e Thermal

e UsersGuide

e Utilities
The Library Window consists of two tabs one shows the Modelica Standard Library and is selected by
default the other tab shows the Modelica files that user creates in OMEdit.
2511 Viewing Models Description
In order to view the model details, double click the component and details will be opened in Designer
Window. Alternative way is to right click on the component and press Show Component, it will do the same.
2512 Viewing Models Documentation
Right click the model in the Library Window and select View Documentation; it will launch the
Documentation Window. See Figure 2-9.
2513 How to Check a Model

Right click the component in the library window and select Check; it will launch the Check Dialog. See Figure
2-9.

41

2514 How to Instantiate a Model?

Right click the component in the library window and select Instantiate Model; it will launch the
Instantiate Model Dialog. See Figure 2-9.

25.15 How to Rename a Model

Right click the model in the Library Window and select Rename; it will launch the Rename Dialog. See
Figure 2-9.

2.5.1.6 How to Delete a Model

Right click the model in the library window and select Delete; a popup will appear asking “Are you sure
you want to delete?”

&4 OMEdit - Ope:
File Edit View

ulstion Tools Help

A- I bld # LPP E0 WOHNOEN X9 Wm

| Compenents

ax

Modelica Standard Library
2 [J Modelica

[&) Blocks

[=) Constants

E [Electrical

=[] Analog

= [Basic

- = Capacitor
- ccc
LI cov
= Conductor

Fwp- EMF

!

DCMotor* [

=AEH D

e [[

r Gyrator
-2 Heating
== Inductol
YR

Check

[N 1E)

H* Ground
T Show Component

View Documentation

— Instantiate Model

[= OpAmp

- = OpAmpDetailed

T C_“ Resistor

s Saturatinglnductor
[~ 222 Transformer

F & TranslationalEMF
|- +d= VariableCapacitor
- <> UariableConductor
t+Le Varisblelnductor

resistorl induciorl

sigralvoltagel

groundl

General

Info

o oX

Warning Error

OMEdit, Version: 1.7.0

OpenModelica, Version: *1.7.07

Modelica Library

Messages

Figure 2-9: Context menu to view component model details.

2.5.2 Designer Window

The Designer Window is the main window of OMEdit. It consists of three views,

e |con View - Shows the model icon view.
e Diagram View - Shows the diagram of the model created by the user.
e Modelica Text View - Shows the Modelica text of the model.

2.5.3 Plot Variables Window

The right dock window represents the Plot Variables Window. It consists of a tree containing the list of
instance variables that are extracted from the simulation result. Each item of the tree has a checkbox beside it.

42

The user can click on the check box to launch the plot graph window. The user can add/remove the variables
from the plot graph window by marking/unmarking the checkbox beside the plot variable.

254 Messages Window

Messages Window is located at the bottom of the application. The Messages Window consists of 4 types of
messages,

e General Messages — Shown in black color.

¢ Informational Messages — Shown in green color.
e Warning Messages — Shown in orange color.

e Error Messages — Shown in red color.

255 Documentation Window

This window is shown when a user right clicks the component in the library window and selects View
Documentation. This shows the OpenModelica documentation of components in a web view. All externals
links present in the documentation window are opened in the default browser of the user. All local links are
opened in the same window. Figure 2-10 shows the Documentation Window view.

A OMEdit - GpenMod e E=IE00
Fle Edt View Simubtion Tools Help

d- T HH # LLL E0 “eROEN X Wy

X

Flotting /" Interactive Smulation

Components 8 x|[peveter= @ Documentation 8 x
Modelica Standard Lib - .
odelica Standard Library e ‘... =N ‘wmaua Model ‘D«agram\ﬂew ‘ | Modelica
= [T Modelica
(@] Blocks
&[] Constants resistorl inductort
=[] Electrical Package Modelica is = standardized and free package that is developed together vith the %
B 1 Anal Modelica language from the Modelica i s ol Tt is also called
= [Analog Maodelica Standard Library. 1t provides model components in many domains that are based on
=] ﬁ Basic standardized interface definitions. Some typical examples are shown in the next figure:
|-~ Capacitor -
-IE ccc
FI® cov

1L

[~ === Conductor

- wi= EMF

¥ Ground

sigralvd tagel

ld/" ambient
% -0 e
=} s A1

-5
: | ——y o
- = Gyrator o °_< l

=2 HeatingResistor

{=*—= Inductor

= L S
AMCT

For an introduction, have especially a lock at:
[1z M_Transformer peclaly

L st 0pa + Overview provides sn overview of the Modslica Standard Library inside the User's Guids.
pAmp + Relesse Notes summarizes the changes of new versions of this package.
L + Contact lists the contributers of the Modalica Standard Library.
- OpAmpDetsiled groundl « The Examples packages in the various libraries, demonstrate how o use the
P—— components of the comaspanding sublibrary.

- s Saturatinglnductor
- 232 Transformer
b TranslationalEMF]
b~ VariableCapacitor
<> VariableConductor
I L= Variablelnductor

Madelica Library | Modelica Files |

This version of the Modelica Standard Library consists of -

General | Info_| Warning | Error

OMEdit, Version: 1.7.0
OpeniModelica, Version: "1.7.0°

Messages

Figure 2-10: Documentation Window.

2.6 Dialogs

Dialogs are a kind of window that is not visible by default. The user has to launch them or they will
automatically appear due to some user action. The following dialogs are available:

43

e New Dialog for creating new Modelica models.

¢ Simulation Dialog for simulating Modelica models.
¢ Model Properties Dialog.

e Model Attributes Dialog.

2.6.1 New Model Dialog

The New Dialog can be launch from File > New > Model Type. Model type can be model, class,
connector, record, function and package.

2.6.2 Simulation Dialog

Simulation Dialog can be launched either from Simulation > Simulate or by clicking on the
Simulate! button in the toolbar. Figure 2-6 shows a simulation dialog. The simulation dialog consists of
simulation variables. You can set the value of any variable, depending on the simulation requirement.
Simulation variables are,

e Simulation Interval
= Start Time
= Stop Time
e Output Interval
= Number of Intervals
= Qutput Interval
e Integration
= Method
= Tolerance
= Fixed Step Size

2.6.3 Model Properties Dialog

The models that are placed in the Designer Window can be modified by changing the properties. In order to
launch the Model Properties Dialog of a particular model right click the model and select Properties.
See Figure 2-11. The properties dialog contains the name of the model, class name the model belongs to and
the list of parameters of the component.

44

File Edit View Simulation Jools Help

-1 W # RRLOL 20 \OROEN X Wow (R o) 8 v O e s
| Components & x [nootor= @ |
Modelica Standard Library Vi I [
= [T Modelica EnR ‘ ‘m |mm | :
&) Blocks i —
[Z] Constants ;;d_OMBqn
=1 (5 Blectrical
£ [Analog
2 7 Basic

- = Capacitor

Properties

-IE cce i 2 | General | Parameters | Modifiers
I cov |

- <> Conductor
w0 EMF

¥ Ground

& Gyrator

- HeatingResistor
- === Inductor

= =1 M_Transformer
[= OpAmp

b shee OpAmpDetailed
- Resistor

Component

Mame: [emft
Comment: Modelica.Electrical.Analog.Basic. EMF

- »== Saturatinglnductor
o

1% [ceneral [Info | Warning | Errer |
= TranslationalEMF |
-+ VariableCapacitor OpenModelica, Version: *1.7.0°
<> UsrisbleConductor i
F-Le Verizblelnducter _| | &
MadelcaLibrary | Modelica Fies ,%

Figure 2-11: Properties Dialog.

2.6.4 Model Attributes Dialog

Right click the model placed in the Designer Window and select Attributes. It will launch the attributes
dialog. Figure 2-12 shows the Model Attributes Dialog.
A OMEdit - ¢

File Edit ¥iew Simulstion Tools Help

A- 1 bld # RO E0 MOBNOEN X @y [vosea | BB potins O v s

| Components 8 %[povotor= @ |
Modelica Standard Library =
= [J Modelica - »
fg) lack= Attributes
[=) Constants
£l [5] Electrical
£ [Analog
& [Basic L 1 Type
[= Capacitor Name: Modelica.Electrical. Anclog,Basic. EMF
LI ccc ’ L " Comment: |
r I v " g 1 L Variability Properties
= Conductor i
I %b i ;' Paramter i
b ¥ Ground - [Protected
1B Gyrator il Bt e
=2 HeatingResistor B Urepedied Gty
=+ Inductor Causality Inner/Output
F 121 M_Transformer & -
[~ - OpAmp ©) Output

L %= OpAmpDetailed ® rone Outer
|- == Resistor
|- e Saturatinginductor o]

| g ... ———
F & TranslationalEMF

|- +d= VariableCapacitor

- <> UariableConductor

b -Te Variablelnductor i,

Modelica Library | Modelica Files

X

General | Info | Warning. | Error |

OMEcit, Version: 1.7.0
Openhodelica, Version: ™1.7.0"

' Messages

Figure 2-12: Attributes Dialog.

45

2.7 Interactive Simulation in OMEdit

OMEdit uses the OpenModelica Interactive (OMI) subsystem to perform the interactive plotting. The OMI uses
the TCP/IP technique to transfer data back and forth. OMEdit connects with OMI through TCP sockets.

2.7.1 Invoking Interactive Simulation

Interactive Simulation Dialog can be launched either from Simulation > Interactive
Simulation or by clicking on the Interactive Simulation! button in the toolbar. Interactive Simulation
Dialog looks similar to the Simulation Dialog but it differs in functionality, instead of performing normal pre-
built simulation it performs online interactive simulation where simulation responds in real-time to user input
and changes to parameters.

A OMEdit - Gpenhod
File Edit Vie

A- LW # 00
| Components & X | pcmoter™ B

Plotting 3)“(‘ Interactive Simulation

EO WOROEN ¥ X wm

Modelica Standard Library = il Ej E n |thgdje |Mode| |Dﬁaqmwew |
o

5 [Modelica
—
"o OMEdit -Interactive Simuation ===

i (g Blocks
i Interactive Simulation

& (Z] Constants
= (5] Electrical
&l [Analog
= (] Basic L
|- 4 Capacitor
& ccc
I cov

|- == Conductor
- EMF

t* Ground

Simulation Interval

StartTime: [0.0 |

Stop Time: [1.0

Output Interval

Number of Intervals: | s00

Integration

" Gyrator
- = HeatingResistor

Method: [dassl -

Tolerance: 0.000001

Output Format: [mat -

= Inductor
F =1 M_Transformer
[¥~ OpAmp
- &= OpAmpDetailed

| Resistor

File Name (Optional): | |

Compiler Flags: [|

f == Saturatinglnductor

ras General | info | Warning | Error
g TranstatonsIEME OMEdit, Yersion: 1.7.0
b 1 VariableCapacitor OperModelica, Version: *1.7.07

- <S> VariableConductor
FLe Variablelnductor -

Modelca Library | Modelica Files

Messages

Figure 2-13: Interactive Simulation Dialog.

2.7.2 Interactive Simulation View

Once your model was successfully built using the Interactive Simulation Dialog, the Interactive
Simulation View will become active automatically. Interactive Simulation View contains,

e Graph — It contains a graph which is used to display the values of selected variables over the time.

e Parameters — The parameters of the model are shown on the right top section with the default values.

e Variables — The right bottom section contains the list of variables that user can select for interactive
plotting.

o Initialize Button — This button is used to send the information of changed parameters and checked
variables to the OpenModelica Interactive subsystem.

46

e Start Button — Once the parameters and variables are initialized and sent to the OMI. Then the user can
click on start button and start the interactive plotting.

e Pause Button — This button pauses the running interactive plotting.

e Stop Button — Clears everything but does not remove the connection with OMI. After clicking stop
button user has to reinitialize everything and start the interactive plotting again.

e Shut Down Button — Disconnects from OMI and closes the interactive simulation session.

e Show OMI Log Button — Pops up a log window which displays the messages exchanged between
OMEdit and OMI.

&4 OMEdit - Openhodelica Co I]
File Edit View Simulation Tools Help

= - N P ") i
d- LW # RO EO WONOEN » X4 @ R T
Components 8 %[model1 @
Modelica Standard Lib A = =
il R E Pan FitinView Save Print [Fiogx [FlLog¥ Parameters
£l [Medelica
= (g Ploce R — — ——7= ||| =The parameters defauit value is used if no value is specified.
ambds 0.3
& (3] Constants - ‘
& & Eectrical
= 800
=l (7] Analeg
2 (7 Besic L b
|- = Capacitor 500 L
Sit:feds
-8 cov]
b= Conductor 400
= EMF Variables
o]
b+ Ground I = Select the variable to plotit.
b= Gyrstor 200 i ! i i Elx
|- <2 HeatingResistor 11 | | | | Oy
| | -
b Inducter | | | 1 |] der(x)
[=1 M_Transformer ; u . : : - : [derl)
k%~ OpAmp 0 200 400 600 800 1000 |||
[lambda
|- %+ OpAmpDetailed time
b= Resistor
e |7 Initislize O start O rause [@ Shut Down] lishnwDMlLog]
[ansfamer X [General | Info | Waming | Eror |
- e TranslationalEMF W
b ~d< VariableCapacitor Renamed ' to medel1’
- <5 VariableConductor i
b L= Variablelnductor -
Modelica Library | Modelica Files. | 2

Figure 2-14: Interactive Simulation View.

47

Chapter 3

2D Plotting and 3D Animation

This chapter covers 2D plotting available from OMNotebook, OMShell or programmable plotting from
your own Modelica model. The 3D animation is currently turned off by default, but will be available in an
enhanced version in a future release.

3.1 Enhanced Qt-based 2D Plot Functionality

Starting with OpenModelica 1.4.5, enhanced plotting functionality is available (Eriksson, 2008). The
enhanced plotting is implemented based on a Qt-based (Trolltech, 2007) GUI package. This new plotting
functionality has additional features compared to the old Java-based PtPlot plotting. The simulation data is
sent directly to the plotting window in OMNotebook (or a popup window if called from OMShell), which
handles the presentation (see Figure 3-2). As OMNotebook now has access to all source data it is now
possible to manipulate diagrams, e.g. zoom or change scales.

To allow the use of graphics functions from within Modelica models a new Modelica API has been
developed. This utilizes an external library to communicate with OMNotebook. In addition to this, a
number of new functions that can be used for drawing geometric objects like circles, rectangles and lines
have been added.

The following is a summary of the capabilities of the new 2D graphics package:

e Interaction with OMNotebook. The graphics package has been developed to be fully integrated with
OMNotebook and allow modifications of diagrams that have been previously created.

e Usage without OMNotebook. If the functionality of the graphics package is used without
OMNotebook, a new window should be opened to present the resulting graphics.

e Logarithmic scaling. Some applications of OpenModelica produce simulation data with large value
ranges, which is hard to make good plots of. One solution to this problem is to scale the diagram
logarithmically, and this is allowed by the graphics package.

e Zoom. To allow studying of small variations the user is allowed to zoom in and out in a diagram.

e Support for graphic programming. To allow creation of Modelica models that are able to draw
illustrations, show diagrams and suchlike, it is possible to use the graphics package not only from
the external API of OMC, but also from within Modelica models. To accomplish this a new
Modelica interface for the graphics package has been created.

48

e Programmable Modelica APIl. The Modelica API is defined by a number of Modelica functions,
located in the package Modelica.Graphics.Plot, which use external libraries to access
functionality of the graphics package.

The programmable Modelica API functions include the following:

o plot(x). Draws a two-dimensional line diagram of X as a function of time.

e plotParametric(x,y). Draws a two-dimensional parametric diagram with y as a function of x.

e plotTable([xl, .., ¥I; .. ; Xn, .., yn]). Draws a two-dimensional parametric diagram with y as a
function of X.

e drawRect(xl, x2, y1, y2). Draws a rectangle with vertices in (x1, y1) and (x2, y2).

e drawEllipse(xl, x2, yl, y2). Draws an ellipse with the size of a rectangle with vertices in (x1, y1)
and (x2, y2).

e drawLine(xl, x2, yl, y2). Draws a line from (x1, y1) to (x2, y2).

A faster and more stable plot implementation is available from the OpenModelica 1.7 release. Currently
these commands can be used by giving the plot3(...) command instead of plot(...). In future releases the
faster plot implementation will be the default.

CORBA: answer. I.e. done

\
TCP/IP: simulation data
OoOMC = GraphWidget
o Rosutile
GraphCell
CORBA: plot OMNotebook

Figure 3-1. Plotting architecture with the new 2D graphics package.

3.2 Simple 2D Plot

To create a simple time plot the model Hel loWorld defined in DrModelica is simulated. To reduce the
amount of simulation data in this example the number of intervals is limited with the argument
numberOfIntervals=10. The simulation is started with the command below.

simulate(HelloWorld, startTime=0, stopTime=4, numberOfintervals=10);
When the simulation is finished the file Hel loWorld res.plt contains the simulation data. The contents
of the file is the following (some formatting has been applied).

0 1
4.440892098500626e-013 0.9999999999995559
0.4444444444444444 0.6411803884299349

49

0.8888888888888888 0.411112290507163

1.333333333333333 0.2635971381157249
1.777777777777778 0.1690133154060587
2.222222222222222 0.1083680232218813
2.666666666666667 0.06948345122279623
3.111111111111112 0.04455142624447787
3.555555555555556 0.02856550078454138
4 0.01831563888872685

Diagrams are now created with the new graphics package by using the following command.
plot(x);
seems to correspond well with the data.

Plot by OpenModelica

0.8

0.6

@

0.4

0.z

HRH“HEHE

0.5 1 1.5 z 2.5 3 3.5 4
kirne

Figure 3-2. Simple 2D plot of the HelloWorld example.

By re-simulating and saving results at many more points, e.g. using the default 500 intervals, a much
smoother plot can be obtained.

simulate(HelloWorld, startTime=0, stopTime=4, numberOflntervals=500);
plot(x);

50

plot (x)

true

0.3 \
0.6

{ \ | ®x
0.4

Plot by OpenModelica

"‘m_
0.2 i
_""--.__________-
""--___________'
—_—
0.5 1 L5 2 2.5 3 33 4
time

Figure 3-3. Simple 2D plot of the HelloWorld example with larger number of points.

Additional features of the new plotting are shown in Figure 3-4 and Figure 3-5.

I graphWindow =10l =]
File Edit Insert Tools Help

J_| Cpen Save | Erint | Select | Zoom Pan | Grid | Preferences | Active

Plot by OpenModelica

0.8
0.4
r
|T Show line
0.4 \ ’T Show data points
Change color
0.2
0.5 1 1.5 2 2.5 3 3.5 4
time
4

Figure 3-4. Features of the new Qt-based Plotting Package: Show data points, Change line colors, etc.

I graphWindow -0l x|

File Edit Insert Tools Help

J_| Dpen Save | Print | Select | Zoom Pan || trid | Preferences || Active

Plat by OpenModelica

Q.36

S
0,35
\a Fan |

\‘B\ Select
0.34 |T Zoom

|T Grid

Clear
Haold

Antializsing \
0,32 Save parameters
Simulation data \\
Preferences 1

0.33

0.31

1.04 1.0& 1.08 1.1 1.12 1.14 1.1&
time

Figure 3-5. Features of the new Qt-based Plotting Package: Zoom, Fit in view, Grid, etc.

3.2.1 Plot Functions and Their Options

All plot functions are part of Mode l icaBui ltin.mo*, with additional explanation below.

4+ OPENMODELICAHOME/lib/omc/ModelicaBuiltin.mo

52

Command

Description

plot(x)

Creates a diagram with data from the last simulation that
had a variable named x.

plot({x,y,---, z})

Like the previous command, but with several variables.

plotParametric(x, y)

Creates a parametric diagram with data from the last
simulated variables named x and y.

plotParametric(x, {yl,y2})

Like the previous command, but with several variables.

plotAll ()

Creates a diagram with all variables from the last

simulated model as functions of time.

All of these commands can have any number of optional arguments to further customize the the resulting
diagram. The available options and their allowed values are listed below.

Option Default value Description
fileName The result of the last | The name of the result-file containing the variables to
simulation plot

grid true Determines whether or not a grid is shown in the
diagram.

title "Plot by OpenModelica"™ | This text will be used as the diagram title.

interpolation | linear Determines if the simulation data should be interpolated
to allow drawing of continuous lines in the diagram.
"linear" results in linear interpolation between data
points, "constant" keeps the value of the last known data
point until a new one is found and "none" results in a
diagram where only known data points are plotted.

legend true Determines whether or not the variable legend is shown.

points true Determines whether or not the data points should be
indicated by a dot in the diagram.

logX false Determines whether or not the horizontal axis is
logarithmically scaled.

logY false Determines whether or not the vertical axis is
logarithmically scaled.

XRange {0, 0} Determines the horizontal interval that is visible in the
diagram. {0, 0} will select a suitable range.

yRange {0, 0} Determines the vertical interval that is visible in the
diagram. {0, 0} will select a suitable range.

antiAliasing false Determines whether or not antialiasing should be used
in the diagram to improve the visual quality.

vTitle This text will be used as the vertical label in the
diagram.

hTitle “time” This text will be used as the horizontal label in the
diagram.

53

3.2.2 Zooming

The left mouse button can for instance be used for zooming in on interesting parts of the diagram.The same
result can be achieved by using the optional parameters xRange and yRange. The plotParametric
command would then look like the following.

plotParametric(x, y, XRange={0.9, 1.95}, yRange={-1.5, 1.35})

-
U OMNotebook: (untitled)®
File Edit Cel Format Insert Window Help
8 e H = . Al ¥ - = | _| J @
plotParametric (x,y)

True

Plat by OpenModelica

24

154

y t

0.5

0
-0.5

Ready Ln 1, Col 20

Figure 3-6. Zooming in an Input cell.

[
& OMNotebook: (untitled)*
File Edit Cel Format Insert Window Help

M E =D 8| CIX/=ulv @

plotParametric(x,y)

true

0.5}

0.5}

time

Ready Ln 1, Col 20

Figure 3-7. Magnified input cell.

54

3.2.3 Plotting all variables of a model

A command, plotAll, has been introduced to plot all the variables of a model. This can be useful if a
model contains many interesting variables, as it might be easier to remove variables that are not important
than to list all those who are. The command available for this is plotAl 1 ().The command below applies
plotAll to the model HelloWorld. The result is shown in Figure 3-8. The simplest way to remove
unimportant variables is to use the Remove command in the Legend menu.

plothll (HelloWorld)

true
Flot by OpenModelica
T T |
By | i |
o | @ sdummy
0.5 _____‘_'3':%,_)__ bt - I
it TR TR AR AR | @ cer(sdummy)
-0.5 _ ________ NI | _r_:_;__,_.é_____._______l_:-____._.___.___.____ _________ LA
| L |)
| (_,,-—':l) . @ der(x)
i // | |

Figure 3-8. Result of the plotAll command.

3.2.4 Plotting During Simulation

When running long simulations, or if plotting without need for commands like plot or plotParametric
is desired, the interface for transfer of simulation data during running simulations can be used. This is
enabled by running the following command.

enableSendData(true)

The same command, but with the parameter false, is used to disable the interface. Enabling of the interface
has some drawbacks though. The simulation time will be longer as the transfer of data will require some
resources.

If the simulation data would have been plotted anyway, some of this time will be saved later however.
To reduce the amount of data that has to be transferred, and thereby reduce the time needed to do so, the
interesting variables in the model can be specified with the variableFilter option of the simulate
command (see Section 1.2.14 for details). If for instance the model Hel loWorld is to be simulated the
following commands can be used.

class HelloWworld

Real x(start = 1);

parameter Real a = 1;

equation

der(x) = - a * x;

end HelloWorld;

enableSendData(true);
simulate(HelloWorld, startTime=0, stopTime=25, variableFilter="x");

55

When the simulation data has been transferred the button D will appear to the right of the input field. By
pressing this dialog Simulation data will appear, where new curves can be created.

3.2.5 Programmable Drawing of 2D Graphics

The graphics package provides functions for drawing of basic geometrical objects in the graphics area.
These can be used from Modelica models and are executed when the model is simulated. To avoid name
conflicts, the functions have been put in the package Modelica.pltpkg. The functions of the Modelica
programmable plotting interface are described below.

plot(model, "x'"). Creates a diagram with data from the variable x in the
previously simulated model model.

plot(model, "x, y"). Like the function above, but with more than one variable.

plotParametric(model, "x", "y"). Creates a parametric diagram with data from the variables x
and y in the previously simulated model model.

plotTable([x1, y1, z1, ...; x2, y2, 72, ...;...]). Draws y and z as functions of x..

clear().Clears the active GraphWidget.

rect(xl, x2, y1, y2). Draws a rectangle with vertices in (x1, y1) and (x2, y2).

ellipse(x1, x2, y1, y2). Draws an ellipse with the size of a rectangle with vertices in (x1, y1) and
(x2, y2).

line(x1, x2, y1, y2). Draws a line from (x1, y1) to (x2, y2).

hold(Boolean on). Determines whether or not the active GraphWidget should be cleared before
new graphics is drawn.

wait(ms). Waits for (at least) ms milliseconds.

The following model shows how these functions can be used to draw ellipses, rectangles, and lines.

model testGeom
parameter Integer n=10;
protected
Boolean b[n,n];
equation
for x in 1:n loop

for y in 1:n loop
when initial() then
if((y == 1) or (y == 10) or (x == 1) or (x == 10)) then
b[x,y] = pltpkg.rect(x, y, x+1, y+1, FfillColor = "blue",
color = *‘green');
else if(y >> 4 and y <= 5 and x >= 4 and x <= 5) then
b[x,yl = pltpkg.line(x, y, x+1, y+1, color = "red™);
else
b[x,y] = pltpkg.ellipse(x, y, x+1, y+1, FfillColor = "yellow",
color = "black™);
end if;
end if;
end when;
end for;

end for;
end testGeom;

56

[V VaYaYAYaYaTa)

Plat title

M4 444
P4 444441
M4 44444
VLU Y

Figure 3-9. Programmable drawing of rectangles and ellipses.

3.2.6 Plotting of Table Data

Another way to visualize data provided by the graphics package is plotting of table data. This is done by
using the command pltpkg.plotTable, which expects a matrix of Real values as a parameter. The rows
of this matrix represent variable values. The first column is the time variable and the other columns
contains values at these points in time. The names of the variables can be specified with the argument
variableNames, which is a String list. The following model demonstrates how this command can be

used.

model table
protected
Boolean b;
algorithm
b := pltpkg
10, 0.94,
20, 0.94,
30, 0.93,
end table;

-pltTable([O,
0.92, 23, 28;
0.91, 32, 35;
0.90, 43, 46]

0.95, 0.92, 20, 25;

);

The result is shown in Figure 3-10 below.

45

40

35

30

25 —

20

A —

15

10

gl
ol

5

Figure 3-10. Plotting of table data.

10

15 20

25

57

3.3 Java-based PtPlot 2D plotting

The plot functionality in OpenModelica 1.4.4 and earlier was based on PtPlot (Lee, 2006), a Java-based
plot package produced within the Ptolemy project. To plot one uses plot commands within input cells
which it evaluates. Available plotting commands which call Java-based plotting are as follows, still
available but renamed with a suffix 2:

// normal one variable plotting, time on the X axis

plot2(variable);

// normal multiple variable plotting, time on the X axis
plot2({variablel, variable2, variable3, .. variableN});

// to plot dependent values
plotParametric2(variableX, variableY);

For example:

simulate(HelloWorld, startTime=9, stopTime=4);
plot(x);

B tmpPlotplt -10| x|

File Edit Special

Plot by OpenModelica

ner]

06 7

04r]

0zr]

0.0

Figure 3-11. Java-based PtPlot plot window.

3.4 3D Animation

There are two main approaches to add 3D graphics information to Modelica objects:

e QGraphical annotations
e QGraphical objects

58

Both of these approaches were investigated, but the second was finally chosen.

3.4.1 Object Based Visualization

Since one important goal of this work is to come up with a system for visualization that might be used for
simulations done with the Modelica MultiBody library (Otter, 2008), it follows that much can be learned
from investigating currently available solutions. There are commercial software packages available that can
visualize MultiBody simulations.

The MultiBody package is well suited for visualization. Entities in a MultiBody simulation correspond
to physical entities in a real world and as such have many of the properties needed to correctly display them
within a visualization of the simulation, such as position and rotation. Other properties such as color and
shape can easily be added as properties or be decided based on the object type.

Instead of using annotations to encode information about how a certain object is supposed to look when
visualized, object based visualization creates additional Modelica objects of a predetermined type that can
be known to the client actually doing the visualization. These objects contain variables such as position,
rotation and size that can be connected to the simulated variables using ordinary Modelica equations. When
asked to visualize a model, the OpenModelica compiler can find variables in the model that are in the
visualization package and only send only those datasets over to the client doing the visualization, in this
case OMNotebook.

Taking inspiration from the MultiBody library, a small package has been designed that provides a
minimal set of classes that can be connected to variables in the simulation. It is created as a Modelica
package and can be included in the Modelica Library. The package is called SimpleVisual, and consists
of a small hierarchy of classes that in increasing detail can describe properties of a visualized object. It is
implemented on top of the Qt graphics package called Coin3D (Coin3D, 2008). More information is
available in (Magnusson, 2008). A comprehensive earlier work on integrating and generating 3D graphics
from Modelica models is reported in (Engelson, 2000).

This section gives a short introduction to how the SimpleVisual package is used.

3.4.2 BouncingBall

The bouncing ball model is a simple example to the Modelica language. Adding visualization of the
bouncing ball using the SimpleVisual package is very straightforward.

model BouncingBall
parameter Real e=0.7 "coefficient of restitution™;
parameter Real g=9.81 "gravity acceleration";
Real h(start=10) "height of ball";
Real v "velocity of ball";
Boolean flying(start=true) "true, if ball is flying";
Boolean impact;
Real v_new;
equation
impact=h <= 0.0;
der(v)=if flying then -g else 0;
der(h)=v;
when {h <= 0.0 and v <= 0.0, impact} then
v_new=i1T edge(impact) then -e*pre(v) else 0;
flying=v_new > 0;
reinit(v, v_new);
end when;
end BouncingBall;

59

To run a simulation of the bouncing ball, create a new InputCell and call the simulate command. The
simulate command takes a model, start time, and an end time as arguments.

simulate(BouncingBall, startTime = 0, stopTime = 5);

3.4.2.1 Adding Visualization

The bouncing ball will be simulated with a red sphere. We will let the variable h control the y position of
the sphere. Since the ball has a size and the model describes the bouncing movement of a point, we will use
that size to translate the visualization slightly upwards. First, we must import the SimpleVisual package
and create an object to visualize. That is done by adding a few lines to the beginning of the BouncingBall
model, which we rename to BouncingBal 13D to emphasize that we have made some changes:

model BouncingBall3D

import SimpleVisual . *
SimpleVisual .PositionSize ball "color=red;shape=sphere;";

The string "color=red;" is used to set the color parameter of the object and the shape parameter controls
how we will display this object in the visualization.

The next step is to connect the position of the ball object to the simulation. Since Modelica is an
equation based language, we must have the same number of variables as equations in the model. This
means that even though the only aspect of the ball that is really interesting is its y-position, each variable in
the ball object must be assigned to an equation. Setting a variable to be constant zero is a valid equation.
The SimpleVisual library contains a number of generic objects which gives the user an increasing amount
of control.

SimpleVisual .Position
SimpleVisual .PositionSize
SimpleVisual .PositionRotation

SimpleVisual .PositionRotationSize
SimpleVisual .PositionRotationSize0_set

Since we are really only interested in the position of the ball, we could use SimpleVisual.Position, but to
make it a little bit more interesting we use SimpleVisual .PositionSize and make the ball a little
bigger.

obj.size[1]=5; obj.size[2]=5; obj.size[3]=5;
obj.frame_a[1]=0; obj.frame_a[2]=h+obj.size[2]/2; obj.frame_a[3]=0;

A SimpleVisual .PositionSize object has two properties; size and frame_a. All are three
dimensional real numbers, or Real[3] in Modelica.

e size controls the size of the visual representation of the object.
e frame_a contains the position of the object.

3.4.2.2 Running the Simulation and Starting Visualization

To be able to simulate the model with the added visualization, OpenModelica must load the SimpleVisual
package.

loadLibrary(SimpleVisual)
Now, call simulate once more. This time the simulation will generate values for the added SimpleVisual
object that can be read by the visualization in OMNotebook.

simulate(BouncingBall3D, start=0, end=5s);

60

To display the visualization, create an input cell and call the visualize in the input part of the cell.
visualize(BouncingBall3D);

i : : o | =1
AL I MNDtE ool bounzingbalifexample.onb J | J“]

Filz gdii: Cell Fornat Insert Window Help

e 4
2 Simulation

zimulats (BounsingBall, startTime=0, stopTime=10);

[done]

wisualize(BouncingBall) |

[done]
.
0.753

Ready Daone Ln 1, Col 25

Figure 3-12. 3D animation of the bouncing ball model.

3.4.3 Pendulum 3D Example

This example explores a slightly more complex scenario where the visualization uses all the properties of a
SimpleVisual object. The model used is a simple ideal 2D pendulum, not modeling properties like friction,
air resistance etc.

class MyPendulum3D "‘Planar Pendulum™
constant Real P1=3.141592653589793;
parameter Real m=1, g=9.81, L=5;
Real F;
Real x(start=5),y(start=0);
Real vx,vy;
equation
m*der (vx)=-(x/L)*F;
m*der (vy)=-(y/L)*F-m*g;
der(x)=vx;
der(y)=vy;
XN2+yN2=L"2;
end MyPendulum3D;

Start by identifying the variables in the model that will be needed to create a visual representation of the
simulation.

61

e Real x and Real y hold the current position of the pendulum.
e Real L is a parameter which holds the length of the pendulum.

3.4.3.1 Adding the Visualization

As before, to be able to use the SimpleVisual package we must import it.

class MyPendulum3D "Planar Pendulum"
import Modelica.SimpleVisual;

Adding a sphere to represent the weight of the pendulum is done in the same way the BouncingBall was
visualized. The variables x and y hold the position.
F-iér;ll VX,VY;
SimpleVisual .PositionSize ball "color=red;shape=ball;";
equation
ball.size[1]=1.5; ball.size[2]=1.5; ball.size[3]=1.5;

ball._frame_a[1]=x; ball_frame_a[2]=y; ball_frame_a[3]=0;
m*der (vxX)=-(xX/L)*F;

The next step is to create a visualization of the "thread" that holds the pendulum. It will be represented by a
small elongated cube connected to the ball in one end and in the fixed center of the pendulum movement.
We will want the object to rotate with the pendulum motion so create a SimpleVisual.
PositionRotationSize object.

SimpleVisual .PositionRotationSize thread "'shape=cube;"

To specify the rotation of an object, the visualization package uses two points. One is the position of the
object, frame_a, that has been demonstrated earlier. The other position, frame_b, is interpreted as the end
point of a vector from frame_a. This vector is used as the new up direction for the object. In this example,
defining frame_b is simple. The cube that represents the thread will always be pointing to (0, 0, 0). We
already know the length of the thread from the parameter L.

thread.size[1]=0.05; thread.size[2]=L; thread.size[3]=0.05;

thread.frame_a[l]=x; thread.frame_a[2]=y; thread.frame_a[3]=0;
thread.frame_b[1]=0; thread.frame_b[2]=0; thread.frame_b[3]=0;

Running this simulation and starting the visualization, we notice that everything is not quite right. The
thread is centered around the pendulum. We could calculate a new position by translating the x and y
coordinates along the rotation vector, but there is a better way. Change the object type to SimpleVisual .
PositionRotationSizeOffset. The offset parameter is a translation within the local coordinate system
of the object. To shift the center of the object to be at the bottom of the thread we add an offset of L/2 to the
y component of offset.

thread.size[1]=0.05; thread.size[2]=L; thread.size[3]=0.05;

thread.frame_a[1]=x; thread.frame_a[2]=y; thread.frame_a[3]=0;

thread.frame_b[1]=0; thread.frame_b[2]=0; thread.frame_b[3]=0;
thread.offset[1]=0; thread.offset[2]=L/2; thread.offset[3]=0;

In the final model, a simple static fixture has also been added.

class MyPendulum3D "'Planar Pendulum"
import Modelica.SimpleVisual;
constant Real P1=3.141592653589793;
parameter Real m=1, g=9.81, L=5;
Real F;

62

Real x(start=5),y(start=0);
Real vx,vy;
SimpleVisual .PositionSize ball "color=red;shape=ball;";
SimpleVisual .PositionSize fixture ‘'shape=cube;";
SimpleVisual .PositionRotationSizeOffset thread '‘shape=cube;";
equation
fixture.size[1]=0.5; fixture.size[2]=0.1; fixture.size[3]=0.5;
fixture.frame_a[1]=0; fixture.frame_a[2]=0; fixture.frame_a[3]=0;
ball.size[1]=1.5; ball.size[2]=1.5; ball.size[3]=1.5;
ball.frame_a[1]=x; ball_frame_a[2]=y; ball_frame_a[3]=0;
thread.size[1]=0.05; thread.size[2]=L; thread.size[3]=0.05;
thread.frame_a[l]=x; thread.frame_a[2]=y; thread.frame_a[3]=0;
thread.frame_b[1]=0; thread.frame_b[2]=0; thread.frame_b[3]=0;
thread.offset[1]=0; thread.offset[2]=L/2; thread.offset[3]=0;
m*der (vx)=-(X/L)*F;
m*der (vy)=-(y/L)*F-m*g;
der(x)=vx;
der(y)=vy;
XN2+yN2=L"2;
end MyPendulum3D;

We simulate and visualize as previously:

Ir-" | [oy ¥ v
..QH UMEoteboslamypendalimEexamplcsomh L] la

iﬂle Edit Cel Formar Insert Window Help

loadModel (Modelica. 3implevisual)
[done]
simulate (MyPendulum, startTime=0, stopTime=3);
[done]
wvisualize (MyPendulum) |
[Hone]
X Skop
Ll
1.1
Reary Mhne Int, rnl #2

Figure 3-13. Visualization with animation of 3D pendulum.

3.5 References
Trolltech. Qt. http://www.trolltech.com/, accessed July 2007.

63

Coin3D. www.coin3d.org, accessed August 2008.

Henrik Eriksson. Advanced OpenModelica Plotting Package for Modelica. Master Thesis, LIU-
IDA/LITH-EX-A-08/036-SE, Link&ping University Electronic Press, www.ep.liu.se, June
22,2008.

Henrik Magnusson. Integrated Generic 3D visualization of Modelica Models. Master Thesis, LIU-
IDA/LITH-EX-A-08/035-SE, Link&ping University Electronic Press, www.ep.liu.se, June
27, 2008.

Martin Otter. The Modelica MultiBody Library. http://www.modelica.org/libraries/Modelica,
Modelica.Mechanics.MultiBody, accessed August 2008.

Vadim Engelson. Tools for Design, Interactive Simulation, and Visualization of Object-Oriented
Models in Scientific Computing. Ph.D. Thesis. Linkoping Studies in Science and
Technology, Dissertation No. 627, http://www.ida.liu.se/~vaden/thesis/, 2000.

Edward Lee et al. The PtPlot package The Ptolemy Project. http://ptolemy.berkeley.edu/body.htm,
accessed July 2007.

64

Chapter 4

OMNotebook with DrModelica and DrControl

This chapter covers the OpenModelica electronic notebook subsystem, called OMNotebook, together with
the DrModelica tutoring system for teaching Modelica, and DrControl for teaching control together with
Modelica. Both are using such notebooks.

4.1 Interactive Notebooks with Literate Programming

Interactive Electronic Notebooks are active documents that may contain technical computations and text, as
well as graphics. Hence, these documents are suitable to be used for teaching and experimentation,
simulation scripting, model documentation and storage, etc.

4.1.1 Mathematica Notebooks

Literate Programming (Knuth 1984) is a form of programming where programs are integrated with
documentation in the same document. Mathematica notebooks (Wolfram 1997) is one of the first
WYSIWYG (What-You-See-Is-What-You-Get) systems that support Literate Programming. Such
notebooks are used, e.g., in the MathModelica modeling and simulation environment, e.g. see Figure
4-1below and Chapter 19 in (Fritzson 2004)

4.1.2 OMNotebook

The OMNotebook software (Axelsson 2005, Fernstrom 2006) is a new open source free software that
gives an interactive WYSIWYG (What-Y ou-See-Is-What-Y ou-Get) realization of Literate Programming, a
form of programming where programs are integrated with documentation in the same document.

The OMNotebook facility is actually an interactive WYSIWYG (What-You-See-Is-What-Y ou-Get)
realization of Literate Programming, a form of programming where programs are integrated with
documentation in the same document. OMNotebook is a simple open-source software tool for an electronic
notebook supporting Modelica.

A more advanced electronic notebook tool, also supporting mathematical typesetting and many other
facilities, is provided by Mathematica notebooks in the MathModelica environment, see Figure 4-1.

65

E Evaluated Modeling. Code Generation, and... =] [E3
AI
Modeling 3 Evaluated Modeling, Code Generation, and... [H[=] [E3 |

Simulati wer |
&l 3 Evaluated Modeling. Code G ti T _ O <]
|56 g. Code Generation, and.._.
Pmﬁsﬂf pechet =
- using Mathe Mo e T Limavtsrd e . =
.....f_.. = et oot e v n Evaluated Modeling. Code Generation, and... M=l E3 l
S e | 2 The feesawdf e ekt e = £+ LeRrquintaraainz | ;I

55-321 3 Cobpe HOOD == . phpxlcalumlues,
e ClmgonmiMetcle |1, 5., 1, 5., 9, &, &, 931,
This cun cumly be chourcd 4. 1Tdentitpretclx (2] 03

£ i Mk clxlacm

Seamlmvan Frud o1
Criotwr -3, 2, (v

(26000 SR ILIEE LU G L3S G Sdal
C3.GELET 6. 00MN LM.RIIE i3, 225N L.GZBNN - B.33NLI _5.3EEdL |

Map Mt clxEacm, 3 The conernd lus m be e 1n ab = —2 vH, wherr vH A ncamscricno o de e This piee de
Phllcka g cloard loog m o m mrae = # K- 2RI

ot e s e

1 Introductior -=

Pura pager urd ® Zirnubtion and Coda Guneracion

= Palimimden

Figure 4-1. Examples of Mathematica notebooks in the MathModelica modeling and simulation
environment.

Traditional documents, e.g. books and reports, essentially always have a hierarchical structure. They are
divided into sections, subsections, paragraphs, etc. Both the document itself and its sections usually have
headings as labels for easier navigation. This kind of structure is also reflected in electronic notebooks.
Every notebook corresponds to one document (one file) and contains a tree structure of cells. A cell can
have different kinds of contents, and can even contain other cells. The notebook hierarchy of cells thus
reflects the hierarchy of sections and subsections in a traditional document such as a book.

4.2 DrModelica Tutoring System — an Application of OMNotebook

Understanding programs is hard, especially code written by someone else. For educational purposes it is
essential to be able to show the source code and to give an explanation of it at the same time.

Moreover, it is important to show the result of the source code’s execution. In modeling and simulation
it is also important to have the source code, the documentation about the source code, the execution results
of the simulation model, and the documentation of the simulation results in the same document. The reason
is that the problem solving process in computational simulation is an iterative process that often requires a
modification of the original mathematical model and its software implementation after the interpretation
and validation of the computed results corresponding to an initial model.

Most of the environments associated with equation-based modeling languages focus more on providing
efficient numerical algorithms rather than giving attention to the aspects that should facilitate the learning
and teaching of the language. There is a need for an environment facilitating the learning and understanding
of Modelica. These are the reasons for developing the DrModelica teaching material for Modelica and for
teaching modeling and simulation.

An earlier version of DrModelica was developed using the MathModelica environment. The rest of this
chapter is concerned with the OMNotebook version of DrModelica and on the OMNotebook tool itself.

66

DrModelica has a hierarchical structure represented as notebooks. The front-page notebook is similar to
a table of contents that holds all other notebooks together by providing links to them. This particular
notebook is the first page the user will see (Figure 4-2).

E DMNotebook: DrModelica.onb™®

File Edit Cell Format Insert Window Help

Version 2006-04-11 |

DrModelic gModelica Edition

Copyright () Linképing Uriversity, PELABR, 2003-2006, Wiley-IEEE Presz, Modelica Aszociation,
Contact: Openllodelica@ida v e, Openddodelica Project web site:

www ida v sefprojects/Opentdo delica

Book web page: www mathcore. com/driodelica; Book author: Peter Fritzson@ida lu. se

Dilvlodelica Authors: (2003 wersiorn) Susatina Monemar, Eva-Lena Lengouist Sandelin, Peter Fritzson, Peter Bunus
Dillodelica Authors: (2005 and later updates): Peter Fritzson

This DrModelica natebaak has been developed o facilitate learning the Modalica language as well as
praviding an iniraduction io object-oriented maodeling and simulation. It is based an and is
supplementary material to the Modelica hook: Feter Fritzson: "Frinciples af Ohject-Oriented
Modeling and Simulation with Modelica" (2004), 040 pages, Wilay-IEEE Press, ISEN (0-471-471631.
Al of the examples and exercises in DrModelica and the page references are from that ook, Most of
the text in DrMadelica is also based on that baok.

Detailed Copyright and Acknowledgment Information
Getting Started Using OMNotebook
OpenModelica commands
Berkeley license Openhodelica
1 A Quick Tour of Modelica
1.1 Getting Started - First Basic Examples
There iz a long tradition that the firet sample program i any computer language 12 a trivial program

g 9 1n Peter Fritzzon's book). Smce Modelica 15 an equation based
language, prinfite-a-sheag-deestol make much sence. Instead, our Hello World Modelica program solves

a triwal differential equation. The second ezample shows how you can write a model that solves a
Differential Algebraic Equation System (p. 19). In the Van der Pol (p. 22) example declaration as well as
mitiahzation and prefiz usage are shown in a slightly more complicated way.

1.2 Classes and Instances

In Modelica objects are created mmplicitly just by Declanng Tnstances of Classes (p. 26). Almost anything
n Modelica is a class, but there are some keywords for specific use of the class concept, called =

Ready

Figure 4-2. The front-page notebook of the OMNotebook version of the DrModelica tutoring system.

In each chapter of DrModelica the user is presented a short summary of the corresponding chapter of the
book “Principles of Object-Oriented Modeling and Simulation with Modelica 2.1” by Peter Fritzson. The
summary introduces some keywords, being hyperlinks that will lead the user to other notebooks describing
the keywords in detail

67

2 OMhotebook: HelloWorldionb*
File Edit Cell Format Insert Window Help

First Basic Class

1 HelloWorld

The program contains a declaration of a class called He 11 oWorld with two fields and one equation. The first field 15
the variable x which iz mitalized to a start value 2 at the time when the simulation starts. The second field is the variable
a, which 15 a constant that 15 mitiahred to 2 at the beginning of the simulation. Such a constant 15 prefized by the
keyword parameter i order to mndicate that it 15 constant dunng sunulation but 15 a model parameter that can be
changed between simulations.

The Modelica program solves a trival differential equationn =7 = — a * x. The vanable x 15 a state vaniable
that can change value over time. The x ' 1z the time derivatire of =

class HelloWorld
Peal x(start = 1);

parameter Real a = 1;
egquation
deri(x) = - a * x;

end HelloWorld;

Ok

2 Simulation of HelloWorld

simulate| HelloWorld, startTime=0, stopTime=4);:

[done]

plot{ x J;

Plot by OpenMeodelica

-y u

06

04r

on

Ready

Figure 4-3. The Hel loWor 1d class simulated and plotted using the OMNotebook version of DrModelica.

Now, let us consider that the link “HelloWorld” in DrModelica Section is clicked by the user. The new
HelloWorld notebook (see Figure 4-3), to which the user is being linked, is not only a textual description
but also contains one or more examples explaining the specific keyword. In this class, HelloWorld, a
differential equation is specified.

No information in a notebook is fixed, which implies that the user can add, change, or remove anything
in a notebook. Alternatively, the user can create an entirely new notebook in order to write his/her own
programs or copy examples from other notebooks. This new notebook can be linked from existing
notebooks.

68

(] oMNotebook: drmodelica.onb i [m] 3]
File Edit Cell Format Insert Window Help
Algorithms and Functions
Algorithins
In Modelica, algoritlmic statements can only occur Wltlun —\lf!m‘lﬂull Sectiong (p. 285),
gtarting with the keyword algorithm Simple £ & (p. 287) iz the
most common kind of statements in algorithm saectmns, T11e1e is a special form of
assignment statement that iz only used when the right hand side contains a call to a
Function with Multiple Results (p. 287).
The for-Statement (alzo called for-loop) it a convenient way of expresging iteration (p.
288). When using the for-loop for iteration we must be able to express the range of
values over which the iteration variable should iterate in a closed form as an iteration
expression. For cases where this is not feazible there is also a While-loop iteration
construct in Modelica (p. 290). For conditional expressions the if-Statement (p. 292) is
uged. When-Statements (p. 293) are used to express actions at event instants and are
closely related to when-equations. The Remit (p. 296) statement can be used in
when-statements to define new values for contimous-tune stafe variables of a model at
an event.
The Asgert (p. 298) statement provides a convenient means for specifying checks on
model validity within a model.
The most common usage of Terminate (p. 298) is to give more appropriate stopping
criferia for termmating a simulation than a fixed point i time.
Exercises :| J
Exercise 1
Exercise 2
Exercise 3
Fxercise 4
Exercise §
Functions
The body of a Modelica function is a kind of algorithm section that containg procedural
algorithmic code to be executed when the function is Called (p. 300). Since a function is
a restricted and enhancec kind of class. it ig nossible to mherit an existing fimction =l
Ready 4

Figure 4-4. DrModelica Chapter on Algorithms and Functions in the main page of the OMNotebook version
of DrModelica.

When a class has been successfully evaluated the user can simulate and plot the result, as previously
depicted in Figure 4-3 for the simple Hel loWor Id example model.

After reading a chapter in DrModelica the user can immediately practice the newly acquired
information by doing the exercises that concern the specific chapter. Exercises have been written in order to
elucidate language constructs step by step based on the pedagogical assumption that a student learns better
“using the strategy of learning by doing”. The exercises consist of either theoretical questions or practical
programming assignments. All exercises provide answers in order to give the user immediate feedback.

Figure 4-4 shows part of Chapter 9 of the DrModelica teaching material. Here the user can read about
language constructs, like algorithm sections, when-statements, and reinit equations, and then practice
these constructs by solving the exercises corresponding to the recently studied section.

69

0 oMNotebook: Exercisel.nb i] 24

File Edit Cell Format Insert window Help

Exercise 1

Using Algorithm Sections

Write a function, Sum, which calculates the sum of numbers, m an array of arbatrary size.

TWrite a function, Ave rage, which calculates the average of numbers, in an array of arbitrary size. Average
should use make a finction call to Sum.

|]

TWrite a class, LargestAverage, that has two arrays and calculates the average of each of them. Then it
compares the averages and sets a vanable to true if the first array iz larger than the second and otherwise false.

|]

Answer

Ready i
Figure 4-5. Exercise 1 in Chapter 9 of DrModelica
Exercise 1 from Chapter 9 is shown in . In this exercise the user has the opportunity to practice different

language constructs and then compare the solution to the answer for the exercise. Notice that the answer is
not visible until the Answer section is expanded. The answer is shown in

70

I3 oMNotebook: Exercisel.nb®

File Edit el Format Insert Window Help

[
Answer

Sum

function Sum
input Reall[:] x;
output Real sum;
algorithm
for i1 in l:size(x,1) loop
sum := sum + x[1];
end for;
end Sum;

Average

function Average
input Reall[:] x;
output Real average;
protected
RFeal =sum;
algorithm
average := Sum(x) / size(x,1);

end Average;

LargestAverage

class Largestiverage
parameter Integer[:] A1l = {1, Z, 3, 4,
parameter Integer[:] AZ = {7, 8, 9};
Real awerageil, awveragedZ;
Boolean AlLargest{start = false);
algorithm

averageal := Average(al);
averaged? := Average (&Z);
if awverageAl > averageiZ then
AlLargest := true;
else
AlLargest := false;
end if;

end LargestiAverage;

Simulation of LargestAverage

R

simulate{ LargestAverage);

variable A 1Largest is false (= 0).

Ready

When we look at the values i the vanables we see that 42 has the largest average (8) and therefore the

s L

Figure 4-6. The answer section to Exercise 1 in Chapter 9 of DrModelica.

71

4.3 DrControl Tutorial for Teaching Control Theory

DrControl is an interactive OMNotebook document aimed at teaching control theory. It is included in the
OpenModelica distribution and appears under the directory OpenModelical.7.0/share/
omnotebook/drcontrol.

The front-page of DrControl resembles a linked table of content that can be used as a navigation center.
The content list contains topics like:

e Getting started

e The control problem in ordinary life
e Feedback loop

Mathematical modeling

Transfer function

Stability

Example of controlling a DC-motor
Feedforward compensation
State-space form

State observation

Closed loop control system.
Reconstructed system

Linear quadratic optimization
Linearization

Each entry in this list leads to a new notebook page where either the theory is explained with Modelica
examples or an exercise with a solution is provided to illustrate the background theory. Below we show a
few sections of DrControl.

4.3.1 Feedback Loop

One of the basic concepts of control theory is using feedback loops either for neutralizing the disturbances
from the surroundings or a desire for a smoother output.

In Figure 4-7, control of a simple car model is illustrated where the car velocity on a road is controlled,
first with an open loop control, and then compared to a closed loop system with a feedback loop. The car
has a mass m, velocity y, and aecrodynamic coefficient o. The 0 is the road slope, which in this case can be
regarded as noise.

72

File Edit Cell Format Insert Window Help

f‘n'lnl = - ¥ Cl|la|l=u| v | O

Feedback

One important method in designing control system is a feedback loop. It can be used to eliminate the
influence of noise or to decrease the output error.

rit} eit]

—>C

Regulator

—

Example

Assume that we want to control the speed of a car on the road. The car has a mass m, velocity y, and
aerodynamic coefficient a. The 8 is the road slope, which in this case can be regarded as noise.

my =u—ay —mgsin(6)
If we want a reference speed of 20 m/s for a car with m=1500 kg, =250 Ns/m, 6=0 rad, how high should]

the amplification factor be in the regulator?
Try with u = 250%r.

wit) = mgsin(B)=0

rit)=20m/s,

1.

-

Open Loop

loadModel(Modelica)
true

model noFeedback

import SI = Modelica.SIunits;

SI.velocity y; // output signal without
noise, theta = @ -> v(t) = @

&T Valaritu wNaica- /7 autnut cinnal with naica

Figure 4-7. Feedback loop

Lets look at the Modelica model for the open loop controlled car:
ayF = uw — ay — NuEshn E)

model NoFeedback
import SI = Modelica.Slunits;
SI.Velocity y "No noise"';
SI.Velocity yNoise "With noise";
parameter Sl._Mass m = 1500;
parameter Real alpha = 200;
parameter SI. ngle theta = 5*3.14/180;
parameter Sl.Acceleration g = 9.82;
SI1.Force u;
SI.Velocity r = 20 "Reference signal';
equation
m*der(y)=u - alpha*y;
m*der(yNoise)= u - alpha*yNoise —
m*g*sin(theta);
u = 250A*r;
end NoFeedback;

By applying a road slope angle different from zero the car velocity is influenced which can be regarded as
noise in this model. The output signal in Figure 4-8 is stable but an overshoot can be observed compared to
the reference signal. Naturally the overshoot is not desired and the student will in the next exercise learn
how to get rid of this undesired behavior of the system.

73

T Mot bask Ferdbackonk
Fie dde (ol Foomat st Window Help

-l = o v EL Y @

1.1 Open Loop
loadModel (Hodelical

ration g = 3.52

inoFendback)
simlace (noFeedack, stopTine=100]

plotily,x, yRoise))

e

Pt by Opesnblodeli

w
-

.....

Figure 4-8. Open loop control example.

The closed car model with a proportional regulator is shown below:
w=Ik*{r—y}

model WithFeedback
import S1 = Modelica.Slunits;
Si.Velocity y "Output, No noise";
S1.Velocity yNoise "Output With noise";
parameter Sl_Mass m = 1500;
parameter Real alpha = 250;
parameter Sl_Angle theta = 5*3.14/180;
parameter Sl_Acceleration g = 9.82;
Sl.Force u;
S1.Force uNoise;
Sl.Velocity r = 20 "Reference signal';
equation
m*der(y) = u - alpha*y;
m*der(yNoise) = uNoise - alpha*yNois —
m*g*sin(theta);
u = 5000*%(r - y);
uNoise = 5000*(r - yNoise);
end WithFeedback;

I the showe figare the outpui sisals (v and yNoise) and the reference signal (7) are photied. We huve an overshoot with the cutrol Laws that we have chosen. Can you design an object oriented | |
E

By using the information about the current level of the output signal and re-tune the regulator the output
quantity can be controlled towards the reference signal smoothly and without an overshoot, as shown in

Figure 4-9.

In the above simple example the flat modeling approach was adopted since it was the fastest one to
quickly obtain a working model. However, one could use the object oriented approach and encapsulate the
car and regulator models in separate classes with the Modelica connector mechanism in between.

74

File Edit Cell Format Insert Window Help

|

model withFeedback
import SI = Modelica.SIunits;
SI.Velocity y;
SI.Velocity yNoise;
parameter SI.Mass m = 1500;
parameter Real alpha = 250;
parameter SI.Angle theta = 5*3.141592/180;
parameter SI.Acceleration g = 9.82;
SI.Force u;
SI.Force uNoise;
SI.Velocity r=20;
equation
m*der(y)=u-alpha*y;
m*der (yNoise)=uNoise-alpha*yNoise-m*g*sin(theta);
u = 5000*(r-y);
uNoise = 5000*(r-yNoise);
end withFeedback;

simulate(withFeedback, stopTime=10)

plot({r,y, yNoise}) // (reference signal, output signal with theta = @,
output signal with theta <> @)

true
Plot by Op

15 or

10 o

5

@ yNoise
0
n) A & 2 in

Ready Ln4, Col 49

Figure 4-9. Closed loop control example.

4.3.2 Mathematical Modeling with Characteristic Equations

In most systems the relation between the inputs and outputs can be described by a linear differential
equation. Tearing apart the solution of the differential equation into homogenous and particular parts is an
important technique taught to the students in engineering courses, also illustrated in Figure 4-10.

d_.':?. r:!"‘_"lf dm,u mt
e + :cn_F'l' ot @, F = &GF'F ek o Em_-_E'l' B

Now let us examine a second order system:

Yteaftay=1

model NegRoots

Real y;

Real der_y;

parameter Real al = 3;
parameter Real a2 = 2;

equation

der_y = der(y):;

der(der_y) + al*der_y + a2*y = 1;
end NegRoots;

Choosing different values for a; and a, leads to different behavior as shown in Figure 4-11 and Figure 4-12.

75

File Edit Cell Format Insert Window Help

= ™| O« = v | ©

Mathematical Modeling

In most systems the relation between the inputs and outputs can be approximated by a linear differential
equation.

dr dn-t dm d
@y(r) + %Fy(r) + ot a,y(t) = by d:_m“(’) +..t bm-lgu(r)érbmu(r)

where the coefficients a; and b; are constants. The above differential equation has a homogeneous and a
particular solution:

The homogeneous solution where u is set to zero has the form:

Vi = Crest + ot Cpeint
where

Amt+a A"+ ta, 4 +a,=0

|
|
|
Y= Yat s]
]
}
]
]

1 Example

Consider the following model.
d? dl
220 +ar g () +eay(=1

Examine the behavior of the system for different values on a, and a».

1.1 Characteristic Equation with Negative Real Roots, A=-1,-2

| | S [S|

model negRoots

Real y;

Real der_y;

parameter Real al = 3;
parameter Real a2 = 2;

equation

der_y = der(y);

der(der_y) + al*der_y + a2*y = 1;
end negRoots;
{negRoots}

simulate(neoRoots. stopTime=101 1 E

Figure 4-10. Mathematical modeling with characteristic equation.

In the first example the values of a; and a, are chosen in such way that the characteristic equation has
negative real roots and thereby a stable output response, see Figure 4-11.

76

File Edit Cell Format Insert Window Help
W T e = . 3 k Q=L | @
]
1 Example }
Consider the following model. :| 1
d? dl
Y8 taro gy tay) =1

Examine the behavior of the system for different values on a, and a;

1.1 Characteristic Equation with Negative Real Roots, A=-1,-2

) L
|

model negRoots

Real y;

Real der_y;

parameter Real al = 3;
parameter Real a2z = 2;

equation

der_y = der(y);

der(der_y) + al*der_y + a2*y = 1;
end negRoots;
{negRoots}
simulate(negRoots, stopTime=18)
record SimulationResult

resultFile = "negRoots_res.plt"
end SimulationResult;

plot({y})
frue
Plot by OpenModelica

0.5

0.4
0.3
L2}
0.2

0.1

time E
Ready

Figure 4-11. Characteristic eq. with real negative roots.

The importance of the sign of the roots in the characteristic equation is illustrated in Figure 4-11 and Figure
4-12, e.g., a stable system with negative real roots and an unstable system with positive imaginary roots
resulting in oscillations.

model NegRoots

Real y;

Real der_y;

parameter Real al = -2;
parameter Real a2 = 10;

equation

der_y = der(y);

der(der_y) + al*der_y + a2*y = 1;
end NegRoots;

File Edit Cell Format Insert Window Help
M| = . ¥ L L=l

1.4 Characteristic Equation with Imaginary Roots with Positive Real Part, A=1+3i,1-3i

m
i

model imgPosRoots
Real y;
Real der_y;
parameter Real al
parameter Real a2
equation
der_y = der(y);
der(der_y) + al*der_y + a2*y = 1;
end imgPosRoots;

{imgPosRoots}
simulate(imgPosRoots, number0fIntervals=1000, stopTime=15.5)

([l
"
N

10;

record SimulationResult

resultFile = "imgPosRoots_res.plt"
end SimulationResult;
plot(y)

true

Plot by Op

500000
400000
300000
200000
100000 ey

"]

-100000
-200000

0 5 10 15
time
As concluding words one can say that if the characteristic equation has negative real roots then the
homogenous solution dies out. On the other hand real positive root leads to that the signal becomes =
Ready

Figure 4-12. Characteristic eq. with positive imaginary roots.

File Edit Cell Format Insert Window Help

> M T W = » & ¥ § = | | o (0]
1 Example [
Consider a tank system with the following transfer function 1
1
6(s) = : f T
T

What is the weight function? Can you plot the step response of the tank?

1L

-

Tank Transfer Function

loadModel (Modelica.Blocks)

model Tank
Modelica.Blocks.Continuous.TransferFunction G(b={1/A},
a={1,1/T},y_start(fixed=true)=1/A);
Modelica.Blocks.Continuous.TransferFunction GStep(b={1/A}, a={1,1/T});
parameter Real T = 15;
parameter Real A = 5;
Real u = if (time > @ or time<@) then © else Modelica.Constants.inf;
Real uStep = if (time > © or time<®) then 1 else 0;
equation
G.u = if time > © then 0 else 1e1e;
GStep.u = uStep;
end Tank;
{Tank}
simulate(Tank, startTime=-1e-18, number0fIntervals=500, stopTime=10);

plot({G.y,GStep.y})

Plot by OpenModelica

0.8

06
0.4 ®Gstep.y

0.2

o L

0 2 4 6 8 10 -
Ready Ln8g, Coll

Figure 4-13. Step and pulse (weight function) response.

The theory and application of Kalman filters is also explained in the interactive course material.

78

File Edit Cell Format Insert Window Help

QU'HE"‘--‘ ¥"\E«@
1 Kalman Filter

Often we don't have access to the internal states of a system and can only measure the outputs of the system and
have to reconstruct the state of the system based on these measurements. This is normally done with an observer.
The idea with an observer is that we feedback the difference of the measured output with the estimated output. If
the estiamtion is correct then the difference should be zero.

Another difficulty is that the measured quantities often contain disturbance, ie. noise.

{%=A£+Bu+e
§=CR+v

Here are e denoting a disturbance mn the nput signal and v 1s a measurement error. The quality of the estimate can
be evaluated by the difference

' K((e) - C2(2) — Du(t))

By using this quantity as feedback we obtain the observer }

£ = AZ(t) + Bult) + K(y(t) — C2(t) — Du(t))

Now form the error as

e
L]
=
|
=

The differential error is

] W—
1

Ready Ready

Figure 4-14. Theory background about Kalman filter.

In reality noise is present in almost every physical system under study and therefore the concept of noise is
also introduced in the course material, which is purely Modelica based.

79

File Edit Cell Format Inset Window Help

,aU'H;,?.‘. ¥ ’ | = _;:‘/@

model KalmanFeedbhack
parameter Real A[:,size(R, 1)] = {{0,1},{1,0}} ;
parameter Real B[size(a, 1),:] = {{0},{1}}:
parameter Real C[:,size(B, 1)] = {{1,0}};
parameter Real[2,1] B = [2.4;2.4];
parameter Real[1,2] T = [2.4,3.4];
parameter Real[:,:] ABL = A-B*L;
parameter Real[:,:] BL = B¥L;
i parameter Real[:,:] Z = zexos(size (ABL,2),size(ARC,1));
parameter Real[:,:] ARC = A-R¥Cj
| parameter Real([:,:] Anew = [0,1,0,0 ; -1.4, -3.4, 2.4,3.4; 0,0,-2.4,1;0,0,-2.4,0];
parameter Real[:,:] Bnew = [0;1;0;0];
parameter Real[:,:] Fnew = [1;0;0;0];
stateSpaceNoiae Ralman(stateSpace.A~Ancw,stateSpace.B~Bnew, stateSpace.C—[1,0,0,0],
atateSpace.F = Fnew);
stateSpaceNoise noRalman;
end RalmanFeedback;

simulate (RalmanFeedback, stopTime=3)
plot ({Kalman.stateSpace.y[1],noRalman.stateSpace.y[1]})

i tue

Plot by OpenModelica

15
@Kalman, stateSpace..y[1]

@ noKalman, state Space. y[1] .

Ready Lni1z,Col39 |

Figure 4-15. Comparison of a noisy system with feedback link in DrControl.

80

4.4 OpenModelica Notebook Commands

OMNotebook currently supports the commands and concepts that are described in this section.

441 Cells

Everything inside an OMNotebook document is made out of cells. A cell basically contains a chunk of
data. That data can be text, images, or other cells. OMNotebook has four types of cells: headercell,
textcell, inputcell, and groupcell. Cells are ordered in a tree structure, where one cell can be a
parent to one or more additional cells. A tree view is available close to the right border in the notebook
window to display the relation between the cells.

Textcell — This cell type are used to display ordinary text and images. Each textcell has a style that
specifies how text is displayed. The cell’s style can be changed in the menu Format->Styles,
example of different styles are: Text, Title, and Subtitle. The Textcell type also has support
for following links to other notebook documents.

Inputcell — This cell type has support for syntax highlighting and evaluation. It is intended to be
used for writing program code, e.g. Modelica code. Evaluation is done by pressing the key
combination Shift+Return or Shift+Enter. All the text in the cell is sent to OMC (OpenModelica
Compiler/interpreter), where the text is evaluated and the result is displayed below the inputcell. By
double-clicking on the cell marker in the tree view, the inputcell can be collapsed causing the result
to be hidden.

Groupcell — This cell type is used to group together other cell. A groupcell can be opened or closed.
When a groupcell is opened all the cells inside the groupcell are visible, but when the groupcell is
closed only the first cell inside the groupcell is visible. The state of the groupcell is changed by the
user double-clicking on the cell marker in the tree view. When the groupcell is closed the marker is
changed and the marker has an arrow at the bottom.

4.4.2 Cursors

An OMNotebook document contains cells which in turn contain text. Thus, two kinds of cursors are needed
for positioning, text cursor and cell cursor:

Textcursor — A cursor between characters in a cell, appearing as a small vertical line. Position the
cursor by clicking on the text or using the arrow buttons.

Cellcursor — This cursor shows which cell currently has the input focus. It consists of two parts.
The main cellcursor is basically just a thin black horizontal line below the cell with input focus. The
cellcursor is positioned by clicking on a cell, clicking between cells, or using the menu item Cel I -
>Next Cell or Cell->Previous Cell. The cursor can also be moved with the key combination
Ctrl+Up or Ctrl+Down. The dynamic cellcursor is a short blinking horisontal line. To make this
visible, you must click once more on the main cellcursor (the long horizontal line). NOTE: In order
to paste cells at the cellcursor, the dynamic cellcursor must be made active by clicking on the main
cellcursor (the horisontal line).

4.4.3 Selection of Text or Cells

To perform operations on text or cells we often need to select a range of characters or cells.

81

Select characters — There are several ways of selecting characters, e.g. double-clicking on a word,
clicking and dragging the mouse, or click followed by a shift-click at an adjacent positioin selects
the text between the previous click and the position of the most recent shift-click.

Select cells — Cells can be selected by clicking on them. Holding done Ctrl and clicking on the cell
markers in the tree view allows several cells to be selected, one at a time. Several cells can be
selected at once in the tree view by holding down the Shift key. Holding down Shift selects all cells
between last selected cell and the cell clicked on. This only works if both cells belong to the same
groupcell.

4.4.4 File Menu

The following file related operations are available in the file menu:

Create a new notebook — A new notebook can be created using the menu Fi le->New or the key
combination Ctrl+N. A new document window will then open, with a new document inside.

Open a notebook — To open a notebook use File->0Open in the menu or the key combination
Ctrl+O. Only files of the type .onb or .nb can be opened. If a file does not follow the
OMNotebook format or the FullForm Mathematica Notebook format, a message box is displayed
telling the user what is wrong. Mathematica Notebooks must be converted to fullform before they
can be opened in OMNotebook.

Save a notebook — To save a notebook use the menu item File->Save or File->Save As. If the
notebook has not been saved before the save as dialog is shown and a filename can be selected.
OMNotebook can only save in xml format and the saved file is not compatible with Mathematica.
Key combination for save is Ctrl+S and for save as Ctrl+Shift+S. The saved file by default obtains
the file extension .onb.

Print — Printing a document to a printer is done by pressing the key combination Ctrl+P or using the
menu item File->Print. A normal print dialog is displayed where the usually properties can be
changed.

Import old document — Old documents, saved with the old version of OMNotebook where a
different file format was used, can be opened using the menu item File->Import->0ld
OMNotebook file. Old documents have the extension .xml.

Export text — The text inside a document can be exported to a text document. The text is exported to
this document without almost any structure saved. The only structure that is saved is the cell
structure. Each paragraph in the text document will contain text from one cell. To use the export
function, use menu item Fi le->Export->Pure Text.

Close a notebook window — A notebook window can be closed using the menu item Fi le->Close
or the key combination Ctrl+F4. Any unsaved changes in the document are lost when the notebook
window is closed.

Quitting OMNotebook — To quit OMNotebook, use menu item File->Quit or the key
combination Crtl+Q. This closes all notebook windows; users will have the option of closing OMC
also. OMC will not automatically shutdown because other programs may still use it. Evaluating the
command quit() has the same result as exiting OMNotebook.

445 Edit Menu

Editing cell text — Cells have a set of of basic editing functions. The key combination for these are:
Undo (Ctrl+Z), Redo (Ctrl+Y), Cut (Ctrl+X), Copy (Ctrl+C) and Paste (Ctrl+V). These functions
can also be accessed from the edit menu; Undo (Edit->Undo), Redo (Edit->Redo), Cut (Edit-
>Cut), Copy (Edit->Copy) and Paste (Edi t->Paste). Selection of text is done in the usual way

82

by double-clicking, triple-clicking (select a paragraph), dragging the mouse, or using (Ctrl+A) to
select all text within the cell.

Cut cell — Cells can be cut from a document with the menu item Edit->Cut or the key combination
Ctrl+X. The cut function will always cut cells if cells have been selected in the tree view, otherwise
the cut function cuts text.

Copy cell — Cells can be copied from a document with the menu item Edit->Copy or the key
combination Ctrl+C. The copy function will always copy cells if cells have been selected in the tree
view, otherwise the copy function copy text.

Paste cell — To paste copied or cut cells the cell cursor must be selected in the location where the
cells should be pasted. This is done by clicking on the cell cursor. Pasteing cells is done from the
menu Edit->Paste or the key combination Ctrl+V. If the cell cursor is selected the paste function
will always paste cells. OMNotebook share the same application-wide clipboard. Therefore cells
that have been copied from one document can be pasted into another document. Only pointers to
the copied or cut cells are added to the clipboard, thus the cell that should be pasted must still exist.
Consequently a cell can not be pasted from a document that has been closed.

Find — Find text string in the current notebook, with the options match full word, match cell, search
within closed cells. Short command Ctrl+F.

Replace — Find and replace text string in the current notebook, with the options match full word,
match cell, search+replace within closed cells. Short command Ctrl+H.

View expression — Text in a cell is stored internally as a subset of HTML code and the menu item
Edit->View Expression let the user switch between viewing the text or the internal HTML
representation. Changes made to the HTML code will affect how the text is displayed.

4.4.6 Cell Menu

Add textcell — A new textcell is added with the menu item Cel 1->Add Cell (previous cell style) or
the key combination Alt+Enter. The new textcell gets the same style as the previous selected cell
had.

Add inputcell — A new inputcell is added with the menu item Cell->Add Inputcell or the key
combination Ctrl+Shift+1.

Add groupcell — A new groupcell is inserted with the menu item Cel 1->Groupcell or the key
combination Ctrl+Shift+G. The selected cell will then become the first cell inside the groupcell.

Ungroup groupcell — A groupcell can be ungrouped by selecting it in the tree view and using the
menu item Cel I->Ungroup Groupcell or by using the key combination Ctrl+Shift+U. Only one
groupcell at a time can be ungrouped.

Split cell — Spliting a cell is done with the menu item Cel1->Split cell or the key combination
Ctrl+Shift+P. The cell is splited at the position of the text cursor.

Delete cell — The menu item Cell->Delete Cell will delete all cells that have been selected in
the tree view. If no cell is selected this action will delete the cell that have been selected by the
cellcursor. This action can also be called with the key combination Ctrl+Shift+D or the key Del
(only works when cells have been selected in the tree view).

Cellcursor — This cell type is a special type that shows which cell that currently has the focus. The
cell is basically just a thin black line. The cellcursor is moved by clicking on a cell or using the
menu item Cel I->Next Cell or Cel 1->Previous Cell. The cursor can also be moved with the
key combination Ctrl+Up or Ctrl+Down.

&3

447 Format Menu

e Textcell — This cell type is used to display ordinary text and images. Each textcell has a style that
specifies how text is displayed. The cells style can be changed in the menu Format->Styles,
examples of different styles are: Text, Title, and Subtitle. The Textcell type also have
support for following links to other notebook documents.

e Text manipulation — There are a number of different text manipulations that can be done to change
the appearance of the text. These manipulations include operations like: changing font, changing
color and make text bold, but also operations like: changing the alignment of the text and the
margin inside the cell. All text manipulations inside a cell can be done on single letters, words or
the entire text. Text settings are found in the Format menu. The following text manipulations are
available in OMNotebook:
> Font family
> Font face (Plain, Bold, Italic, Underline)
> Font size
> Font stretch
> Font color
> Text horizontal alignment
> Text vertical alignment
> Border thickness
> Margin (outside the border)
> Padding (inside the border)

4.4.8 Insert Menu

e Insert image — Images are added to a document with the menu item Insert->Image or the key
combination Ctrl+Shift+M. After an image has been selected a dialog appears, where the size of the
image can be chosen. The images actual size is the default value of the image. OMNotebook
stretches the image accordantly to the selected size. All images are saved in the same file as the rest
of the document.

e Insert link — A document can contain links to other OMNotebook file or Mathematica notebook and
to add a new link a piece of text must first be selected. The selected text make up the part of the link
that the user can click on. Inserting a link is done from the menu Insert->Link or with the key
combination Ctrl+Shift+L. A dialog window, much like the one used to open documents, allows the
user to choose the file that the link refers to. All links are saved in the document with a relative file

path so documents that belong together easily can be moved from one place to another without the
links failing.

4.4.9 Window Menu

e Change window — Each opened document has its own document window. To switch between those
use the Window menu. The window menu lists all titles of the open documents, in the same order
as they were opened. To switch to another document, simple click on the title of that document.

4.4.10 Help Menu

e About OMNotebook — Accessing the about message box for OMNotebook is done from the menu
Help->About OMNotebook.

e About Qt — To access the message box for Qt, use the menu Help->About Qt.

e Help Text — Opening the help text (document OMNotebookHelp.onb) for OMNotebook can be
done in the same way as any OMNotebook document is opened or with the menu Help->Help
Text. The menu item can also be triggered with the key F1.

4.4.11 Additional Features

e Links — By clicking on a link, OMNotebook will open the document that is referred to in the link.

e Update link — All links are stored with relative file path. Therefore OMNotebook has functions that
automatically updating links if a document is resaved in another folder. Every time a document is
saved, OMNotebook checks if the document is saved in the same folder as last time. If the folder
has changed, the links are updated.

e Evaluate several cells — Several inputcells can be evaluated at the same time by selecting them in
the treeview and then pressing the key combination Shift+Enter or Shift+Return. The cells are
evaluated in the same order as they have been selected. If a groupcell is selected all inputcells in
that groupcell are evaluated, in the order they are located in the groupcell.

e Command completion — Inputcells have command completion support, which checks if the user is
typing a command (or any keyword defined in the file commands.xml) and finish the command. If
the user types the first two or three letters in a command, the command completion function fills in
the rest. To use command completion, press the key combination Ctrl+Space or Shift+Tab. The
first command that matches the letters written will then appear. Holding down Shift and pressing
Tab (alternative holding down Ctrl and pressing Space) again will display the second command that
matches. Repeated request to use command completion will loop through all commands that match
the letters written. When a command is displayed by the command completion functionality any
field inside the command that should be edited by the user is automatically selected. Some
commands can have several of these fields and by pressing the key combination Ctrl+Tab, the next
field will be selected inside the command.

> Active Command completion: Ctrl+Space / Shift+Tab
> Next command: Ctrl+Space / Shift+Tab
> Next field in command: Ctrl+Tab’

e Generated plot — When plotting a simulation result, OMC uses the program Ptplot to create a plot.
From Ptplot OMNotebook gets an image of the plot and automatically adds that image to the output
part of an inputcell. Like all other images in a document, the plot is saved in the document file
when the document is saved.

e Stylesheet -OMNotebook follows the style settings defined in stylesheet.xml and the correct style is
applied to a cell when the cell is created.

e Automatic Chapter Numbering — OMNotebook automatically numbers different chapter,
subchapter, section and other styles. The user can specify which styles should have chapter
numbers and which level the style should have. This is done in the stylesheet.xml file. Every style
can have a <chapterLevel> tag that specifies the chapter level. Level 0 or no tag at all, means that
the style should not have any chapter numbering.

e Scrollarea — Scrolling through a document can be done by using the mouse wheel. A document can
also be scrolled by moving the cell cursor up or down.

e Syntax highlighter — The syntax highlighter runs in a separated thread which speeds up the loading
of large document that contains many Modelica code cells. The syntax highlighter only highlights
when letters are added, not when they are removed. The color settings for the different types of
keywords are stored in the file modelicacolors.xml. Besides defining the text color and
background color of keywords, whether or not the keywords should be bold or/and italic can be
defined.

&5

e Change indicator — A star (*) will appear behind the filename in the title of notebook window if the
document has been changed and needs saving. When the user closes a document that has some
unsaved change, OMNotebook asks the user if he/she wants to save the document before closing. If
the document never has been saved before, the save-as dialog appears so that a filename can be
choosen for the new document.

e Update menus — All menus are constantly updated so that only menu items that are linked to actions
that can be performed on the currently selected cell is enabled. All other menu items will be
disabled. When a textcell is selected the Format menu is updated so that it indicates the text settings
for the text, in the current cursor position.

45 References

Eric Allen, Robert Cartwright, Brian Stoler. DrJava: A lightweight pedagogic environment for Java. In
Proceedings of the 33rd ACM Technical Symposium on Computer Science Education
(SIGCSE 2002) (Northern Kentucky — The Southern Side of Cincinnati, USA, February 27
— March 3, 2002).

Ingemar Axelsson. OpenModelica Notebook for Interactive Structured Modelica Documents. Final
thesis, LITH-IDA-EX-05/080—SE, Linkoping University, Linkoping, Sweden, October 21,
2005.

Anders Fernstrom, Ingemar Axelsson, Peter Fritzson, Anders Sandholm, Adrian Pop. OMNotebook —
Interactive WYSIWYG Book Software for Teaching Programming. In Proc. of the
Workshop on Developing Computer Science Education — How Can It Be Done?.
Linkdping University, Dept. Computer & Inf. Science, Linkoping, Sweden, March 10,
2006.

Anders Fernstrom. Extending OMNotebook — An Interactive Notebook for Structured Modelica
Documents. Final thesis, LITH-IDA-EX--06/057—SE, Dept. Computer and Information
Science, Linkdping University, Sweden, September 4, 2006.

Peter Fritzson. Principles of Object Oriented Modeling and Simulation with Modelica 2.1, 940 pages,
ISBN 0-471-471631, Wiley-IEEE Press. Feb. 2004.

Knuth, Donald E. Literate Programming. The Computer Journal, NO27(2), pp. 97-111, May 1984.

Eva-Lena Lengquist-Sandelin, Susanna Monemar, Peter Fritzson, and Peter Bunus. DrModelica — A
Web-Based Teaching Environment for Modelica. In Proceedings of the 44th Scandinavian
Conference on Simulation and Modeling (SIMS’2003), available at www.scan-sims.org.
Visterds, Sweden. September 18-19, 2003.

The Modelica Association. The Modelica Language Specification Version 3.0, Sept 2007.
http://www.modelica.org.

Stephen Wolfram. The Mathematica Book. Wolfram Media Inc, 1997.

87

Chapter 5

Interactive Simulation

In order to offer a user-interactive and time synchronous simulation, OpenModelica has an additional
subsystem to fulfill general requirements on such simulations.

This module is part of the simulation runtime core and is called “OpenModelica Interactive” (OMI).
OMI will result in an executable simulation application, such as the non interactive simulation. The
executable file will be generated by the OMC, which contains the full Modelica model as C/C++ code with
all required equations, conditions and different solvers to simulate a whole system or a single system
component. This executable file offers a non-interactive and an interactive simulation runtime.

The following are some general functionalities of an interactive simulation runtime:

e The user will be able to stimulate the system during a running system simulation and to observe its’
reaction immediately.

¢ Simulation runtime behavior will be controllable and adaptable to offer an interaction with a user.

e A user will receive simulation results during a simulation synchronous to the real-time. Since
network process time and some other factors like scheduling of processes from the operation
system this is not given at any time.

e In order to offer a stable simulation, a runtime will inform a user interface of errors and
consequential simulation aborts.

e Simulation results will not under-run or exceed a tolerance compared to a thoroughly reliable value,
for a correct simulation.

e Communication between a simulation runtime and a user interface will use a well defined interface
and be base on a common technology, in this case network communication.

Note that OMI is available in an easy-to-use way from OMEdit, see Section 2.7.

5.1 Interactively Changeable Parameters

An important modification/addition to the semantics of the Modelica language during interactive
simulation is the fact that parameters are changeable while simulating interactively using OMI. All
properties using the prefix “parameter” can be changed during an interactive simulation. The fully qualified
name is used as a unique identifier, so a parameter value can be found and changed regardless of its
hierarchical position in the model.

88

5.2 OpenModelica Interactive Components description

OpenModelica Interactive Interactive GUI
(As Server/Service) : (As Client)
1
Simulation Units 1 Communication Units |
1
r OMI Subsystem 1 } :
; Lo S
1 ! Imulation
- -
-1 Contol ! Control
1 I |
1 1
I i |
I 1
I P
I i I
[] 1
1 i |
1 1
I o
1 : |
: y o
«-! Transfer ' | Simulation
e il —
_: ! [DataFlow
I L

Figure 5-1. OpenModelica interactive communication architecture..

The OpenModelica Interactive subsystem is also separated into different modules, following are important
for the user to communicate with:

Control: The “Control” module is the interface between OMI and a UL It is implemented as a single
thread to support parallel tasks and independent reactivity. As the main controlling and
communication instance at simulation initialization phase and while simulation is running it
manages simulation properties and also behavior. A client can permanently send operations as
messages to the “Control” unit, it can react at any time to feedback from the other internal OMI
components and it also sends messages to a client, for example error or status messages.

Transfer: Similar to a consumer, the “Transfer” thread tries to get simulation results from a result
manager and sends them to the Ul immediately after starting a simulation. If the communication
takes longer than a calculation step, it is also possible to create more than one consumer. The
“Transfer” uses a property filter mask containing all property names whose result values are
important for the UI. The UI must set this mask using the “setfilter” operation from chapter 2.1.3.2,
otherwise the transfer sends only the actual simulation time. This is very useful for increasing the
communication speed while sending results to the Ul

5.3 Communication Interface

The network communication technology “TCP/IPv4” (later IPv6) will be used to send and receive
messages. Each system has its own server and client implementations to receive and send messages
respectively. The Control and Transfer are the OMI components which are designated for a communication
over TCP/IP.

89

5.4 Network configuration Settings

Name

Description

URL

Control Server

Waits for requests from the Ul

By Default, waits for connection on:
127.0.0.1:10501

Control Client

Replies to the UI and sends other
synchronization messages to it

By Default, tries to connect on:
127.0.0.1:10500

Transfer Client

Sends simulation results to a UI

By Default, tries to connect on:
127.0.0.1:10502

OMI server and client components: Communication behaviour and configuration by default

Name

Description

URL

Control Client

Requests to the OMI Control Server

By Default, tries to connect on:
127.0.0.1:10501

Control Server

Waits for information from the OMI
Control Client

By Default, waits for connection on:
127.0.0.1:10500

Transfer Server

Waits for simulation results from the
OMI Transfer Client

By Default, waits for connection on:
127.0.0.1:10502

Ul server and client components: Suggested configuration by default

5.4.1 Operation Messages

To use messages parsing there is a need to specify a communications protocol.

A string message begins with a specified prefix and ends with a specified suffix.

The prefix describes the request type, for example an operation. Depending on the request type, some
additional information and parameters can append on it. The suffix is to check if the message has been
received correctly and if the sender has created it correctly. All parts should be separated with “#”.

A sequence number is helpful to manage operation request and reply, a Ul has to send a sequence

number combined with an operation.

The following are all available message strings between a Ul and the OMI system:

Request from Ul to Control

UI Request Description OMI::Control Reply
start#SEQ#end Starts or continues the simulation done#SEQ#end
pause#SEQ#end Pauses the running simulation done#SEQ#end
stop#SEQ#end Stops the running simulation and done#SEQ#end
resets all values to the beginning
shutdown#SEQ#end Shuts the simulation down done#SEQ#end
setfilter#SEQ# Sets the filter for variables and done#SEQ#end
varl :var2# parameters which should send
parl:par2# from OMI to the client Ul
end
useindex#SEQ#end Uses indexes as attribute names. done#SEQ#end
The index will be used at
transmitting results to a client. This
will cause much less data to
transmit. (??Not implemented yet)
setcontrolclienturl#SEQ# Changes the IP and port of the done#SEQ#end
ip#port# Control Server. Otherwise the
end default configuration will be used.
settransferclienturl#SEQ# Changes the IP and port of the done#SEQ#end
ip#port# Control Server. Otherwise the

90

end default configuration will be used.
changetime#SEQ#Tn#end Changes the simulation time and done#SEQ#end
goes back to a specific time step
changevalue#SEQ#Tn# Changes the value of the appended done#SEQ#end
parl=2.3:par2=33.3# parameters and stets the simulation
end time back to the point where the
user clicked in the Ul
error#TYPE#end Error handling not implemented Error: *
yet

Table 5-1 Available messages from a Ul to OMI (Request-Reply)

Messages from Control to Ul

OMI::Control Description Ul

Error: MESSAGE If an error occurs the OMI::Control | Up to the UI developers
generates an error messages and
sends the messages with the prefix
“Error:” to the UI (not implemented

yet)

Table 5-2 Available messages from OMI::Control to UI

Messages from Transfer to Ul

OMI:: Transfer Description Ul

result#ID#Tn# Sends the simulation result for a None
varl=Val:var2=Val# time step Tn to the client Ul, using

parl=Val:par2=Val# the property names as identifier.

end Maybe a result ID is important to

identify the results which are
obsolete (not implemented yet).

result#ID#Tn# Sends the simulation result for a None
1=Val:2=Val# time step Tn to the client UL, using

1=Val:2=Val# an index as identifier. This requires

end a convention about the used index

mask. Transfer optimization.
NOTE: Operation from UI needed,
Mask creation using the standard
array index is recommended.
Maybe a result ID is important to
identify the results which are
obsolete (not implemented yet).

Table 5-3 Available messages from OMI::Transfer to Ul

5.5 Interactive Simulation general Procedure

Note that OMI is available in an easy-to-use way from OMEdit, see Section 2.7, as an alternative to the
procedure described below.

91

5.5.1 Initialize an Interactive Simulation Session

Start the OpenModelica Shell or OMNotebook which is available in the start menu as

OpenModelica->OpenModelica Shell or OpenModelica->OMNotebook.

{ffi oMshell - Opentodelica Shell =101 x|

Fie Edit View Help

t B2 20|

OpenModelica 1.4.5 =
Copyright {c) ©SMC 2002-2008

To get help on using OMShell and OpenModelica, type "help()" and press enter.
>

1. Load a model or file.
Optional: You can check if your model or file has been loaded correctly with the operation “list()”

2. Build the model using the operation “buildModel(...)” with the following parameters:
a) Model main class name: Name of the main class of your model.
b) numberOfintervals: Number of output values in an interval of one second. For Example:
“numberOfIntervall=5" means that 5 results will be put out every one second (0s, 0.2s, 0.4s, 0.6s,
0.8s, 1.0s...).
¢) Note: You can use all parameters which are accepted from the operation “buildModel” except the
parameters “Start” and “Stop”. These parameters are unnecessary because an interactive simulation
always starts at the time “0s” and runs as long as it won’t be stopped or aborted.

3. Execute the created simulation runtime with the parameter “-interactive” and with a port for the
control server optionally “-port xxxxx”. After starting the runtime it will wait until a client connects
to its control server port. Now you can enter the operations mentioned above.

5.6 Interactive Simulation Example

In this chapter we will explain how to simulate a Modelica system interactively. This procedure should be a

default step by step procedure for using OMI with a UL

5.6.1 How to get an example Modelica Model

The application sample for Windows is present in C:\OpenModelical.7.0\share\doc\omc\interactive-

simulation. Also read C:\OpenModelical.7.0\share\doc\omc\interactive-simulation\README.txt.
The source code for the client is in the Subversion repository: trunk/c_runtime/interactive.
An application test is in the Subversion repository here: trunk/testsuite/interactive-simulation.
See here how to get the code: https://www.openmodelica.org/index.php/developer/source-code

92

5.6.2 Create the simulation runtime

We will use an example system based on a demonstration model which is given in the Modelica book by
Peter Fritzson [[2], Page 386].

Tanls Connec ted PI
- dln 5 t y gt I]II‘I= i ™ gout
— an . N an o
t=ensor tactuator t=enzor t&ctyator
—Clnb l:ln Cl:l u‘t

Figure 5-2. TanksConnectedPI structure diagram.
Please follow the steps to create an executable simulation runtime file.

1. Start OMShell “Start->OpenModelica->OpenModelica Shell”

2. Enter the operation “loadModel(TwoTanks)”
NOTE: We assume that the TwoTanks model is in the ModelicalLibary OM installation folder
(...\OpenModelical.7.0\ModelicaLibrary\TwoTanks) otherwise please load the file from its
location (...\OpenModelical.7.0\share\doc\omc\interactive-simulation*.zip).

3. Use the “buildModel” operation with the following parameters to build the TwoTanks model:
buildModel(TwoTanks. TanksConnectedPl, numberOfintervals=5)

EDMShEII - DpenModelica Shell -0l x|

File Edit WYiew Help
s 2B |8 20|

CpenModelica 1.5.0
Copyright (<) ©8MC ZO0Z-Z2008

To get help on using CMghell and OpendModelica, type "help()" and
press enter.

*> loadModel (TwoTanks)
true

»» buildModel (TwoTanks. TanksConnectedPI, numberOfInterwvals=5)
{"TwoTanks. TanksConnectedPI"”, "TwoTanks. TanksCDnnectedPI_init. txt"}

>

5.6.3 Start an interactive Simulation Session

Start the created simulation runtime it should be located in the “tmp” folder of the OM installation folder
(.\OpenModelical.7.0\tmp\TwoTanks.TanksConnectedPl .exe)

Use the b “~interactive —port xxxxx”. NOTE: If the default port (10501) should be used ignore the
parameter “—port”. Now the simulation runtime will be waiting until a UI client has been connected on its
port.

Start the client: “client.exe”.

93

ulationDemo_|

DpenModelica 1.5.8 — OpenModelica Interactive Uer B.7
Interactive Simulation Environment Demonstration GUI
CalaTatatadaiadatadataiotodstatotototatototatatotatatolkabaiotstataotototstatiotatotokatoiodbototiatoiotobabiotal
[help]l To get help and a list of availabhle operations.
[ztart] To start the environment deomstrator.

— NOTE: MAKE SURE THE SIMULATION RUNTIME IS RUNNING
[ports] To change ports of communication units

[exit] To exit this application.

Enter Operation for Environment: _

(Deprecated: Now enter “start” into the console and wait until the client is successfully connected.)

Enter following operation for the simulation runtime:

setcontrolclienturl#1#127.0.0.1#10500#end
settransferclienturl#2#127.0.0.1#10502#end
setfilter#3#tankl.h#source.flowLevel#end

Start the simulation with: start#4#end

NOTE: After starting the simulation your keyboard entries and the results will be displayed in the same
console and you can’t see what you are typing. Please pause the simulation first than enter a longer
operation string.

Pause the simulation with: pause#5#end

Change a Value with: changevalue#6#xx.x#source.flowLevel=0.04#end.

For example if time is higher than 60 and lower than 200 enter >
changevalue#6#60 . 0#source . flowLeve 1=0.0004#end

message: resultil E-.2#tank1.h=B.2SBBBEﬂSDurce.flowLeuel=B.B2ﬂend Il
message = result#iBh 4fftankl . h=0.250086#so0urce . f lowLevel=A.82#fend

message : result#iBh 6Htankl . h=0.250086#so0urce .f lowLevel=A.82#fend
message : resultd - 1.h=0_250086#zo0urce .f lowLevel=A_82#end

message = result#iB 2580061z ource . f lowLeve1=8_.82#end
ransfer—Server recived message: result
ransfer—Server recived message: resultd
recived message: resulth

recived message: resulth
ransfer—Server recived message: resulth
ransfer—Server recived message: resulth
ransfer—Server recived message: result
ransfer—Server recived message: resultd

recived message: resulth

recived message: resulth #itankl . h=8.258084#zource . f lowLeve 1=.082#end
ransfer—Server recived message: resulth J2Htankl _h=0.250004#lsource . f lowLevel=0_82#end
ransfer—Server recived message: resulth -dittankl .h=0.258004#lsource . f lowLevel=0_82#end
ransfer—8Server recived message: resultl GHtankl .h=0.258884#source .f lowLevel=A.82#end

Shutdown the simulation runtime and the environment with: shutdown#7#end

95

Chapter 6

OMOptim — Optimization with OpenModelica

6.1 Introduction

OMOptim is a tool dedicated to optimization of Modelica models. By optimization, one should understand
a procedure which minimizes/maximizes one or more objectives by adjusting one or more parameters.

OMOptim 0.9 contains meta-heuristic optimization algorithms which allow optimizing all sorts of
models with following functionalities:

e One or several objectives optimized simultaneously
e One or several parameters (integer or real variables)

However, the user must be aware of the large number of simulations an optimization might require.

6.2 Preparing the Model

Before launching OMOptim, one must prepare the model in order to optimize it.

6.2.1 Parameters

An optimization parameter is picked up from all model variables. The choice of parameters can be done
using the OMOptim interface.
For all intended parameters, please note that:

e The corresponding variable is constant during all simulations. The OMOptim optimization in
version 0.9 only concerns static parameters’ optimization i.e. values found for these parameters will
be constant during all simulation time.

e The corresponding variable should play an input role in the model i.e. its modification influences
model simulation results.

6.2.2 Constraints

If some constraints should be respected during optimization, they must be defined in the Modelica model
itself.
For instance, if mechanical stress must be less than 5 N.m'z, one should write in the model:

assert(mechanicalStress < 5, “Mechanical stress too high”);

If during simulation, the variable mechanicalStress exceeds 5 N.m™, the simulation will stop and be
considered as a failure.

96

6.2.3 Objectives

As parameters, objectives are picked up from model variables. Objectives’ values are considered by the
optimizer at the final time.

6.3 Set problem in OMOptim

6.3.1 Launch OMOptim

OMOptim can be launched using the executable placed in
OpenModelicalnstallationDirectory/bin/ OMOptim/OMOptim.exe. Alternately, choose
OpenModelica > OMOptim from the start menu.

6.3.2 Create a new project

To create a new project, click on menu File -> New project
Then set a name to the project and save it in a dedicated folder. The created file created has a .min
extension. It will contain information regarding model, problems, and results loaded.

6.3.3 Load models

First, you need to load the model(s) you want to optimize. To do so, click on Add .mo button on main
window or select menu Model -> Load Mo file...

When selecting a model, the file will be loaded in OpenModelica which runs in the background.

While OpenModelica is loading the model, you could have a frozen interface. This is due to multi-
threading limitation but the delay should be short (few seconds).

You can load as many models as you want.

If an error occurs (indicated in log window), this might be because:

e Dependencies have not been loaded before (e.g. modelica library)
e Model use syntax incompatible with OpenModelica.
6.3.3.1 Dependencies

OMOptim should detect dependencies and load corresponding files. However, it some errors occur, please
load by yourself dependencies. You can also load Modelica library using Model->Load Modelica
library.

When the model correctly loaded, you should see a window similar to Figure 6-1.

97

File Models Problem Display Tooks About

| Project | Optimization | OptCooling | Optimization reswt (3) | Optimizationresult | OptCoolingresult | OptCodir P
Project name : testLinsarActuator
Project file : C:/Documents and Settings/Sayah{Mes documents/Mines/ModOpt TestLinear Actuator testLinearActuator.min

/Documents and Settings/SayahfMes documents/Mines/ModOptModelicaTotal. mo
Loaded .mo files : C ,!‘Docmnen!s and Seui'os,u‘SwahMes documents/Mines/ModOpt TestLinearActuator/Linearactuaton.mo

]

Loading project (C:/Documents and Settings/SayahjMes documents/MinesModOpt/TestLinearActuator testLinearActuatormin) ...

Loading file : C:/Documents and Settings/SayahfMes documentsjMines/ModOpt/ModelicaTotal, mo

Model loaded successfully™C:/Documents and Settings/SayahfMes documents/Mines/ModOpt/MadelicaTatal . mo"

Loading file : C:/Documents and Settings/SayahiMes documentsjMines/ModOpt|TestLinearActustor fLinearactuator.mo

Madel Ioaded successfully"C: /Documents and Settings/SayahfMes documents/Mines/ModOpt{TestLinearActuator Linearactuator.mo”

Loading madel file (C:fDocuments and Settings/Sayah/Mes documents/Mines/ModOpt/ TestLinearActuator/Models/LinearActuator/LinearActuator.mmo) ..

Loading model file (C:/Documents and SettingsfSayah/Mes
documents/Mines/ModOpt/ TestLinearActuator [Models/Modelica, Thermal FluidHeatFlow, Examples. SimpleCooling/testLinearActuator.mma) ...

Problem “Optimization” added to project
Problem "OptCooling” added to project
e S "

&gﬂ"_@_l

ki Coainl il e ol b I8 ol b T Bakeaninudhaahid Eanbank ik

Figure 6-1. OMOptim window after having loaded model.

6.3.4 Create a new optimization problem

Problem->Add Problem->0Optimization

A dialog should appear. Select the model you want to optimize. Only Model can be selected (no

Package, Component, Block...).

A new form will be displayed. This form has two tabs. One is called Variables, the other is called

Optimization.

98

:

g

it
i

BREEEEEEER e

i

%

7
g,

E

|

g*zs iy

Selected objectives

Loading project {C:/Doc and 5 s {ModOpt | inearic
Loadirg File : C: and doc MMines{ModOpt ey

el bnaded e I sl i) IMines ot S
Loading file : C:/Dx and nes{ModOpt TestL Acty]

Toaded successfully™C el = Mines/ModOpt T * .
Laading mode File {: /Do and Sayahjl [Mines{ModOpt TestLi JalsfLinearActeator fLinearActuatonmma) ...
L el Fia {5 I iviery i
d e ModOpt TestL hodels] Thermal, FhidHeatFlow, Examples. SimpleCoolng
Problem “Optimization” added to project
Problem “OptCoclng” added to project
Drodact baading ch n o i 1w i, .

Figure 6-2. Forms for defining a new optimization problem.

6.3.4.1 List of Variables is Empty

If variables are not displayed, right click on model name in model hierarchy, and select Read variables.

W OGS ORI
& Ul
= iLineal
@
. Read functions
®- -
[Set parameters (e.g. finalTime, selver)
&
st Select simulator

Figure 6-3. Selecting read variables, set parameters, and selecting simulator.

6.3.5 Select Optimized Variables

To set optimization, we first have to define the variables the optimizer will consider as free i.e. those that it
should find best values of. To do this, select in the left list, the variables concerned. Then, add them to
Optimized variables by clicking on corresponding button (+).

For each variable, you must set minimum and maximum values it can take. This can be done in the
Optimized variables table.

99

6.3.6 Select objectives

Objectives correspond to the final values of chosen variables. To select these last, select in left list variables
concerned and click + button of Optimization objectives table.
For each objective, you must:

e Set minimum and maximum values it can take. If a configuration does not respect these values, this
configuration won’t be considered. You also can set minimum and maximum equals to “-* : it will
then

e Define whether objective should be minimized or maximized.

This can be done in the Optimized variables table.

6.3.7 Select and configure algorithm

After having selected variables and objectives, you should now select and configure optimization
algorithm. To do this, click on Optimization tab.

Here, you can select optimization algorithm you want to use. In version 0.9, OMOptim offers three
different genetic algorithms. Let’s for example choose SPEA2Adapt which is an auto-adaptative genetic
algorithm.

By clicking on parameters... button, a dialog is opened allowing defining parameters. These are:

e Population size: this is the number of configurations kept after a generation. If it is set to 50, your
final result can’t contain more than 50 different points.

e Off spring rate: this is the number of children per adult obtained after combination process. If it is
set to 3, each generation will contain 150 individual (considering population size is 50).

e Max generations: this number defines the number of generations after which optimization should
stop. In our case, each generation corresponds to 150 simulations. Note that you can still stop
optimization while it is running by clicking on stop button (which will appear once optimization is
launched). Therefore, you can set a really high number and still stop optimization when you want
without losing results obtained until there.

e Save frequency: during optimization, best configurations can be regularly saved. It allows to
analyze evolution of best configurations but also to restart an optimization from previously obtained
results. A Save Frequency parameter set to 3 means that after three generations, a file is
automatically created containing best configurations. These files are named iteraionl.sav,
iteration2.sav and are store in Temp directory, and moved to SolvedProblems directory when
optimization is finished.

e ReinitStdDev: this is a specific parameter of EAAdaptl. It defines whether standard deviation of
variables should be reinitialized. It is used only if you start optimization from previously obtained
configurations (using Use start file option). Setting it to yes (1) will, in most of cases, lead to a
spread research of optimized configurations, forgetting parameters’ variations’ reduction obtained
in previous optimization.

6.3.7.1 Use start file

As indicated before, it is possible to pursue an optimization finished or stopped. To do this, you must
enable Use start file option and select file from which optimization should be started. This file is an
iteration_.sav file created in previous optimization. It is stored in corresponding SolvedProblems folder
(iteration10.sav corresponds to the tenth generation of previous optimization).

Note that this functionality can only work with same variables and objectives. However, minimum,
maximum of variables and objectives can be changed before pursuing an optimization.

100

6.3.8 Launch

You can now launch Optimization by clicking Launch button.

6.3.9 Stopping Optimization

Optimization will be stopped when the generation counter will reach the generation number defined in
parameters. However, you can still stop the optimization while it is running without loosing obtained
results. To do this, click on Stop button. Note that this will not immediately stop optimization: it will first
finish the current generation.

This stop function is especially useful when optimum points do not vary any more between generations.
This can be easily observed since at each generation, the optimum objectives values and corresponding
parameters are displayed in log window.

6.4 Results

The result tab appear when the optimization is finished. It consists of two parts: a table where variables are
displayed and a plot region.

6.4.1 Obtaining all Variable Values

During optimization, the values of optimized variables and objectives are memorized. The others are not.
To get these last, you must recomputed corresponding points. To achieve this, select one or several points
in point’s list region and click on recompute.

For each point, it will simulate model setting input parameters to point corresponding values. All values
of this point (including those which are not optimization parameters neither objectives).

101

6.5 Window Regions in OMOptim GUI

Model structure I List of problems/results Current problem fresultvizualization
rg ModOpt U@EW
Flo Models Problem Display Tooks About N
Maodels

892BREFTEHAIREG

jikog X
l.omm(MMWW&WW
file : C:/Documents and documents[Mines{ModOptTestOsyczkajosyczha
log mmm(cmummmmwmwmmma
1 Problem "Optimization™ added L N . L .
L

I
Figure 6-4. Window regions in OMOptim GUI.

103

Chapter 7

MDT — The OpenModelica Development Tooling
Eclipse Plugin

7.1 Introduction

The Modelica Development Tooling (MDT) Eclipse Plug-In as part of OMDev — The OpenModelica
Development Environment integrates the OpenModelica compiler with Eclipse. MDT, together with the
OpenModelica compiler, provides an environment for working with Modelica development projects.

The following features are available:

Browsing support for Modelica projects, packages, and classes

Wizards for creating Modelica projects, packages, and classes

Syntax color highlighting

Syntax checking

Browsing of the Modelica Standard Library or other libraries

Code completion for class names and function argument lists.

Goto definition for classes, types, and functions.

Displaying type information when hovering the mouse over an identifier.

7.2 Installation

The installation of MDT is accomplished by following the below installation instructions. These
instructions assume that you have successfully downloaded and installed Eclipse (http://www.eclipse.org).

Nk v =

XN

Start Eclipse

Select Help->Software Updates->Find and Install... from the menu

Select ‘Search for new features to install’ and click ‘Next’

Select ‘New Remote Site...’

Enter ‘MDT’ as name and
‘http://www.ida.liu.se/labs/pelab/modelica/OpenModelica/MDT’ as URL and click ‘OK’
Make sure ‘MDT” is selected and click ‘Finish’

In the updates dialog select the ‘MDT’ feature and click ‘Next’

Read through the license agreement, select ‘I accept...” and click ‘Next’

Click ‘Finish’ to install MDT

104

7.3 Getting Started

7.3.1 Configuring the OpenModelica Compiler

MDT needs to be able to locate the binary of the compiler. It uses the environment variable
OPENMODELICAHOME to do so.

If you have problems using MDT, make sure that OPENMODELICAHOME is pointing to the folder
where the Open Modelica Compiler is installed. In other words, OPENMODELICAHOME must point to
the folder that contains the Open Modelica Compiler (OMC) binary. On the Windows platform it’s called
omc.exe and on Unix platforms it’s called omc.

7.3.2 Using the Modelica Perspective

The most convenient way to work with Modelica projects is to use to the Modelica perspective. To switch
to the Modelica perspective, choose the Window menu item, pick Open Perspective followed by
Other... Select the Model ica option from the dialog presented and click OK..

7.3.3 Selecting a Workspace Folder

Eclipse stores your projects in a folder called a workspace. You need to choose a workspace folder for this
session, see Figure 5-7-1

Figure 5-7-1. Eclipse Setup — Switching Workspace.

7.3.4 Creating one or more Modelica Projects

To start a new project, use the New Modelica Project Wizard. It is accessible through Fi le->New->
Modelica Project or by right-clicking in the Modelica Projects view and selecting New->Modelica
Project.

Figure 5-7-2. Eclipse Setup — creating a Modelica project in the workspace.

You need to disable automatic build for the project(s) (Figure 5-7-3).

Figure 5-7-3. Eclipse Setup — disable automatic build for the projects.

Repeat the procedure for all the projects you need, e.g. for the exercises described in the MetaModelica
users guide: 01 _experiment, 02a_expl, 02b_exp2, 03 _assignment, 04a_assigntwotype, etc.

NOTE: Leave open only the projects you are working on! Close all the others!

7.3.5 Building and Running a Project

After having created a project, you eventually need to build the project (Figure 7-4).

105

mm_. lex]
Fie Bt Refactr Hovigsle Search | Project Man Wikw Helo

|/ forrect raterstaon 3 | el »
y Cl=)
*
1B 06 _CMC R
1 07_pam =
3 08 _pamded
1 09 _pamirans
& 10 _petrsl
e
[Protsors |1 corncie 51 Brer Log| Sewch| wii[@-r9i-=0
o
K} _I—I
| | risable lnsert i1

Figure 7-4. Eclipse MDT — Building a project.
There are several options: building, building from scratch (clean), running, see Figure 7-5.
??missing figure
Figure 7-5. Eclipse — building and running a project.
You may also open additional views, e.g as in Figure 7-6.
??missing figure

Figure 7-6. Eclipse — Opening views.

7.3.6 Switching to Another Perspective

If you need, you can (temporarily) switch to another perspective, e.g. to the Java perspective for working
with an OpenModelica Java client as in Figure 7-7.

1 Modelica - Felipue ST =18l x]
Fie Edt Refactr Navgate Search Profect Run Window Hep

| w = |@ 17 Q-0+ |08 (|eeE- - B[Dlmedeicn =

(r—, -
B 01_tiperment T Dby

(probiens | consoie 13 EmorLog| search| %[wii*@-ri-=0

em -f a.oul coe men.sub gmsn.sub main maln.sss Hale.s Types.s Funetions.s Hain.e Hain.h Types.e Types.h Functions.s =

106

Figure 7-7. Eclipse — Switching to another perspective — e.g. the Java Perspective.

7.3.7 Creating a Package

To create a new package inside a Modelica project, select Fi le->New->Modelica Package. Enter the
desired name of the package and a description of what it contains. Note: for the exercises we already have
existing packages.

|(New Modelica Package Bl
Modelica Package
Create a new Modelica package.
Source folder: [F’F’C 970 l [Brmuse...l
Name: [C ore l

Description: |Thi5 package contains the core stuff |

[is encapsulated package

Einish l [Cancel

Figure 7-8. Creating a new Modelica package.

7.3.8 Creating a Class

To create a new Modelica class, select where in the hierarchy that you want to add your new class and
select File->New->Model ica Class. When creating a Modelica class you can add different restrictions
on what the class can contain. These can for example be model, connector, block, record, or
function. When you have selected your desired class type, you can select modifiers that add code blocks
to the generated code. ‘Include initial code block’ will for example add the line ‘initial
equation’ to the class.

107

x|

|'-|.' New Modelica Class

Modelica Class
Create a new Modelica class.
Source folder: [PPCQ?O;"Core l [Bmwse...]
Name: |ALU |
Type: block
Medifiers: include initial equation block

[is partial class

O

l Finish] [Cancel

Figure 7-9. Creating a new Modelica class.

7.3.9 Syntax Checking

Whenever a build command is given to the MDT environment, modified and saved Modelica (.mo) files
are checked for syntactical errors. Any errors that are found are added to the Problems view and also
marked in the source code editor. Errors are marked in the editor as a red circle with a white cross, a
squiggly red line under the problematic construct, and as a red marker in the right-hand side of the editor. If
you want to reach the problem, you can either click the item in the Problems view or select the red box in

the right-hand side of the editor.

Modelica - ALU.mo - Eclipse SDK
File Edit MNavigate Search Project SWT Hierarchy Run Window Help

In-tclee e o [t >
| 4 -
% Modeli... 3 - = O m\ =
- HPPCY70 block ALU L
~
& Core equation
& ALU.mo -
[package.mo ||© imital eauation
-project end ALU;
[» =4 System Libra
Y YL & D
Console |[£/ Problems &2 & Y =0
2 errors, 0 warnings, 0 infos
‘ | Description | Resource ‘ In Folder Location
@ unexpected token ALU.mo PPCO70/Core line 5
@ unexpected token ALU.mo PPC970/Core line 5

I3 }{EN |

3]

A

Figure 7-10. Syntax checking.

108

7.3.10 Automatic Indentation Support

MDT currently has support for automatic indentation. When typing the Return (Enter) key, the next line is
indented correctly. You can also correct indentation of the current line or a range selection using CTRLA+I
or “Correct Indentation” action on the toolbar or in the Edit menu.

7.3.11 Code Completion

MDT supports Code Completion in two variants. The first variant, code completion when typing a dot after
a class (package) name, shows alternatives in a menu. Besides the alternatives, Modelica documentation
from comments is shown if is available. This makes the selection easyer.

< Modelica - DCEngine.mo - Eclipse SDK

File Edit Refactor Mawigate Search Run Project Window Help
T‘j*L}:,'Jr;] ot %' ¥ |-

[M] Modelica Projects &3 = O *DiZEngine. ma o4
- Iﬁ- EngineSimulation model DCEngine
+- [DCEngine.mo import Modelica.|
|=| project e i
=g, Standard Library quation 5 Blocks
= EE\‘ Modelica _) EE‘C:::nstants
end DCEngine; EE‘EIectricaI
+- £ Blocks
+- £ Caonstants B8 1cons
+-F3 Electrical £ Math
+-F3 Icons B Mecharics
=3 Math B s1units
+ acos B Thermal
+ asin
+ atan
+ atang
baselconi

Figure 7-11. Code completion when typing a dot.

The second variant is useful when typing a call to a function. It shows the function signature (formal
parameter names and types) in a popup when typing the parenthesis after the function name, here the
signature Real sin(Sl1.Angle u) of the sin function:

= Modelica - DCEngine.mo - Eclipse SDK
File Edit Refactor Mavigate Search Run Project Window Help

1=:r'|_|:1_|l'==] arg %' \);- =T

(1" Modelica Projects &2 =g *DCEngine.ma 25
-2 EngineSimulation model DCEngine
+ DZEngine. mo import Modelica.MNath.*:
=] .project output EReal x;
==, Standard Library equation
= Modelica Feal sin(SLAngle 0
+--ff Blocks I ——

+--Ff Canstants
+--F3 Electrical -
+-Ff Irons

Figure 7-12. Code completion at a function call when typing left parenthesis.

end DCEngine:

109

7.3.12 Code Assistance on Identifiers when Hovering

When hovering with the mouse over an identifier a popup with information about the identifier is
displayed. If the text is too long, the user can press F2 to focus the popup dialog and scroll up and down to
examine all the text. As one can see the information in the popup dialog is syntax-highlighted.

[1= x]
orrect Indentation] I 8 e i - i | 3 Modelica 3
° & =

=

ring,cutlntera
inString,inlnte J
Cption:
c1zsgs pmiontype |

true = Util:strnemp("quit{)", stx

then
racord IDENT

false, "Ok\a", isymb) ; .
Ident name "name";

case

end IDENT;

lisyrb as Interactive SYMB

Figure 7-13. Displaying information for identifiers on hovering

7.3.13 Go to Definition Support

Besides hovering information the user can press CTRL+click to go to the definition of the identifier.
When pressing CTRL the identifier will be presented as a link and when pressing mouse click the editor will
go to the definition of the identifier.

7.3.14 Code Assistance on Writing Records

When writing records, the same functionality as for function calls is used. This is useful especially in
MetaModelica when writing cases in match constructs.

110

- Eclipse SDK

File Edit MNavigate Search Project Run Window Help

IS-EHe & Q-

11 Modelica Projects &3

S

=

=

- gt

2T modeqThG

""" 17 org.modelica

""" T org.modelica

..... E' rdt
""" 107 rdt-update

[:I"-L:& OpenModelica [trunk]

.mdt.core
""" T org.modelica.
----- 127 org.modelica.
""" T org.modelica.
----- 127 org.modelica.
.mdt.site
‘LT org.modelica.
""" 127 org.modelica.

mdt.debug.core
mdt.debug.ui
mdt. feature
mdt.omc

mdt. test
mdt,ui

5= outline 532

|2 Jci-)@

4

- ¥5 o = - | Correct Indentation

local ComponentRef crefl,crefZ; list<Exp>* argsl,srgsZ; Boole
blst = Util_listThreadMap(argsl, argss, expEqual);
equal = Util.kboolAndListi(klst);
then equal;
case (MATRIX(=rgsl), MRTRIX(argsZ))
local ComponentBef crefl, cref2; list<list<Exp>> argsl, argsZ;
blst = Util.listlistThreadMspisrgsl,argsZ, expEqual);
equal = TUtil _boollndlist (Util_listFlatten(blsat));
then egual;
[RANGE{Exp start, Option<Exp > step, Exp stop) |
case iRBNGE(kll,SOMECElE),elSI,RBNGECEEl,SOHE#eEEJ,92333
local Exp ell,elZ,el3,eiZl, eiz,ez3;
Boolean bl b2 b3;

eguation
bl = expEqual {ell, eZl);
bZ = expEqualielZ,eZZ);
b3 = expEqual {el3, eZ3);

equal = Util _boolAndList({bl, b2 b3});
then egqual;

case (RARNGE(ell, ,el3) RANGE(eZl, ,e23))
local Exp ell,elZ, el3 ezl ez, eZ3;
Boclean bl bZ,b3;
egquation

bl = expEqual (ell,eZl);

Figure 7-14. Code assistance when writing cases with records in MetaModelica.

7.3.15 Using the MDT Console for Plotting

& Modelica - demo/BouncingBallmo - Edlipse SDK

= [m] 3
File Edit Mavigate Search Project Run Field Assist Window Help
[wi - |G 4 -0-%- &+ @ | @ |5 | comendnen |] -0hict Ga - =i [wodeica & 22va
(1 Modelica Projects £3 = O [M souncingsall.mo 22 1] vanDerPal.ma 1 =
5 ‘ Ee s “model BouncingBall =

B &2 demo
- [M] BouncingBall.mo
- [Heloworld.mo
- [VanDerPol.mo
- [X] .project

-} Modslica

: 7 Blocks

: 8} constants
8 Electrical
£ Icons

£ Math

E| B Libraries: €:\OpenModelica 1, 4. 4\Modelical

© extends Icons.Library;

L om oo

paramster Real
parameter Real
Real hist
Real v "vel
Boolean L
Boolean
Real v_n
discrete Int
sqmation
impact =
der (v)

mpact;

der(h) = v;

n
"]
e 20 | end when;
=8 21 end BouncingBall;
¢ x|

({start=true)

eger n_bounce (start=0);

if edge(impact)} then -e*pre(v) else 0:
v_new > 0:

ounce=pre (n_bounce)+1;

then

impaect}

il

n_bounce

o
o

© impact
°

o v

°

v_new

[Problems [Emsnle 2 [l Buukmarks] & ngress]

B r5-50|

/o consoles to display at this time.

1Java Stack Trace Console

Ey2cus

3 Newi Consale View
4MOT Coi
E") 5 5vn Consale
Ef 6 TelConsole

ole

=%

| | 7 s

Figure 7-15. Activate the MDT Console

111

Echipse SDK
File. Edit 'Mavigate Search Project Run Fisld Assist

s

|-0-a-|3|5 |80

Windo Help

| comectindenttion: | 5| <) et o -

ae

B & demo 2
3

(i Modelica Projects 51 = B[[souncingBallmo 83] VarDerPalima]

Smodel BouncingBall

ot ERr =0

Paramodel BouncingBall
[l Bouncinggall.mo ® | P2 parameter Real e=d.
[l Hellotorld.mo 2 RBeall arameter Real g=9 ty =cceleration
[varDerPol.mo | ;‘E“ Real h(start=1) "height of ball”;
[X] iprosect § | B09Y peay v Mvelocity of ball";
] B >4
- Libraries: C:\OpenModelica 1,4, #\Modelical 221 sszlesn fiving(start=true) Torus, 1T b is fiying™;
E-8 Modelica Reall zoo1esr impacc;
{0 extends Icons.Library; 158 peal v news
4 Blocks O le@matil gysorete Inveger n bounce(start=0);
B Constants e | 5 prp—
8 Becrica 2 der(v) = if flying then -g else 0:
.o 13 derin) = v;
14
1 Math i B "
B Mecharics 15 when {h <= 0.0 and v <= 0.0,impact} then
B sitits 16 v_new = if edge(impact) then -epre(v) else 0;
8 serstiie 17 flying = v new > 0:
Modelcaadditons a2 EELALEIN, YoRewE
. i 13 n_bounce=pre (n_bounce) +1;
20 end when:
BF Qutine 53 N S Hj[21 end Bouncingza
¥ JRE -4 i
T L5
B M BoundngBall (2. problems [l]m@m@@‘ nge_nq
° e
@ fiying come Modelica Development Tooling (MTD) Console
°e You can send commands to OMC from here.
°h
o impact
© n_bounce
oy
o y_new

I

Figure 7-16. Simulation from MDT Console

113

Chapter 8

Modelica Performance Analyzer

A common problem when simulating models in an equation-based language like Modelica is that the model
may contain non-linear equation systems. These are solved in each time-step by extrapolating an initial
guess and running a non-linear system solver. If the simulation takes too long to simulate, it is useful to run
the performance analysis tool. The tool has around 5~25% overhead, which is very low compared to
instruction-level profilers (30x-100x overhead). Due to being based on a single simulation run, the report
may contain spikes in the charts.

When running a simulation for performance analysis, execution times of user-defined functions as well
as linear, non-linear and mixed equation systems are recorded.

To start a simulation in this mode, just use the measureTime flag of the simulate command.

simulate(modelname, measureTime = true)

The generated report is in HTML format (with images in the SVG format), stored in a file
mode lname_prof.html, but the XML database and measured times that generated the report and graphs
are also available if you want to customize the report for comparison with other tools.
Below we use the performance profiler on the simple model A:
model A

function f
input Real r;

output Real o := sin(r);
end T;
String s = "abc";

Real x = f(xX) "This is x";
Real y(start=1);
Real zl1l = cos(z2);
Real z2 = sin(zl);
equation
der(y) = time;
end A;

We simulate as usual, but set measureTime=true to activate the profiling:

simulate(A, measureTime = true)

114

// // record SimulationResult

// resultFile = "A res.mat",

// messages = "Time measurements are stored in A_prof.html (human-readable)
and A_prof._.xml (for XSL transforms or more details)"

// end SimulationResult;

8.1 Example Report Generated for the A Model

8.1.1 Information

All times are measured using a real-time wall clock. This means context switching produces bad worst-case
execution times (max times) for blocks. If you want better results, use a CPU-time clock or run the
command using real-time priviliges (avoiding context switches).

Note that for blocks where the individual execution time is close to the accuracy of the real-time clock,
the maximum measured time may deviate a lot from the average.

For more details, see the generated file A_prof.xml, shown in Section 8.1.7 below.

8.1.2 Settings

The settings for the simulation are summarized in the table below:

Name Value
Integration method euler
Output format mat
Output name A _res.mat
Output size 24.0 kB
Profiling data A prof.data
Profiling size 27.3 kB

8.1.3 Summary

Execution times for different activities:

Task Time Fraction
Pre-Initialization 0.000401 19.17%
Initialization 0.000046 2.20%
Event-handling 0.000036 1.72%
Creating output file 0.000264 12.62%
Linearization 0.000000 0.00%
Time steps 0.001067 51.00%
Overhead 0.000273 13.05%
Unknown 0.000406 0.24%
Total simulation time 0.002092 100.00%

115

8.1.4 Global Steps

Steps || Total Time || Fraction Average Time | Max Time || Deviation
]_._ 499 0.001067 || 51.00% || 2.13827655310621e-06 || 0.000006611 2.09x
8.1.5 Measured Function Calls
Name || Calls Time || Fraction Max Time || Deviation
Eﬂl Af 1506 || 0.000092990 4.45% | 0.000000448 6.26x
8.1.6 Measured Blocks
Name Calls Time || Fraction Max Time || Deviation
L_J—] residualFunc3 || 2018 || 0.000521137 || 24.91% || 0.000035456 136.30x
l—_-—l residualFuncl || 1506 || 0.000393709 || 18.82% || 0.000002735 9.46x
8.1.6.1 Equations
Name Variables
SES ALGORITHM 0
SES SIMPLE ASSIGN 1 der
residualFunc3 z2,z1
residualFuncl X

8.1.6.2 Variables

Name || Comment

X This is x

1

16

1]

8.1.7 Genenerated XML for the Example

<IDOCTYPE doc (View Source for full doctype...)>

- <simulation>

- <modelinfo>
<name>A</name>
<prefix>A</prefix>
<date>2011-03-07 12:55:53</date>
<method>euler</method>
<outputFormat>mat</outputFormat>
<outputFilename>A_res.mat</outputFilename>
<outputFilesize>24617</outputFilesize>
<overheadTime>0.000273</overheadTime>
<preinitTime>0.000401</preinitTime>
<initTime>0.000046</initTime>
<eventTime>0.000036</eventTime>
<outputTime>0.000264</outputTime>
<linearizeTime>0.000000</linearizeTime>
<totalTime>0.002092</totalTime>
<totalStepsTime>0.001067</totalStepsTime>
<numStep>499</numStep>
<maxTime>0.000006611</maxTime>
</model info>

- <profilingdataheader>
<filename>A_prof.data</filename>
<filesize>28000</fTilesize>

- <format>
<uint32>step</uint32>
<double>time</double>
<double>cpu time</double>
<uint32>A.f (calls)</uint32>
<uint32>residualFunc3 (calls)</uint32>
<uint32>residualFuncl (calls)</uint32>
<double>A_f (cpu time)</double>
<double>residualFunc3 (cpu time)</double>
<double>residualFuncl (cpu time)</double>
</format>
</profilingdataheader>

- <variables>

- <variable 1d="1000" name="y" comment=""'>
<info filename="a.mo" startline="8" startcol="3" endline="8"

readonly="writable" />
</variable>

- <variable 1d="1001" name="der(y)" comment=""">
<info filename="a.mo" startline="8" startcol="3" endline="8"

readonly="writable"” />
</variable>

- <variable 1d="1002" name="x" comment="This is x">
<info filename="a.mo" startline="7" startcol="3" endline="7"

readonly="writable" />
</variable>

- <variable 1d="1003" name='z1" comment=""'>
<info filename="a.mo" startline="9" startcol="3" endline="9"

readonly="writable" />
</variable>

- <variable 1d="1004" name='z2" comment=""'>

<info filename="a.mo" startline="10" startcol="3" endline="10" endcol="20"

readonly="writable" />
</variable>

endcol="18"
endcol="18"
endcol="28"
endcol="20"

117

- <variable id="1005" name="s" comment=""'>

<info filename="a.mo" startline="6" startcol="3" endline="6"" endcol=""19"

readonly="writable" />
</variable>
</variables>
- <functions>
- <function i1d="1006">
<name>A.f</name>
<ncal 1>1506</ncal 1>
<time>0.000092990</time>
<maxTime>0.000000448</maxTime>
<info filename="a.mo" startline="2" startcol="3"
readonly="writable" />
</function>
</functions>
- <equations>
- <equation id="1007" name="SES_ALGORITHM 0'>
<refs />
</equation>
- <equation i1d="1008" name="SES_SIMPLE_ASSIGN 1'>
- <refs>
<ref refid=""1001" />
</refs>
</equation>
- <equation i1d="1009" name="residualFunc3'>
- <refs>
<ref refid=""1004" />
<ref refid="1003" />
</refs>
</equation>
- <equation i1d="1010" name="residualFuncl'>
- <refs>
<ref refid=""1002" />
</refs>
</equation>
</equations>
- <profileblocks>
- <profileblock>
<ref refid=""1009" />
<ncall>2018</ncall>
<time>0.000521137</time>
<maxTime>0.000035456</maxTime>
</profileblock>
- <profileblock>
<ref refid="1010" />
<ncall>1506</ncall>
<time>0.000393709</time>
<maxTime>0.000002735</maxTime>
</profileblock>
</profileblocks>
</simulation>

endline="5" endcol="8"

119

Chapter 9

Modelica Algorithmic Subset Debugger

This chapter presents a comprehensive Modelica debugger for an extended algorithmic subset of the
Modelica language called MetaModelica. This replaces debugging of algorithmic code using primitive
means such as print statements or asserts which is complex, time-consuming and error- prone.

The debugger is portable since it is based on transparent source code instrumentation techniques that are
independent of the implementation platform.

The usual debugging functionality found in debuggers for procedural or traditional object-oriented
languages is supported, such as setting and removing breakpoints, single-stepping, inspecting variables,
back-trace of stack contents, tracing, etc. The debugger is integrated with Eclipse.

9.1 The Eclipse-based Debugging Environment

The debugging framework is based on the Eclipse environment and is implememented as a set of plugins
which are available from Modelica Development Tooling (MDT) environment. Some of the debugger
functionality is presented below. In the right part a variable value is expored. In the top-left part the stack
trace is presented. In the middle-left part the execution point is presented.

Fie Edt Havigate Search Project Aun Fiekdissst Window Help
Ll w0 - R W&

ndebca Developement Tooling (MO

)
Main, ranslateFie Jne: 376, 20 19)
wil Cabmieygrnome e oo e iopeniodeben buld b o exe <gmaPon e84 <dbyfenyPor = 1285 gl ventPor =156 <

|

Figure 9-1. Debugging functionality.

120

9.2 Starting the Modelica Debugging Perspective

To be able to run in debug mode, one has to go through the following steps:
1. setting the debug configuration
2. setting breakpoints
3. running the debug configuration

All these steps are presented below using images.

9.2.1 Setting the debug configuration

While the Modelica perspective is activated the user should click on the bug icon on the toolbar and select
Debug in order to access the dialog for building debug configurations.

File Edit Mavigate Search Project Run FieldAssist Window Help

[t @ 3 ~-0-Q- |8 & a8 |@ -0l Gro-

9% 1 10_petrol
-'f’r’. 2 09_pamtrans
2’,»’, 3 08_pamded
-'f’r’. 407 _pam

odelica Project:

m

Functions,mo | futs 3 05_advanced

Main.mo 7% 6 04b_modassigntwotype

B

<[
B

=
B .externalToolB
-
&
H

Types.mo T’,»’, 7 04a_sssigntwotype
-project 2% 8 03_assignment

Functions.c ?’l”l B0 e
Functions.h

Functions.o

Functions.srz Debug As »
Mair.c

-?’,-’, 02a_expl

E ’:::::Exe Organize Favorites... |
- =] Main.o
Main.srz

& Make.mk
| g Makefile

E README.txt

e [0 1 AR bk i
4 | B

EE Outline 23 .
An outline is not available. Problems | B consale 52 Ennkmarks| Progress |

<terminated > OMDev-MINGW [Program] C:\OMDev \tools\msysibin'make. exe
wpiling/linking in debug mode with LISRML—zml_

Sdebug

z - - e-pointez —IV zml//include”/plain —o Mein.o Main.c

1/b

s/ xml;
ngflinking in debug =

ins

Figure 9-2. Accessing the debug configuration dialog.

To create the debug configuration, right click on the classification Modelica Development Tooling
(MDT) and select New as in figure below. Then give a name to the configuration, select the debugging
executable to be executed and give it command line parameters. There are several tabs in which the user
can select additional debug configuration settings like the environment in which the executable should be
run.

121

£ Modelica - Main.mo - Edlipse SDK

File Edt Mavigate Search Project Run Window Help
A = R e e g e e e
=
(4] Modeliea Projesss 34

Codegenimo | Create, manage, and run configurations

7 Connect.mo Run or Debug a MetaModelica program
Constants.mo

3 Corba.mo
s DIAE G MEEIEEE pame: [omcD
DAEEXTImO filter text =
3 DAELow.mo ftrpe . mliy S_nurce| =] Comrmon | Pg Environment
Debug.mo) CjC++ Attach to Local Application
4 Derive.ma [E] ciC++ Local Application
Dump.mo -[€] CjC++ Postmortem debugger B
4 DumpGraphyiz. -8 Edipse Application Erogram‘.lC:\bin\;ygw\n‘hame\adrpo\runnme-EcIipsea!pplicanon‘\OpEnModehca\buwld\bin\pmcd.axe EWLI
Env.mo @ Equinox O5Gi Framewark
3 Error.ma B Javs Applet
ErrorExt.mo [T Java Application Arguments:
3w Hs Jav.a Bean +c=debug +d=interactiveCorba
Graphviz.mo Ju JUnit
3 Inst.mo ﬁ Junit Plug-in Test
3 Interactive.mo =] % Modelica Developement Tooling (MOT)
Lookup.mo ‘?ﬁ omMCD
7 Main.mo E Remote Java Application

~H3 Main [swT Application

checkClassdef
fixModelicaOutput
handleCommand
interactivemade
interactivemodeCor
isFlatModelicarile
isModelicaFile .
isModelicaScriptFile Apoly | Revert
main oo
makeDebugResult

oo T

optimizeDae ” ‘M e — e

readSettings
readSettingsFile

Figure 9-3. Creating the Debug Configuration.

¥ Modelca - Fokyrse SOK =181 x]

Fim Edt MNyvigats Search Project Fun Feldlssst Window Help

| B B Tt T £1| E Mogesca o
€ Debug x|

)
. Create, manage, and run configurations
S ‘Gsoeo-‘edmamoaswo:m: I
il mame: [01_exomrment

TN G Source |] Common | I Envrorment |

@ Echoee Aaghcaton -
& Equnox 055 Framework
B Gerarc Server

B Gereric serverg » Program; [4ca)1 _soement/man. exe Brovse...
B eve appiet - -

H§ savatenn Aeqments:
0

%:: 1 Click Browse and
%oﬁm":‘:rm

ey select the executable o
e you just built. -
|

T 10_pevo

i, Remate Java Asplcation
2= SWT Appicaton

E Test

]

= Typane

= Typene

Jiimeluse™/plaie s Funesiens e B

RMLAR:

= -fdabug

Give parameters s
| o

= to the program] e
M |2 &0 ¢ wSH 34 = er————— ofau...lﬂmm~-.|azm..-]@mmﬁh.."' Modedca - — | untded -pant | |n| <O AERNE

Figure 9-4. Specifying the executable to be run in debug mode.

122

9.2.2 Setting/Deleting Breakpoints
€ Hodelca Haimmo - Edwse SOK 181X

Fle Edt Mavgate Search Froject Run Feidissst Window Hep

Ird= @ m | $-0-Q- |5 | |2 |8 |@ | 1« =5 G - |corectindentaton 3|) Modeica =
[T = 0) X, =5
il = e i-hachage Matn =

2 3/ ampa

i import Functisna;

£ function =ain
7 imput liste<Strings arg;
£ algorithm
10 matchcomtinue arg

case in_sTrii_)
= local

3 Incagar i, n;

Eiring str, n_str:

n.

giFanctions . cent ("ena™)) bi

g iFunctions. cent ("1ea™) | b3 -
»
=pn

o 8 e Proens | Conzcle 12 W\ Beskmaris | Progress | s k| ki B-r5-0

manfist<sang> ag) Deveicorment Tookng (MDT]] £ i°H e ChGCmePort = 1796 <BoReohPort=I757 <BEventPort= 2795 oSonaPon =75 10
& import Functions;

Double click on the
ruler to set/delete
breakpoints

K]

| wnasie | trsert B | B Opertiodeion Compler 1,438 Orire | Jige

Figure 9-5. Setting/deleting breakpoints.

9.2.3 Starting the debugging session and enabling the debug perspective
€ Hodelca Haimmo - Edwse SOK 181X

Fie Edt Maigate Search Proct Run Feidissst Window Help
Ird @l e |- 0rQu=|E |4 | o= || @] e ot Gel - | comctindentaton £ | F Modeicn *

dan.mo. X

pachage Hain =

ampo vpun;
isport Funetisns;
“function =main

input list<Strings arg;
algerithm

{8 Fuceons.
{f] Funcrons,
| Rrctors.s pigas
| Reciors.r et
] manc TR -

O manene

[Manh
Mar.o

B Man.srz

& Make,mic

-
A

Lip Makefie R
- N—

g iFanctions . cest ("ene”))

g iFunctions. cent ("1ea™) | b3 -
»
=pn

B i Man = M| wiil+B-ri-=0

B F manfscstng> wg) o1, e dogTmePort= 1796 <boReohPort=2757 <bgiventPori=2753 <bgSonaPort =175 10
o imoortFunctons; -]

Click and select the
debug configuration.
The debugging will start.

4 P

| wrieabie | Trgent [EEE | B Opeiviodeicn Compier 1.4.3 8 Orire. | (s QI 5icac v T (oizom |

Figure 9-6. Starting the debugging session.

123

£ Modelica - Main.mo - Eclipse SDK

File Edit Mavigate Search Project Run Fielddssist Window Help
[ri- @B -0 B |G| @] -5 G- | comsmmmn
r@ Modelica Projects £2 =0 o B i :

-2 01_experiment
""" | 02a_expl

S Ffimport Types;
import Functions;

i "Q 03_assignment

""" 1T 04a_assigntwotype

""" T 04b_modassigntwatype
""" 17 05_advanced

= function main
input list<String> arg;
algorithm
natchocontinue erg
case (n_str::_)

""" 12 07_pam local
----- 120 08_pamded Integer i, n; — - - - nam— -
..... 157 09_pamtrans String str, mostr; KA e r x|
T 10_petral o - o
..... 15 documentation T?ushngsaﬂaund'l is configured to open the Debug perspective when it
..... B =t . s, SUSPERCS:
:‘u;:' 9 ‘1_3_5 This Debug perspective is designed ta support application debugging, It
" Ct’icn? ‘ECt incorporates views for displaying the debug stack, variables and breakpoint
= intStringii)| management.
printistr);
// test function Do you want to open this perspective now?
int{"\nCalling E
princ{"\nCelling E 4 ;s s
g [~ Remember my decision
B outine 32 B % e ¥Y=0O A -
- Yes I Mo
= @ Main Problems | Bl Console &2 . Boakmarl
- main{ist=String> arg) 01_experiment [Modelica Developement reome-rermr——rerrererrrrere—rre — . -

Lo import Functions;

Figure 9-7. Eclipse will ask if the user wants to switch to the debugging perspective.

9.3 The Debugging Perspective

& Debug - Main.mo - Eciipse SDK =15 x|
Fie Edt Refocior Nvigol Sewch Frowct Run Feiddssst Window Heb
[r9=] | Qs Q- Q- || @5 |2 || @] 5 e on sae . - || comectindentaton [Deng. -
1 pebg 1 i p B | R][BRF] #T7 O] vautes 5\ Smakvonts| DR ¥ XK T=0
8 01_experment Modelca Developement Tooing (MET] Hiame | vake |
=5 woT EEXT] strr st
B Main read (stenoing) B nsy strrg
= Main.main (re: 17, %1 7)
vl Clon) W1 timain_exe <boCm g -

P — / i 2ily P
(3 rocz0 < NG

| = 01 [outine | i3 Mocesca progecss 12 = 01
I-package Hain = ol BT
1 o1_eperment
B 02 w1
& 0>_eo2

£5ifunction main
input listeString> arg;
: algorithm

&I 03_sssgrment

& 0da_sssgritwotype
1B 0%_modassgntwatype
1B 05 _adverced

1 08 OMCAndCorba
17 07_pam

12 08 _pamded

T o9_pamtrans

& 10_petral

{8 documentation
etz

.

) conscle £ " Tesks | B Log |
91_sxperment Tecing [= 91, exe <HotmdPort= 0%

By v i B@ -1 -70
Browse variables here. -
Use the buttons to step. Also there 1s a tab with
Only step into works breakpoints.

right now. o

m o - T | BB Ooerodsica Comoler 1,435 Orire e | ErTsTT

Figure 9-8. The debugging perspective.

124

& Debug - Main

o =18

Fe Edt Refacior Nevgele Sewch Projent Rum Fieldissst Window Help
e L R e e e e I A e e 12135 Detug
1 Detng 13 i B BB EE| BT T O] v 5 preskponts] .
= BB 01_sxperment [Modeion Seveiooement Toglng (MO Hame []
By Man thread (stepping)

= Man_man (ne: 17,51 7)
ol C:pen T e o) ' v : -

4 | 2l .
i Manmo B

Lopashage Main

=0 ModekcaProgects| O
a AxfwY"

B @ Man
&l

© impert Functons;
#5ifunction main
T input listeSsring> args
¢ algorithm
matchoontinue arg
case (n_ssrii_)
local
Integur 1, n;
String stzr, m_sir;
equatien
factorial

o

W% | La il 8- 13270

Switch between Debug 3
and Modelica Perspective

57\ Tosks | Emor g | L

Figure 9-9. Switching between perspectives.

125

Chapter 10

Interoperability — C, Java, and Python

Below is information and examples about the OpenModelica external C and Java interfaces, as well as
examples of Python interoperability.

10.1 Calling External C functions
The following is a small example (ExternalLibraries.mo) to show the use of external C functions:

model ExternallLibraries
Real x(start=1.0),y(start=2.0);

equation
der(x)=-ExternalFuncl(x);
der(y)=-ExternalFunc2(y);

end ExternalLibraries;

function ExternalFuncl
input Real x;
output Real y;
external
y=ExternalFuncl_ext(x) annotation(Library="l1ibExternalFuncl_ext.o",
Include="#include \"ExternalFuncl_ext_h\""");
end ExternalFuncl;

function ExternalFunc2
input Real x;
output Real y;
external "C" annotation(Library="libExternalFunc2.a",
Include="#include \"ExternalFunc2_h\""");
end ExternalFunc2;

These C (.c) files and header files (.h) are needed:

/* File: ExternalFuncl.c */
double ExternalFuncl_ext(double x)

double res;
res = X+2.0*x*x;
return res;

}

/* Header file ExternalFuncl_ext.h for ExternalFuncl function */
double ExternalFuncl_ext(double);

/* File: ExternalFunc2.c */
double ExternalFunc2(double x)

double res;
res = (x-1.0)*(x+2.0);
return res;

126

}

/* Header file ExternalFunc2.h for ExternalFunc2 */
double ExternalFunc2(double);

The following script file ExternalLibraries.mos will perform everything that is needed, provided you
have gcc installed in your path:

loadFile("ExternalLibraries.mo™);

system(*'gcc -c -0 libExternalFuncl_ext.o ExternalFuncl.c');
system(‘'gcc -c -o libExternalFunc2.a ExternalFunc2.c');
simulate(ExternallLibraries);

We run the script:

>> runScript(“ExternalLibraries.mos™);

and plot the results:
>> plot({x,y});

< tmpPlot.plt
File Edit Special

Plot by OpenModelica

agF T T T T T T 1, m
Y.
14810 T
100 T
051 }

0o 01 2z 03 04 05 06 OF 08 08 1.0

10.2 Calling External Java Functions

There exists a bidirectional OpenModelica-Java CORBA interface, which is capable of passing both
standard Modelica data types, as well as abstract syntax trees and list structures to and from Java and
process them in either Java or the OpenModelica Compiler.

The following is a small example (ExternalJavaLib.mo) to show the use of external Java function
calls in Modelica, i.e., only the case calling Java from Modelica:

model ExternalJavalLib

Real x(start=1.0);
equation

der(x)=- ExternalJavalLog(Xx);
end ExternalJavalLib;

127

function ExternalJavalog

input Real x;

output Real y;
external "Java" y=”java.lang.Math.log’(x) annotation(JavaMapping = "simple'™);
end ExternalJavalog;

The datatypes are mapped according to the tables below. There is one mapping for interacting with
existing Java code (simple), and a default mapping that handles all OpenModelica datatypes. The
definitions of the default datatypes exist in the Java package org.openmodelica (see SOPENMODELICA-
HOME/share/java/modelica_java.jar).

For more complete examples on how to use the Java interface, download the OpenModelica source code
and view the examples in testsuite/java.

Modelica Default Mapping JavaMapping = "'simple™
Real ModelicaReal double
Integer Modelicalnteger int
Boolean ModelicaBoolean bool
String ModelicaString String
Record ModelicaRecord

T[:] ModelicaArray<T>

MetaModelica Default Mapping

list<T> ModelicaArray<T>

tuple<T1, ..., Tn> ModelicaTuple

Option<T> ModelicaOption<T>

Uniontype IModelicaRecord

10.3 Python Interoperability

The interaction with Python can be perfomed in four different ways whereas one is illustrated below.
Assume that we have the following Modelica code (Cal ledbyPython.mo):
model CalledbyPython

Real x(start=1.0),y(start=2.0);
parameter Real b = 2.0;

equation
der(x) = -b*y;
der(y) = X;

end CalledbyPython;

In the following Python (.py) files the above Modelica model is simulated via the OpenModelica scripting
interface.

file: PythonCaller.py

#1/usr/bin/python

import sys,o0s

global newb = 0.5

os.chdir(r*C:\Users\Documents\python*")

execfile("CreateMosFile.py")
os.popen(rC:\OpenModelical.4_5\bin\omc.exe CalledbyPython.mos"™).read()

128

execfile("RetrResult.py")

file: CreateMosFile.py

#1/usr/bin/python

mos_file = open("CalledbyPython.mos",’w”,1)

mos_file.write("loadFile(\"Cal ledbyPython.mo\"");\n"")

mos_file.write('setComponentModifierValue(CalledbyPython,b,Code(="+str(newb)+")
):\n")

mos_file.write("simulate(CalledbyPython,stopTime=10);\n"")

mos_file.close()

file: RetrResult.py

#1/usr/bin/python

def zeros(n): #
vec = [0.0]
for i1 in range(int(n)-1): vec = vec + [0.0]
return vec

res_file = open(*CalledbyPython_res.plt"”,"r",1)

line = res_file.readline()
size = int(res_file.readline(Q).split("=")[1D
time = zeros(size)

y zeros(size)
while line '= ["DataSet: time\n"]: line = res_file.readline().split(",")[0:1]
for j in range(int(size)): time[j]=Float(res_file.readline(Q).split(",")[0D)
while line '= ["DataSet: y\n"]: line=res_file.readline().split(",")[0:1]
for j in range(int(size)): y[jl=Float(res_file.readline(Q).split(",")[1])
res_file.close()
A second option of simulating the above Modelica model is to use the command bui ldModel instead of
the simulate command and setting the parameter value in the initial parameter file,
CalledbyPython_init.txt instead of using the command setComponentModifierValue. Then the
file CalledbyPython_exe is just executed.
The third option is to use the Corba interface for invoking the compiler and then just use the scripting
interface to send commands to the compiler via this interface.
The fourth variant is to use external function calls to directly communicate with the executing
simulation process.

129

Chapter 11

Frequently Asked Questions (FAQ)

Below are some frequently asked questions in three areas, with associated answers.

11.1 OpenModelica General

Q: Why are not the Media and Fluid libraries included in the OpenModelica distribution.

A: These libraries need special features in the Modelica language which are not yet implemented in
OpenModelica. We are working on it, but it will take some time.

Q: OpenModelica does not read the MODELICAPATH environment variable, even though this is
part of the Modelica Language Specification.

A: Use the OPENMODELICALIBRARY environment variable instead. We have temporarily
switched to this variable, in order not to interfere with other Modelica tools which might be
installed on the same system. In the future, we might switch to a solution with a settings file, that
also allows the user to turn on the MODELICAPATH functionality if desired.

Q: How do I enter multi-line models into OMShell since it evaluates when typing the Enter/Return
key?

A: There are basically three methods: 1) load the model from a file using the pull-down menu or the
loadModel command. 2) Enter the model/function as one (possibly long) line. 3) Type in the model
in another editor, where using multiple lines is no problem, and copy/paste the model into OMShell
as one operation, then push Enter. Another option is to use OMNotebook instead to enter and
evaluate models.

11.2 OMNotebook

Q: OMNotebook hangs, what to do?

A: It is probably waiting for the omc.exe (compiler) process. (Under windows): Kill the processes
omc.exe, gt++.exe (C-compiler), as.exe (assembler), if present. If OMNotebook then asks whether
to restart OMC, answer yes. If not, kill the process OMNotebook.exe and restart manually.

Q: I always get simulation failed, and plotting does not work..

A: This is cause by problems compiling and linking the generated simulation code with the
MINGW (Gnu) C compiler under Windows. You probably have some Logitech software installed

130

that prevents Corba communication to start the compilation. There is a known bug/incompatibility
in Logitech products. For example, if lvprcsrv.exe is running, Kill it and/or prevent it to start again
at reboot; it does not do anything really useful, not needed for operation of web cameras or mice.

Q: After a previous session, when starting OMNotebook again, I get a strange message.

A: You probably quit the previous OpenModelica session in the wrong way, which left the process
omc.exe running. Kill that process, and try starting OMNotebook again.

Q: I copy and paste a graphic figure from Word or some other application into OMNotebook, but
the graphic does not appear. What is wrong?

A: OMNotebook supports the graphic picture formats supported by Qt 4, including the .png, .bmp
(bitmap) formats, but not for example the gif format. Try to convert your picture into one of the
supported formats, (e.g. in Word, first do paste as bitmap format), and then copy the converted
version into a text cell in OMNotebook.

Q: Plotting does not work in OMNotebook.

A: You probably have an old version of Java installed. Update your installation, and try again.
(Another known problem, soon to be fixed, is that plotting of parameters and constants does not yet
work).

Q: I select a cell, copy it (e.g. Ctrl-C), and try to paste it at another place in the notebook. However,
this does not work. Instead some other text that I earlier put on the clipboard is pasted into the
nearest text cell.

A: The problem is wrong choice of cursor mode, which can be text insertion or cell insertion. If you
click inside a cell, the cursor become vertical, and OMNotebook expects you to paste text inside the
cell. To paste a cell, you must be in cell insertion mode, i.e., click between two cells (or after a
cell), you will get a vertical line. Place the cursor carefully on that vertical line until you see a small
horizontal cursor. Then you should past the cell.

Q: I am trying to click in cells to place the vertical character cursor, but it does not seem to react.

A: This seems to be a Qt feature. You have probably made a selection (e.g. for copying) in the
output section of an evaluation cell. This seems to block cursor position. Click again in the output
section to disable the selection. After that it will work normally.

Q: I have copied a text cell and start writing at the beginning of the cell. Strangely enough, the font
becomes much smaller than it should be.

A: This seems to be a Qt feature. Keep some of the old text and start writing the new stuff inside the

text, i.e., at least one character position to the right. Afterwards, delete the old text at the beginning
of the cell.

11.3 OMDev - OpenModelica Development Environment

Q: I get problems compiling and linking some files when using OMDev with the MINGW (Gnu) C
compiler under Windows.

A: You probably have some Logitech software installed. There is a known bug/incompatibility in
Logitech products. For example, if lvpresrv.exe is running, kill it and/or prevent it to start again at
reboot; it does not do anything really useful, not needed for operation of web cameras or mice.

131

Appendix A

Major OpenModelica Releases

This Appendix lists the most important OpenModelica releases and a brief description of their contents.
However, right now the versions from 1.3.1 to 1.7 are described.

A.1 OpenModelica 1.7, April 2011

The OpenModelica 1.7 release contains OMC flattening improvements for the Media library, better and
faster event handling and simulation, and fast MetaModelica support in the compiler, enabling it to
compiler itself. This release also includes two interesting new tools — the OMOpttim optimization
subsystem, and a new performance profiler for equation-based Modelica models.

A.1.1 OpenModelica Compiler (OMC)

This release includes bug fixes and performance improvements of the flattening frontend part of the
OpenModelica Compiler (OMC) and several improvements of the backend, including, but not restricted to:

e Flattening of the whole Modelica Standard Library 3.1 (MSL 3.1), except Media and Fluid.
e Progress in supporting the Media library, some models now flatten.

e Much faster simulation of many models through more efficient handling of alias variables, binary
output format, and faster event handling.

e Faster and more stable simulation through new improved event handling, which is now default.
e Simulation result storage in binary .mat files, and plotting from such files.
e Support for Unicode characters in quoted Modelica identifiers, including Japanese and Chinese.

e Preliminary MetaModelica 2.0 support. (use setCommandLineOptions({"+g=MetaModelica"})).
Execution is as fast as MetaModelica 1.0, except for garbage collection.

e Preliminary bootstrapped OpenModelica compiler: OMC now compiles itself, and the bootstrapped
compiler passes the test suite. A garbage collector

e Many bug fixes.

A.1.2 OpenModelica Notebook (OMNotebook)

Improved much faster and more stable 2D plotting through the new OMPIlot module. Plotting from binary
.mat files. Better integration between OMEdit and OMNotebook, copy/paste between them.

A.1.3 OpenModelica Shell (OMShell)
Same as previously, except the improved 2D plotting through OMPlot.

A.1.4 OpenModelica Eclipse Plug-in (MDT)

Same as previously.

A.1.5 OpenModelica Development Environment (OMDev)

No changes..

132

A.1.6 Graphic Editor OMEdit

Several enhancements of OMEdit are included in this release. Support for Icon editing is now available.
There is also an improved much faster 2D plotting through the new OMPlot module. Better integration
between OMEdit and OMNotebook, with copy/paste between them. Interactive on-line simulation is
available in an easy-to-use way.

A.1.7 New OMOptim Optimization Subsystem

A new optimization subsystem called OMOptim has been added to OpenModelica. Currently, parameter
optimization using genetic algorithms is supported in this version 0.9. Pareto front optimization is also
supported.

A.1.8 New Performance Profiler

A new, low overhead, performance profiler for Modelica models has been developed.

A.2 OpenModelica 1.6, November 2010

The OpenModelica 1.6 release primarily contains flattening, simulation, and performance improvements
regarding Modelica Standard Library 3.1 support, but also has an interesting new tool — the OMEdit
graphic connection editor, and a new educational material called DrControl, and an improved ModelicaML.
UML/Modelica profile with better support for modeling and requirement handling.

A.2.1 OpenModelica Compiler (OMC)

This release includes bug fix and performance improvemetns of the flattening frontend part of the
OpenModelica Compiler (OMC) and some improvements of the backend, including, but not restricted to:

e Flattening of the whole Modelica Standard Library 3.1 (MSL 3.1), except Media and Fluid.

e Improved flattening speed of a factor of 5-20 compared to OpenModelica 1.5 for a number of
models, especially in the MultiBody library.

e Reduced memory consumption by the OpenModelica compiler frontend, for certain large models a
reduction of a factor 50.

e Reorganized, more modular OpenModelica compiler backend, can now handle approximately
30 000 equations, compared to previously approximately 10 000 equations.

e Better error messages from the compiler, especially regarding functions.

e Improved simulation coverage of MSL 3.1. Many models that did not simulate before are now
simulating. However, there are still many models in certain sublibraries that do not simulate.

e Progress in supporting the Media library, but simulation is not yet possible.
e Improved support for enumerations, both in the frontend and the backend.
e Implementation of stream connectors.

e Support for linearization through symbolic Jacobians.

e Many bug fixes.

A.2.2 OpenModelica Notebook (OMNotebook)

A new DrControl electronic notebook for teaching control and modeling with Modelica.

A.2.3 OpenModelica Shell (OMShell)

Same as previously.

A.2.4 OpenModelica Eclipse Plug-in (MDT)

133

Same as previously.

A.2.5 OpenModelica Development Environment (OMDev)

Several enhancements. Support for match-expressions in addition to matchcontinue. Support for real if-
then-else. Support for if-then without else-branches. Modelica Development Tooling 0.7.7 with small
improvements such as more settings, improved error detection in console, etc.

A.2.6 New Graphic Editor OMEdit

A new improved open source graphic model connection editor called OMEdit, supporting 3.1 graphical
annotations, which makes it possible to move models back and forth to other tools without problems. The
editor has been implemented by students at Linkdping University and is based on the C++ Qt library.

A.3 OpenModelica 1.5, July 2010

This OpenModelica 1.5 release has major improvements in the OpenModelica compiler frontend and some
in the backend. A major improvement of this release is full flattening support for the MultiBody library as
well as limited simulation support for MultiBody. Interesting new facilities are the interactive simulation
and the integrated UML-Modelica modeling with ModelicaML. Approximately 4 person-years of
additional effort have been invested in the compiler compared to the 1.4.5 version, e.g., in order to have a
more complete coverage of Modelica 3.0, mainly focusing on improved flattening in the compiler frontend.

A.3.1 OpenModelica Compiler (OMC)

This release includes major improvements of the flattening frontend part of the OpenModelica Compiler
(OMC) and some improvements of the backend, including, but not restricted to:

e Improved flattening speed of at least a factor of 10 or more compared to the 1.4.5 release, primarily
for larger models with inner-outer, but also speedup for other models, e.g. the robot model flattens
in approximately 2 seconds.

e Flattening of all MultiBody models, including all elementary models, breaking connection graphs,
world object, etc. Moreover, simulation is now possible for at least five MultiBody models:
Pendulum, DoublePendulum, InitSpringConstant, World, PointGravityWithPointMasses.

e Progress in supporting the Media library, but simulation is not yet possible.

e Support for enumerations, both in the frontend and the backend.

e Support for expandable connectors.

e Support for the inline and late inline annotations in functions.

e Complete support for record constructors, also for records containing other records.
e Full support for iterators, including nested ones.

e Support for inferred iterator and for-loop ranges.

e Support for the function derivative annotation.

e Prototype of interactive simulation.

e Prototype of integrated UML-Modelica modeling and simulation with ModelicaML.

e A new bidirectional external Java interface for calling external Java functions, or for calling
Modelica functions from Java.

e Complete implementation of replaceable model extends.
e Fixed problems involving arrays of unknown dimensions.
e Limited support for tearing.

e Improved error handling at division by zero.

e Support for Modelica 3.1 annotations.

134

e Support for all MetaModelica language constructs inside OpenModelica.
e OpenModelica works also under 64-bit Linux and Mac 64-bit OSX.
e Parallel builds and running test suites in parallel on multi-core platforms.

e New OpenModelica text template language for easier implementation of code generators, XML
generators, etc.

e New OpenModelica code generators to C and C# using the text template language.
e Faster simulation result data file output optionally as comma-separated values.
e Many bug fixes.

It is now possible to graphically edit models using parts from the Modelica Standard Library 3.1, since the
simForge graphical editor (from Politecnico di Milano) that is used together with OpenModelica has been
updated to version 0.9.0 with a important new functionality, including support for Modelica 3.1 and 3.0
annotations. The 1.6 and 2.2.1 Modelica graphical annotation versions are still supported.

A.3.2 OpenModelica Notebook (OMNotebook)

Improvements in platform availability.
e Support for 64-bit Linux.
e Support for Windows 7.
e Better support for MacOS, including 64-bit OSX.

A.3.3 OpenModelica Shell (OMShell)

Same as previously.

A.3.4 OpenModelica Eclipse Plug-in (MDT)

Minor bug fixes.

A.3.5 OpenModelica Development Environment (OMDev)
Minor bug fixes.

A.4 OpenModelica 1.4.5, January 2009

This release has several improvements, especially platform availability, less compiler memory usage, and
supporting more aspects of Modelica 3.0.

A.4.1 OpenModelica Compiler (OMC)

This release includes small improvements and some bugfixes of the OpenModelica Compiler (OMC):

e Less memory consumption and better memory management over time. This also includes a better
API supporting automatic memory management when calling C functions from within the compiler.

e Modelica 3.0 parsing support.
e Export of DAE to XML and MATLAB.
e Support for several platforms Linux, MacOS, Windows (2000, Xp, Vista).
e Support for record and strings as function arguments.
e Many bug fixes.
e (Not part of OMC): Additional free graphic editor SimForge can be used with OpenModelica.

A.4.2 OpenModelica Notebook (OMNotebook)

A number of improvements, primarily in the plotting functionality and platform availability.

135

e A number of improvements in the plotting functionality: scalable plots, zooming, logarithmic plots,
grids, etc.

e Programmable plotting accessible through a Modelica API.
e Simple 3D visualization.
e Support for several platforms Linux, MacOS, Windows (2000, Xp, Vista).

A.4.3 OpenModelica Shell (OMShell)

Same as previously.

A.4.4 OpenModelica Eclipse Plug-in (MDT)
Minor bug fixes.

A.45 OpenModelica Development Environment (OMDev)

Same as previously.

A.1 OpenModelica 1.4.4, Feb 2008

This release is primarily a bug fix release, except for a preliminary version of new plotting functionality
available both from the OMNotebook and separately through a Modelica API. This is also the first release
under the open source license OSMC-PL (Open Source Modelica Consortium Public License), with
support from the recently created Open Source Modelica Consortium. An integrated version handler, bug-,
and issue tracker has also been added.

A.4.6 OpenModelica Compiler (OMC)
This release includes small improvements and some bugfixes of the OpenModelica Compiler (OMC):

e Better support for if-equations, also inside when.

e Better support for calling functions in parameter expressions and interactively through dynamic
loading of functions.

e Less memory consumtion during compilation and interactive evaluation.

e A number of bug-fixes.

A.4.7 OpenModelica Notebook (OMNotebook)

Test release of improvements, primarily in the plotting functionality and platform availability.

e Preliminary version of improvements in the plotting functionality: scalable plots, zooming,
logarithmic plots, grids, etc., currently available in a preliminary version through the plot2 function.

e Programmable plotting accessible through a Modelica API.

A.4.8 OpenModelica Shell (OMShell)

Same as previously.

A.4.9 OpenModelica Eclipse Plug-in (MDT)

This release includes minor bugfixes of MDT and the associated MetaModelica debugger:

A.4.10 OpenModelica Development Environment (OMDev)

Extended test suite with a better structure. Version handling, bug tracking, issue tracking, etc. now
available under the integrated Codebeamer

136

A.5 OpenModelica 1.4.3, June 2007

This release has a number of significant improvements of the OMC compiler, OMNotebook, the MDT
plugin and the OMDev. Increased platform availability now also for Linux and Macintosh, in addition to
Windows. OMShell is the same as previously, but now ported to Linux and Mac.

A.5.1 OpenModelica Compiler (OMC)

This release includes a number of improvements of the OpenModelica Compiler (OMC):

Significantly increased compilation speed, especially with large models and many packages.
Now available also for Linux and Macintosh platforms.

Support for when-equations in algorithm sections, including elsewhen.

Support for inner/outer prefixes of components (but without type error checking).

Improved solution of nonlinear systems.

Added ability to compile generated simulation code using Visual Studio compiler.

Added "smart setting of fixed attribute to false. If initial equations, OMC instead has fixed=true as
default for states due to allowing overdetermined initial equation systems.

Better state select heuristics.

New function getIncidenceMatrix(ClassName) for dumping the incidence matrix.

Builtin functions String(), product(), ndims(), implemented.

Support for terminate() and assert() in equations.

In emitted flat form: protected variables are now prefixed with protected when printing flat class.
Some support for tables, using omcTableTimelni instead of dymTableTimelni2.

Better support for empty arrays, and support for matrix operations like a*[1,2;3,4].

Improved val() function can now evaluate array elements and record fields, e.g. val(x[n]), val(x.y) .
Support for reinit in algorithm sections.

String support in external functions.

Double precision floating point precision now also for interpreted expressions

Better simulation error messages.

Support for der(expressions).

Support for iterator expressions such as {3*i foriin 1..10}.

More test cases in the test suite.

A number of bug fixes, including sample and event handling bugs.

A.5.2 OpenModelica Notebook (OMNotebook)

A number of improvements, primarily in the platform availability.

Available on the Linux and Macintosh platforms, in addition to Windows.

Fixed cell copying bugs, plotting of derivatives now works, etc.

A.5.3 OpenModelica Shell (OMShell)

Now available also on the Macintosh platform.

A.5.4 OpenModelica Eclipse Plug-in (MDT)

This release includes major improvements of MDT and the associated MetaModelica debugger:

Greatly improved browsing and code completion works both for standard Modelica and for
MetaModelica.

137

e Hovering over identifiers displays type information.

e A new and greatly improved implementation of the debugger for MetaModelica algorithmic code,
operational in Eclipse. Greatly improved performance — only approx 10% speed reduction even for
100 000 line programs. Greatly improved single stepping, step over, data structure browsing, etc.

e Many bug fixes.

A.5.5 OpenModelica Development Environment (OMDev)

Increased compilation speed for MetaModelica. Better if-expression support in MetaModelica.

A.6 OpenModelica 1.4.2, October 2006

This release has improvements and bug fixes of the OMC compiler, OMNotebook, the MDT plugin and the
OMDev. OMShell is the same as previously.

A.6.1 OpenModelica Compiler (OMC)

This release includes further improvements of the OpenModelica Compiler (OMC):
e Improved initialization and index reduction.
e Support for integer arrays is now largely implemented.

e The val(variable,time) scripting function for accessing the value of a simulation result variable at a
certain point in the simulated time.

e Interactive evalution of for-loops, while-loops, if-statements, if-expressions, in the interactive
scripting mode.

e Improved documentation and examples of calling the Model Query and Manipulation APL
e Many bug fixes.

A.6.2 OpenModelica Notebook (OMNotebook)

Search and replace functions have been added. The DrModelica tutorial (all files) has been updated,
obsolete sections removed, and models which are not supported by the current implementation marked
clearly. Automatic recognition of the .onb suffix (e.g. when double-clicking) in Windows makes it even
more convenient to use.

A.6.3 OpenModelica Eclipse Plug-in (MDT)

Two major improvements are added in this release:

e Browsing and code completion works both for standard Modelica and for MetaModelica.

e The debugger for algorithmic code is now available and operational in Eclipse for debugging of
MetaModelica programs.

A.6.4 OpenModelica Development Environment (OMDev)

Mostly the same as previously.

A.7 OpenModelica 1.4.1, June 2006

This release has only improvements and bug fixes of the OMC compiler, the MDT plugin and the OMDev
components. The OMShell and OMNotebook are the same.

A.7.1 OpenModelica Compiler (OMC)
This release includes further improvements of the OpenModelica Compiler (OMC):

138

e Support for external objects.

e OMC now reports the version number (via command line switches or CORBA API getVersion()).
e Implemented caching for faster instantiation of large models.

e Many bug fixes.

A.7.2 OpenModelica Eclipse Plug-in (MDT)
Improvements of the error reporting when building the OMC compiler. The errors are now added to the
problems view. The latest MDT release is version 0.6.6 (2006-06-06).

A.7.3 OpenModelica Development Environment (OMDev)

Small fixes in the MetaModelica compiler. MetaModelica Users Guide is now part of the OMDeyv release.
The latest OMDev was release in 2006-06-06.

A.8 OpenModelica 1.4.0, May 2006

This release has a number of improvements described below. The most significant change is probably that
OMC has now been translated to an extended subset of Modelica (MetaModelica), and that all development
of the compiler is now done in this version..

A.8.1 OpenModelica Compiler (OMC)
This release includes further improvements of the OpenModelica Compiler (OMC):

e Partial support for mixed system of equations.

e New initialization routine, based on optimization (minimizing residuals of initial equations).

e Symbolic simplification of builtin operators for vectors and matrices.

e Improved code generation in simulation code to support e.g. Modelica functions.

e Support for classes extending basic types, e.g. connectors (support for MSL 2.2 block connectors).
e Support for parametric plotting via the plotParametric command.

e Many bug fixes.

A.8.2 OpenModelica Shell (OMShell)

Essentially the same OMShell as in 1.3.1. One difference is that now all error messages are sent to the
command window instead of to a separate log window.
A.8.3 OpenModelica Notebook (OMNotebook)

Many significant improvements and bug fixes. This version supports graphic plots within the cells in the
notebook. Improved cell handling and Modelica code syntax highlighting. Command completion of the
most common OMC commands is now supported. The notebook has been used in several courses.

A.8.4 OpenModelica Eclipse Plug-in (MDT)

This is the first really useful version of MDT. Full browsing of Modelica code, e.g. the MSL 2.2, is now
supported. (MetaModelica browsing is not yet fully supported). Full support for automatic indentation of
Modelica code, including the MetaModelica extensions. Many bug fixes. The Eclipse plug-in is now in use
for OpenModelica development at PELAB and MathCore Engineering AB since approximately one month.

A.8.5 OpenModelica Development Environment (OMDev)

The following mechanisms have been put in place to support OpenModelica development.

139

A separate web page for OMDev (OpenModelica Development Environment).

A pre-packaged OMDeyv zip-file with precompiled binaries for development under Windows using
the mingw Gnu compiler from the Eclipse MDT plug-in. (Development is also possible using
Visual Studio).

All source code of the OpenModelica compiler has recently been translated to an extended subset of
Modelica, currently called MetaModelica. The current size of OMC is approximately 100 000 lines
All development is now done in this version.

A new tutorial and users guide for development in MetaModelica.

Successful builds and tests of OMC under Linux and Solaris.

A.9 OpenModelica 1.3.1, November 2005

This release has several important highlights.

This is also the first release for which the New BSD (Berkeley) open-source license applies to the source
code, including the whole compiler and run-time system. This makes is possible to use OpenModelica for
both academic and commercial purposes without restrictions.

A.9.1 OpenModelica Compiler (OMC)
This release includes a significantly improved OpenModelica Compiler (OMC):

Support for hybrid and discrete-event simulation (if-equations, if-expressions, when-equations;
not yet if-statements and when-statements).

Parsing of full Modelica 2.2
Improved support for external functions.

Vectorization of function arguments; each-modifiers, better implementation of replaceable, better
handling of structural parameters, better support for vector and array operations, and many other
improvements.

Flattening of the Modelica Block library version 1.5 (except a few models), and simulation of most
of these.

Automatic index reduction (present also in previous release).

Updated User's Guide including examples of hybrid simulation and external functions.

A.9.2 OpenModelica Shell (OMShell)

An improved window-based interactive command shell, now including command completion and better
editing and font size support.

A.9.3 OpenModelica Notebook (OMNotebook)

A free implementation of an OpenModelica notebook (OMNOtebook), for electronic books with course
material, including the DrModelica interactive course material. It is possible to simulate and plot from this
notebook.

A.9.4 OpenModelica Eclipse Plug-in (MDT)

An early alpha version of the first Eclipse plug-in (called MDT for Modelica Development Tooling) for
Modelica Development. This version gives compilation support and partial support for browsing Modelica
package hierarchies and classes.

A.9.5 OpenModelica Development Environment (OMDev)

140

The following mechanisms have been put in place to support OpenModelica development.

e Bugzilla support for OpenModelica bug tracking, accessible to anybody.

e A system for automatic regression testing of the compiler and simulator, (+ other system parts)
usually run at check in time.

e Version handling is done using SVN, which is better than the previously used CVS system. For
example, name change of modules is now possible within the version handling system.

141

Appendix B

Contributors to OpenModelica

This Appendix lists the individuals who have made significant contributions to OpenModelica, in the form
of software development, design, documentation, project leadership, tutorial material, promotion, etc. The
individuals are listed for each year, from 1998 to the current year: the project leader and main author/editor
of this document followed by main contributors followed by contributors in alphabetical order.

B.1 OpenModelica Contributors 2011

Peter Fritzson, PELAB, Linkdping University, Linkdping, Sweden.

Adrian Pop, PELAB, Linkdping University, Link&ping, Sweden.
Martin Sj6lund, PELAB, Link6ping University, Linkoping, Sweden.
Per Ostlund, PELAB, Link&ping University, Linkoping, Sweden.

Peter Aronsson, MathCore Engineering AB, Link&ping, Sweden.
Adeel Asghar, PELAB, Linkdping University, Linkoping, Sweden.
David Akhvlediani, PELAB, Linkoping University, Linkoping, Sweden.
Mikael Axin, IEI, Link6ping University, Linkoping, Sweden.
Bernhard Bachmann, Fachhochschule Bielefeld, Bielefeld, Germany.
Vasile Baluta, PELAB, Linkdping University, Linkdping, Sweden.
Simon Bjorklén, PELAB, Linkdping University, Linkdping, Sweden.
Mikael Blom, PELAB, Link&ping University, Linkdping, Sweden.
Robert Braun, IEI, Linkdping University, Linkoping, Sweden.

Willi Braun, Fachhochschule Bielefeld, Bielefeld, Germany.

David Broman, PELAB, Link6ping University, Linkoping, Sweden.
Stefan Brus, PELAB, Link6ping University, Linképing, Sweden.
Francesco Casella, Politecnico di Milano, Milan, Italy.

Filippo Donida, Politecnico di Milano, Milan, Italy.

Henrik Eriksson, PELAB, Link6ping University, Linkoping, Sweden.
Anders Fernstrom, PELAB, Link6ping University, Link6ping, Sweden.
Jens Frenkel, TU Dresden, Dresden, Germany.

Pavel Grozman, Equa AB, Stockholm, Sweden.

Michael Hanke, NADA, KTH, Stockholm.

Daniel Hedberg, MathCore Engineering AB, Linkdping, Sweden.
Zoheb Hossain, PELAB, Linkdping University, Linkdping, Sweden.
Alf Isaksson, ABB Corporate Research, Visteras, Sweden.

Kim Jansson, PELAB, Linkoping University, Linkdping, Sweden.
Daniel Kanth, Bosch-Rexroth, Lohr am Main, Germany.

Tommi Karhela, VTT, Espoo, Finland.

Joel Klinghed, PELAB, Link6ping University, Linképing, Sweden.
Petter Krus, IEI, Linkdping University, Linkdping, Sweden.

Juha Kortelainen, VTT, Espoo, Finland.

Alexey Lebedev, Equa Simulation AB, Stockholm, Sweden.

Magnus Leksell, Link&ping, Sweden.

142

Oliver Lenord, Bosch-Rexroth, Lohr am Main, Germany.

Ariel Liebman, Energy Users Association of Australia, Victoria, Australia.
Rickard Lindberg, PELAB, Linkdping University, Linkdéping, Sweden
Héakan Lundvall, PELAB, Linkdping University, Linkdping, Sweden.
Henrik Magnusson, Linkdping, Sweden.

Abhi Raj Metkar, CDAC, Trivandrum, Kerala, India.

Eric Meyers, Pratt & Whitney Rocketdyne, Palm City, Florida, USA.
Maroun Nemer, CEP Paristech, Ecole des Mines, Paris, France.

Hannu Niemisto, VTT, Espoo, Finland.

Peter Nordin, IEI, Link6éping University, Link6ping, Sweden.
Kristoffer Norling, PELAB, Linkdping University, Linkdping, Sweden.
Lennart Ochel, Fachhochschule Bielefeld, Bielefeld, Germany.

Atanas Pavlov, Munich, Germany.

Karl Pettersson, IEI, Linkoping University, Linképing, Sweden.

Pavol Privitzer, Institute of Pathological Physiology, Praha, Czech Republic.
Reino Ruusu, VTT, Espoo, Finland.

Per Sahlin, Equa Simulation AB, Stockholm, Sweden.

Wiladimir Schamai, EADS, Hamburg, Germany.

Gerhard Schmitz, University of Hamburg, Hamburg, Germany.

Klas Sjoholm, PELAB, Link6ping University, Linképing, Sweden.
Anton Sodja, University of Ljubljana, Ljubljana, Slovenia

Ingo Staack, IEI, Linkdping University, Linkdping, Sweden.

Kristian Stavaker, PELAB, Link6ping University, Linkdping, Sweden.
Sonia Tariq, PELAB, Link6ping University, Linképing, Sweden.
Hubert Thierot, CEP Paristech, Ecole des Mines, Paris, France.
Mohsen Torabzadeh-Tari, PELAB, Linképing University, Linkoping, Sweden.
Parham Vasaiely, EADS, Hamburg, Germany.

Niklas Worschech, Bosch-Rexroth, Lohr am Main, Germany.

Robert Wotzlaw, Goettingen, Germany.

Bjorn Zachrisson, MathCore Engineering AB, Linkdping, Sweden.
Azam Zia, PELAB, Link6ping University, Linkoping, Sweden.

B.2 OpenModelica Contributors 2010

Peter Fritzson, PELAB, Linkdping University, Link&ping, Sweden.

Adrian Pop, PELAB, Linkdping University, Link6ping, Sweden.
Martin Sjolund, PELAB, Linkdping University, Linkdping, Sweden.
Per Ostlund, PELAB, Link&ping University, Linkdping, Sweden.

Peter Aronsson, MathCore Engineering AB, Link&ping, Sweden.
Adeel Asghar, PELAB, Linkoping University, Linkoping, Sweden.
David Akhvlediani, PELAB, Linkdping University, Linkdping, Sweden.
Bernhard Bachmann, Fachhochschule Bielefeld, Bielefeld, Germany.
Vasile Baluta, PELAB, Linkdping University, Linkdping, Sweden.
Simon Bjorklén, PELAB, Linkdping University, Linkdping, Sweden.
Mikael Blom, PELAB, Link&ping University, Linkdping, Sweden.
Robert Braun, IEI, Linkdping University, Linkoping, Sweden.

Willi Braun, Fachhochschule Bielefeld, Bielefeld, Germany.

David Broman, PELAB, Linkdping University, Linkdping, Sweden.
Stefan Brus, PELAB, Linkdping University, Linképing, Sweden.
Francesco Casella, Politecnico di Milano, Milan, Italy.

Filippo Donida, Politecnico di Milano, Milan, Italy.

143

Henrik Eriksson, PELAB, Link6ping University, Link6ping, Sweden.
Anders Fernstrom, PELAB, Link6ping University, Link6ping, Sweden.
Jens Frenkel, TU Dresden, Dresden, Germany.

Pavel Grozman, Equa AB, Stockholm, Sweden.

Michael Hanke, NADA, KTH, Stockholm.

Daniel Hedberg, MathCore Engineering AB, Linkdping, Sweden.

Alf Isaksson, ABB Corporate Research, Visteras, Sweden.

Kim Jansson, PELAB, Linkoping University, Linkdping, Sweden.
Daniel Kanth, Bosch-Rexroth, Lohr am Main, Germany.

Tommi Karhela, VTT, Espoo, Finland.

Joel Klinghed, PELAB, Link6ping University, Linképing, Sweden.
Petter Krus, IEI, Linkoping University, Linkoping, Sweden.

Juha Kortelainen, VTT, Espoo, Finland.

Alexey Lebedev, Equa Simulation AB, Stockholm, Sweden.

Magnus Leksell, Link&ping, Sweden.

Oliver Lenord, Bosch-Rexroth, Lohr am Main, Germany.

Ariel Liebman, Energy Users Association of Australia, Victoria, Australia.
Rickard Lindberg, PELAB, Linkdping University, Linkdping, Sweden
Hékan Lundvall, PELAB, Link6ping University, Linkoping, Sweden.
Henrik Magnusson, Linkoping, Sweden.

Eric Meyers, Pratt & Whitney Rocketdyne, Palm City, Florida, USA.
Hannu Niemistd, VTT, Espoo, Finland.

Peter Nordin, IEI, Link6ping University, Link6ping, Sweden.
Kristoffer Norling, PELAB, Link6ping University, Linkoping, Sweden.
Lennart Ochel, Fachhochschule Bielefeld, Bielefeld, Germany.

Atanas Pavlov, Munich, Germany.

Karl Pettersson, IEI, Link&ping University, Link&ping, Sweden.

Pavol Privitzer, Institute of Pathological Physiology, Praha, Czech Republic.
Reino Ruusu, VTT, Espoo, Finland.

Per Sahlin, Equa Simulation AB, Stockholm, Sweden.

Wiladimir Schamai, EADS, Hamburg, Germany.

Gerhard Schmitz, University of Hamburg, Hamburg, Germany.

Klas Sjoholm, PELAB, Link6éping University, Linkdping, Sweden.
Anton Sodja, University of Ljubljana, Ljubljana, Slovenia

Ingo Staack, IEI, Linkdping University, Linkdping, Sweden.

Kristian Stavaker, PELAB, Link&ping University, Link&ping, Sweden.
Sonia Tariq, PELAB, Link6ping University, Linképing, Sweden.
Mohsen Torabzadeh-Tari, PELAB, Link6ping University, Linkoping, Sweden.
Niklas Worschech, Bosch-Rexroth, Lohr am Main, Germany.

Robert Wotzlaw, Goettingen, Germany.

Bjorn Zachrisson, MathCore Engineering AB, Linkoping, Sweden.

B.3 OpenModelica Contributors 2009

Peter Fritzson, PELAB, Link&ping University, Linkdping, Sweden.

Adrian Pop, PELAB, Linkdping University, Linkdping, Sweden.
Peter Aronsson, MathCore Engineering AB, Linkoping, Sweden.

David Akhvlediani, PELAB, Linkoping University, Linkoping, Sweden.
Bernhard Bachmann, Fachhochschule Bielefeld, Bielefeld, Germany.
Vasile Baluta, PELAB, Linkdping University, Linkdping, Sweden.
Constantin Belyaev, Bashpromavtomatika Ltd., Ufa, Russia

144

Simon Bjorklén, PELAB, Linkdping University, Linkdping, Sweden.
Mikael Blom, PELAB, Link&ping University, Linkdping, Sweden.
Willi Braun, Fachhochschule Bielefeld, Bielefeld, Germany.

David Broman, PELAB, Linkdping University, Linkdping, Sweden.
Stefan Brus, PELAB, Linkoping University, Linkdping, Sweden.
Francesco Casella, Politecnico di Milano, Milan, Italy

Filippo Donida, Politecnico di Milano, Milan, Italy

Henrik Eriksson, PELAB, Link6ping University, Link6ping, Sweden.
Anders Fernstrom, PELAB, Linkoping University, Linkoping, Sweden.
Jens Frenkel, TU Dresden, Dresden, Germany.

Pavel Grozman, Equa AB, Stockholm, Sweden.

Michael Hanke, NADA, KTH, Stockholm

Daniel Hedberg, MathCore Engineering AB, Linkdping, Sweden.

Alf Isaksson, ABB Corporate Research, Visteras, Sweden

Kim Jansson, PELAB, Linkdping University, Linkdping, Sweden.
Daniel Kanth, Bosch-Rexroth, Lohr am Main, Germany

Tommi Karhela, VTT, Espoo, Finland.

Joel Klinghed, PELAB, Link&ping University, Link&ping, Sweden.
Juha Kortelainen, VTT, Espoo, Finland

Alexey Lebedev, Equa Simulation AB, Stockholm, Sweden

Magnus Leksell, Linkdping, Sweden

Oliver Lenord, Bosch-Rexroth, Lohr am Main, Germany

Héakan Lundvall, PELAB, Linkdping University, Linkdping, Sweden.
Henrik Magnusson, Linkdping, Sweden

Eric Meyers, Pratt & Whitney Rocketdyne, Palm City, Florida, USA.
Hannu Niemistd, VTT, Espoo, Finland

Kristoffer Norling, PELAB, Link&ping University, Linkdping, Sweden.
Atanas Pavlov, Munich, Germany.

Pavol Privitzer, Institute of Pathological Physiology, Praha, Czech Republic.
Per Sahlin, Equa Simulation AB, Stockholm, Sweden.

Gerhard Schmitz, University of Hamburg, Hamburg, Germany

Klas Sjoholm, PELAB, Link6ping University, Linképing, Sweden.
Martin Sj6lund, PELAB, Linkdping University, Linkoping, Sweden.
Kristian Stavaker, PELAB, Link6ping University, Linkdping, Sweden.
Mohsen Torabzadeh-Tari, PELAB, Linkoping University, Linkoping, Sweden.
Niklas Worschech, Bosch-Rexroth, Lohr am Main, Germany

Robert Wotzlaw, Goettingen, Germany

Bjorn Zachrisson, MathCore Engineering AB, Linkoping, Sweden

B.4 OpenModelica Contributors 2008
Peter Fritzson, PELAB, Linkdping University, Linkdping, Sweden.

Adrian Pop, PELAB, Link&ping University, Linkdping, Sweden.
Peter Aronsson, MathCore Engineering AB, Link&ping, Sweden.

David Akhvlediani, PELAB, Linkdping University, Linkoping, Sweden.
Bernhard Bachmann, Fachhochschule Bielefeld, Bielefeld, Germany.
Vasile Baluta, PELAB, Linkoping University, Linkoping, Sweden.
Mikael Blom, PELAB, Link6ping University, Linkoping, Sweden.
David Broman, PELAB, Linképing University, Linkoping, Sweden.
Henrik Eriksson, PELAB, Link6ping University, Link6ping, Sweden.

145

Anders Fernstrom, PELAB, Link6ping University, Link6ping, Sweden.
Pavel Grozman, Equa AB, Stockholm, Sweden.

Daniel Hedberg, MathCore Engineering AB, Linkdping, Sweden.

Kim Jansson, PELAB, Linkoping University, Linkdping, Sweden.

Joel Klinghed, PELAB, Link6ping University, Link6ping, Sweden.
Hakan Lundvall, PELAB, Linkoping University, Linkoping, Sweden.
Eric Meyers, Pratt & Whitney Rocketdyne, Palm City, Florida, USA.
Kristoffer Norling, PELAB, Link&ping University, Linképing, Sweden.
Anders Sandholm, PELAB, Linkdping University, Linkdping, Sweden.
Klas Sjoholm, PELAB, Linkdping University, Linkdping, Sweden.
Kristian Stavaker, PELAB, Link6ping University, Linkoping, Sweden.
Simon Bjorklén, PELAB, Linkdping University, Linkdping, Sweden.
Constantin Belyaev, Bashpromavtomatika Ltd., Ufa, Russia

B.5 OpenModelica Contributors 2007
Peter Fritzson, PELAB, Linkdping University, Link&ping, Sweden.

Adrian Pop, PELAB, Linkoping University, Link&ping, Sweden.
Peter Aronsson, MathCore Engineering AB, Linkdping, Sweden.

David Akhvlediani, PELAB, Linkoping University, Linkoping, Sweden.
Bernhard Bachmann, Fachhochschule Bielefeld, Bielefeld, Germany.
David Broman, PELAB, Linkdping University, Linkoping, Sweden.
Henrik Eriksson, PELAB, Link6ping University, Linkoping, Sweden.
Anders Fernstrom, PELAB, Link6ping University, Link6ping, Sweden.
Pavel Grozman, Equa AB, Stockholm, Sweden.

Daniel Hedberg, MathCore Engineering AB, Linkdping, Sweden.

Ola Leifler, IDA, Linkdping University, Linkdping, Sweden.

Hékan Lundvall, PELAB, Linkoping University, Linkoping, Sweden.
Eric Meyers, Pratt & Whitney Rocketdyne, Palm City, Florida, USA.
Kristoffer Norling, PELAB, Link6ping University, Linkoping, Sweden.
Anders Sandholm, PELAB, Linkdping University, Linkoping, Sweden.
Klas Sjoholm, PELAB, Link6ping University, Linképing, Sweden.
William Spinelli, Politecnico di Milano, Milano, Italy

Kristian Stavaker, PELAB, Link6ping University, Linkoping, Sweden.
Stefan Vorkoetter, MapleSoft, Waterloo, Canada.

Bjorn Zachrisson, MathCore Engineering AB, Linkdping, Sweden.
Constantin Belyaev, Bashpromavtomatika Ltd., Ufa, Russia

B.6 OpenModelica Contributors 2006

Peter Fritzson, PELAB, Linkdping University, Link&ping, Sweden.

Peter Aronsson, MathCore Engineering AB, Linkdping, Sweden.
Adrian Pop, PELAB, Linkdping University, Linkoping, Sweden.

David Akhvlediani, PELAB, Link6ping University, Linkoping, Sweden.
Bernhard Bachmann, Fachhochschule Bielefeld, Bielefeld, Germany.
David Broman, PELAB, Linkoping University, Linkoping, Sweden.
Anders Fernstrom, PELAB, Linkoping University, Linkoping, Sweden.
Elmir Jagudin, PELAB, Linkdping University, Linkdping, Sweden.
Héakan Lundvall, PELAB, Linkdping University, Linkdping, Sweden.
Kaj Nystrom, PELAB, Linkoping University, Linkoping, Sweden.

146

Lucian Popescu, MathCore Engineering AB, Linkoping, Sweden.
Andreas Remar, PELAB, Link6ping University, Link6ping, Sweden.
Anders Sandholm, PELAB, Linkdping University, Linkdping, Sweden.

B.7 OpenModelica Contributors 2005

Peter Fritzson, PELAB, Linkoping University, Linkdping, Sweden.

Peter Aronsson, PELAB, Linkdping University and MathCore Engineering AB, Linkoping, Sweden.
Adrian Pop, PELAB, Link&ping University, Linkdping, Sweden.
Hékan Lundvall, PELAB, Link6ping University, Linkoping, Sweden.

Ingemar Axelsson, PELAB, Linkoping University, Linkdping, Sweden.
David Broman, PELAB, Linkdping University, Linkdping, Sweden.
Daniel Hedberg, MathCore Engineering AB, Linkdping, Sweden.
Hakan Lundvall, PELAB, Linkoping University, Linkoping, Sweden.
Kaj Nystrom, PELAB, Link6ping University, Linkoping, Sweden.
Lucian Popescu, MathCore Engineering AB, Linkdping, Sweden.
Levon Saldamli, PELAB, Linkdping University, Linkoping, Sweden.

B.8 OpenModelica Contributors 2004

Peter Fritzson, PELAB, Linkoping University, Linkdping, Sweden.
Peter Aronsson, Linkdping University, Linkdping, Sweden.

Bernhard Bachmann, Fachhochschule Bielefeld, Bielefeld, Germany.

Peter Bunus, PELAB, Linkoping University, Linkdping, Sweden.

Daniel Hedberg, MathCore Engineering AB, Linkdping, Sweden.

Hakan Lundvall, PELAB, Linkdping University, Linkdping, Sweden.

Emma Larsdotter Nilsson, PELAB, Linkdping University, Link&ping, Sweden.
Kaj Nystrom, PELAB, Link6ping University, Linkoping, Sweden.

Adrian Pop, PELAB, Linkoping University, Linkdping, Sweden.

Lucian Popescu, MathCore Engineering AB, Linkdping, Sweden.

Levon Saldamli, PELAB, Linkdping University, Linkdping, Sweden.

B.9 OpenModelica Contributors 2003

Peter Fritzson, PELAB, Linkdping University, Linkdping, Sweden.

Peter Aronsson, Linkdping University, Linkdping, Sweden.
Levon Saldamli, PELAB, Linkoping University, Linkoping, Sweden.

Peter Bunus, PELAB, Linkoping University, Linkdping, Sweden.

Vadim Engelson, PELAB, Linkoping University, Linkdping, Sweden.

Daniel Hedberg, Linkdping University, Linkdping, Sweden.

Eva-Lena Lengquist-Sandelin, PELAB, Linkdping University, Linkdping, Sweden.
Susanna Monemar, PELAB, Link6ping University, Linkoping, Sweden.

Adrian Pop, PELAB, Linkdping University, Linkdping, Sweden.

Erik Svensson, MathCore Engineering AB, Linkdping, Sweden.

B.10 OpenModelica Contributors 2002

Peter Fritzson, PELAB, Linkoping University, Linkdping, Sweden.

Levon Saldamli, PELAB, Linkoping University, Linkoping, Sweden.
Peter Aronsson, Linkdping University, Linkoping, Sweden.

147

Daniel Hedberg, Link6ping University, Link6ping, Sweden.

Henrik Johansson, PELAB, Link&ping University, Linkdping, Sweden

Andreas Karstrom, PELAB, Link6éping University, Linkdping, Sweden
B.11 OpenModelica Contributors 2001

Peter Fritzson, PELAB, Linkoping University, Linkdping, Sweden.

Levon Saldamli, PELAB, Link6ping University, Linkoping, Sweden.

Peter Aronsson, Linkdping University, Linkdping, Sweden.

B.12 OpenModelica Contributors 2000
Peter Fritzson, PELAB, Linkdping University, Linkdping, Sweden.

B.13 OpenModelica Contributors 1999
Peter Fritzson, PELAB, Linkdping University, Linkdping, Sweden

Peter Ronnquist, PELAB, Linkdping University, Linkdping, Sweden.

B.14 OpenModelica Contributors 1998
Peter Fritzson, PELAB, Linkoping University, Linkdping, Sweden.
David Kégedal, PELAB, Linkoping University, Linkoping, Sweden.
Vadim Engelson, PELAB, Link&ping University, Linkdping, Sweden.

Index

literate programming

